The Decorator Pattern

The Decorator is known as a structural pattern, as it's used to form large object structures across many
disparate objects. The definition of Decorator provided in the original Gang of Four book on Design
Patterns’ states:

The Decorator Pattern:

Allows for the dynamic wrapping of objects in order

to modify their existing responsibilities and behaviors

Traditionally, you might consider subclassing to be the best way to approach this - but there will be cases
that subclassing isn't possible, or is impractical. This leads us to the Open/Closed Principle: classes
should be open for extension, but closed for modification. This is a good principle to keep in mind, as it
keeps your class stable, but leaves it open for extension if someone wants to add behavior?.

Component is the Component
abstract superclass

+ operation() Decorator is composed
of the superclass.
"Decorator wraps
the superclass"

Clients interact with the Decorator Decorator

using all the familiar operations of - component <—
the Component...and maybe morel!

+ operation()

Decorators may be abstract when appropriate, or concrete. The Java IO
APT makes extensive use of concrete decorators like BufferedReaders.

! Gamma, Erich. Design patterns: elements of reusable object-oriented software. Reading, Mass.: Addison-Wesley, 1995.
2 "Design Patterns Uncovered: The Decorator Pattern." Javalobby. N.p., n.d. Web. 10 Apr. 2014.
<http://java.dzone.com/articles/design-patterns-decorator>.


http://www.bibme.org/
http://www.bibme.org/

Java IO examples

A Decorator may provide improved functionality over the Component it decorates, as seen in Figure 1

when a client invokes the read() method. Additionally, a Decorator can add new functionality as seein in
Figure 2.

Figure 1: Improved functionality of read()

Please read a character

Client

Ial

All the client knows, is that
it invoked the same method

in both cases
BufferedReader
Please read a character
: Reader
Client if (in buffer) - close()
'a' e;‘se-_______., read()

Figure 2: Additional Decorator functionality — the addition of readLine()

Please read a character Reader
- close()
= - read()

All the client knows, is that
it invoked the same method
in both cases

BufferedReader

Please read a line R #-t- 10541 ) Reader
close()
"augment your streams read()

with buffers™




