Recursive Strategy: Counting Zeroes
	Problem
	Count the zeroes in an array of ints, e.g. [0, 1, 1, 0, 1]
Answer = 2

	What is the smallest version of this problem? (leads to base case)
	If the array consists of one element, e.g. [0] or [1], return 1 if the element is a zero, else return 0.

	What recursion strategy should I use:
· Forwards recursion
(each recursive step gets larger; the base case is based on
of iterations)
· Backwards recursion classical
(each recursive step gets smaller until the base case is reached)
	Backwards recursion

	For recursive cases, should I:
· Process first and recur last? (process as I move up the recursive stack)
· Recur first and process last? (process as I move down the recursive stack)
	Process as I move up the stack.

	What should each recursive step do?
	Keep a running total of the number of zeroes seen.
If the first element of the array is a 0, increment running total; i.e. keep sending the recursive function an increasingly large count of zeroes.

	For backwards recursion solutions:
How should the problem be reduced on each step?
	Send progressively smaller Arrays on each iteration where each Array is missing its first element.*

	For forwards recursion solutions:
How should I keep track of the running answer?
	N/A

*Instead of sending smaller and smaller arrays each time, could you also send the same array to each step as well as the starting position for evaluation (which would increment by one on each recursion)?
[bookmark: _GoBack]
