

Modeling DDoS Attacks with IP Spoofing and Hop-Count Defense

Measure Using OPNET Modeler

Shahid Akhter, Jack Myers1, Chris Bowen, Stephen Ferzetti, Patrick Belko, and Vasil Hnatyshin2

Department of Computer Science

Rowan University

Glassboro, NJ 08028

E-mail: {akhter88, bowenc65, ferzet31, belkop43}@students.rowan.edu,
1jackfmyers@gmail.com, 2hnatyshin@rowan.edu

Abstract. Distributed Denial of Service (DDoS) attacks

continue to plague today's Internet. The variety and ingenuity of

such attacks requires network security analysts to perpetually

develop more robust forms of attack identification and

prevention. UDP flood is one of the simplest to deploy DDoS

attacks. It is based on the idea of overwhelming the receiver with

a huge amount of traffic causing congestion and preventing

legitimate services. Such attacks are often launched together

with IP spoofing which makes it difficult to identify the

malicious traffic and distinguish it from legitimate connections.

The hop count defense mechanism identifies malicious traffic

and helps to thwart the DDoS attacks by comparing the TTL

field value carried in the IP header of the arriving packet with

the actual number of hops to the source node. This paper focuses

on the methodology for modeling a DDoS UDP flood with an IP

spoofing attack and hop count defense using OPNET Modeler

network simulation software.

Keywords: Distributed Denial of Service, DDoS, hop-count

countermeasure, OPNET Modeler

Tracks: Network Security, Security Management

1. Introduction

During our study of Distributed Denial of Service (DDoS)

attacks, the world's 76
th

 most visited website was brought down

by one such attack. The Swedish website Pirate Bay, also the

74
th

 most visited in the United States, and the 15
th

 most visited in

Sweden [1], is one of the world's most popular BitTorrent sites.

Often criticized and reviled for promoting copyright

infringements, the site also provides a peer-to-peer outlet for

legal distribution of work by filmmakers, musicians, artists and

writers. Over 10,000 independent artists have signed up with

Pirate Bay in hopes of breaking through to a global audience [2].

Pirate Bay is associated with several private BitTorrent trackers

which are designed to be selective in order to make sure

members have a community-friendly upload to download ratio.

The site was taken out of service on 14 November 2012 via a

DDoS attack, when a disgruntled user was not admitted to a

private tracker [3].

Even though DDoS attacks are nothing new, they are still

causing site outages to this day. This paper is focused on using

OPNET as a tool to model DDoS attacks, their detection and

prevention, in the hopes that establishing such models will

further facilitate resiliency in today's Internet. The rest of the

paper is organized as follows. Section 2 provides a brief survey

of existing DDoS attacks, followed by Section 3 which describes

the hop-count countermeasure mechanism. Careful review of the

OPNET Modeler simulation model of the UDP Flood and hop-

count mechanism is provided in Section 4. We perform an

analysis of collected results in Section 5, followed by

conclusions and future work in Section 6.

2. Overview of DDoS attacks

The United States Computer Emergency Readiness Team [9]

defines Denial of Service (DoS) attacks as “attempts to prevent

legitimate users from accessing information or services,” which

may lead to inability to visit certain web sites, unusually slow

network response times, etc. Typically, DoS attacks attempt to

consume available network and computing resources such as

bandwidth, CPU time, or a computer’s main memory. As a

result, the targeted machines and networks can no longer support

the services they provide (e.g., e-mail, websites, online banking,

online gaming) making them unavailable to legitimate users [8].

A Distributed Denial of Service (DDoS) attack is a variation of

Denial of Service where multiple attackers (often consisting of

compromised systems) located all over the Internet (i.e.,

distributed) participate in an attempt to bring down a targeted

system. Generally, DDoS attacks can be categorized based on

the target of the attack such as the vulnerability within the

application’s design or implementation, the network

infrastructure, the resources on the victim’s device, or the

resources on the network that connect the victim to the Internet.

2.1 Exploiting application vulnerabilities

An example of a DDoS attack specifically designed to exploit

application’s vulnerability is an attack targeted at Apache web

servers. This DDoS attack works by flooding an Apache server

with so much data that it locks up and can no longer respond to

the web page requests. Apache web servers, like most other web

servers, enable a feature that allows a user to pause and resume

HTTP downloads of large files. The Apache web server

application is particularly vulnerable when hundreds of very

large overlapping parts of a file are requested in a single request

[4]. Attacks that exploit this vulnerability will crash an

application running on the server, rather than the server itself.

2.2 Targeting the network infrastructure

DDoS attacks against network infrastructure are becoming more

mailto:jackfmyers@gmail.com

prevalent due to the rise in the number and importance of

wireless networks. Wireless communications have always been

vulnerable to interference. For example, Microsoft's Xbox can

interfere with the 802.11n networks since they both allow

transmitting on the same 2.4 GHz band. A similar wireless

interference can also be created using frequency jammers.

Frequency jammers can be legally used outside the United

States; e.g., France allows using jammers to block cell phone

transmissions in theatres or restaurants; in Italy they are used in

examination rooms to reduce the likelihood of academic

dishonesty. Mexico uses wireless jammers to preserve the

sanctity of religious services. Miniature jammers can be used in

distributed networks for intentional or malicious disruption of

wireless communication.

Nowadays, micro-electro-mechanical systems (MEMS) and

nano-electro-mechanical (NEMS) systems can be used to build

tiny, low-power jammers that can be distributed in the air as

"dust," forming a distributed jammer network. As jammers have

a simpler functionality as compared to sensors, (i.e., emitting

noise signals versus performing complex modulation, filtering,

and other signal processing functions) they can be miniaturized

more easily. The United States employed such techniques in the

second Gulf War in Iraq [5].

2.3 Targeting the victim’s computing resources

A TCP SYN flood DDoS attack targets computing resources on

the victim’s computer by exploiting a vulnerability within TCP’s

connection establishment protocol. The idea of this attack is to

establish a large number of half-opened TCP connections which

eventually consume all of the resources at the victim’s machine.

This attack is implemented by sending a large number of TCP

SYN packets – each of which requests the opening of a

connection. The target machine acknowledges every request to

open a new TCP connection by sending a TCP SYN + ACK

packet. The attacker, instead of completing the three-way

connection establishment handshake, sends additional requests

to open new TCP connections at the target machine. Since the

victim’s machine allocates resources for each half-opened TCP

connection, it will eventually run out of buffer space and crash.

The TCP SYN attacks are often used together with IP spoofing,

where the attacker replaces the source IP address in each packet

with some fake address. This prevents the victim from

identifying from where the attack was launched. There are

numerous defense mechanisms for dealing with TCP SYN

attacks. For example, the SYN Cookie countermeasure does not

allocate resources for half-open TCP connection until the

sources complete the three-way handshake [10]. Unfortunately,

not all computers update their software with the latest security

patches, and such attacks still may happen. A variation of the

TCP SYN attack was used to take Pirate Bay out of service in

November 2012.

2.4 Targeting network connectivity

Another form of DDoS attack targets connectivity to the Internet

by flooding the network connection with so much traffic that the

victim has no available bandwidth for its own legitimate Internet

requests. UDP flood or UDP packet storm is the form of DDoS

attacks that targets connectivity by sending a large number of

UDP packets to the network interface on the victim’s computer.

For example, a UDP flood attack can be implemented by

sending spoofed UDP packets to the chargen or echo service of

a target computer. Let us call such computer victim A. Spoofed

UDP packets sent to victim A will have the source IP address set

to IP address of another victim, let us call it victim B, and port

number set to that of the chargen or echo service. Recall that

chargen and echo services send a response message each time

they receive a datagram. As a result, such an attack will create an

infinite loop of useless UDP traffic between victim A and victim

B, consuming available network resources, creating congestion,

and denying service to the victim’s legitimate traffic [11].

3. Defending Against Attacks Using Hop-Count

Typical defenses against distributed denial of service attacks rely

on identifying the malicious traffic and preventing it from

entering the network. Typically, the edge routers in the victim’s

network or the victims themselves identify the malicious traffic

flows and relay the identity to the attacker upstream to the edge

routers or Internet Service Providers (ISP) that the attacker uses

to access the network. The ISPs and the edge routers then use the

identity of the attacker to filter out malicious traffic, preventing

it from entering the Internet altogether. That is why DDoS

attacks are often launched together with IP spoofing – a

masquerading technique in which the source address field in the

IP header of the malicious packet is set to a fake value. The IP

spoofing technique makes it harder for the victim to identify the

source of the attack.

Hop-count filtering is a technique which utilizes hop counts

derived from the IP header of a packet to identify malicious

traffic flows [6]. The IP packet header contains the time-to-live

(TTL) field which stores the maximum lifetime of the packet.

Each time a packet travels through an intermediate node, the

TTL field value is decremented by 1. If the length of the path

from source to destination is known, then by examining the TTL

field value, the victim can determine if the IP address carried in

the packet is valid or not. Specifically, the length of the path

from source to destination can be computed as the difference

between the initial and the final values of TTL field in the

arriving packet. Typically, the initial value of the TTL field is set

to some default value such as 255. Once the length of the path is

computed from the IP header of the arriving packet, it is then

compared to the actual value of the path length. If the values

match, then the packet is considered legitimate and will be

accepted by the host. Otherwise the packet is deemed to be

malicious, likely with the spoofed source IP address value, and

is discarded.

The hop-count filtering method requires the host to build and

maintain a table that contains the length of the path (i.e. the hop

count) to known sources, identified by their IP address. Such a

table can be built by pinging (i.e., sending an ICMP request

message) any nodes with an unknown hop count.

4. Modeling Hop-Count Defense Mechanism

In this section we describe our endeavors creating a simulation

model of the DDoS UDP flood attack and a hop-count

countermeasure in OPNET Modeler.

Comment [jfm1]: There are three complete
sentences here...must either be separated by
periods or semi-colons.

4.1 IP Spoofing

The first step in creating a model of a UDP flood attack was to

implement IP spoofing. For that purpose, we modified the

ip_dispatch process model and added a new model attribute

called Spoofed IP Address. This attribute specifies the IP address

value set in the source address field of the spoofed packet’s IP

header. If the Spoofed IP Address value is set to “None”, then

the current node does not perform IP spoofing. Otherwise, all

outgoing packets will have the value of the source address in the

IP header set to the value of the Spoofed IP Address attribute.

To set the value of the source address field in the IP header, we

modified the ip_encap_v4 process model (Figure 1).

Specifically, first we added a statement in the INIT state to read

the value of the Spoofed IP Address attribute:

op_ima_obj_attr_get (own_node_objid, "ip.Spoofed IP", &spoofIP);

Next we modified the ENCAP state of the ip_encap_v4 process

model to set the source IP address of the outgoing spoofed

packet to specified value:

if (strcmp(spoofIP, "None") != 0){
 ip_dgram_fd_ptr->src_addr =
 inet_address_create(spoofIP, InetC_Addr_Family_v4);
}

The above code ensures that when configured to spoof IP traffic,

all the packets leaving this node will have the source IP address

set to spoofIP, the value of the Spoofed IP Address attribute.

Figure 1: Updated ip_encap_v4 process model

4.2 Modeling Hop Count Countermeasure

Similarly, the first step in implementing the hop count defense

was to add a configuration parameter for differentiating between

the nodes that support this mechanism and those that do not. We

added a model attribute called Hop Count Defense in the

ip_dispatch process model and parsed its value in the INIT

state of the ip_encap_v4 process model:

op_ima_obj_attr_get(own_node_objid,"ip.Hop Count", &isDefender);

Next we added functionality to keep track of known hop counts

to various nodes in the network. For that purpose, we created a

hop count table. Each entry in that table consists of three values:

source IP address, hop distance to the node with that IP address,

and an event handle for the self-interrupt that is scheduled when

the probe message is generated. The ip_encap_v4 process model

denotes the packet arrival from the network layer into the IP

layer via a transition from the STRM_DEMUX state into the

DECAP state. This is why we implemented the hop count

defense functionality in the DECAP state, i.e., when an IP

packet arrives from the network layer.

The hop count countermeasure was implemented as follows:

upon the packet arrival from the network layer, the node consults

the hop count table to check if this is a spoofed packet. If the

packet is not spoofed, then the packet is processed normally.

Otherwise the spoofed packets are discarded. The packet is

considered spoofed if the length of the path to the packet’s

source node does not match the value stored in the hop count

table. The hop distance to the packet’s source node is computed

as being equal to 255 minus the value of TTL field. By default,

IP sets the TTL field value to 255, the maximum possible value.

It is also possible that the hop count table does not contain an

entry for the packet’s source IP address. In this case the node,

hereafter referred to as the originator, performs the following

three steps:

1. The packet is processed normally and is forwarded to the

upper layer.

2. A new entry for the packet’s source IP address is added

into the hop count table. The path length in the new hop

count table entry is set to an invalid value.

3. A probe message is sent to the packet’s source node.

The originator node sends the probe message in an attempt to

discover the actual hop distance to the source node. Upon the

arrival of the probe message at the source node, a probe reply

message is sent back to originator. When the originator receives

a prove reply message, it updates the hop count entry with the

correct value of the hop distance to the source node. Both the

probe and probe reply messages carry no data except for the IP

header. We use the protocol field in the IP header to identify the

probe and probe reply messages. The actual hop distance to the

source node is computed as being equal to 255 minus the value

of the TTL field in the probe reply message.

It is possible that the probe reply will never arrive back to the

originator node because the attackers used an invalid IP address.

To handle such a situation, we added a timer that is started when

the originator sends a probe message. If the probe reply arrives

before the timer expiration, then the interrupt event is canceled.

Otherwise if the probe timer expires, then the corresponding

entry in the hop count table has the length of the path set to the

invalid value of 256.

We added the following code in the DECAP state of the

ip_encap_v4 process model to implement the hop-count

defenses:

// Node receives a probe packet

if(packet_type == PROBE){
 Send_ProbeResponse(DestAddr);
}

// Node with Hop Count Defense ON, receives prove reply

else if (packet_type == RESPONSE && isDefender) {
 updateHopCount(SrcAddr, 255 - TTL);
 op_ev_cancel(hopCountsTable[addressIndex].probeTimer_evh);
}

// Node with Hop Count Defense ON, receives data packet

else if(isDefender){

 // No entry in the Hop Count Table

 if (getHopCountEntry(SrcAddr) == null){
 Send_Probe(SrcAddr);
 HopCountsTable.add(SrcAddr, UKNOWN);
 hopCountsTable[i].probeTimer_evh =
 op_intrpt_schedule_self(op_sim_time () + PROBE_TIMER, i);
 }

 // Discard packet if hop distance incorrect

 else if (HopCountsTable.numHops != 255 - TTL){

 // The packet is considered spoofed and discarded
 discard(packet);
 }

 // If hop distance is correct then continue as before

}

We added the following function to handle probe timer expiry:

static void probeExpiry(HopCountEntry hopTable[], int numEntries){

 // Interrupt code carries an index into hop count table

 // Verify that we received a valid index into hop count table

 if (op_intrpt_code() <= numEntries) {

 // Probe Reply did not arrive in time

 hopTable[op_intrpt_code()].numHops = INVALID_DISTANCE;
 }
}

4.3 Network Topology

To study the UDP flood attack and hop count countermeasure,

we used topology depicted in Figure 2. In our study, the attacker

nodes are configured to send UDP Flood traffic to the defender

node. The attackers also spoof the source IP address of their

outgoing packets. The reflector and the regular user nodes sent

only legitimate traffic that should not be discarded. The defender

node implements the hop count defense and, when identified,

discards all packets with the spoofed source IP address.

Figure 2: Network Topology

The attacker, regular user, and reflector nodes all travel via

different paths to reach the defender node. For example, the

reflector node needs to traverse Path_A sub-network which

consists of 6 routers connected in a straight line. The length of

the path from reflector to defender is 8 hops. Similarly, the

attacker nodes travel through the Path_B sub-network to reach

the reflector. The length of the path from the attackers to the

defender is 13 hops. The regular user node sends its traffic

though the Path_C sub-network, and the total length of the path

from the regular user to the defender is 11 hops. Therefore, when

the defender receives attacker packets containing a spoofed

source IP address, it should be able to use the hop-count defense

to identify malicious traffic and discard it.

In this study, we used the ethernet_wkstn_adv node model to

represent end nodes and the ethernet2_slip8_gtwy_adv node

model to represent routers. All the end nodes were connected to

routers via 1000BaseX duplex links; routers were connected to

one another via PPP_DS3 links.

4.4 Modeling UDP Flood Attack

To model UDP Flood traffic we created a custom application,

called Direct Flood, where the attackers send a stream of traffic

with the spoofed source IP address directly to the defender. The

Direct Flood custom application consists of a single task where

the source sends 1000 requests. Each request consists of a single

packet of size 10KB. The request inter-arrival time is distributed

exponentially with the mean outcome of 0.1 second. The

destination node does not generate a response upon the request

packet arrival.

We also created an application called Reflection Flood. This

application models a UDP flood attack where attackers send

requests to the reflector node which in turn responds by sending

a stream of data to the target machine identified by the source IP

address in the spoofed request packets. We used a standard video

conferencing application to generate traffic sent by the reflector

node. Overall, this UDP Flood attack works as follows: attackers

send request packets with the source IP address set to address of

the defender node. Reflector responds to arriving requests by

sending a stream of video traffic to the defender.

5. Simulation Study Results

5.1 Defending Against Direct UDP Flood Attack

To illustrate effectiveness of the hop count defense, we set up a

simulation study where the attacker, reflector, and regular user

nodes (Figure 2) send the Direct Flood application traffic to the

defender node. The attacker nodes spoof the source IP address of

their outgoing packets and set them to 192.0.66.2, the IP address

of the reflector node. We also tested a scenario where the

attackers set the spoofed IP address to an invalid value, i.e.,

192.012.13, an IP address that is unused in our scenario. In both

cases we received almost identical results.

The distribution of the generated traffic in the network is shown

in Figure 3. The red line with the square symbols denotes all the

traffic generated in the network, while the green line with

triangle and blue line with diamond denote the attacker and

legitimate user traffic respectively. Legitimate user traffic

consists of the traffic flows generated by the reflector and the

regular user nodes.

Figure 3: Direct UDP Flood Attack Traffic Distribution

Figure 4 illustrates how the defender node handles the Direct

UDP Flood attack. When the hop count defense is on, the

defender node is able to identify and filter out all of the traffic

generated by the attacker nodes, as depicted in Figure 4 by a

blue line with the square symbol. However when the hop count

defense is disabled, the defender node accepts all of the traffic.

The defender is able to identify and discard the packets with the

spoofed IP address because the length of the path from the

attacker nodes to the defender is different than the length of the

path from the reflector node to defender.

Figure 4: Traffic Received by the Defender Node with the Hop

Count Countermeasure enabled and disabled

The attackers set the source address field of the spoofed packets

to the IP address of the reflector node. When the defender

received the first packet from the attacker, it consulted the hop-

count table. Since at this point the length of the path from

reflector to defender is unknown, the defender sent a probe

message to reflector and accepted all the spoofed packets with

the source address set to the reflector’s until it received a probe

reply. Upon the probe reply arrival, the defender recorded the

actual length of the path to reflector. All subsequent packets with

the source IP address set to that of the reflector were verified

that they traversed the number of hops equal to the recorded

length of the path to the reflector node. Since the spoofed

packets originated from the attacker nodes, they traverse a

different number of hops to reach the defender and thus were

identified as malicious and are discarded.

Figure 5: Traffic Generated by the Attacker Nodes in the

Reflection UDP Flood Attack scenario

A similar scenario plays out when the attacker sets the source IP

address of spoofed traffic to an invalid value. In this case, the

defender’s probe timer will expire, at which point it will

conclude that the packet arrived from an unknown source. It

will then set the path length to an invalid value and discard all

subsequent packets that arrive from the same IP address.

Please note that the legitimate traffic is not filtered out because

the path length determined by the probe reply will match the

path length computed based on the TTL field of arriving data

packets. Unfortunately, the hop count defense does not work

well in certain situations as we describe in the following section.

Figure 6: Traffic Generated by the Reflector Node in the

Reflection UDP Flood Attack scenario

Figure 7: Traffic Generated by the Reflector Node in the

Reflection UDP Flood Attack scenario

5.2 Defending Against Reflection UDP Flood Attack

To illustrate situations where the hop count attack fails to

identify and discard malicious traffic, we created a simulation

study where the attacker nodes send the Reflection Flood

application traffic to the reflector node. Attackers spoofed the

source IP address in the outgoing packet and set it to 145.1.2.3,

the IP address of the defender node. Figure 5 depicts the total

amount of traffic generated by the attacker nodes when the hop-

count defense is enabled and disabled. In both cases each of the

attackers generated a single request to the reflector node. Please

note that in both scenarios the third request was generated at the

same time of 1 minute and 52 seconds which results in the two

data points overlapping. In response to each of these requests,

the reflector node sends a stream of video traffic to the defender

node as shown in Figure 6 which depicts the total amount of

traffic generated by the reflector node.

In this scenario, the attackers tricked the reflector into thinking

that the defender made a request. This resulted in the reflector

sending a huge amount of data to the defender. Since the source

address in the data traffic from the reflector to the defender was

not spoofed, the defender is unable to identify and discard

malicious traffic. As a result, all the traffic sent by the reflector

is accepted by the defender node. This phenomenon is illustrated

in Figures 6 and 7, which shows the total amount of traffic

generated by the reflector and accepted by the defender node. In

both cases, when the hop count defense is enabled and disabled,

the defender fails to filter out malicious flows and accepts all

incoming traffic.

6. Conclusion

This paper presents a practical methodology for modeling UDP

Flood distributed denial of service attacks and the hop count

countermeasure. This project acts as a springboard into further

study, refinements, and development of new models for

simulation of distributed denial of service attacks and defenses.

The results of the simulation study suggest that the hop count

countermeasure is ineffective against the attacks where the

legitimate users are tricked into sending huge amounts of traffic

to the victim’s machine by means other than the IP spoofing.

The hop count defense is only effective against the attacks where

the IP address spoofing is involved. To prevent the reflection

UDP flood attack, the reflector node must also deploy the hop-

count defense and should not forward the packets to the

application layer until it verifies the length of the path to the

source node of the packet. However, delaying delivery of the

data packets to the upper layers could be undesirable for some

applications. Furthermore, discarding malicious traffic at the

destination is not a good approach since the node has to allocate

both the bandwidth in its local network and computing resources

to deal with these malicious packets. A better approach is to

notify the nodes upstream about identified malicious flows and

have the upstream edge routers filter out these flows thereby

preventing them from entering the protected network domain

altogether.

We plan to continue our investigation of various DDoS attacks

and defenses and examine the possibility of their implementation

in OPNET Modeler. In particular, we would like to develop a

signaling protocol which will allow the end nodes to notify the

edge routers about identified malicious traffic that enters their

network domain.

We also would like to further refine the current implementation

of the hop count defense by adding statistics for recording the

number of identified malicious flows, the number of false-

positive and false-negative classifications, the number of

queued, discarded, and forwarded packet that were classified as

malicious and as legitimate. In addition, we are studying

machine learning and statistic-based techniques for identifying

malicious traffic flows and looking into possible ways to

implement and test these techniques in the OPNET Modeler

environment.

References

[1] http://www.alexa.com/siteinfo/thepiratebay.se, last accessed

4/18/13

[2] “10,000 Artists Sign Up for Pirate Bay Promotion,”

http://torrentfreak.com/10000-artists-signed-up-for-pirate-bay-

promotion-12110/, last accessed 4/18/13

[3] “Piratebay Servers Down Due to DDoS,”

http://zerosecurity.org/piracy/piratebay-servers-down-due-to-

ddos/, last accessed 4/18/13

[4] M. Stockley, “Apache Exploit Leaves P to 65% of All

Websites Vulnerable,”

http://nakedsecurity.sophos.com/2011/08/26/apache-exploit-

leaves-up-to-65-of-all-websites-vulnerable/, last accessed

4/18/13

[5] H. Huang, N. Ahmed, P. Karthik, “On a New Type of Denial

of Service Attack in Wireless Networks: The Distributed

Jammer Network,” IEEE Trans. on Wireless Communications,

Vol. 10, No.7, pp. 2316- 2324, 2011

[6] C. Jin, H. Wang, K. G. Shin, "Hop-count filtering: An

effective defense against spoofed DDoS traffic," in Proc. of the

10th ACM conference on Computer and communications

security, pp. 30–41, Oct. 2003.

[7] A. Yaar, A. Perrig, D. Song, “Pi: A path identification

mechanism to defend against DDoS attacks,” In Proc. of IEEE

Symposium on Security and Privacy, May 2003.

[8] J. Mirkovic, S. Dietrich, D. Dittrich, P. Reiher, “Internet

Denial of Service: Attack and Defense Mechanisms,” Prentice

Hall, 2005, ISBN-10: 0131475738, ISBN-13: 978-0131475731

[9] Understanding Denial-of-Service Attacks, http://www.us-

cert.gov/ncas/tips/ST04-015, last accessed 3/21/13

[10] RFC 4987: TCP SYN Flooding Attacks and Common

Mitigations, http://tools.ietf.org/html/rfc4987, last accessed

4/18/2013

[11] CERT® Advisory CA-1996-01 UDP Port Denial-of-Service

Attack, http://www.cert.org/advisories/CA-1996-01.html, last

accessed 4/18/2013 Formatted: Font: 10 pt

http://www.alexa.com/siteinfo/thepiratebay.se
http://torrentfreak.com/10000-artists-signed-up-for-pirate-bay-promotion-12110/
http://torrentfreak.com/10000-artists-signed-up-for-pirate-bay-promotion-12110/
http://zerosecurity.org/piracy/piratebay-servers-down-due-to-ddos/
http://zerosecurity.org/piracy/piratebay-servers-down-due-to-ddos/
http://nakedsecurity.sophos.com/2011/08/26/apache-exploit-leaves-up-to-65-of-all-websites-vulnerable/
http://nakedsecurity.sophos.com/2011/08/26/apache-exploit-leaves-up-to-65-of-all-websites-vulnerable/
http://www.us-cert.gov/ncas/tips/ST04-015
http://www.us-cert.gov/ncas/tips/ST04-015
http://tools.ietf.org/html/rfc4987
http://www.cert.org/advisories/CA-1996-01.html

