XXX - SDM Requirements Definition Phase Checklist

System Design Checklist

	Design Reviewers:
	include all names of design reviewers

	
	

	Team Reviewed:
	identify the team reviewed

	
	

	Review #:
	
	(Any “no” comments from previous design reviews should remain and be readdressed.)

	
	

	Date of Review:
	specify the date(s) of design review

	
	

	Suggestions for Improvement of Design
	list top three suggestions for improvement

	
	

	Suggestions for Improvement of Code:
	list top three suggestions for improvement

I. Design Review
	Yes No N/A
	1. Design Technique / Traceability
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	1. Suitable design. Documented system requirements are used as the basis for selecting a design technique. The proposed design realizes all requirements.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	2. Comprehensive design. All requirements are traceable (e.g., Traceability Matrix) to documented System Design to the requirements.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	3. Robust design. Design standards comply with current software development practices.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	4. Simple design. The software architecture is as simple as possible (but no simpler). Standardized components and off-the shelf components are used as appropriate.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	5. Reusable / maintainable design. Guidance included on how to detect and correct design features to address maintainability and reusability.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	6. Flexible design. The architecture can cope with likely changes in the requirements; the most relevant change scenarios are considered and documented.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	7. Secure design. The design has considered, documented, and addressed likely security concerns
	     

	Yes No N/A
	2. Software Structure
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	8. A software structure is determined by using a documented design methodology.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	9. Used the hierarchical approach in determining the structure and components of the software.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	10. System design entities, inputs, and outputs are derived from the software structure.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	11. Assigned a unique name to each entity. Include classification, purpose, function, external resources needed, processing rules and internal data elements.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	12. The dependent entities of the software and the resources required for the entities to perform have been identified.
	     

	Yes No N/A
	3. General System Design
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	13. Organized and presented the entities so the project sponsor and users will understand.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	14. The Design Document was developed describing system functions in user terms.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	15. Potential high-risk areas in the design were identified.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	16. The existence and compatibility of the physical and functional interfaces were established.
	     

	Yes No N/A
	4. Design the User Interface
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	17. The user interface is intuitive, clear and to generally accepted design principles.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	18. A specification of interface levels for all categories of users has been identified.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	19. Web documents do not contain any “copyrighted” material.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	20. A text equivalent for a graphic design has been provided to comply with the Americans with Disabilities Act (ADA).
	     

	Yes No N/A
	5. Create Data Model
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	21. A Data Dictionary was developed as a representation of data objects’ collection and the relationships between the objects.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	22. Expanded the data dictionary to catalog every known data element to be used.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	23. The dictionary includes business rules, processing statistics, and cross-referencing information for multiple vendor environments.
	     

	Yes No N/A
	6. Create Logical Data Model
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	24. The flow of data through the software system was defined and a logically consistent structure for the software was determined.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	25. Each module defining a function is identified.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	26. Interfaces between modules are established.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	27. Design constraints and limitations are described.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	28. Data flow diagrams were used to show the level of detail needed to reach a clear, complete picture of processes, data flow, and data stores.
	     

	Yes No N/A
	7. Design System Architecture
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	1. The application architecture has identified the design and layout of the requirements specific to the system application as a whole.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	2. The technical architecture has identified the technical requirements for the system application to work.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	3. All users and organizations requiring access to the software have been identified.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	4. All access restrictions were indicated.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	5. Determination was made whether access restrictions will be applied at the system, subsystem, transaction, record, or data element levels
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	6. The functions which are to be automated and which are manual have been identified.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	7. The determinations of how the software is to be designed are identified. (e.g., online vs. batch)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	8. Any hardware and software to be acquired was identified.
	     

	Yes No N/A
	8. Develop Capacity Plan
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	29. The initial capacity plan was developed to include estimations of capacity for the application usage, network bandwidth, disk storage capacity, etc.
	     

	Yes No N/A
	9. Documentation
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	30. Relationships between components are explicitly documented.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	31. Alternative architectures been discussed and their evaluation been documented. Design decisions have been documented clearly.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	32. Interfaces and external functionality of high-level components are described in detail.
	     

II. Code Review
	Yes No N/A
	10. Overall Code Design
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	33. Class / procedure / variable scope.
(see Intercheck code checklist, pg. 3)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	34. Open / closed principle.
(see Intercheck code checklist, pgs. 5-12)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	35. DRY principle. (duplicate or redundant code)
(see Intercheck code checklist, pgs. 13-17)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	36. Single responsibility principle.
(see Intercheck code checklist, pgs. 18-19)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	37. Object design, e.g., Liskov, Delegation vs Inheritance, Composition vs Inheritance (see Intercheck code checklist, pgs. 20-30)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	38. YAGNI, i.e., extraneous features
(see Intercheck code checklist, pgs. 31-32)
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	39. Documented Code. (not too little, not too much)
	     

	Yes No N/A
	11. Coding Standards
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	40. Meaningful variable and method/function names
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	41. Proper indentation, horizontal and vertical spacing used
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	42. Key numeric values are stored as constants. No use of “magic numbers” i.e., numbers that have a meaning.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	43. Is the code as modular as possible?
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	44. Are there any obvious optimizations that will improve performance?
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	45. Are there any obvious optimizations that will improve security?
	     

	Yes No N/A
	11. Documentation
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	46. Code is generally understandable in clear language
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	47. All methods/functions are commented to describe purpose, parameters and return values
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	48. Complicated logic is appropriately commented.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	49. No needless, obsolete or redundant comments.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	50. No code is commented out.
	     

	Yes No N/A
	12. Logic Checks
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	51. Array indexes stay within bounds
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	52. Conditions correct in ifs and loops
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	53. Loops always terminate
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	54. No statements in loop belong outside the loop
	     

	Yes No N/A
	13. Error Handling
	Comments

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	55. Invalid parameter values are handled properly early in methods (Fast Fail).
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	56. NullPointerException conditions from method invocations are checked.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	57. Error handler cleans up state and resources no matter where an error occurs.
	     

	 FORMCHECKBOX
 FORMCHECKBOX
 FORMCHECKBOX

	58. No errors or exceptions are “swallowed” e.g., catch (Exception ignored) {}. Exceptions should at least be logged.
	     

Page 2 of 2

