

 The Bike Shop

Advanced Object Oriented
Design Final Project

Kevin Desmond
Steven Gennaoui

Jack Myers
Curtis White

17 December 2013

INTRODUCTION .. 1

ANALYSIS DOCUMENTS .. 3

Use Case Descriptions ... 5

Rent Bike Use Case ..5

Select Bikes Use Case .. 6

Create Rental Log Use Case ... 7

Select Rental Log Use Case ... 7

Select Customer Use Case ... 7

Confirm Reservation Use Case ... 8

Cancel Reservation Use Case .. 9

Return Bike Use Case ...9

Assess Bike Use Case .. 10

Inspect Bike Use Case .. 10

Repair Bike Use Case .. 10

Database Transaction Use Case.. 11

Public Transaction Use Case .. 11

Query Bike Use Case .. 11

Employee Transaction Use Case .. 12

Query Customer Use Case ... 12

Update Customer Use Case .. 12

Update Bike Use Case .. 13

Add Customer Use Case ... 13

Query Logs Use Case ... 13

Update Logs Use Case ... 13

Add Logs Use Case .. 13

Query Details Use Case .. 14

Delete Details Use Case ... 14

Update Details Use Case .. 14

Add Details Use Case ... 14

Executive Transaction Use Case .. 14

Acquire Bike Use Case.. 15

Decommission Bike Use Case .. 15

Remove Customer Use Case .. 15

Login Use Case ... 15

Use Case Diagrams ... 17

Ad Hoc Database Access ... 17

Primary Use Cases ... 18

Login Use Case (new) ... 19

Analysis Classes .. 20

Sequence Diagrams ... 21

Rent Bike (Interaction Diagrams) ... 21

Select Bikes ... 23

Create Rental Log ... 25

Select Rental Log .. 25

Select Customer .. 26

Confirm Reservation .. 27

Cancel Reservation ... 29

Return Bike ... 29

Assess Bike ... 30

Inspect Bike ... 30

Repair Bike ... 31

Database Sequence Diagrams ... 31

Add Record (Insert) ... 31

Update Record .. 32

Delete Record ... 32

Initial Functional Tests .. 33

RentBike ... 33

Return Bike ... 35

Database Transactions ... 36

Logging In ... 37

DESIGN DOCUMENTS ... 39

Revised Analysis Classes .. 40

Revised Sequence Diagrams ... 41

Select Bike Customer ... 41

Rent Bike From Queue ... 42

Rent Bike Employee ... 43

Return Bike ... 44

Assess Charges .. 44

Inspect Bike .. 45

Settle Bike Return ... 46

Repair Bike ... 46

Reused Subcontrollers ... 47

Select Bikes ... 47

Select Rental Log .. 47

Select Customer .. 48

Confirm Reservation .. 49

Login ... 50

Cancel Reservation .. 50

State Diagrams ... 52

Customer Console .. 52

Employee Console ... 52

Mechanic Console .. 52

Rentables .. 53

Rental Logs ... 53

Design Summary .. 54

Database Operations .. 54

Interaction Between Controllers, Subcontrollers and Consoles ... 54

Impact of Consoles on Controllers .. 55

Console / Controller Relationships .. 56

Using the Template Pattern for RentBike .. 57

Queues ... 58

Queue Instantiation ... 58

Queues as Observables .. 58

Logging In and Employee Roles ... 59

Using States ... 59

For Rental Log Cancellation .. 59

For Bikes? ... 60

Exercising the Model .. 60

Other Built-in Flexibilities .. 62

Class Diagram .. 63

Diagram 1: People, Consoles and Queues ... 63

Diagram 2: Controllers, Subcontrollers and States ... 64

CRC Cards ... 65

Controllers and Subcontrollers ... 65

Queues ... 67

Rental Log and Details ... 68

States .. 68

People ... 70

Consoles ... 71

Rentable Items.. 72

Authentication Classes ... 72

Behaviors .. 72

Miscellaneous ... 73

0

1

Introduction

This document represents the evolution of system design of a Bike Shop application from the
analysis phase to the design phase.

The analysis phase consists of the following documents:

 Use Case Descriptions to describe the business flows, including primary and alternate
flows

 Use Case Diagrams to represent system components, actors, and how they interact.

 Analysis Classes to depict the classes from a controller view

 Sequence Diagrams to depict the general flow between the various components (which
generally translate to object-oriented classes)

 Initial Functional Tests based off the primary and alternate flows, which can be expanded
on in the testing phase of the project.

The design phase consists of the following documents:

 Updated Sequence Diagrams to depict the general flow between the various components
(which generally translate to object-oriented classes)

 State Diagrams which show various components and the states through which they
progress

 Design Summary which describes the design approach, patterns used, and documents
design decisions

 Class Diagram which shows the classes needed and key class properties and methods

 CRC Cards which indicate the responsibilities and collaborators of each class

Design is an iterative process. The analysis documents represent a point-in-time understanding of
the Bike Shop application. Sequence diagrams have been updated to reflect design phase
changes. As described in the Design Summary, there were several minor design shifts such as
changing names of classes for consistency, promoting subcontrollers to controllers, etc. All of
these changes will be reflected in the design documents.

There were also three major changes:

 The introduction of console login;

 The use of the State pattern for rental logs;

 The introduction of queues.

To a limited extent, these major changes will result in either modifications to analysis documents or
the generation of new analysis documents. Modifications will be denoted by red text. New
documents will be labeled as such.

2

3

Analysis Documents

4

5

USE CASE DESCRIPTIONS

Rent Bike Use Case

Customers have the option to browse or search the database at a customer kiosk to select
available bike(s) for rental and specify the rental period for each of the selected bikes.
Alternatively, they can have an employee of the bike shop browse or search the database, make
customer suggestions with which the customer can agree or disagree, and record the respective
rental periods. The selected bikes are then physically examined by an employee to ensure their
suitability for rental. If any bikes are unsuitable, they are marked for repair (see Update Bike use
case) and alternative bike selections are made by either the customer or employee. Then the
system will display to the employee any special discounts that might apply to frequent customers.
The employee informs the customer of the final price (including all bike rates, rental durations,
rental deposits and discounts) for all bikes rented, accepts the payment for the rental and
authorizes the rental. The employee will check out the bikes by either associating the bike(s) with
the pre-existing customer record, or by creating a new customer record and then associating that
record with the bike(s). A receipt will be printed for the customer which lists the details and cost of
each bike rental. A rental request may be cancelled at any time during this process, up until the
bikes are associated with the customer. After that, the Return Bike use case will apply.

Primary Flow “Typical rental” (consists of subordinate use cases)

1. Employee Selects Bikes
2. Employee Selects Customer
3. Employee Confirms Reservation

Alternate Flow “Customer selects bikes rental” (consists of subordinate use cases)
1. Customer Selects Bikes
2. Employee Selects Rental Log
3. Employee Selects Customer
4. Employee Confirms Reservation

Alternate Flow “Cancellation after bike selection” (consists of subordinate use cases)

1. Employee Selects Bikes
2. Cancel Reservation

Alternate Flow “Cancellation after bike selection” (consists of subordinate use cases)

1. Customer Selects Bikes
2. Cancel Reservation

Alternate Flow “Cancellation after rental log selection” (consists of subordinate use cases)

1. Customer Selects Bikes
2. Employee Selects Rental Log
3. Cancel Reservation

Alternate Flow “Cancellation after customer selection” (consists of subordinate use cases)

1. Employee Select Bikes
2. Employee Selects Customer
3. Cancel Reservation

6

Alternate Flow “Cancellation after customer selection” (consists of subordinate use cases)
1. Customer Select Bikes
2. Employee Selects Rental Log
3. Employee Selects Customer
4. Cancel Reservation

Select Bikes Use Case

Bikes may be selected from either a Customer Console or an Employee Console. Users search for
bikes by parameters or browse by category. Users select bikes and enter in the rental dates for
which they would like to have this particular bike. Users may select multiple bikes across multiple
searches before confirming the selections and durations for those selections. Once the user is
finished, a summary of their selections will be displayed at which point the selections can be
finalized. After the user has confirmed their selections, a Rental Log is created (See Create Rental
Log Use Case). If this bike selection was done at a Customer Console, the Rental Log number will
be displayed to the customer and wait for confirmation that they’ve seen it. After they confirm it, the
Rental Log will be sent to the Employee Console, so the employee knows a customer is ready to
be helped. If this bike selection was done at the Employee Console, then the customer is already
being helped.

Note: “Browsing” is type of search based on using categories as parameters.

Primary Flow “Employee selects bikes for customer”
1. Employee enters in search parameters to the employee console for the customer
2. The system will use the search parameters to query the database for all bikes matching the

parameters.
3. The employee console will display the results of the search to the employee
4. The employee will select bike(s) and add rental data for each bike selected
5. The system will keep track of all selected bikes
6. Employee may optionally perform more search & select operations adding to this list of

bikes
7. Employee will finalize the selections and rental dates
8. The system will create a rental log consisting of the bikes and rental data

Alternate Flow: “Customer selects bikes prior to approaching employee”

1. The Customer enters in search parameters to the customer console
2. The system will use the search parameters to query the database for all bikes matching the

parameters
3. The customer console will display the results of the search to the customer
4. The customer will select bike(s) and add rental data for each bike selected
5. The system will keep track of all selected bikes
6. Customer may optionally perform more search & select operations adding to this list of

bikes
7. Customer will finalize all selections and rental dates
8. The system will create a rental log consisting of the bikes and rental data (per Create Rental

Log Use Case)
9. The customer console will display the rental log number and wait for customer

acknowledgement of the number
10. The rental log will be sent to the employee console to alert an employee to a ready

customer.

7

Create Rental Log Use Case

A Rental Log will be created for a provided list of bikes and associated rental dates for those
bikes. This preliminary Rental Log does not yet contain customer information. This will also cause
the bikes to go into a “reserved” state so that no other customer will see these bikes as available.
The incomplete Rental Log will be returned.

Primary Flow “Creates a rental log”

1. After a user enters bike and rental data the system will create a preliminary rental log, which
contains no customer information yet

2. The system will ensure that all bikes involved are put into a “reserved” state so they are
unavailable to be selected by other users

Select Rental Log Use Case

A Rental Log will be selected from a list of provided logs on the Employee Console, or the selected
Rental Log will be the log the Employee has created on the Employee console himself. The Rental
Log that is selected will be completed or cancelled by the Employee at the Employee Console.

Primary Flow “Selects a rental log”

1. A log is selected from a list of rental logs on the Employee Console.
2. The log information is displayed on the Employee Console in a state where the log is ready

to be updated with customer information.
3. The selected log is removed from the list on all Employee Consoles

Select Customer Use Case

Customer selection will be done only at the Employee Console. If the customer is known to be a
returning customer, or if they are possibly a returning customer, the employee will search for the
customer by some set of parameters (last name, phone number, email, etc). Existing customers
matching these parameters will be displayed and the employee should choose the correct one. If
the correct customer is not found, the employee may do another search on different criteria. If the
customer cannot be found or the customer is known to be a new customer, then the employee
should create a new Customer by adding the new customer information. After the customer has
been found or a new customer has been created, this customer should be selected for this rental
log. If a Customer indicates that their information has changed, then the Employee may invoke the
Update Customer Use Case.

Primary Flow “Customer is known to have rented before”

1. The Employee will enter in parameters to find the Customer’s record
2. The system will use the parameters to retrieve a list of customers that match the

parameters entered
3. The system will display the list of customers to the employee
4. The Employee will select the correct Customer from the list of possibilities

Alternate Flow “Customer not found”
1. The Employee will enter in parameters to find the Customer’s record
2. The system will use the parameters to retrieve a list of customers that match the

parameters entered
3. The system will display the list of customers to the employee

8

4. Employee will choose to search again by different parameters if the correct Customer
record is not displayed

Note: This flow leads to either the “Customer is known to have rented before” flow or the “New
customer” flow.

Alternate Flow “New customer”
1. The Employee will choose to add a new customer
2. The Employee will enter in all customer information
3. The system will create a new customer using the provided information and return the newly

created Customer for use in this rental

Confirm Reservation Use Case

The Rental Log provided will be updated to include the customer indicated. This will effectively
associate the bikes in the log with the customer. This should also indicate discounts that the
customer is available to receive as well as any “amount due” from previous rentals that was unpaid
(See Return Bike Use Case - “Customer owes more money and cannot afford it”). The Rental Log
should be displayed to the employee in full detail (bikes, customer, costs, discounts, etc). The
employee should finalize this rental and approve the Rental Log with his employee ID and today’s
date. The Rental Log should be updated and the Employee Console should indicate that this was
successful. The approval should change the state of all bikes from “reserved” to “rented.” A receipt
should be printed for the customer indicating all information of transaction.

Primary Flow “The rental log is updated and confirmed”

1. After the employee has selected or created a customer for this rental, the rental log that was
created for the set of bikes and rental data will include the customer

2. All applicable discounts as well as amounts due will be calculated and put on the rental log
3. The employee console will display the final rental log (bikes, rental dates, customer info,

cost breakdown, discounts, etc)
4. The employee will finalize the rental after receiving payment
5. The system will approve the rental log, change all bike statuses to “rented” and update the

database.
6. The system should print a receipt summarizing this rental log

Alternate Flow “The customer cannot pay for the rentals”

1. After the employee has selected or created a customer for this rental, the rental log that was
created for the set of bikes and rental data will include the customer

2. All applicable discounts as well as amounts due will be calculated and put on the rental log
3. The employee console will display the final rental log (bikes, rental dates, customer info,

cost breakdown, discounts, etc)
4. The customer cannot pay for the rentals due to lack of cash, or credit card refusal.
5. The employee cancels the reservations (see Cancel Reservation Use Case).

Alternate Flow “The customer changes their mind about selected bikes”

1. After the employee has selected or created a customer for this rental, the rental log that was
created for the set of bikes and rental data will include the customer

2. All applicable discounts as well as amounts due will be calculated and put on the rental log
3. The employee console will display the final rental log (bikes, rental dates, customer info,

cost breakdown, discounts, etc)
4. The customer decides to alter the bikes they are renting.

9

5. The employee cancels the reservations (see Cancel Reservation Use Case).
6. A new request is created and the process starts over from the beginning (see Rent Bikes /

Select Bikes Use Case).

Cancel Reservation Use Case

If after bikes have been selected for reservation and a rental log has been created and before the
reservation has been confirmed, the customer wishes to cancel the rental, the employee console
should cancel the rental log and refresh and all bikes included in the rental log should have their
statuses changed from “reserved” to “available.”

Primary Flow “Cancel Reservation”

1. While viewing the rental log on the Employee’s console, the employee cancels the
reservation by pressing the Cancel button.

2. All bikes involved in the rental log should be made “available”
3. The rental log should be updated to reflect that it was a “cancelled” log
4. The employee observes that the cancellation was successful.

Return Bike Use Case

Customers will return the bike(s) to the bike shop when they are finished with them. The employee
verifies that correct bikes are returned by comparing the bikes with the customer’s paper receipt or
via a lookup of the rental record. If the bikes are returned late, additional charges are added by the
employee. If the rented bike(s) are no longer in the possession of the customer, the customer will
be charged a replacement fee and the employee indicates the loss on the bike record.(See Assess
Bike Use Case) All returned bikes are inspected for damages by the mechanic (See Inspect Bike
Use Case). The status of all returned bikes is set as described in the Inspect Bike Use Case. If the
mechanic finds any damage, additional charges will be levied against the customer. Assuming any
additional charges are less than the deposit, the customer’s deposit is returned in full or partially. If
the additional charges exceed the deposit, the customer is charged separately for the balance.

Primary Flow

1. Employee enters rental information in the console (i.e. customers name, bike id, rental id)
2. The system retrieves the rental log based on search criteria from the above step.
3. Bike(s) from rental log are displayed on the console.
4. Employee selects the bike(s) being returned as well as lost or stolen bike(s).
5. Assess Bike (subordinate use case)
6. The amount due or amount to be returned is calculated by the system.
7. Logs and final amount due or amount to be returned are displayed on the console
8. Employee finalizes the return transaction and accepts payment from the customer or gives

money back to the customer.
9. Rental logs are updated in the database.
10. The receipt is printed.

Alternate Flow “Customer owes more money and cannot afford it”
1. Employee enters rental information in the console (i.e. customers name, bike id, rental id)
2. The system retrieves the rental log based on search criteria from the above step.
3. Bike(s) from rental log are displayed on the console.
4. Employee selects the bike(s) being returned as well as lost or stolen bike(s).
5. Assess Bike (subordinate use case)
6. The amount due is calculated by the system.

10

7. Logs and final amount due are displayed on the console
8. The customer owes money and cannot pay at this time.
9. Rental logs are updated in the database.
10. The receipt is printed which also acts as a bill
11. The customer record is updated with an amount due to the bike shop.

Assess Bike Use Case

The customer will be given additional charges when bikes are returned late, or have been lost or
stolen.

Primary Flow
1. The system processes any late returns and updates a list of charges.
2. Status of bikes in database is changed to indicate the bike is lost.
3. Lost bikes are queried to get the replacement fee.
4. The replacement fee is added to the list of charges.
5. Rental and bike logs are updated in the database.
6. Returned bikes are inspected (subordinate use case)
7. Damage charges are added to the list of charges.
8. All charges are returned to the Return Bike Use Case.

Inspect Bike Use Case

The mechanic will take bike(s) that are being returned and inspect them for any damage done
while the customer had the bike. If the bike is still in good condition, it may be immediately made
available for another customer to rent. If the bike is no longer usable due to damage or if the bike
needs maintenance/tune up, the bike will be marked for repair and made unavailable for renting.
Damages should be reported (see Assess Bike Use Case) so that associated fees can be applied
to customer bills.

Primary Flow “Mechanic inspects bikes”

1. The Mechanic goes to the mechanic console and selects one of the rental logs for bikes
that have returned but not inspected.

2. The Mechanic inspects one of the bikes for the selected rental log.
3. The Mechanic adds any repair charges to the bike. The act of entering repair charges will

ensure the bike remains unavailable for rental once the information is stored in the
database.

4. When finished inspecting and adding repair charges to all the bikes on the selected rental
log, the Mechanic indicates that he is finished working on this log.

5. The System stores all of the changes to the inspected bikes to the database.
6. The System increments the charges for each bike to include damage fees on the rental log.
7. The System stores the updated rental log to the database.
8. The processed rental log disappears from the mechanic console.

Repair Bike Use Case

The mechanic is responsible for repairing all bikes. Repairs include heavy damage as well as
maintenance and tune ups. When bikes are fully repaired they should be made available for a
customer to rent.

11

Primary Flow “Mechanic repairs bikes”

1. The Mechanic physically repairs a bike.
2. The Mechanic enters search parameters to find the bike he has just repaired.
3. The Mechanic selects a bike from the list of bikes needing repairs that match his search

criteria.
4. The Mechanic indicates the repair costs to the bike are now zero, which makes the bike

available for rental.
5. The System stores the updated bike information to the database.

Database Transaction Use Case

Note: Database Transaction is an abstract generalization. Each specific concrete type of
transaction implements certain operations in the appropriate way. The flow of events given here
describes the behavior common to all types of transaction. The flows of events for the individual
types of transaction (Public Transaction, Executive Transactions, and Employee Transactions) give
the features that are specific to that type of transaction.

A database transaction use case is started within a Public Transaction, Executive Transactions,
and Employee Transactions when a user's actions has to request information or an action for the
database to resolve. The transaction request will be sent to the database.

If the database completes the request, any information or action requests will be performed.

If a transaction is cancelled by the user, or fails for any reason, the database will be resolved to its
prior state before the transaction to maintain integrity.

Public Transaction Use Case

Note: Public Transaction is an abstract generalization. Each specific concrete type of transaction
implements certain operations in the appropriate way. The flow of events given here describes the
behavior common to all types of transaction. The flows of events for the individual types of
transaction (Select Bike) give the features that are specific to that type of transaction.

A public transaction use case is started with a Select Bike Use Case when a user transaction has
to request information that is public knowledge. The user transaction request will be sent to the
database.

If the database completes the request, the information that is public will be sent back.

Cases under this abstract case do not alter the state/information of the database in anyway.

Primary Flow: “Shows Access Level of Database”

Query Bike Use Case

A query bike queries the database for a list of bikes by the bike attributes (e.g. number of seats,
size of bike, etc). The list will be returned to be displayed to the user.

12

Primary Flow: “Query Database Access on Bike Table”
1. Sends query to database using listed bike attributes as clauses that were received from

calling function.
2. Gets a List back of bikes from the database.
3. Returns list back to calling function

Employee Transaction Use Case

Note: Employee Transaction is an abstract generalization. Each specific concrete type of
transaction implements certain operations in the appropriate way. The flow of events given here
describes the behavior common to all types of transaction. The flows of events for the individual
types of transaction (Query Customer, Update Customer, Update Bike, Add Customer, Query
Logs, Update Logs, Add Logs) give the features that are specific to that type of transaction.

A Employee transaction is started within a Query Customer, Update Customer, Update BIke, Add
Customer, Query Logs, Update Logs, and Add Logs use cases. The user will be asked for
appropriate information (e.g. cutomer attributes, bike information, update information, log
information, etc). The employee transaction will be sent to the database, with information for the
transaction to complete.

If the database completes the transaction, any information needed is sent back to the user
(console). For the user to complete any task at hand.

If a transaction is cancelled by the user, or fails for any reason, the database will be set back to its
state prior to the employee transaction.

Primary Flow: “Shows Access Level of Database”

Query Customer Use Case

Query Customer searches the database for a given customer by customer attributes. It returns a
list of customers back.

Primary Flow: “Query Database on the Customer Table”

1. Sends query to database using listed customer attributes as clauses that were received
from calling function.

2. Gets a List back of customers from the database.
3. Returns list back to calling function

Update Customer Use Case

Update Customer changes the customer attributes of a given customer in the database. It returns a
true/false value stating whether the change happened. It creates a copy of the previous Customer
row in the History Customer log table.

Primary Flow: “Update Database on the Customer Table”

1. Sends an update statement to the database using customer attributes that were received
from the calling function.

2. Gets back a confirmation on successful change or not
3. Sends confirmation back to calling function (can be ignored or not)

13

Update Bike Use Case

Update Bike changes the bike attributes of a given bike in the database. It returns a true/false
value stating whether the change happened. It creates a copy of the previous Bike row in the
History Bike Log table

Primary Flow: “Update Database on the Bike Table”

1. Sends an update statement to the database using bike attributes that were received from
the calling function.

2. Gets back a confirmation on successful change or not
3. Sends confirmation back to calling function (can be ignored or not)

Add Customer Use Case

Add Customer adds a customer to the database. It gives the customer a unique ID to represent the
customer. It sets all the attributes of the customer in the database, as well.

Primary Flow: “Add to Database on the Customer Table”

1. Sends an add statement to the database using the customer attributes that were received
from the calling function.

2. Gets back a confirmation on successful add or not
3. Sends confirmation back to calling function (can be ignored or not)

Query Logs Use Case

Query Logs searches the log table of the database using a particular query detail. It returns a List
of logs whether empty or not.

Primary Flow: “Query Database on the Log Table”

1. Sends query to database using listed log attributes as clauses that were received from
calling function.

2. Gets a List back of logs from the database.
3. Returns list back to calling function

Update Logs Use Case

Update Logs updates a log based on a query detail. It executes an update detail or delete detail to
change the log in the database. It creates a copy of the previous Rental Log in the History Rental
Log table.

Primary Flow: “Update Database on the Log Table”

1. Sends an update statement to the database using log attributes that were received from the
calling function.

2. Gets back a confirmation on successful change or not
3. Sends confirmation back to calling function (can be ignored or not)

Add Logs Use Case

Add logs uses add detail to create a new unique log in the database.

14

Primary Flow: “Add to Database on the Log Table”
1. Sends an add statement to the database using the log attributes that were received from

the calling function.
2. Gets back a confirmation on successful add or not
3. Sends confirmation back to calling function (can be ignored or not)

Query Details Use Case

Query detail is the attribute that is used to search for a particular log the user is looking for.

Primary Flow: “Query Database on the Detail Table”

1. Sends query to the database using listed detail attributes as clauses that were received
from calling function.

2. Gets a List back of details from the database.
3. Returns list back to calling function

Delete Details Use Case

Delete detail deletes a unique detail from a log.

Primary Flow: “Delete from Database on the Detail Table”

1. Sends a remove statement to the database using the detail attributes that were received
from the calling function.

2. Gets back a confirmation on successful remove or not
3. Sends confirmation back to calling function (can be ignored or not)

Update Details Use Case

Update detail changes an attribute(s) of a detail in a log.

Primary Flow: “Update Database on the Detail Table”

1. Sends an update statement to the database using detail attributes that were received from
the calling function.

2. Gets back a confirmation on successful change or not
3. Sends confirmation back to calling function (can be ignored or not)

Add Details Use Case

Add details adds detail(s) to a log.

Primary Flow: “Add to Database on the Detail Table”

1. Sends an add statement to the database using the detail attributes that were received from
the calling function.

2. Gets back a confirmation on successful add or not
3. Sends confirmation back to calling function (can be ignored or not)

Executive Transaction Use Case

Note: Executive Transaction is an abstract generalization. Each specific concrete type of
transaction implements certain operations in the appropriate way. The flow of events given here
describes the behavior common to all types of transaction. The flows of events for the individual

15

types of transaction (Acquire Bike, Decommission Bike, Remove Customer) give the features that
are specific to that type of transaction.

Executive transaction is started within an Acquire Bike, Decommission Bike, Remove Customer
use cases. These cases are owner level access only. The owner will be asked for information
critical to the transaction.

Primary Flow: “Shows Access Level of Database”

Acquire Bike Use Case

Acquire Bike add a bike to the database. It gives the bike a unique ID to represent the bike. The
bike attributes are set in the database, as well.

Primary Flow: “Add to Database on the Bike Table”

1. Sends an add statement to the database using the bike attributes entered.
2. Gets back a confirmation on successful add or not

Decommission Bike Use Case

Decommission Bike removes a bike from the database fully. It releases the unique ID that
represents the bike to be used in an Acquire Bike action. All attributes of the bike in database are
removed as well.

Primary Flow: “Delete from Database on the Bike Table”

1. Sends a remove statement to the database using the bike attributes provided.
2. Gets back a confirmation on successful remove or not

Remove Customer Use Case

Remove Customer removes a customer from the active database. It keeps all records needed in
accordance with the laws of the land for the particular number of years as stated in another
database. It releases the unique ID of the customer after the records are not needed anymore, and
removes all attributes of the customer as well. The customer removed will not be available in the
active database in any way.

Primary Flow: “Delete from Database on the Customer Table”

1. Sends a select statement to the database to select the Customer row to be deleted from
information provided.

2. Copies row into storage database with a timestamp.
3. Sends a remove statement to the database using the Customer attributes provided.
4. Gets back a confirmation on successful remove or not.

Login Use Case

The operator will have to login to the console, the customer will be automatically authenticated
when logging into a customer console. The employee will need to provide credentials into the
console to login.

Primary Flow: "Logs into console"

1. Gets user input of password and username

16

2. Creates credential object with password and username
3. Authenticates credential
4. Returns true/false on authentication

17

USE CASE DIAGRAMS

Ad Hoc Database Access

Customer

Bike Shop

Owner

Sales Rep

Database
Transactions

Public
Transactions

Query Bikes

Mechanic

Ad hoc database transactions occur when an actor’s sole purpose is to interact with the database;
i.e., when a database transaction is not part of another use case.

Add Customers

Employee
Transactions

Query
Customers

Update
Customers

Update Bikes

Executive
Transactions

Acquire Bikes
Remove

Customers

Decommission
Bikes

Query Logs Update Logs Add Logs

«uses»
«uses» «uses» «uses»

«uses»

Query Details Delete Details Add DetailsUpdate Details

«uses»

Bike shop
database

18

Primary Use Cases

Customer

Bike Shop

Owner

Sales Rep

Return Bike

Inspect Bike

Repair Bike

«uses»

Mechanic

Assess Charges

«uses»

Query Logs

Update Logs

«uses»

«uses»
«uses»

«uses»

«uses»

«uses»

Update Bikes

«uses» «uses»
Query Bikes

«uses»

Query Bikes
Rent Bike

Add Customer

Query Logs

Select Bikes

Create
Rental Log

Select
Customer

Cancel
ReservationConfirm

ReservationAdd Logs

«uses»

«uses»

Query
Customers

Update Logs

«uses» «uses»

«uses»
«uses»

«uses»

«uses» «uses»
«uses»

«uses»

«uses»

Select
Rental Log

«uses»

«uses»

Query Logs

Update Bikes

«uses»

19

Login Use Case (new)

Customer

Bike Shop

Owner

Sales Rep

Mechanic

Login

Note: Login is the only use case where actors are not able to "act as" another actor.

20

ANALYSIS CLASSES

Customer

Mechanic

Owner

Sales Rep

Customer
Console

Rent
Bike

Repair
Bike

Return
Bike

Rental
Log

Printer

Employee
Console

Mechanic
Console

Database

Exec
Trans-
actions

Emp
Trans-
actions

Public
Trans-
actions

21

SEQUENCE DIAGRAMS

Rent Bike (Interaction Diagrams)

Rent Bike

Primary Flow

1. Employee selects bikes
2. Employee selects customer
3. Employee confirms reservation

1. Select Bikes 2. Select Customer 3. Confirm Reservation

RentalLog

RentalLog

Rent Bike

Alternate Flow #1

1. Customer selects bikes
2. Employee selects rental log
3. Employee selects customer
4. Employee confirms reservation

1. Select Bikes
2. Select Rental

Log
3. Select Customer 4. Confirm Reservation

RentalLog

RentalLog

Rent Bike

Alternate Flow #2

1. Employee selects bikes
2. Cancel Reservation

1. Select Bikes 2. Cancel Reservation

22

Rent Bike

Alternate Flow #3

1. Customer selects bikes
2. Cancel Reservation

1. Select Bikes 2. Cancel Reservation

Rent Bike

Alternate Flow #4

1. Customer selects bikes
2. Employee selects rental log
3. Cancel Reservation

1. Select Bikes
2. Select Rental

Log
3. Cancel Reservation

Rent Bike

Alternate Flow #5

1. Employee selects bikes
2. Employee selects customer
3. Employee confirms reservation

1. Select Bikes 2. Select Customer 3. Cancel Reservation

Rent Bike

Alternate Flow #6

1. Customer selects bikes
2. Employee selects rental log
3. Employee selects customer
4. Employee confirms reservation

1. Select Bikes
2. Select Rental

Log
3. Select Customer 4. Cancel Reservation

23

Select Bikes

While employee selecting

SelectBikes EmployeeConsole QueryBike

getSearchParams()

return params

getBikes(params)

return List< Bikes >

displayListAndGetSelections(List<SelectedBikes>, List<MatchingSearchBikes>))

userSelectedBike()

userAddedRentalData()

List<Bikes> with rental data

CreateRentalLog

createRentalLog(List<Bikes> with rental data)

return RentalLog w/o customer information

Customer has asked Employee to do bike searching.

finalizeOrder()

order has been finalized

addSelectedToFullList(List<Bikes> newlySelected)

24

While customer selecting

SelectBikes CustomerConsole QueryBike

getSearchParams()

return params

getBikes(params)

return List< Bikes >

displayListAndGetSelections(List<SelectedBikes>, List<MatchingSearchBikes>))

userSelectedBike()

userAddedRentalData()

List<Bikes> with rental data

createRentalLog(List<Bikes> with rental data)

CreateRentalLog

return RentalLog w/o customer information

displayLogNumber()

acknowledgeLogNumber()

user has acknowledged the number

Customer did bike selection themselves

EmployeeConsole

notifyEmployeeOfReadyCustomer(RentalLog)

order has been finalized

finalizeOrder()

addSelectedToFullList(List<Bikes> newlySelected)

25

Create Rental Log

CreateRentalLog AddLog

List<Bikes> with rental data

return RentalLog w/o customer information

SelectBikes

createRentalLog(List<Bikes> with rental data)

return RentalLog w/o customer information

updateBikes(List<Bike>)

UpdateBikes

Select Rental Log

EmployeeConsole OtherEmployeeConsoles

employeeSelectedLogNumber()

removeLogFromQueue(RentalLog.number)

return acknowledged

SelectRentalLog

getEmployeeLogSelection()

return RentalLog.number

displayRentalLogForCustomerInformationGathering(RentalLog)

QueryRentalLog

getRentalLog(RentalLog.number)

return RentalLog

26

Select Customer

SelectCustomer EmployeeConsole QueryCustomer

getCustomerParams

return params

getCustomers(params)

List<Customer>

displayCustomers(List<Customer>)

select Customer

return Customer

Actual Customer found

While employee did not find customer

SelectCustomer EmployeeConsole QueryCustomer

getCustomerParams

return params

getCustomers(params)

List<Customer>

displayCustomers(List<Customer>)

Customer not found

return Not Found

Multiple searches. If Not Found, repeat with different results.
Flow goes to either Customer found or Add New after this.

27

SelectCustomer EmployeeConsole

addCustomer()

Input New Customer Information

return Customer Information

Add new Customer

AddCustomer

addCustomer(customerInformation)

return Customer

Confirm Reservation

CONFIRM RESERVATION SEQUENCE DIAGRAM

ConfirmReservation EmployeeConsole UpdateLogs Printer

displayAndFinalize(RentalLog)

displayLog()

finalizeRental()

finalizeRental() is where employee collects payment for bikes.

return approved RentalLog

rentalLogApproved(RentalLog)

printReceiptForCustomer(RentalLog)

refreshDisplay()

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

UpdateBikes

updateBikes(List<Bike>)

28

ConfirmReservation EmployeeConsole CancelReservation

displayAndFinalize(RentalLog)

displayLog()
finalizeRental() is where employee collects payment for bikes.

return fininshed

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

Alternate Flow #1: Customer cannot pay for rentals

cancelRentalLog(RentalLog.number)

return finished

ConfirmReservation EmployeeConsole CancelReservation

displayAndFinalize(RentalLog)

displayLog()

finalizeRental() is where employee collects payment for bikes.

return fininshed

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

Alternate Flow #2: Customer changes their mind about
selected bikes

cancelRentalLog(RentalLog.number)

return finished

29

Cancel Reservation

Cancel EmployeeConsole UpdateBikes

cancelRentalLog(RentalLog.number)

makeBikesAvailable(RentalLog's List<Bike>)

updateDisplay()

UpdateRentalLogs

rentalLogCancelled(RentalLog.number)

Return Bike

ReturnBike EmployeeConsole QueryLog AssessBikePrinter

getRentalInfo()

return info

getRentalLog(info)

renatal log

display(rental log)

userSelectedReturnedBikes()

List<Bikes> w/ rental data

List<Bikes>

charges

calculate

display (logs, amount due)

finalizeupdated log

update log(log)

printReceipt()

userSelectedLostBikes()

UpdateLog

30

Assess Bike

ReturnBike UpdateBikes

List<Bike>

AssesBike

calculate late fees

getCost(missing bikes)

QueryBike

cost of bikes

add charges

InspectBike

updateBikes(missing bikes)

updateLog(RentalLog)

UpdateLog

return(charges)

inspectBike(bikes)

charges

add charges

Inspect Bike

[while uninspected bikes remain for log]

AssessBike InspectBike MechanicConsole

inspect(List<Bike>, RentalLog)

return List< Bikes > w/ updated statuses

displayListAndGetAssessment(List<Bike>)

selectLog()

finishInspection()

UpdateBikes

updateBikes(List<Bike>)

UpdateLogs

updateRentalLog(RentalLog)

addChargesToLog()

return RentalLog w/assessments

refreshDisplay()

Status includes availability
and repair cost fields

31

Repair Bike

RepairBike MechanicConsole QueryBike

getSearchParams()

return params

getBike(params)

return Bike

UpdateBike

getRevisedBikeInfo(Bike)

return Bike

updateBike(Bike)

Database Sequence Diagrams

As database sequence diagrams rapidly become repetitive, as the same pattern is repeated, only a
prototype pattern for each type of database transaction will be shown.

Add Record (Insert)

Add Database

Sequence diagram of all add database type use case, use cases that creates a new record in the database

addToDatabase(informationToAdd)

returnSuccess() with true/false value

32

Update Record

Update Database

updateDatabes(dataToUpdateWith)

Sequence diagram of all update database type use case. Diagram all database use cases that update a record in the database.

returnSuccess() with true/false value

HistoricalTable

createRecord(record)

recordCreated true/false

Delete Record

Delete Database

Sequence diagram of all delete database type use case, use cases that removes a new record in the database

deleteToDatabase(informationToDelete)

returnSuccess() with true/false value

HistoricalTable

createRecord(record)

recordCreated true/false

33

INITIAL FUNCTIONAL TESTS

Notes: the Repair Bike Use Case, functionally, can be tested as a simple database transaction.
(See UpdateBikes). Also, updated Functional Test information based on design phase changes is
marked in red.

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

RentBike

SelectBikes Displaying
previously
selected bikes

Appropriate console
ready to perform new
bike search

Search
Parameters

Appropriate console displays bikes
selected on a previous search.

SelectBikes Displaying
available bikes

Appropriate console
ready to perform new
bike search

Search
parameters

Appropriate console displays available
bikes matching search parameters.

SelectBikes Displaying
available bikes

Appropriate console
ready to perform new
bike search

Category to
browse

Appropriate console displays available
bikes for selected category.

SelectBikes Selecting bikes
for rental

List of available bikes
is displayed to
operator.

Select bike(s) to
rent.

Appropriate console displays the bikes with
input field for rental_duration.

SelectBikes Entering or
editing rental
dates for each
selected bike

Operator has
selected one or more
bikes for rental.

- rental_duration Form on appropriate console displays the
updated information.

SelectBikes Deselecting
bikes

Operator has
selected one or more
bikes for rental.

- OR -

Form contains
complete or
partial rental
information for bikes.

- select
 checkbox

Deselected bikes are removed from the
form.

CreateRental
Log

Bike Status
changed to
Reserved

and Rental Log
created

List of chosen bikes
confirmed

- Database
Transaction

Bike status changed to Reserved and
Rental Log number returned

SelectBikescust

CreateRental
Log

Confirming
bike selection

Form contains
complete rental
information for bikes.

- finish selection
 button

Customer Console displays the rental log
number.

34

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

SelectBikescust Confirming
rental log
number

Customer Console
displaying the rental
log number

- acknowledge
 button

Customer Console displays message to
see available employee

Rental log number for corresponding bikes
is displayed on Employee Console as a
hyperlink whose action is to identify the
customer.

SelectBikesemp

CreateRental
Log

Confirming
bike selection

Form contains
complete rental
information for bikes.

- finish selection
 button

The rental log number is displayed on the
Employee Console.

SelectBikes

Cancel
Reservation

Cancelling bike
selection

Form contains
complete information.

- cancel
 selection
 button

Appropriate console indicates rental is
cancelled.

SelectRentalLog Select rental
log number to
process next

Employee Console
lists rental log
numbers that are
ready for service

- employee
selects log
number

The rental log information is displayed on
Employee Console in a state where it is
ready to be updated with customer
information.
The selected log should be removed from
all other Employee Consoles.

Select
Customer

Identifying an
existing
customer

Customer search
screen is displayed
on the Employee
Console

Search
parameters

A list of customer matches is displayed on
the Employee Console, with the ability to
select one.

Select
Customer

Selecting an
existing
customer

The searched list of
customers is
displayed on the
Employee Console

- select
 customer button

The selected Customer is chosen and
displayed.

Select Customer Adding a new
customer

Customer not found
by search

- OR -

Customer known to
be new customer

Customer data
fields

A new customer record is created.

Select Customer

Confirm
Reservation

Verifying
frequent
customer
discounts

Rental log is
complete with bike
information and
customer information

Customer and
their frequency

The correct discount should be applied to
the bill displayed.

Select Customer

Confirm
Reservation

Connecting a
customer to a
rental log and
recording
payment.

Rental log is
complete with bike
information and
customer information

- payment
- confirm button

Employee Console indicates that the
reservation was successfully committed to
the database.

35

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

Confirm
Reservation

Print a receipt
for rental

Rental has been paid
for and finalized by
employee

Employee has
finalized the
rental

The bike statuses should be updated to
rented. A receipt of the transaction is
printed. The employee console is reset to
its initial state.

Cancel
Reservation

Reserved
Bikes set back
to available
and Rental Log
set to
cancelled

Rental Log is created
and Bikes are
reserved

- Cancel button The bikes statuses are set back to
available and the Rental Log is set to
cancel

Return Bike

Return Bike Entering rental
info

Employee console
ready for rental log
search

Enter search
parameters

List of bike(s) rented by the customer is
displayed on the console

Return Bike

Assess Bike

Inspect Bike

Marking the
status of
returned and
lost bikes

Employee console
displays the full list of
bike(s) rented by the
customer

Choose which
Bikes are being
returned and
which Bikes are
lost

The returned bikes and lost bikes are
displayed on the Employee Console with
the appropriate late fees, repair fees and
replacement fees.

Return Bike Calculate
additional
customer
charges /
refunds based
on the deposit.

All charges have
been calculated or
entered by Asses
Bike / Inspect Bike

none The rental log displays the final moneys
due to the customer or due to the bike
shop.

Return Bike Rental log
contains
updated
information

All charges have
been calculated or
entered by Asses
Bike / Inspect Bike

Employee
finalizes the
transaction

The Employee console verifies that the
rental log was updated.

Return Bike Print a receipt All charges have
been calculated or
entered by Asses
Bike / Inspect Bike

Employee
finalizes the
transaction

Receipt is printed correctly. The employee
console is reset to its initial state.

Assess Bike Update status
of lost bikes

List of lost bikes has
been entered into the
system

lost bikes Status of bikes in database is changed to
indicate the bike is lost.

Inspect Bike Processing an
inspection
request.

The list of previous
rental logs for
returned bikes that
have not yet been
inspected is
displayed.

Select a rental log
to process.

System displays the returned bikes which
correspond to selected rental log with input
fields for repair_amount and
bike_availability.

36

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

Inspect Bike Updating bike
information

Bike record(s) with
input fields for
repair_amount and
bike_availability are
displayed.

- repair
 _amount
- bike
 _availability
- inspected
 checkbox

Form displays updated
information. Inspected bikes display the
current date as the inspection_date.

Inspect Bike Finalizing an
inspection for a
rental log

The selected rental
log indicates on the
display that all
returned bikes have
been inspected for
this rental log

- finish
 inspection
 button

System indicates successful completion of
database transactions and displays the list
of any rental logs for returned bikes that
have not yet been inspected. This list no
longer includes the rental log that was just
finished. The mechanic console is reset to
its initial state.

Inspect Bike Finalizing an
inspection for a
rental log

The selected rental
log indicates on the
display that not all

returned bikes have
been inspected for
this rental log.

- finish
 inspection
 button

System prompts user to finish the
inspecting all returned bikes for the rental
log.

Repair Bike Entering
search
parameters

A list of bike
attributes and
corresponding input
boxes is displayed.

- searchable
 bike attributes

System displays a list of bikes matching
the search criteria

Repair Bike Selecting bike
repaired

List of bikes matching
search criteria is
displayed on the
mechanic console

- mechanic
selects bike

System displays the bike with input fields

Repair Bike Updating bike
information.

Bike record(s) with
input fields for
repair_amount and
bike_availability are
displayed.

- bike
 _availability
- repaired
 checkbox

Form displays updated
information. Repair_amount is set to
0. Bikes display the inspection_date as the
current date. Bike becomes available

Repair Bike Recording bike
repairs.

Each bike record(s)
displays the updated
status.

- record repairs
 button

System indicates successful completion of
database transactions.

Database Transactions

Add Customer Insert record Input screen for
customer information

- customer data
- commit button

Database contains the inserted row.

Update
Customers

Update record Input screen for
chosen customer
information

-customer chosen
-commit button
-customer data

Database contains the updated information
in chosen customer row.

Query
Customers

Search records Input screen for
customer attributes

-customer
attributes
-search button

Screen contains a list of customers to
choose from

Remove
Customers

Delete record Input screen to
choose customer

-customer chosen
-delete button

Database moves the selected row, to
inactive customers.

37

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

Acquire Bikes Insert record Input screen for bike
information

-bike data
-commit button

Database contains the inserted row

Update Bikes Update record Input screen for
chosen bike
information

-bike chosen
-commit button
-bike data

Database contains the updated information
in chosen bike’s row.

Query Bikes Search records Input screen for bike
attributes

-bike attributes
-search button

Screen contains a list of bikes to choose
from

Decommission
Bikes

Delete record Input screen to
choose bike

-bike chosen
-delete button

Database removes the selected row.

Add Logs Insert record Rent action -bikes chosen
-detail information

Database contains the inserted row

Update Logs update record Rent or Return case -log information
-detail information

Database contains the updated row.

Query Logs search record Rent or Return case -search attribute List of logs to choose from

Add Details insert record Add Log or Update
Logs

-chosen log
-detail information

Log has inserted detail

Update Details update record Update Logs -chosen log
-chosen detail
information

Log has updated detail information

Query Details search record Update Logs or
Query Logs

-chosen log
-search attribute

List of details to choose from

Delete Details delete record Rent or Return case -detail information Log has detail deleted

Logging In

Logging In customer login Customer Console
displays a login
button

None, customer
presses button

"Login" successfully processes and the list
of controllers appropriate to the Customer
console (i.e., SelectBikeCustomer) displays
as buttons.

Logging In employee login Employee Console
has input prompts for
credentials.

Incorrect
credentials
-username
-password

Login is denied

38

Use Case

Function
Being
Tested

Initial System
State Input Expected Output

Logging In employee login Employee Console
has input prompts for
credentials.

Correct Sales
Rep credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Customer
console and Sales Rep (e.g.,
RentBikeEmployee, ReturnBike) displays
as buttons.

Each rental log of state InRentalLog is
displayed as a selectable item

Logging In employee login Employee Console
has input prompts for
credentials.

Correct Owner
credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Customer
console and Owner (e.g., ReturnBike,
DecommissionBike) displays as buttons.

Each rental log of state InRentalLog is
displayed as a selectable item

Logging In employee login Employee Console
has input prompts for
credentials.

Correct Mechanic
credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Customer
console and Mechanic (i.e., nothing!)

displays as buttons.

Each rental log of state InRentalLog is
displayed as an unselectable item

Logging In employee login Mechanic Console
has input prompts for
credentials.

Incorrect
credentials
-username
-password

Login is denied

Logging In employee login Mechanic Console
has input prompts for
credentials.

Correct Sales
Rep credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Mechanic
console and Sales Rep (i.e., nothing!)

displays as buttons.

Each rental log of state BeingInspected is
displayed as an unselectable item

Logging In employee login Mechanic Console
has input prompts for
credentials.

Correct Owner
credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Customer
console and Owner (i.e., nothing!)

displays as buttons.

Each rental log of state BeingInspected is
displayed as an unselectable item

Logging In employee login Mechanic Console
has input prompts for
credentials.

Correct Mechanic
credentials
-username
-password

"Login" successfully processes and the list
of controllers appropriate to the Mechanic
console and Mechanic (e.g., Repair Bike)
displays as buttons.

Each rental log of state BeingInspected is
displayed as a selectable item

39

Design Documents

40

REVISED ANALYSIS CLASSES

Customer

Mechanic

Owner

Sales Rep

Customer
Console

Employee
Console

Mechanic
Console

Database

Controller

Rental
Log

Printer

Database
Connection

41

REVISED SEQUENCE DIAGRAMS

Select Bike Customer

SelectBikeCustomer Console Queue

console.SelectBikeCustomer.start(this)

SelectBikes

selectBikes.execute(console, new RentalLog)

return rentalLog

rentalLog.setState(InRentalQueue)

queue.add(rentalLog)

reset display

42

Rent Bike From Queue

RentBikeFromQueue Console SelectRentalLog SelectCustomer ConfirmReservation

rentBikeFromQueue.start(this)

selectRentalLog.execute(console, new RentalLog)

return rentalLog

rentalLog.setState(BeingRented)

selectCustomer.execute(console, rentalLog)

return rentalLog

confirmReservation.execute(console, rentalLog)

return rentalLog

rentalLog.setState(AwaitingReturns)

refresh display

43

Rent Bike Employee

RentBikeEmployee Console SelectBikes SelectCustomer ConfirmReservation

rentBikeEmployee.start(this)()

selectBikes.execute(console, new RentalLog)

return rentalLog

rentalLog.setState(BeingRented)()

selectCustomer.execute(console, rentalLog)

return rentalLog

confirmReservation.execute(console, rentalLog)

return rentalLog

rentalLog.setState(AwaitingReturns)()

refresh display

44

Return Bike

ReturnBike Console AssessCharges

console.ReturnBike.start(this)

assessCharges.execute(console, new RentalLog)

return rentalLog

reset display

Assess Charges

UpdateBikesAssesBike

calculate late fees

getCost(missing bikes)

QueryBike

cost of bikes

add charges

InspectionQueue

updateBikes(missing bikes)

updateLog(RentalLog)

UpdateLog

add(RentalLog)

change state of log to BeingInspected

notify mechanic console

45

Inspect Bike

InspectBike MechanicConsole UpdateBikes UpdateLogsInspectionQueue SettlementQueue

select log from InspectionQueue

retrieve log

remove log

display log

add damage charges to log

add damgages to bike(s)log and bike info

update bike(s)

update log

change state of log to BeingSettled

add(log)

notify employee console

46

Settle Bike Return

SettleBikeReturn Console SelectRentalLog Printer

console.settleBikeReturn.start(this)

SelectRentalLog.execute(console, new RentalLog)

return rentalLog

rentalLog.setState(BeingSettled)

console.settleDisplay(rentalLog, amountDue)

finalize

return rentalLog

printReceipt(rentalLog)

reset display

rentalLog.setState(Closed) or setState(AwaitingReturn) or setState(InArrears)

Repair Bike

RepairBike MechanicConsole DatabaseConnection

console.getSearchParams()

return params

getBike(params)

return Bike

getRevisedBikeInfo(Bike)

return Bike

updateBike(Bike)

RepairBike.start(this)

refreshDisplay()

47

Reused Subcontrollers

These subcontrollers are utilized by multiple controllers.

Select Bikes

While employee selecting

SelectBikes EmployeeConsole DatabaseConnection

console.displayBikeSearchParams()

return params

getBikes(params)

return List< Bikes >

console.displayBikeList(searchBikeList, selectedList))

userSelectedBike()

return fullSelectedBikeList

console.finalizeOrder()

true/false

Bikes

update bike(s)()

RentalLog

updateLog()

return RentalLog

Select Rental Log

SelectRentalLog Console Queue

displayQueue(Queue queue)

return RentalLog

queue.Remove(RentalLog)

notifyAll()

update()

return RentalLog

48

Select Customer

While employee did not find customer

SelectCustomer EmployeeConsole DatabaseConnection

getCustomerParams

return params

getCustomers(params)

List<Customer>

displayCustomers(List<Customer>)

select Customer

return Customer

Actual Customer found

SelectCustomer EmployeeConsole DatabaseConnection

getCustomerParams

return params

getCustomers(params)

List<Customer>

displayCustomers(List<Customer>)

Customer not found

return Not Found

Multiple searches. If Not Found, repeat with different results.
Flow goes to either Customer found or Add New after this.

SelectCustomer EmployeeConsole

addCustomer()

Input New Customer Information

return Customer Information Add new Customer

DatabaseConnection

addCustomer(customerInformation)

return Customer

49

Confirm Reservation

ConfirmReservation Console RentalLogs Printer

displayAndFinalize(RentalLog)

displayLog()

finalizeRental()
finalizeRental() is where employee collects payment for bikes.

return approved RentalLog

rentalLogApproved(RentalLog)

printReceiptForCustomer(RentalLog)

refreshDisplay()

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

Bikes

updateBikes(List<Bike>)

ConfirmReservation Console CancelReservation

displayAndFinalize(RentalLog)

displayLog()

finalizeRental() is where employee collects payment for bikes.
return fininshed

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

Alternate Flow #1: Customer cannot pay for rentals

cancelRentalLog(RentalLog.number)

return finished

ConfirmReservation Console CancelReservation

displayAndFinalize(RentalLog)

displayLog()

finalizeRental() is where employee collects payment for bikes.

return fininshed

associate customer with rental log; determine and apply customer discounts; determine if customer has an amount due from previous rental

Alternate Flow #2: Customer changes their mind about
selected bikes

cancelRentalLog(RentalLog.number)

return finished

return RentalLog

return null

return null

50

Login

Console Credential Authenticator

getCredential()

Credential credential

authenticate(credential, operator)()

true/false

Cancel Reservation

Step 1: Cancels are started from subcontroller

Any Subcontroller RentalLog State CancelBehavior

cancel()

cancel(this)

cancel(RentalLog)

Any RentalLog cancel will be started in this way.
Step 2 (below) illustrates how CancelBehavior.cancel(RentalLog) can vary.

CancelBehavior EmployeeConsole UpdateBikes

remove(RentalLog)

makeBikesAvailable(RentalLog's List<Bike>)

update()

UpdateRentalLogs

rentalLogCancelled(RentalLog.number)

Cancel Reservation for InRentalQueue State
RentalQueue

Cancel Reservation for BeingRented State
(only takes place at EmployeeConsoles)

CancelBehavior UpdateBikes

makeBikesAvailable(RentalLog's List<Bike>)

UpdateRentalLogs

rentalLogCancelled(RentalLog.number)

51

CancelBehavior
Cancel Reservation for AwaitingReturns, BeingReturned, BeingInspected,
BeingSettled, InArears, Closed States

actionNotAllowed()

52

STATE DIAGRAMS

Customer Console

OFF

READY TO GO

SelectBikeCustomer

Employee Console

OFF

RentBikeEmployee

ReturnBike

READY TO GORentBikeFromQueue

The state of a
console

indicates which
controller is

controlling it.

Mechanic Console

OFF

RepairBike

READY TO GO

InspectBike

53

Rentables

Available

RepairNeeded

Rented

Reserved
Lost

Decommissioned

cancel()

Rental Logs

InRentalQueue BeingRented

AwaitingReturns

BeingReturned

BeingInspected

BeingSettled

Closed

START (Customer Console) START (Employee Console)

cancel()

cancel()

InArrears

54

DESIGN SUMMARY

Database Operations

Database operations are handled by their own set of controlling classes (identified by the yellow
ovals on the Use Case Diagram). This approach insulated all database actions from the business
logic of the Bike Shop. Each database operation would employ a DatabaseConnection object via
the Singleton pattern. This pattern controls the creation of a database connection and (in the
current design state) keeps delivering the same connection to each database class (e.g., Add Bike)
that needs it. The advantages of using Singleton here is that we don't allow every class to create
its own unique, resource-intensive database connections and it ensures database consistency for
multiple transactions. This pattern is also extendable. If the Bike Shop ever expands to the scale
where it needs database pooling, the getConnectionInstance() method could be modified to
manage a connection pool and encapsulate the distribution of database connections.

Interaction Between Controllers, Subcontrollers and Consoles

The Bike Shop application is designed using the MVC pattern at its core. Some operations were
simple enough to be modelled with a single controller, for instance RepairBike (which is a basic
function) and decommissioning a bike (which is a simple database operation). Other operations,
specifically Rent Bike and Return Bike, were modelled in the Use Case diagram in a manner to
suggest subcontrollers.

For example, RentBike was modeled in the analysis phase with the following subcontrollers:

Subcontroller Purpose
Why it was originally
modelled as a subcontroller

SelectBikes To allow for iterative searching of the bike
inventory and the selection of bikes

This is the only RentBike
component that is visible to the
customer.

CreateRentalLog To build the rental log with selected bikes,
and update the Bike and RentalLog
database tables

Not directly exposed to the
customer. Actually used by
SelectBikes

SelectRentalLog To allow employees to select a rental log
created by a customer

This actually begins the
employee side of customer-
initiated RentBike operations

SelectCustomer To allow a log to be augmented with
customer data, including their discount

Encapsulated complex logic into
its own subcontroller

ConfirmReservation To finalize the rental It was the last stage of RentBike

CancelReservation To cancel a reservation prior to finalizing
it.

To handle alternate flows, where
a reservation is cancelled.

However, when moving into the design phase, it became more efficient to modify this design based
on the interaction between consoles and controllers/subcontrollers.

55

Impact of Consoles on Controllers

When designing the consoles, we wanted to set them up so
that they would have a button to begin a certain process. We
also did not want the controllers to have any business logic,
to adhere to the MVC pattern.

The abstract class Console will maintain a list of abstract
Controllers. Concrete implementations of Console will be
instantiated with a concrete controller. The Console will call
the Controller's start() method (utilizing the Command
pattern). From that point onward, the Controller will direct the
display of the Console and receive its output. The Console,
then, is largely limited to being only a user interface.

This led us to reconsider which behaviors were governed by Controllers versus Subcontrollers.
Essentially any operation that is initiated from any Console was modelled as a Controller.

Operation Analysis Phase
Controllers and Subcontrollers

Design Phase
Controllers and Subcontrollers

Renting a bike RentBike

 SelectBikes
o CreateRentalLog

 SelectRentalLog

 SelectCustomer

 ConfirmReservation

 CancelReservation

SelectBikeCustomer

 SelectBikes

RentBikeFromQueue

 SelectRentalLog

 SelectCustomer

 ConfirmReservation

RentBikeEmployee

 SelectBikes

 SelectCustomer

 ConfirmReservation

Returning a bike ReturnBike

 AssessCharges
o InspectBike

ReturnBike

 AssessChages

InspectBike

 SelectRentalLog

SettleBikeReturn

 SelectRentalLog

Repair bike RepairBike RepairBike

This also led to the creation of Queues which will be discussed in a further section.

Notes:

 SelectBikes, SelectCustomer,ConfimReservation and SelectRentalLog turned out to be very
good subcontrollers as each was used by more than one Controller

 InspectBike was promoted to Controller, because of its association with the Mechanic
Console. Likewise new controller SelectBikeCustomer was created because of its

56

association with the Customer Console, and RentBikeFromQueue and SettleBikeReturn
were created because of their association with the Employee Console.

 CreateRentalLog was incorporated into the SelectBikes controller. (It was always suspect
that a Subcontroller would have an additional Subcontroller, as posited in the analysis
phase.)

Console / Controller Relationships

57

Note that the database operations (yellow) are themselves Controllers and are also available on
the employee and mechanic consoles as shown in the Use Case Diagrams. Also, if the owner
were to login to the Employee Console, he would see an expanded selection of Controllers
because he has more access privileges.

Each Console is instantiated with an ArrayList of Controllers that represent valid operations on a
particular console.

Controllers are invoked with their start() method, and subcontrollers are invoked from their
controllers with their execute() method, in a utilization of the Command pattern.

Finally, each Subcontroller's job is to accept as parameters a RentalLog and a Console and return
an updated RentalLog to the controller that invoked it.

Using the Template Pattern for RentBike

The reuse of Subcontrollers lends itself very well to
the Template pattern. An abstract Controller
RentBike was created. As the behavior of selecting
a customer and confirming a reservation is the
same regardless of whether the rental was
employee- or customer-initiated, those
subcontrollers are properties of RentBike.

RentBike's start() method is the template method.
It would have code such as:

public void start() {
 RentalLog log = makeBikeSelection(employeeConsole, log);
 log = selectCustomer.execute(employeeConsole, log);
 log = confirmReservation.execute(employeeConsole, log);
 employeeConsole.reset();
}

The two concrete subclasses would define "makeBikeSelection(employeeConsole, log)" differently.

// Subclass RentBikeFromQueue
public void makeBikeSelection(employeeConsole, log) {
 return selectRentalLog.execute(employeeConsole, log);
}

// Subclass RentBikeEmployee
public void makeBikeSelection(employeeConsole, log) {
 return selectBikes.execute(employeeConsole, log);
}

58

Queues

Queue Instantiation

The three "To Be" buttons ("To Be Rented" and "To Be Settled" on the Employee Console, and "To
Be Inspected" on the Mechanic Console) execute the RentBikeFromQueue, SettleBikeReturn and
InspectBike controllers respectively.

The SelectRentalLog subcontroller is coupled with the abstract Queue class. As Subcontrollers
are instantiated by Controllers, each Controller that uses SelectRentalLog would create the
appropriate type of Queue as seen below:

public RentBikeFromQueue() {
 SelectRentalLog selectRentalLog =

 newSelectRentalLog(RentalQueue.getQueueInstance());

public InspectBike() {
 SelectRentalLog selectRentalLog =

 newSelectRentalLog(InspectionQueue.getQueueInstance());

public SettleBikeReturn() {
 SelectRentalLog selectRentalLog =

 newSelectRentalLog(SettementQueue.getQueueInstance());

In this way, the SelectRentalLog subcontroller is decoupled from the specific type of queue. The
Controller that creates it maintains the knowledge of which Queue to use. Since the Bike Shop
has only one RentalQueue, InspectionQueue and SettlementQueue, static methods
getQueueInstance() are used to ensure that the same queues are used throughout the application
(Singleton pattern again). Now the same SelectRentalLog logic can be used for all three types of
Queues.

The Controllers which need Queues (i.e., ReturnBike, SettleBikeReturn, SelectBikeCustomer and
InspectBike – the latter of which needs two Queues), would be instantiated by the client (driver)
class using the same technique.

Queues as Observables

The consoles which need to display items in a queue, i.e., the Employee
Console and the Mechanic Console, are observers of particular queue
objects. For example, the Employee Console observes the RentalQueue
to see if new Rental logs have been added (thereby adding a selectable
log to the console's display) or if rental logs have been processed and
removed from the queue (thereby removing the selectable log from the
console's display). This is an implementation of the Observer pattern.

In this example, the employee has selected the controller RentBikeFromQueue. That controller
leverages subcontroller SelectRentalLog (see above) to display the contents of the rental queue
(e.g.. rental log 44 and rental log 46) and receive the selected rental log the employee wishes to

59

process. As the Employee Console and the Mechanic Console are observers, their update()
method will add or remove logs appropriately.

In a similar manner, the Employee Console observes the SettlementQueue to see which logs
contain returned bikes that have completed their inspection, and the Mechanic Console observes
the InspectionQueue to see which logs contain bikes that have just been returned.

Logging In and Employee Roles

Each console uses the static method authenticate() in the Authenticator class to validate login
credentials. The abstract method getCredentials() in the abstract Console class needs to be
implemented in all concrete subclasses. For now, a Customer Console will just return a special
Credential object (userID = "public", password=null?) which guarantees automatic authentication.
Customer consoles were set up this way, in case the Bike Shop wants to give certain customers
database accounts at some later date and let them login to Customer consoles for future
operations. This is also an implementation of the Template method, as the abstract Console
knows how to login(), but delegates the behavior of getCredentials() to its subclasses.

Roles are maintained in a hashmap at the Person level, where roles correspond to Controllers.
(The key of the roles hashmap is the class name of the Controller). After login, each Console
knows the operator who has logged in based on the return value of the authenticate() method and
can determine which operations (controllers) are available to that operator based on the roles
hashmap.

Each console also was instantiated with an ArrayList of appropriate Controllers. Thus each
console's display() method trivially loops through its allowable operations and its operator's
privileges (roles). For example, the Mechanic Console will be instantiated with InspectBike, but if a
Sales Rep logs into this console, that option will not be displayed. Similarly, if a Sales Rep logs
into the Employee Console, the options only available to the owner will not be displayed.

Using States

For Rental Log Cancellation

In the analysis phase, we abandoned the idea of a Controller for CancelReservation. Rather, we
determined that the cancel behavior varied depending on the state of the Rental log. Rental logs
have various states as seen in the corresponding state diagram. At the moment, there are two
different states in which a rental log may be cancelled.

When a customer uses the Customer console to start the process of renting bikes, a log is created
and placed in the InRentalQueue state. If the customer decides to cancel the reservations at this
point, two operations must occur:

1) the bikes on the log must be made available for other renters
2) the log must be removed from the rental queue

However, if the transaction was employee-mediated, then the cancel function only has to perform
the first operation above. Using the Strategy pattern in conjunction with the State pattern, each
State has its own CancelBehavior. At the moment, cancellation is not permitted once the rental
has been finalized. Thus there are only three distinct types of cancel behaviors: one for the
InRentalQueue state, one for the BeingRented state, and a third behavior which does not allow a

60

log to be cancelled. With the flexibility of the State pattern, we allow for future variants. For
example, the Bike Shop may one day allow rental logs in the AwaitingReturns state to be cancelled
before the designated return date for a partial rental fee.

The code below demonstrates how a rental log is cancelled

// Cancelling a log from any subcontroller
private void cancelRentalLog(RentalLog log) {

log.cancel();
}

// The cancel method from a log
private void cancelRentalLog(RentalLog log) {

state.cancel(this);
}

// The cancel() method from a State
public void cancel(RentalLog log) {
 cancelBehavior.cancel(log);
}

// The cancel() method in RemoveFromQueue (a CancelBehavior)
public void cancel(RentalLog log) {
 rentalQueue.remove(log);
 for (Detail d : log.getDetails()) {
 d.getRentable().setState(RentableState.AVAILABLE);
 }
}

It is important to note that the Subcontrollers are the agents which will set a rental log's state,
rather than having each state set its subsequent state. This variation of the State pattern made
sense to us, as it is the job of each Subcontroller to receive a log and return an updated log to its
Controller. Setting the state in the Subcontroller felt cohesive.

Other behaviors might vary depending on the state. For example the printReceipt() method may
print the log differently depending on its state.

For Bikes?

Bikes (as Rentables) also have a state, but it is currently datatyped as an enum rather than a
State. Unlike rental logs, bikes did not have any methods whose implementation varied based on
the bike state. However, were this to change in the future, the Rentable class could alter the
datatype of its property state to be State leveraging the techniques used for rental logs.

Exercising the Model

To illustrate how all the components work together, the following steps would be taken for a
customer-mediated rental.

1. The client instantiates all necessary classes including the Customer Consoles, the
Employee Consoles, the Controllers, the Queues…

61

2. The client invokes the screen display method on each console to put them in login mode.

3. Template method customerConsoleA.login() is executed. Its implementation of
getCredentials() allows a customer to use the console without a username and password.

4. The only Customer Console Controller (operations[0]) is displayed, using its label, as a GUI
button.

5. The customer clicks the button which invokes the SelectBikeCustomer controller's start()
method, and passes this method the designated console (customerConsoleA).

6. The SelectBikeCustomer controller's start() method fires, which:
a) Creates a new rental log;
b) Invokes the SelectBike subcontroller's execute() method, passing it

customerConsoleA and the newly created rental log. The subcontroller, then:
1) Interacts with customerConsoleA until it has enough information to add the

rental log details (bikes to be rented, duration, etc.) to the log.
2) Sets the state of each bike to Rentable.RESERVED
3) Returns the amended log to the SelectBikeCustomer controller.

c) Adds the log to the rental queue and sets the state of the log to InRentalQueue
d) Resets customerConsoleA for the next customer

7. Meanwhile, the observable rental queue notified its console observers that a new rental log
was added.

8. Each employee console was observing the rental queue, so they can display that a new
customer-generated rental log is available for processing. (Each console's update() method
fires, which refreshes the display.)

9. A Sales Rep at employeeConsoleC clicks the button which invokes the
RentBikesFromQueue controller. (Assume the sales rep had previously logged in, and all
Sales Rep controllers are displaying as buttons.)

10. The RentBikesFromQueue controller's start() method fires, which:
a) Invokes the SelectRentalLog subcontroller's execute method, passing it

employeeConsoleC and a new rental log. The subcontroller, then:
1) Interacts with employeeConsoleC until a rental log is selected from the Rental

Queue by the employee.
2) Removes the selected rental log from the RentalQueue

(This, in turn, causes the RentalQueue to notify its observers that a log has been
removed, which results in the removal of this rental log from the displays of the other
employee consoles.)

3) Returns the selected rental log to the RentBikesFromQueue controller.
b) Invokes the SelectCustomer subcontroller's execute method, passng it

employeeConsoleC and the selected rental log. This subcontroller, then:
1) Interacts with employeeConsoleC until a customer record is obtained
2) Adds the customer to the log, applying any customer discounts to the log's

details.
3) Returns the amended log to the RentBikesFromQueue controller.

c) Invokes the ConfirmReservations subcontroller's execute method, passing it
employeeConsoleC and the amended rental log. This subcontroller, then:

1) Interacts with employeeConsoleC until the employee finalizes the reservation
after receiving payment.

2) Amends the rental log with the Employee that waited on the customer
3) Sets the state of each bike to Rentable.RENTED
4) Sets the state of the rental log to AwaitingReturns

62

5) Returns the amended log to the RentBikesFromQueue controller
d) Resets employeeConsoleC, so the employee can process the next request.

Other Built-in Flexibilities

 The LogDetail class has a reference to the abstract class Rentable, so that it will not have to
change if the Bike Shop suddenly decides to rent Jet Skis.

 Both the EmployeeConsole and the MechanicConsole were subclasses of abstract super
class ObserverConsole. ObserverConsole is the class that forces the implementation of the
update() method.

 Rental logs have a reference to abstract Employee to allow for either the Owner or the
Sales Rep to process rentals (and maybe someday the Mechanic).

63

CLASS DIAGRAM

Diagram 1: People, Consoles and Queues

+login()
+getCredentials() : Credential
+various screen display methods()
+reset()

-operations : ArrayList<Controller>
-operator : Person

Console

EmployeeConsole MechanicConsole CustomerConsole

ObserverConsole NonobserverConsole

+update()

«interface»
Observer

+authenticate(in credentials : Credential) : Person

Authenticator

-userid : String
-password : String

Credential

1

*

+printLog(in log : RentalLog)

Printer

-createConnection()()
+getConnectionInstance()() : DatabaseConnection

DatabaseConnection

+registerObserver(in observer : Observer)
+unregisterObserver(in observer : Observer)
+notifyAll()

«interface»
Observable

+add(in log : RentalLog)
+remove(in log : RentalLog)

-observers : ArrayList<Observer>
-logs : ArrayList<RentalLog>

Queue

+getQueueInstance() : RentalQueue

RentalQueue

+getQueueInstance() : InspectionQueue

InspectionQueue

+getQueueInstance() : SettlementQueue

SettlementQueue

-assessCharges : AssessCharges
-inspectionQueue : Queue

ReturnBike

RepairBike

+start(in console : Console)

-label : String

Controller

-selectBikes : SelectBikes
-rentalQueue : Queue

SelectBikeCustomer

-selectRentalLog : SelectRentalLog

RentBikeFromQueue

-selectRentalLog : SelectRentalLog
-inspectionQueue : Queue
-settlementQueue : Queue

InspectBike

-selectBikes : SelectBikes

RentBikeEmployee

+makeBikeSelection(in employeeConsole : Console, in log : RentalLog)

-selectCustomer : SelectCustomer
-confirmReservaion : ConfirmReservation

RentBike

-settlementQueue : Queue
-selectRentalLog : SelectRentalLog

SettleBikeReturn

-name : String
-phone : String
-email : String
-address : String
-roles : HashMap<String, Boolean>

Person

-empID : int

Employee

Owner Mechanic

-customerID : int
-creditCardNumber : String
-creditCartType : Single

Customer

SalesRep

1

1

1

1

-costPerHour : double
-state : enum

Rentable

-various descriptive attributes

Bike-rentable : Rentable
-from : Date
-to : Date
-cost : double

LogDetail

+cancel()()

-logNumber : int
-customer : Customer
-details : ArrayList<LogDetail>
-checkoutDate : Date
-closeDate : Date
-employee : Employee
-state : State

RentalLog

1

*

1

*

1

*

1

*

1

*

1

*

To keep the Class diagram readable, Controller
classes do not show all the composition

relationships with Queues and Subcontrollers.

64

Diagram 2: Controllers, Subcontrollers and States

1 *

1

*

+printLog(in log : RentalLog)

Printer

-createConnection()()
+getConnectionInstance()() : DatabaseConnection

DatabaseConnection

+execute(in console : Console, in log : RentalLog) : RentalLog

Subcontroller

SelectBikes

SelectCustomer

ConfirmReservation

-queue : Queue

SelectRentalLog

AssessCharges

+registerObserver(in observer : Observer)
+unregisterObserver(in observer : Observer)
+notifyAll()

«interface»
Observable

+add(in log : RentalLog)
+remove(in log : RentalLog)

-observers : ArrayList<Observer>
-logs : ArrayList<RentalLog>

Queue

+getQueueInstance() : RentalQueue

RentalQueue

+getQueueInstance() : InspectionQueue

InspectionQueue

+getQueueInstance() : SettlementQueue

SettlementQueue

+cancel(in log : RentalLog)

«interface»
CancelBehavior

UnreserveBikes

NotAllowed

-rentalQueue : Queue

RemoveFromQueue

InRentalQueue

BeingRented

AwaitingReturns

BeingReturned

BeingInspected

BeingSettled

InArrears

Closed

+cancel(in log : RentalLog)
+printReceipt(in log : RentalLog)

-cancelBehavior : CancelBehavior

State

-assessCharges : AssessCharges
-inspectionQueue : Queue

ReturnBike

RepairBike

+start(in console : Console)

-label : String

Controller

-selectBikes : SelectBikes
-rentalQueue : Queue

SelectBikeCustomer

-selectRentalLog : SelectRentalLog

RentBikeFromQueue

-selectRentalLog : SelectRentalLog
-inspectionQueue : Queue
-settlementQueue : Queue

InspectBike

-selectBikes : SelectBikes

RentBikeEmployee

+makeBikeSelection(in employeeConsole : Console, in log : RentalLog)

-selectCustomer : SelectCustomer
-confirmReservaion : ConfirmReservation

RentBike

-settlementQueue : Queue
-selectRentalLog : SelectRentalLog

SettleBikeReturn

1

1

-costPerHour : double
-state : enum

Rentable

-various descriptive attributes

Bike-rentable : Rentable
-from : Date
-to : Date
-cost : double

LogDetail

+cancel()()

-logNumber : int
-customer : Customer
-details : ArrayList<LogDetail>
-checkoutDate : Date
-closeDate : Date
-employee : Employee
-state : State

RentalLog

1 *

1

*

1

*

1

1

To keep the Class diagram
readable, Controller

classes do not show all
the composition

relationships with Queues
and Subcontrollers.

65

CRC CARDS

Notes:
- CRC Cards will not include DatabaseConnection as a Collaborator since they are all likely to be using it.
- CRC Cards will not show collaborators inherited from superclasses

Controllers and Subcontrollers

Abstract Class Controller

Responsibilities
Require all subclasses to have a method to start the controller action
Provide a way for Consoles to provide a representation to users

Collaborators
Console

Abstract Class RentBike

Responsibilities
Provide common properties between operations required to rent
bikes from the employee console only

Collaborators
SelectCustomer

ConfirmReservation

Class SelectBikeCustomer

Responsibilities
Coordinate the console and subcontrollers that are needed to select
bikes at the customer console
Add customer’s RentalLog to RentalQueue

Collaborators
SelectBikes

RentalQueue
RentalLog

Class RentBikeFromQueue

Responsibilities
Coordinate the console and subcontrollers that are needed to rent
bikes that have been placed into the queue by customers

Collaborators
SelectRentalLog
SelectCustomer

ConfirmReservation
RentalLog

RentalQueue

Class RentBikeEmployee

Responsibilities
Coordinate the console and subcontrollers that are needed to rent
bikes from the employee console

Collaborators
SelectBikes

SelectCustomer
ConfirmReservation

RentalLog

66

Class ReturnBike

Responsibilities
Coordinate the console and subcontrollers that are needed to return
bikes from customers at the employee console

Collaborators
AssessCharges

RentalLog
InspectQueue

Class InspectBike

Responsibilities
Coordinate the console and subcontrollers that are needed to inspect
bikes being returned at the mechanic console

Collaborators
RentalLog

InspectQueue
SettlementQueue

Class SettleBikeReturn

Responsibilities
Coordinate the console and subcontrollers that are needed to settle
payment after bikes have been inspected

Collaborators
RentalLog

SettlementQueue

Class RepairBike

Responsibilities
Coordinate the console and subcontrollers that are needed to start the
repair bike process

Collaborators
Bike

Abstract Class Subcontroller

Responsibilities
Updates a RentalLog as more information is obtained
Use a console to get information from the user

Collaborators
RentalLog

Console

Class SelectBikes

Responsibilities
Find all bikes that match user description
Record proposed rental dates for those bikes
Create a new rental log with all of the information the user has submitted

Collaborators
Bike

Class SelectCustomer

Responsibilities
Select a customer to be associated with the rental log

Collaborators
Customer

67

Class ConfirmReservation

Responsibilities
Update rental log state after employee has collected money
Print receipt
Update the state of the RentalLog

Collaborators
Employee

Printer
State

Class SelectRentalLog

Responsibilities
Select a RentalLog from the queue
Update the state of the selected log

Collaborators
RentalQueue

State

Class AssessCharges

Responsibilities
Determine which bike(s) are being returned
Determine the late fees for each bike
Update the state of the RentalLog

Collaborators
Bike

State
InspectionQueue

Queues

Interface Observable

Responsibilities
Provide a common set of methods that need to be implemented to make
some object have subscribers to when it changes

Collaborators
Observer

Abstract Class Queue

Responsibilities
Notify Observers when elements have been added to this queue
Typical queue functions

Collaborators
RentalLog
Observer

Class RentalQueue

Responsibilities
Allow adding RentalLog objects to this queue
Notify Employee Consoles (observer) when a new object is added

Collaborators
None

68

Class InspectionQueue

Responsibilities
Allow adding RentalLog objects to this queue
Notify Mechanic Consoles (observer) when a new object is added

Collaborators
None

Class SettlementQueue

Responsibilities
Allow adding RentalLog objects to this queue
Notify Employee Consoles (observer) when a new object is added

Collaborators
None

Rental Log and Details

Class RentalLog

Responsibilities
Encapsulate information about each rental

Collaborators
Customer
LogDetail
Employee

State

Class LogDetail

Responsibilities
Encapsulate information about a particular bike rental

Collaborators
Bike

States

Abstract Class State

Responsibilities
Provide a common field to determine cancel behavior
Provide statefulness for a RentalLog as it goes through rentals/returns

Collaborators
RentalLog

CancelBehavior

Class InRentalQueue

Responsibilities
Encapsulate the actions that can occur when a RentalLog has been
added to the RentalQueue

Collaborators
None

69

Class BeingRented

Responsibilities
Encapsulate the actions that can occur when a RentalLog is in the
process of being rented

Collaborators
None

Class AwaitingReturns

Responsibilities
Encapsulate the actions that can occur when a RentalLog has been
rented and is now awaiting returns

Collaborators
None

Class BeingReturned

Responsibilities
Encapsulate the actions that can occur when a RentalLog is in the
process of returning one or more bikes

Collaborators
None

Class BeingInspected

Responsibilities
Encapsulate the actions that can occur when a RentalLog is in the process of
being inspected

Collaborators
None

Class BeingSettled

Responsibilities
Encapsulate the actions that can occur when a RentalLog is in the
process of finishing a return

Collaborators
None

Class InArrears

Responsibilities
Encapsulate the actions that can occur when a RentalLog has had all
bikes returned, but the customer was unable to pay all fees at that time

Collaborators
None

Class Closed

Responsibilities
Encapsulate the actions that can occur when a RentalLog is no longer
open for modification and no outstanding payments exist

Collaborators
None

70

People

Class Person

Responsibilities
Defines properties common to all people
Provides common methods to all Person objects

Collaborators
None

Class Employee

Responsibilities
Define properties specific to Employees only
Provide common methods to all Employee objects

Collaborators
None

Class Customer

Responsibilities
Define properties specific to Customers
Provide common methods to Customer objects

Collaborators
None

Class SalesRep

Responsibilities
Define properties specific to SalesRep only
Provide methods for SalesRep only

Collaborators
None

Class Owner

Responsibilities
Define properties specific to Owner only
Provide methods for Owner only

Collaborators
None

Class Mechanic

Responsibilities
Define properties specific to Mechanic only
Provide methods for Mechanic only

Collaborators
None

71

Consoles

Abstract Class Console

Responsibilities
Provide a common interface for all consoles to adhere to
Provide common fields that all consoles need
Require all subclasses to provide a way to login to the console

Collaborators
Authenticator

Person
Controller
Credential

Interface Observer

Responsibilities
Provide a common framework for classes that must register with the
Observables

Collaborators
None

Abstract Class ObserverConsole

Responsibilities
Provide an abstraction for any console that should be allowed to observe
a queue to use

Collaborators
None

Class EmployeeConsole

Responsibilities
Provide an interface between the software system and the employees
operating at an employee console
Restrict access to different controllers (functions/flows) based on the
operator type

Collaborators
None

Class MechanicConsole

Responsibilities
Provide an interface between the system and the mechanic
Restrict access to non-mechanic employees

Collaborators
None

Interface NonObserverConsole

Responsibilities
Provides a common framework for classes that do not have to register
with the Observables

Collaborators
None

72

Class CustomerConsole

Responsibilities
Provide an interface between the system and the customer
Public access

Collaborators
None

Rentable Items

Class Rentable

Responsibilities
Encapsulates the similarities between any item that can be rented from
the bike shop

Collaborators
None

Class Bike

Responsibilities
Represents a bike in the bike shop

Collaborators
None

Authentication Classes

Class Credential

Responsibilities
Encapsulates the users attempt (user input) to log into a console

Collaborators
None

Class Authenticator

Responsibilities
Determines whether or not an attempted login at any console is valid or
not

Collaborators
Credential

Behaviors

Interface CancelBehavior

Responsibilities
Provides an interface for each state to implement its own cancel
behavior when a cancel action needs to happen

Collaborators
RentalLog

Class NotAllowedCancelBehavior

Responsibilities
This behavior is used by any state where a cancellation is not valid.

Collaborators
None

73

Class UnreserveBikesCancelBehavior

Responsibilities
This behavior is used by any state where a cancellation results in
unreserving the bikes in the rental log

Collaborators
Bike

Class RemoveFromQueueCancelBehavior

Responsibilities
This behavior is used by any state where a cancellation results in both
removing this rental log from the RentalQueue and unreserving all bikes
in the Rental log

Collaborators
Bike

RentalQueue

Miscellaneous

Class DatabaseConnection

Responsibilities
This class is used when any controller needs access to the Database

Collaborators
None

Class Printer

Responsibilities
Takes rental log data from the system and sends it to a physical printer

Collaborators
RentalLog

