
Effective Writing
Writing a good Validation Plan

The Validation Plan is used to
• Define the approach and methodology that will be

followed for the validation and testing;

• Document and rationalize the testing strategy;

• Establish traceability from Requirements to Design to
Testing

• Establish the specific roles and responsibilities for
validation activities;

• Define the documents to be delivered during the
validation effort.

1

Disclaimers

The samples in this presentation

• The samples shown here are merely to illustrate the principles
discussed.

• No sample is perfect; and even the good ones can be improved.

• Do not mimic or parrot back the language of these samples. Use
your own voice! Otherwise, this could be considered plagiarism.

• The templates have been collected from a variety of companies.

• No template is perfect; in fact most of the templates have glaring
weaknesses.

• Sections of documents MUST make sense to the purpose of the
document. Many templates do not adhere to this principle.

• If you like a section of a template, use it. BUT make sure you
understand its purpose and agree with its inclusion.

• Do not mimic or parrot back the language of these samples. Use
your own voice! Otherwise, this could be considered plagiarism.

• Templates are here to inspire you….not so you can "fill in the blanks." 2

The templates themselves

Define the approach and methodology that will
be followed for the validation and testing

• This is a general section, calling for an overview

• What is the scope of validation?
• Which components of the "system" are in scope? Which, if any, are out of scope?

• Does the system integrate with other systems? If so, are these other systems going to also be tested? How?

• What is the depth of validation in scope?
• Will the testing be universally rigorous or adhere to some minimum standards?

• Will the testing depth vary depending on risk? no details here, just a general statement.

• What kinds of testing will be employed?
• Will any automated or scripted testing (e.g., testing tools, Java Unit Tests…) be used?

• What is the role of ad hoc testing?

• How was it accomplished? Was it formal or informal?

• Were the results of ad hoc testing documented anywhere?

• What was the process to resolve errors arising from ad hoc testing?

• Which of the following testing will be used and why? Or why not?

• Unit testing, Integration testing, System testing

• Regression testing

• IQ, OQ, PQ

Software Engineering Supplemental Material

3

Examples

None of the following examples constitute a
complete example of this section. In fact, each

sample only addressed one of the three areas

Software Engineering Supplemental Material

4

Define the approach and methodology that will
be followed for the validation and testing

Define the approach and methodology that will
be followed for the validation and testing

• What is the scope of validation?
• Which components of the "system" are in scope?

Which, if any, are out of scope?

• Does the system integrate with other systems? If so, are
these other systems going to also be tested? How?

• What is the depth of validation in scope?
• Will the testing be universally rigorous or adhere to

some minimum standards?

• Will the testing depth vary depending on risk? no details
here, just a general statement.

• What kinds of testing will be employed?
• Will any automated or scripted testing (e.g., testing

tools, Java Unit Tests…) be used?

• What is the role of ad hoc testing?

• How was it accomplished? Was it formal or informal?

• Were the results of ad hoc testing documented
anywhere?

• What was the process to resolve errors arising from
ad hoc testing?

• Which of the following testing will be used and why?
Or why not?

• Unit testing, Integration testing, System testing

• Regression testing

• IQ, OQ, PQ
5

For the validation strategy, we will focus on risks
with a score of 4 or higher. Risk which are unlikely
to happen and that have little risk if they do
happen are 1; risks which are somewhat likely and
somewhat risky are 2; risks which are very likely
and extremely risky are 3.

The following risks received a 4 or higher using
this scale:

1. Setup Fails to Download YOLO

2. The Training Configuration File is Created
Incorrectly

3. The Training Does Not Stop

Thus, these three risks will receive more attention
than the others in testing to make sure that they are
dealt with. All of the other risks will be tested for,
but with less importance than the three most
important risks. Testing for incorrect input may be
tested for as well, though less exhaustively than the
greater risks.

Sample 1



X

X

Define the approach and methodology that will
be followed for the validation and testing

• What is the scope of validation?
• Which components of the "system" are in scope?

Which, if any, are out of scope?

• Does the system integrate with other systems? If so, are
these other systems going to also be tested? How?

• What is the depth of validation in scope?
• Will the testing be universally rigorous or adhere to

some minimum standards?

• Will the testing depth vary depending on risk? no details
here, just a general statement.

• What kinds of testing will be employed?
• Will any automated or scripted testing (e.g., testing

tools, Java Unit Tests…) be used?

• What is the role of ad hoc testing?

• How was it accomplished? Was it formal or informal?

• Were the results of ad hoc testing documented
anywhere?

• What was the process to resolve errors arising from
ad hoc testing?

• Which of the following testing will be used and why?
Or why not?

• Unit testing, Integration testing, System testing

• Regression testing

• IQ, OQ, PQ
6

The scope of this validation is limited to convert java source
code into vectors using the Word2Vec model. However, in
order to be validated, the Non-Functional Requirements must
be verified and updated. Later, the effort will validate against
portions of Java2Vec Functional Requirements document
applicable to the Word2Vecmodel.

Specifically, the validation will be limited to all requirements
listed in the following sections in the requirement document,
unless otherwise explicitly stated:

4.1 Non-Functional Requirements
4.1.1 Package Requirements
4.1.2 Data Requirements

4.2 Functional Requirements
4.2.1 Interface Requirements
4.2.2 Common Functionality
4.2.3 Web Functionality
4.2.4 Visualization Functionality

Exclusions:
• Gathering sample data of clean java source code.
• Making the clean code buggy for module training and

testing.
• Using machine learning model to test bug prediction.

Assumptions:
• In order to train multiple repositories, the repositories must

be download orcloned to local path.
• This is just a Java2Vec model, so only java source code is

supported with this model.

Limitations:
• All third-party tools and applications must be open source.
• Character and symbols outside the java code must be

excluded from being trained into the model.

Sample 2



X

X

Define the approach and methodology that will be followed
for the validation and testing

• What is the scope of validation?
• Which components of the "system" are in scope?

Which, if any, are out of scope?

• Does the system integrate with other systems? If so, are
these other systems going to also be tested? How?

• What is the depth of validation in scope?
• Will the testing be universally rigorous or adhere to

some minimum standards?

• Will the testing depth vary depending on risk? no details
here, just a general statement.

• What kinds of testing will be employed?
• Will any automated or scripted testing (e.g., testing

tools, Java Unit Tests…) be used?

• What is the role of ad hoc testing?

• How was it accomplished? Was it formal or informal?

• Were the results of ad hoc testing documented
anywhere?

• What was the process to resolve errors arising from
ad hoc testing?

• Which of the following testing will be used and why?
Or why not?

• Unit testing, Integration testing, System testing

• Regression testing

• IQ, OQ, PQ
7

Our approach to validation is using unit testing to ensure each
component of the SIT functions as intended. We plan to test each
vulnerability as they are designed before integrating them into the
system using unit tests. Also, additional regression testing will be
done upon editing the analyzers. Testing will be done by the
development team.

Regression testing will be performed after any vulnerability is added
to the system. By doing this, we ensure that the added vulnerability
and previous vulnerabilities function as they did prior to the addition.
We also need to ensure that the Eclipse plugin runs as intended after
additions are made to the program.

Ultimately, the entire system will be system tested to ensure
correctness. We do this because even though the vulnerabilities may
work correctly, there could be issues when integrated into the entire
system.

Installation Qualification (IQ)
The Installation Qualification will validate the components of the SIT
related to the installation and setup of the program software on
compatible workstation computers. The system will be qualified when
the following conditions have been carefully tested and met:
• Java version 8 or higher is installed on the machine.
• A jar version of the SIT is downloaded on the machine.
• Java is included in the class path of the machine on which SIT is

going to run.

Operational Qualification (OQ)
The Operation Qualification will validate that a user with a compatible
workstation is able to utilize all the functionality and interactivity of
the SIT. The standard use cases that must be carefully tested for the
operation qualifications of the application to be approved are defined
below: […]

Performance Qualification (PQ)
To ensure that user stories can be successfully completed as part of the
application, our team will conduct the following performance
qualification tests

Sample 3



X

X

User Story Validated by

User’s ability to scan source code
for either ADA, Java, or C++.

An interface which […]

X

X

Document and rationalize the testing strategy

• This section explains the rationale for the testing strategy based on risk for general
areas of the system. A system is bigger than just the software.

• Sommerville defines it as "a purposeful collection of interrelated components, of different kinds,
which work together to deliver a set of services to the system owner and users."

• The Software Engineering Body of Knowledge (SEBoK) defines an engineered system as
"encompassing combinations of technology and people in the context of natural, social, business,
public or political environments, created, used and sustained for an identified purpose."

• Thus, a system includes the hardware, the environment or framework in which the application
runs, and users who interact with the application for its purpose.

Describe and characterize risk for each area of the system
(not every individual program, group into areas)

• What is the likelihood of an error condition?

• What is the severity if the error were to occur?

• If the error were to occur, what mitigation strategies
could be used to minimize the severity?

Discuss how the risks for each area affect the testing strategy

Software Engineering Supplemental Material

8

Example

The following example is a reasonable approach to
documenting and rationalizing the testing strategy.

However, it could be improved.

Software Engineering Supplemental Material

9

Document and rationalize the testing strategy

Document and rationalize the testing strategy

Describe and characterize
risk for each area of the
system

• What is the likelihood of an
error condition?

• What is the severity if the
error were to occur?

• If the error were to occur,
what mitigation strategies
could be used to minimize
the severity?

Discuss how the risks for
each area affect the testing
strategy

10

Bit flipping due to external factors:
When communication between the Raspberry Pi and the PC is occurring, a digital
signal being sent through the ethernet cable connecting can be corrupted from
external signals (Wi-Fi, microwaves, static, etc.).

a. Functional Severity: High -An incorrect signal will create inconsistencies
within the logic of our program and may put our program’s state machine in
an undefined state.

b. Implemented Severity: High -When this product is implemented in a theater
environment, undefined or incorrect states can cause props to move
accordingly that may hurt people in the theater.

c. Likelihood: Low repeated -The odds of external signals tampering with
our enclosed ethernet cable is very low.

d. Mitigation: The ethernet and both devices will be shielded with rubber or
plastic that will help create a barrier from these external signals.

[…]

Based upon the level of risk that was defined in the risk assessment certain
criteria should be defined to identify the validation necessary to ensure that our
program is deemed functional.

The level of functional severity, implemented severity, and likelihood are the
main points that define how we will test the risks. Having a high functional
severity, high implemented severity, and high likelihood should be a risk that
should be thoroughly tested, and a strong source of mitigation should be found
to deal with the risk. If there is no mitigation within the program that is adequate
for the level of risk, this will show that our program is not a valid solution. If the
mitigation is enough, this may mean that our program is a valid solution.

Sample 1





but it would have been nice to talk
about the testing strategy for severities
and likelihoods other than high.

Establish traceability from Requirements
to Design to Testing

• A Traceability Matrix ensures that every aspect of both the
functional and non-functional requirements is:

• accounted for in the Design Document;

• tested in the Test Script.

• Traceability Matrices should begin with a short description and number of each
requirement.

• For each requirement, Traceability Matrices should link to all the design elements that
support the requirement. Generally for each requirement there are multiple design
references in play.

• For each requirement, Traceability Matrices should link a Test Script ID where the
functionality was explicitly or implicitly tested.

• Explanatory notes should be added to describe unusual circumstances or why traceability
is impossible.

Software Engineering Supplemental Material

11

Example

Traceability Matrices depend on other document. If
those documents are done well, the Matrix looks good.

This Matrix is good, but make no inferences about the
Requirements Document, the Design Document or the

Test Script

Software Engineering Supplemental Material

12

Establish traceability from Requirements
to Design to Testing

Establish traceability from Requirements
to Design to Testing

• Traceability Matrices should
begin with a short description
and number of each
requirement

• For each requirement,
Traceability Matrices should link
to all the design elements that
support the requirement.
Generally for each requirement
there are multiple design
references in play.

• For each requirement,
Traceability Matrices should link
a Test Script ID where the
functionality was explicitly or
implicitly tested.

• Explanatory notes should be
added to describe unusual
circumstances or why
traceability is impossible. 13

Sample 1









Establish the specific roles and
responsibilities for validation activities

• All the names and roles of individuals involved in validation should be listed:

• The System Owner (for us in class, generally the project sponsor)

• The Developers

• Management personnel (for us in class, the instructor; maybe also sponsor management)

• Quality Assurance personnel (not applicable for class assignments)

• The Testers

• Supporting Roles, e.g., Scrum Master and Product Owner

• For each role listed above, describe what their role will be with respect to validation.
(Note that a person can play more than one role.)

Software Engineering Supplemental Material

14

Define the documents to be delivered
during the validation effort.

• All deliverables from class should be listed. In real life, there will be other
deliverables as well.

• Each deliverable should be described by stating what it is. And why it is
important for validation

Software Engineering Supplemental Material

15

Other sections?

• There are general sections which are good for any formal document

• Introduction / Background (i.e., the purpose of this document)

• Acronyms

• Signature/version section

• Also feel free to add sections of your own that you think are important and adhere to
the purpose of this document.

Software Engineering Supplemental Material

16

