
The Decorator Pattern

The Decorator is known as a structural pattern, as it's used to form large object structures across many

disparate objects. The definition of Decorator provided in the original Gang of Four book on Design

Patterns
1
 states:

Traditionally, you might consider subclassing to be the best way to approach this - but there will be cases

that subclassing isn't possible, or is impractical. This leads us to the Open/Closed Principle: classes

should be open for extension, but closed for modification. This is a good principle to keep in mind, as it

keeps your class stable, but leaves it open for extension if someone wants to add behavior
2
.

1
 Gamma, Erich. Design patterns: elements of reusable object-oriented software. Reading, Mass.: Addison-Wesley, 1995.

2
 "Design Patterns Uncovered: The Decorator Pattern." Javalobby. N.p., n.d. Web. 10 Apr. 2014.

<http://java.dzone.com/articles/design-patterns-decorator>.

The Decorator Pattern:
 Allows for the dynamic wrapping of objects in order

 to modify their existing responsibilities and behaviors

Component is the

abstract superclass

Decorator is composed

 of the superclass.

"Decorator wraps

the superclass"

Clients interact with the Decorator

using all the familiar operations of

the Component…and maybe more!

Decorators may be abstract when appropriate, or concrete. The Java IO

API makes extensive use of concrete decorators like BufferedReaders.

http://www.bibme.org/
http://www.bibme.org/

Java IO examples
A Decorator may provide improved functionality over the Component it decorates, as seen in Figure 1
when a client invokes the read() method. Additionally, a Decorator can add new functionality as seein in
Figure 2.

Figure 1: Improved functionality of read()

Figure 2: Additional Decorator functionality – the addition of readLine()

