The Decorator Pattern

The Decorator is known as a structural pattern, as it's used to form large object structures across many
disparate objects. The definition of Decorator provided in the original Gang of Four book on Design
Patterns’ states:

The Decorator Pattern:

Allows for the dynamic wrapping of objects in order

to modify their existing responsibilities and behaviors

Traditionally, you might consider subclassing to be the best way to approach this - but there will be cases
that subclassing isn't possible, or is impractical. This leads us to the Open/Closed Principle: classes
should be open for extension, but closed for modification. This is a good principle to keep in mind, as it
keeps your class stable, but leaves it open for extension if someone wants to add behavior?.
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Decorators may be abstract when appropriate, or concrete. The Java IO
APT makes extensive use of concrete decorators like BufferedReaders.
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Java IO examples

A Decorator may provide improved functionality over the Component it decorates, as seen in Figure 1

when a client invokes the read() method. Additionally, a Decorator can add new functionality as seein in
Figure 2.

Figure 1: Improved functionality of read()
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Figure 2: Additional Decorator functionality — the addition of readLine()
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