
Modeling temporal aspects of sensor
data for MongoDB NoSQL database
Nadeem Qaisar Mehmood*, Rosario Culmone and Leonardo Mostarda

Introduction
The emergence of Web 2.0 systems, the Internet of Things (IoT) and millions of users
have played a vital role to build a global society, which generates volumes of data. At the
same time, this data tsunami has threatened to overwhelm and disrupt the data centers
[1]. Due to this constant data growth the information storage, support and maintenance
have become a challenge while using the traditional data management approaches, such
as structural relational databases. To support the data storage demands of new genera-
tion applications, the distributed storage mechanisms are becoming the de-facto storage
method [2]. Scaling can be achieved in two ways, vertical or horizontal, where the for-
mer means adding up resources to a single node, whereas in the latter case we add more
nodes to the system [3]. For the problems that have arisen due to data proliferation, the
RDBMS fail to scale the applications horizontally according to the incoming data traffic

Abstract

Proliferation of structural, semi-structural and no-structural data, has challenged the
scalability, flexibility and processability of the traditional relational database manage-
ment systems (RDBMS). The next generation systems demand horizontal scaling by dis-
tributing data over autonomously addable nodes to a running system. For schema flex-
ibility, they also want to process and store different data formats along the sequence
factor in the data. NoSQL approaches are solutions to these, hence big data solutions
are vital nowadays. But in monitoring scenarios sensors transmit the data continuously
over certain intervals of time and temporal factor is the main property of the data.
Therefore the key research aspect is to investigate schema flexibility and temporal data
integration aspects together. We need to know that: what data modelling should we
adopt for a data driven real-time scenario; that we could store the data effectively and
evolve the schema accordingly during data integration in NoSQL environments with-
out losing big data advantages. In this paper we explain a middleware based schema
model to support the temporal oriented storage of real-time data of ANT+ sensors as
hierarchical documents. We explain how to adopt a schema for the data integration by
using an algorithm based approach for flexible evolution of the model for a document
oriented database, i.e, MongoDB. The proposed model is logical, compact for storage
and evolves seamlessly upon new data integration.

Keywords: NoSQL, MongoDB, Big data, Schema modeling, Time-series, Real-time,
ANT+ protocol

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Mehmood et al. J Big Data (2017) 4:8
DOI 10.1186/s40537-017-0068-5

*Correspondence:
nadeemqaisar.mehmood@
unicam.it
Department of Computer
Science, UNICAM, Via del
Bastione, 62032 Camerino,
Italy

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0068-5&domain=pdf

Page 2 of 35Mehmood et al. J Big Data (2017) 4:8

[2]; because they require data replication on multiple nodes, so they are not flexible to
allow data and read/write operations distributed over many servers. So we need to find
systems that would be able to manage big volumes of data.

This flood of data passes challenges not only due to its sheer size but also due to the
data types, hence demands more robust mechanisms to tackle different data formats.
The Web, e-science solutions, sensor laboratories and industrial sector produce in abun-
dance both structural, semi-structural and non-structural data [4–6]. This is not a new
problem, and can be traced back to the history of object-relational databases, under the
name of Object-Relational Impedance Mismatch [7]. This mismatch is natural, when we
try to model an object into a fixed relational structure. Similarly, the digital information
with different structures, such as natural text, PDF, HTML and embedded systems data,
is not simple enough to capture as entities and relationships [8]. Even if we manage to
do this, it will not be easy to change afterwards, hence such mechanisms are rigid for
schema alteration because they demand pre-schema definition techniques. Several new
generation systems do not like to fix their data structure to a single schema; rather they
want their schema to evolve in parallel to an entity data type’s adaptation, hence they
want flexibility [9, 10].

Besides the data abundance and different formats, the rapid flow of data has also
attracted the researchers to find mechanisms to manage the data in motion. Typically
this is to consider that, how quickly the data is produced and stored, and its associated
rates of retrieval and processing. This idea of data in motion is evoking far more interest
than the conventional definitions, and needs a new way of thinking to solve the prob-
lem [11]. This is not associated only with the growth rate at the data acquisition end,
but also data-flow rate during transmission; as well the speed at which data is processed
and stored in the data repositories. Any way, we are aware of the fact that today’s enter-
prises have to deal with petabytes instead of terabytes; and the increase in smart object
technology alongside the streaming information has led the constant flow of data at a
pace that has threatened the traditional data management systems [11]. RDBMS use
two-dimensional tables to represent data and use multi-join transactional queries for the
database consistency. Although they are mature and still useful for many applications,
but processing of volumes of data using multi-joins is prone to performance issues [12,
13]. This problem is evident when extensive data processing is required to find hidden
useful information in huge data volumes; but such data mining techniques are not in
our current focus [14–17], as we limit our discussion to NoSQL temporal modeling and
schema based data integration.

Above discussed problems of prolific, multi-structured heterogeneous data in flow
urge the researchers to conduct research to find alternate data management mecha-
nisms, hence NoSQL data management systems have appeared and are now becoming
a standard to cope with big data problems [11, 18]. Such new data management sys-
tems are being used by many companies, such as Google, Amazon etc. The four primary
categories of their data model are: (i) key-value stores, (ii) column-oriented, (iii) docu-
ment, and (iv) graph databases [19, 20]. For rationality, sanity and demonstrating the
storage structure, the researchers follow the database schema techniques without losing
the advantages of schema flexibility provided by NoSQL databases. Such schema mod-
eling strategies in NoSQL databases are quite different from the relational databases.

Page 3 of 35Mehmood et al. J Big Data (2017) 4:8

Collections, normalization and document embedding are few variants to consider dur-
ing building schema models because they affect the performance and storage effectively
because such databases grow very quickly.

While dealing with real-time data, in continuous or sliced snapshot data streams,
the data items possess observations which are ordered over time [21]. During previous
years, research efforts had been conducted to capture temporal aspects in the form of
data models and query languages [22, 23]. But mostly those efforts were for relational or
object-oriented models [23], and can be considered as a conceptual background to solve
advanced data management challenges [24]. The emerging applications, such as sensor
data [25], Internet traffic [26], financial tickers [27, 28] and e-commerce [29], produce
large volumes of timestamped data continuously in real-time [30, 31]. The current meth-
ods of centralized or distributed storage with static data impose constraints in address-
ing the real-time requirements [32], as they inflict pre-defined time convictions unless
timestamped attributes are explicitly added [31]. They have limited features to support
the latest data stream challenges and demand research to augment the existing technol-
ogies [31, 33].

In remote healthcare long term monitoring operations, based on Body Area Networks
(BAN), demand low energy consumption due to limited memory, processing and bat-
tery resources [34]. These systems also demand communication and data interoperabil-
ity among sensor devices [35]. Recently a propriety protocol ANT+ provides these low
energy consumption features; and strengthens the goals of IoT through the interopera-
bility of devices based on Machine-to-Machine (M2M) mechanisms, which employs use
case specific device profile standards [34, 36]. Device interoperability, low energy and
miniaturisation features allow the building of large ecosystems, hence enable millions of
vendor devices to get integrated and interoperated. IoT ecosystems want general storage
mechanisms having structural flexibility to accept different data formats arriving from
millions of sensory objects [37]. The non-relational or NoSQL databases are schema-free
[2]; and allow storage of different data formats without prior structural declarations [34,
37]. However for the storage we need to investigate the NoSQL models to design and
develop [8, 22]; besides flexibly preserving the big data timestamped characteristics for
the massive real-time data flow during acquisition processes [24]. Although all NoSQL
databases have unique advantages, but document-oriented storage, as MongoDB pro-
vides, is considered robust for handling multiple structural information to support IoT
goals [38]. This rejects the relational structural storage and favours Java Script Object
Notations (JSON) documents to support dynamic schemas; hence provide integration to
different data types besides scalability features [39, 40].

This article presents a general approach to model temporal aspects of ANT+ sensor
data. The authors develop a prototype for the MongoDB NoSQL real-time platform and
discuss the temporal data modeling challenges and decisions. An algorithm is presented
which integrates JSON data as hierarchical documents and evolves the proposed schema
without loosing flexibility and scalability.

This article is organized as follows. "Data stream and data stream management systems
(DSMS)" is about time series data. Different NoSQL databases are discussed in detail in
"Limitations of RDBMS". It is followed by a subsection discussing MongoDB as a well-
known document oriented database. "Big data management frameworks", discusses the

Page 4 of 35Mehmood et al. J Big Data (2017) 4:8

different techniques to model time series data using MongoDB. This follows a middle-
ware description explaining how to store data in the MongoDB. "Modeling aspects" and
"Temporal modeling for an ANT+ sensor use case" give future work and a short sum-
mary respectively.

Time series in medical data
A time series is a sequence of numerical measurements from observations collected at
regular durations of time. Such successive times can either be continuous or discrete
time periods. These sequence of values at particular intervals are common in situations,
such as weekly interest rates, stock prices, monthly price indices, yearly sales figures,
weather reports, patient’s medical reports and so forth.

Healthcare monitoring systems measure physiological and biological body parameters,
using BAN, of a patient’s body in real-time. Because timely information is an important
factor to detect immediate situations and to improve decision making processes, based
on a patient’s medical history, so considering temporal aspects are vital. Such sequence
of values represent the history of an operational context and is helpful in a number of
use cases where history or order is required during the analysis. This sequences of data
flows in streams of different speeds and also needs proper management.

Data stream and data stream management systems (DSMS)
Data streams, as continuous and ordered flow of incoming data records, are common in
wired or wireless sensor network based monitoring applications [31]. Such widely used
data intensive applications don’t directly target their data models for persistence stor-
age, because the continuously arriving multiple, rapid, time-varying, and unbounded
streams lose the support for storage as an entirety [31], and a portion of arrived stream is
required to keep in the memory for initial processing. This is not feasible using the tradi-
tional DBMS to load the entire data and operate upon it [41]. Golab et al. [31] highlights
the following requirements for the DSMS.

 • Data models and queries must support order and time based operations.
 • Summarized information is stored, owing to the inability of entire stream storage.
 • Performance and storage constraints do not allow backtracking over a stream.
 • Real-time monitoring applications must react to outlier data values.
 • Shared execution of many continuous queries is needed to ensure scalability.

DBMS comparison with DSMS

There are three main differences while comparing DSMS with the DBMS. First they
do not directly store the data persistently rather keep the data in the main memory for
some time for autonomous predictions to respond to outlier values, such as fire alarm,
emergency situations as in healthcare domain etc [42]. Therefore DSMS computation is
generally data driven, i.e. to compute the results as the data is available. In such cases the
computation logic always resides in the main memory in the form of rules or queries.
On the other hand DBMS approach is query driven, i.e. to compute the results using
queries over permanently stored data. Because of data driven nature, the very first issue
which DSMS must solve is to manage the changes in data arrival rate during a specific

Page 5 of 35Mehmood et al. J Big Data (2017) 4:8

query lifetime. Second, it is not possible to keep all the previous streams in the memory
due to their unbounded and massive nature. Therefore only a summary or synopsis is
kept in the memory to answer the queries whereas the rest of the data is discarded [21].
Third, since we cannot control the order of the data arrival, critical to consider the order
of the arrived data values, hence their temporal attribute is essential. In order to handle
the unboundedness of the data, the fundamental mechanism used is that of window -
which is used to define slices upon the continuous data to allow correct data flow in
finite time [42].

Data-driven computation, unbounded streams and timestamped data are the main
issues that have arisen while dealing with streaming data, such as during sensor data
acquisition in monitoring scenarios. This poses novel research challenges and exciting
directions to follow with focus on temporal model, techniques and algorithms. These
issues need proper management for any of the relational, object-relational or big data
management research paradigms; and aim at data modeling and successfully exploit-
ing the time-dependent characteristics for these paradigms ranging from the temporal
based models to query models. Although the directions, developed in previous years for
the relational or object-relational domains, provide the basic fundamental footsteps to
follow; but require further insights to tackle the advanced Big Data challenges [31, 41].
In particular the emerging real-time data-driven applications, having volumes of vari-
ous data velocities, demand such research inputs to bring number to advantages to the
Information and Communication Technology (ICT) world, specially in promoting IoT
and Web 2.0 and 3.0. Hence it is becoming mandatory to tackle the challenges associated
with temporal data streams for which the relational database management systems have
given in.

Limitations of RDBMS
This section explains what traditional relational approaches lack, why they are not best
fit for managing time-variant, dynamically large and flowing data. This absence has
opened the door for a disruptive technology to enter into the market and to gain wide-
spread adoption in the form of NoSQL databases, as it offers better, efficient, cheaper,
flexible and scalable solutions [43]. Features lacking in RDBMS are:

 • Flexibility RDBMS restrict the applications to a predefined schema; so any change
in the application requirements will lead to the redefinition of the database schema
[8, 9]. Using RDBMS the developers have to rely on the data architects or modelers,
as they miss developer centric approach from application inception to the comple-
tion [10]. Even in the case of the schema evolution especially in dynamic applications
scenarios [9], as this is observed in information changing scenarios during dynamic
events generation in new generation systems [11]. NoSQL systems have a strong
coupling between data models and application queries, so any change in the query
will require changes to the model, which is flexible [10]. In contrast to this RDBMS
systems have logical and physical data independencies, where database transaction
queries come into play only when the data model is defined physically [10].

 • Scalability Over more than half a century RDBMS have been used by different
organizations as they were satisfying the need of business dealing with static, query

Page 6 of 35Mehmood et al. J Big Data (2017) 4:8

intensive data sets since these were comparatively small in nature [44]. For the large
data sets the organizations had to purchase new systems as add-on to the system, as
the single server host the entire database. For scaling we need to buy a large more
expensive server [43]. For the big data applications RDBMS systems are forced to use
distributed storage, which includes table partitioning, data redundancy and replica-
tion; because of disk size limits and to avoid hard disk failures [10]. Such data dis-
tribution involve multiple table joins, transaction operations running upon multiple
distributed nodes, disk lock management and ACID (atomicity, consistency, isola-
tion, and durability) compliance hence affect the performance adversely. The notion
of vertical scalability allows the addition of more CPUs, memory and other resources
[8]; but quickly reaches its saturation point [10].

 • Data structures RDBMS were in the era when the data was fairly structured, but now
due to the advent of new generation trends, such as IoT, Web 2.0 etc. the data is now
no more statically structural [43], which involves unstructured data (e.g., texts, social
media posts, video, email). Therefore RDBMS database transactions and queries
come to play their role in already designed data models; in contrast to the NoSQL
databases, which support application specific queries and allow dynamic data mod-
eling [10].

 • Source codes and versioning Relational databases are typically closed source with
licensing fees. Off-the-shelf RDBMS do not provide support for data versioning, in
contrast to the NoSQL databases which support natively [10]. A list of open and
closed source NoSQL databases is present in [45].

 • Sparsity RDBMS databases when deal with large data sets, upon missing values there
is possibility of a lot of sparsity in the data sets.

Data proliferation, schema flexibility and efficient processing are the problems appearing
during the development of latest data-driven applications, as we learned in "Introduc-
tion". We learned that RDBMS are not sufficient to deal these issues, and don’t meet
the latest requirements of the next generation real-time applications [24, 31, 33]. Vol-
ume, Variety and Velocity are the three corresponding big data characteristics [10, 18,
46], which are discussed in "Big data management frameworks", which is about a precise
discussion regarding big data frameworks.

Big data management frameworks
A big data management framework means the organization of the information accord-
ing to the principles and practices that would yield high schema flexibility, scalability
and processing of the huge volumes of data, but for which traditional RDBMSs are not
well suited and becomes impractical. Therefore, there is a need to devise new data mod-
els and technologies that can handle such big data. Recent research efforts have shown
that big data management frameworks can be classified into three layers that consist of
file systems, database technology, and programming models [19]. However in this article
we shall focus upon database technologies only in context of the healthcare domain with
real-time and temporal perspective.

NoSQL also be interpreted as the abbreviation of “NOT ONLY SQL” or “no SQL at all”
[45], whereas this was first used by Carlo Strozzi in 1998 for his RDBMS that did not offer

Page 7 of 35Mehmood et al. J Big Data (2017) 4:8

an SQL interface [47]. NoSQL databases are often used for storing of the big data in non-
relational and distributed manner, and its concurrency model is weaker than the ACID
transactions in relational SQL-like database systems [14]. This is because NoSQL systems
are ACID non-compliant by design and the complexity involves in enforcing ACID prop-
erties does not exist for most of them [10]. For example some of the ACID compliant
NOSQL databases are: Redis [48], Aerospike [49] and Voldemort [50] as key-value stores
[51]; where as Neo4jDB [52] and Sparksee are as graph-based data stores [8, 51]. In con-
trast to this MongoDB is not ACID compliant document-oriented database [8].

The V’s of big data

The V’s of big data is paramountly, even in healthcare, refer to as mainly for Volume,
Variety, Velocity and Veracity [14]. The first three V have been introduced in [53], and
the V for Veracity has been introduced by Dwaine Snow in his blog Thoughts on Data-
bases and Data Management [54].

Volume Prolific data at scale creates issues ranging from storage to its processing.
Velocity Real-time data, data streams—analysis of streaming data, data snapshots in

the memory for quick responses, availability for access and delivery.
Variety Many formats of data—structured, unstructured, semi-structured, media.
Veracity Deals with uncertain or imprecise data, its cleaning before the processing.

Variety and Velocity goes against it as both do not let to clean the data.

NoSQL database categories

Based on the differences in the respective data models, NoSQL databases can be organ-
ized into following basic categories as: key-value stores, document databases, column-
oriented databases and graph databases [10, 14, 19, 20].

Key‑value stores

These are systems that store values against the index keys, as key-value pairs. The keys
are unique to identify and request the data values from the collections. Such databases
has emerged recently and are influenced heavily by Amazon’s Dynamo key-value store
database, where data is distributed and replicated across multiple servers [62]. The val-
ues in such databases are schema flexible and can be simple text strings or more complex
structures like arrays. The simplicity of its data model makes the retrieval of information
very fast, therefore supports the big data real-time processing along the scalability, reli-
ability and highly available characteristics. Some of the key-value databases store data
ordered on the keys, such as Memcached [55] or Berkeley DB [66]; while others do not,
such as Voldemort [50] etc. Whereas some keep entire data in memory, such as Aero-
spike [49], Redis [48]; others use it after writing it to the disk permanently (like Aero-
spike, MemcacheDB [56] etc.) with the trade-off replying to the queries in real-time. The
scalability, durability and flexibility depends upon different mechanisms like partition-
ing, replication, object versioning, schema evolution [19]. Sharding, also known as par-
titioning, is the splitting of the data based upon the keys; whereas the replication, also
known as mirroring, is the copying of the data to the different nodes.

Amazon’s Dynamo and Voldemort [50], which are used by Linkedin, apply this data
model successfully. Other databases that use this model of data category are such as:

Page 8 of 35Mehmood et al. J Big Data (2017) 4:8

Redis [48], Tokyo Cabinet [67] and Tokyo Tyrant [68], Memcached [55] and Mem-
cacheDB [56], Basho Riak [60], Berkeley DB [66] and Scalaris [69]. Whereas Cassandra
is a hybrid of key-value and column-oriented database models [57]. Table 1 summarizes
the characteristics of some of the Key-value stores.

Column‑oriented databases

Relational databases have their focus on rows in which they store the instances or the
records and return rows or instances of an entity against a data retrieval query. Such
rows posses unique keys against each instance for locating the information. Whereas
column-oriented databases store their data as columns instead of the rows and use index
based unique keys over the columns for the data retrieval. This supports attribute level
access rather than the tuple-level access pattern.

Only query relevant necessary columns are required to be loaded, so this reduce the
I/O cost significantly [70]. These are good for read-intensive applications, as they only
allow relevant data reads because each column contains contiguous similar values; so
calculating aggregate values will also be very fast. More columns are easily addable and a
column may be further restructured called super-column, where it contains nested (sub)
columns (e.g., in Cassandra) [14]. Super columns are key-value pairs, where the values
are columns. Columns and super-columns are both tuples with a name and value. The
key difference is that a standard column’s value is a string, whereas a super-column’s
value is a map of columns. Super-columns are sorted associative array of columns [71].

Google’s Bigtable, which played the inspirational role for the column databases [74], is
a compressed, high performance, scalable, sparse, distributed multi-dimensional database
built over a number of technologies, such as Google File System (GFS) [75], a cluster man-
agement system, SSTable file format and Chubby [76]. This provides indexes over rows, col-
umns, as well as a third timestamp dimension. Bigtable is designed to scale across thousands
of system nodes and allows to add more nodes easily through automatic configuration.

This was the first most popular column oriented database of its type however latter
many companies introduced some other variants of it. For example Facebook’s Cassan-
dra [77] integrates the distributed system technologies of Dynamo and the data model
from Bigtable. It distributes multi-dimensional structures across different nodes based
upon four dimensions: rows, column families, columns, and super columns. Cassan-
dra was open sourced in 2008, and then HBase [72] and Hypertable [78], based upon a
proprietary Bigtable technology, have emerged to implement similar open source data
models. Table 2 provides the description about some column-oriented databases in a
categorical format.

Graph databases

Graph databases, as a category of NoSQL technologies, represent data as a network of
nodes connected with edges and are having properties of key-value pairs. Working on
relationships, detecting patterns and finding paths are the best applications to be solved
by representing them as graphs. Neo4j [52], Allegro Graph [79], ArangoDB [80] and Ori-
entDB [81] are few examples of such systems, and are described along their characteris-
tics in a categorical format in Table 3. Neo4j is the most popular open source, embedded,
fully transactional with ACID characteristics graph-based database. This is schema

Page 9 of 35Mehmood et al. J Big Data (2017) 4:8

Ta
bl

e
1

Ke
y-

va
lu

e
st

or
es

N
am

e
D

at
a

m
od

el
Sc

al
ab

ili
ty

D
es

cr
ip

tio
n

W
ho

 u
se

s
it

M
em

ca
ch

ed
 fr
om

 h
tt

p:
//

w
w

w
.b

ra
d-

fit
z.

co
m

 [5
5]

Se
t o

f k
ey

-v
al

ue
 in

 a
ss

oc
ia

tiv
e

ar
ra

y
A

ut
o

sh
ar

di
ng

, n
o

re
pl

ic
at

io
n

an
d

pe
rs

is
te

nc
y

In
-m

em
or

y
ca

ch
e

sy
st

em
s,

no
 d

is
k

pe
rs

is
te

nc
e

(M
em

ca
ch

eD
B

gi
ve

pe

rs
is

te
nt

 s
to

ra
ge

 [5
6]

);
fil

e
sy

st
em

st

or
ag

e,
 A

C
ID

Li
ve

Jo
ur

na
l, W

ik
ip

ed
ia

, F
lic

kr
, B

eb
o,

C

ra
ig

sl
is

t

A
er

os
pi

ke
 fr
om

 h
tt

p:
//

w
w

w
.a

er
os

pi
ke

.
co

m
 [4

9]
A

ss
oc

ia
te

 k
ey

s
w

ith
 re

co
rd

s
(i.

e
ro

w
s)

;
na

m
es

pa
ce

s
(fo

r d
at

as
et

) d
iv

id
e

in
to

se

ts
 (i

.e
 ta

bl
es

);
ke

y
in

de
x

re
co

rd
s

A
ut

o
pa

rt
iti

on
, s

yn
ch

. r
ep

lic
at

io
n

In
-m

em
or

y
ve

ry
 fa

st
 d

at
ab

as
e

w
ith

di

sk
 p

er
si

st
en

ce
. A

C
ID

 w
ith

 re
la

x
op

tio
ns

A
pp

N
ex

us
, K

ay
ak

, b
lu

eK
ai

, Y
as

hi
,

C
ha

ng
o

Ca
ss

an
dr

a
fro

m
 fa

ce
bo

ok
 [5

7]
H

yb
rid

 o
f k

ey
-v

al
ue

 a
nd

 c
ol

um
n-

or
ie

nt
ed

 m
od

el
s;

Ca
ss

an
dr

a
qu

er
y

la
ng

ua
ge

: S
Q

L
lik

e
m

od
el

A
ut

o
pa

rt
iti

on
, s

yn
ch

. a
nd

 a
sy

nc
h.

re

pl
ic

at
io

n
In

-m
em

or
y

da
ta

ba
se

 w
ith

 d
is

k
pe

rs
is

-
te

nc
e;

 h
ig

hl
y

sc
al

ab
le

C
ER

N
, C

om
ca

st
, e

Ba
y,

 N
et

fli
x,

 G
itH

ub

Re
di

s
fro

m
 S

. S
an

fil
ip

po
 [4

8]
H

et
 o

f (
ke

y,
 v

al
ue

);
co

m
pl

ex
 ty

pe
s

(s
tr

in
g,

 b
in

ar
y,

 li
st

, s
et

, s
or

te
d

se
t,

ha
sh

es
, a

rr
ay

s)
; k

ey
 c

an
 b

e
an

y
bi

na
ry

 e
.g

. J
PE

G

A
ut

o
pa

rt
iti

on
in

g,
 re

pl
ic

at
io

n,
 p

er
si

s-
te

nt
 le

ve
ls

M
os

t p
op

ul
ar

 in
-m

em
or

y
w

ith
 d

is
k

pe
rs

is
te

nc
e;

 A
C

ID
; M

ap
Re

du
ce

th

ro
ug

h
Je

di
s

[5
8]

, r
3
 [5

9]

Tw
itt

er
, G

itH
ub

, F
lic

kr
, S

ta
ck

O
ve

rfl
ow

Ri
ak

 [6
0]

 fr
om

 B
as

ho
 T

ec
hn

ol
og

ie
s

D
at

a
ty

pe
s

(fl
ag

s,
co

un
te

r,
se

ts
, r

eg
is

-
te

rs
, m

ap
s,

hy
pe

rlo
g)

Sh
ar

di
ng

, r
ep

lic
at

io
n,

 m
as

te
r-

le
ss

 [6
1]

,
ba

ck
up

 a
nd

 re
co

ve
ry

H
ig

h
av

ai
la

bl
e;

 D
yn

am
o

ba
se

 [6
2]

; i
n-

m
em

or
y

w
ith

 d
is

k
pe

rs
is

te
nc

e;
 re

la
x

co
ns

is
te

nc
y;

 M
ap

Re
du

ce
, R

ES
T-

fu
ll;

en

te
rp

ris
e

an
d

cl
ou

d
ve

rs
io

ns
; R

ia
k

KV
 b

as
e

Ri
ak

 T
im

eS
er

ie
s

[6
3]

AT
 a

nd
 T

, C
om

ca
st

 G
itH

ub
, U

KH
ea

lth
,

w
ea

th
er

 c
ha

nn
el

Vo
ld

em
or

t f
ro
m

 L
in

ke
dI

n
[5

0]
Co

m
pl

ex
 k

ey
-v

al
ue

 c
om

po
un

d
ob

je
ct

s
(e

.g
. l

is
ts

/m
ap

s)
; s

up
po

rt
ed

qu

er
ie

s:
ge

t,
pu

t a
nd

 d
el

et
e;

 n
o

co
m

pl
ex

 q
ue

ry
 fi

lte
rs

; s
im

pl
e

ap
i f

or

pe
rs

is
te

nc
e

[6
4]

; s
ch

em
a-

ev
ol

ut
io

n

A
ut

o
da

ta
 p

ar
tit

io
ni

ng
 a

nd
 re

pl
ic

a-
tio

n,
 v

er
si

on
in

g
In

-m
em

or
y

w
ith

 d
is

k
pe

rs
is

te
nc

e,
 b

ig

fa
ul

t-
to

le
ra

nt
 h

as
h

ta
bl

e;
 n

o
A

C
ID

,
pl

ug
ga

bl
e

se
ria

liz
at

io
n

(e
.g

. a
vr

o,

ja
va

) a
nd

 s
to

ra
ge

 e
ng

in
e

(c
on

cu
r-

re
nt

H
as

hM
ap

, m
ys

ql
, B

D
B

JE
)

Li
nk

ed
In

, G
ilt

D
yn

am
oD

B
fro

m
 A

m
az

on
 [6

5]
D

yn
am

o
[6

2]
 b

as
ed

 to
 s

up
po

rt
 b

ot
h

do
cu

m
en

t a
nd

 k
ey

-v
al

ue
 m

od
el

s
[6

5]
; s

ec
on

da
ry

 in
de

xe
s;

D
yn

am
oD

B
Ti

ta
n:

 in
te

gr
at

ab
le

 g
ra

ph
 d

at
ab

as
e

Re
pl

ic
at

io
n,

 p
ar

tit
io

ni
ng

, h
ig

hl
y

av
ai

l-
ab

le
, v

er
si

on
in

g
Po

pu
la

r,
tw

o
of

 th
e

fo
ur

 A
C

ID
 p

ro
pe

r-
tie

s:
co

ns
is

te
nc

y
an

d
du

ra
bi

lit
y;

el

as
tic

 M
ap

Re
du

ce
 fo

r H
ad

oo
p;

AW

S
SD

K
to

 s
to

re
 JS

O
N

A
m

az
on

, B
M

W
, d

uo
lin

go
, l

yf
t,

re
dfi

n,

ad
ro

ll

http://www.bradfitz.com
http://www.bradfitz.com
http://www.aerospike.com
http://www.aerospike.com

Page 10 of 35Mehmood et al. J Big Data (2017) 4:8

Ta
bl

e
2

Co
lu

m
n-

or
ie

nt
ed

 d
at

ab
as

es

N
am

e
D

at
a

m
od

el
Sc

al
ab

ili
ty

D
es

cr
ip

tio
n

W
ho

 u
se

s
it

Ca
ss

an
dr

a
fro

m
 F

ac
eb

oo
k,

 A
pa

ch
e

[5
7]

M
ul

ti-
di

m
en

si
on

al
 c

ol
um

n
fa

m
ily

 is
 a

se

t o
f r

ow
s;

Pa
rt

iti
on

 (s
in

gl
e

or
 m

or
e

ro
w

) k
ey

: i
de

nt
ify

 a
 p

ar
tit

io
n;

 R
ow

ke

y:
 id

en
tif

y
ro

w
 in

 c
ol

um
n

fa
m

ily

Pa
rt

iti
on

in
g,

 re
pl

ic
at

io
n,

 a
va

ila
bi

lit
y

M
ul

ti-
m

as
te

r n
o

po
in

t o
f f

ai
lu

re
;

in
-m

em
or

y
w

ith
 d

is
k

pe
rs

is
te

nc
e;

m

as
te

rle
ss

; q
ue

ry
 m

et
ho

d:
 C

Q
L

an
f T

hr
ift

; M
ap

Re
du

ce
; s

ec
on

da
ry

in

de
xi

ng
; e

ve
nt

ua
l c

on
si

st
en

cy

C
ER

N
, C

om
ca

st
, G

itH
ub

, G
oD

ad
dy

,
H

ul
u,

eB
ay

 N
et

fli
x

H
Ba

se
 fr
om

 A
pa

ch
e

[7
2]

Ta
bl

es
 h

av
e

ro
w

s
an

d
co

lu
m

ns
; r

ow
s:

ro
w

 k
ey

 a
nd

 o
ne

 o
r m

or
e

co
lu

m
ns

;
co

lu
m

n:
 c

on
si

st
 o

f c
ol

um
n

fa
m

ily

A
ut

o
sh

ar
di

ng
; a

sy
nc

hr
on

ou
s

re
pl

ic
a-

tio
n;

 a
va

ila
bi

lit
y

Bi
gT

ab
le

 b
as

ed
; H

ad
oo

p
D

is
tr

ib
ut

ed

Fi
le

 S
ys

te
m

 (H
D

FS
);

M
ap

Re
du

ce
;

co
ns

is
te

nt
 re

ad
/w

rit
es

; f
ai

lo
ve

r s
up

-
po

rt
; T

hr
ift

 a
nf

 R
ES

T-
fu

l;
Zo

oK
ee

pe
r

A
do

be
, K

ak
ao

, F
ac

eb
oo

k,
 F

lu
rr

y,

Li
nk

ed
In

, N
et

fli
x,

 S
ea

rs

D
ru

id
 fr
om

 h
tt

p:
//

dr
ui

d.
io

Co
lu

m
ns

 a
re

 o
ne

 o
f t

hr
ee

 ty
pe

s:
a

tim
es

ta
m

p,
 a

 d
im

en
si

on
, o

r a
 m

ea
s-

ur
e.

 N
es

te
d

di
m

en
si

on
s

Lo
w

 la
te

nc
y;

 re
pl

ic
at

io
n;

 s
ha

rd
in

g
H

ig
hl

y
op

tim
iz

ed
 fo

r s
ca

ns
 a

nd
 a

gg
re

-
ga

te
s

; M
ap

Re
du

ce
; f

au
lt-

to
le

ra
nt

;
Zo

oK
ee

pe
r;

in
de

x
st

ru
ct

ur
es

, n
ot

A

C
ID

A
lib

ab
a,

 C
is

co
, e

Ba
y

N
et

fli
x,

 P
ay

pa
l,

Ya
ho

o

A
cc

um
ul

o
fro

m
 A

pa
ch

e
[7

3]
Ke

ys
-v

al
ue

s
bo

th
 b

yt
e

ar
ra

ys
, t

im
es

-
ta

m
p

as
 lo

ng
; a

dd
s

ne
w

 k
ey

 e
le

-
m

en
t o

f c
ol

um
n

vi
si

bi
lit

y;
 s

or
ts

 k
ey

s
by

 e
le

m
en

t,
se

co
nd

ar
y

in
de

xe
s

Sh
ar

di
ng

, r
ep

lic
at

io
n,

 p
er

si
st

en
ce

,
fa

ul
t t

ol
er

an
t

Bi
gT

ab
le

 b
as

ed
 Ja

va
 te

ch
no

lo
gy

,
to

p
of

 H
ad

oo
p,

 Z
oo

Ke
ep

er
 a

nd

Th
rif

t;
M

ap
-R

ed
uc

e;
 Z

oo
ke

ep
er

(m

ul
ti-

m
as

te
r)

lo
ck

s
fo

r c
on

si
st

en
cy

;
ce

ll-
le

ve
l a

cc
es

s

U
S

N
at

io
na

l S
ec

ur
ity

 A
ge

nc
y

(N
SA

)

http://druid.io

Page 11 of 35Mehmood et al. J Big Data (2017) 4:8

Ta
bl

e
3

G
ra

ph
 d

at
ab

as
es

N
am

e
D

at
a

m
od

el
Sc

al
ab

ili
ty

D
es

cr
ip

tio
n

W
ho

 u
se

s
it

ne
o4

j f
ro
m

 N
eo

 T
ec

hn
ol

og
y

[5
2]

Fl
ex

ib
le

 n
et

w
or

k
st

ru
ct

ur
e

of
 n

od
es

;
da

ta
 s

to
re

d
in

: e
dg

es
, n

od
es

, o
r

at
tr

ib
ut

es
; n

eo
4d

ja
ng

o:
 a

n
O

bj
ec

t
G

ra
ph

 M
ap

pe
r [

84
];

cu
st

om
 d

at
a

ty
pe

s

N
o

di
re

ct
 s

ha
rd

in
g

bu
t c

ac
he

 [8
2]

, n
o

re
pl

ic
at

io
n

an
d

pe
rs

is
te

nc
y

M
os

t p
op

ul
ar

 h
ig

h
pe

rf
or

m
an

ce
 [8

5]
,

A
C

ID
, m

on
ito

rin
g:

N
eo

4j
 M

et
ric

s;
qu

er
y

m
et

ho
ds

: C
yp

he
r,

Sp
ar

Q
L,

na

tiv
eJ

av
aA

PI
, J

Ru
by

42
ta

le
nt

s,
A

ct
iv

eS
ta

te
, C

is
co

 S
ec

ur
us

,
A

pp
tiu

m
, B

IS
Te

l [
52

]

A
lle

gr
oG

ra
ph

 fr
om

 h
tt

p:
//

fra
nz

.c
om

Tr
ip

le
st

or
e,

 re
so

ur
ce

 d
es

cr
ip

tio
n

fra
m

ew
or

k
(R

D
F)

 a
nd

 g
ra

ph

da
ta

ba
se

D
at

a
re

pl
ic

at
io

n
an

d
sy

nc
hr

on
iz

at
io

n;

Pa
rt

iti
on

in
g

w
ith

 F
ed

er
at

io
n

Li
nk

ed
 d

at
a

fo
rm

at
; b

rin
gs

 s
em

an
tic

W

eb
 to

 T
w

itt
er

; C
om

m
on

 L
is

p:

di
al

ec
t o

f L
is

p;
 e

ve
nt

ua
l c

on
si

st
-

en
cy

; A
C

ID

St
an

fo
rd

, I
BM

, F
or

d,
 N

ov
ar

tis
, A

T
an

d
T,

Si

em
en

s,
N

A
SA

, U
S

Ce
ns

us

A
ra

ng
oD

B
fro

m
 A

ra
ng

oD
B

G
m

bH
 [8

0]
N

at
iv

e
m

ul
ti-

da
ta

 m
od

el
s:

ke
y/

va
lu

e,

do
cu

m
en

t,
an

d
gr

ap
h

da
ta

 to
 b

e
st

or
ed

 to
ge

th
er

 a
nd

 q
ue

rie
d

w
ith

 a

co
m

m
on

 la
ng

ua
ge

 [8
6]

Sy
nc

hr
on

ou
s

re
pl

ic
at

io
n,

 tr
ip

pl
e

st
or

e
sh

ar
di

ng
M

os
t p

op
ul

ar
 h

av
in

g
op

en
 s

ou
rc

e
lic

en
se

; A
C

ID
-c

om
pl

ia
nt

 fo
r t

he

m
as

te
r;

ev
en

tu
al

y
co

ns
is

te
nt

 [8
7]

;
an

no
ta

tio
n

qu
er

y
la

ng
ua

ge
 (A

Q
L)

fo

r R
D

F

D
em

on
W

ar
e,

 D
ou

gl
as

, C
ra

ne
w

ar
e,

ic

tu
al

, m
ob

ili
ty

, e
gr

es
s

O
rie

nt
D

B
fro

m
 O

rie
nt

D
B

Lt
d

[8
1]

M
ul

ti-
da

ta
 m

od
el

s:
gr

ap
h

an
d

do
cu

-
m

en
t d

at
ab

as
e;

 c
us

to
m

 d
at

a
ty

pe
s

M
ul

ti-
m

as
te

r r
ep

lic
at

io
n;

 s
up

po
rt

s
sh

ar
di

ng
H

ig
hl

y
av

ai
la

bl
e;

 S
Q

L
us

in
g

pa
tt

er
n

m
at

ch
in

g
to

 s
up

po
rt

 M
ap

Re
-

du
ce

, e
ve

nt
ua

l c
on

si
st

en
cy

; A
C

ID
;

Sc
he

m
a-

le
ss

, S
ch

em
a

m
ix

Pr
og

re
ss

, U
ltr

D
N

S
pr

ot
eu

s,
En

el
 F

lu
x

G
te

ch
, N

IH

http://franz.com

Page 12 of 35Mehmood et al. J Big Data (2017) 4:8

flexible to store data as a network of nodes, edges and their attributes. This also supports
custom data types with its Java persistence engine. Neo4j does not support graph shard-
ing on different nodes, rather it supports in memory cache sharding [52, 82]. The reason
having that, the mathematical problem of optimally partitioning a graph across a set of
servers is near-impossible (NP complete) to do for large graphs [82]. Whereas Allegro-
Graph is a Resource Description Framework (RDF) [83] triple store for linked data and
widely used by different organizations, such as Stanford University, IBM,Ford, AT&T,
Siemens, NASA and United States Census department.

Document databases

These are the most general models, which use use JSON (JavaScript Object Notation) or
BSON (Binary JSON) format to represent and store the data structures as documents for
the data management. Document stores provide schema flexibility by allowing arbitrar-
ily complex documents, i.e. sub-documents within document or sub-documents; and
documents as lists. A database comprises one or more collections, where each collec-
tion is a named group of documents. A document can be a simple or complex value, a
set of attribute-value pairs, which can comprise simple values, lists, and even nested sub
documents. Documents are schema-flexible, as one can alter the schema at the run time
hence providing flexibility to the programmers to save an object instances in different
formats, thus supporting polymorphism at the database level [92]. Figure 1 illustrates
two collections of documents for both students and course within an academic manage-
ment System. It is evident that a collection can have different formats of documents in
JSON format and they have hierarchies among themselves, such as courses has an attrib-
ute books which contains a list of sub-documents of different formats.

Fig. 1 Example of a documents-oriented database for the academic domain

Page 13 of 35Mehmood et al. J Big Data (2017) 4:8

These databases store and manage volumes of collections of textual documents (e.g.
emails, web pages, text file books), semi-structure, as well as no structure and de-nor-
malized data; that would require extensive usage of null values as in RDBMS [93]. Unlike
key-value stores, the document databases support secondary indexes on sub-documents
to allow fast searching. They allow horizontal scaling of the data over multiple servers
called shards. MongoDB [38], CouchDB [88], Couchbase [89], ReThinkDB [90], and
Cloudant [91] are some of the most popular document-oriented databases, as shown
in the Table 4 in a categorical format along their different characteristics. Among these
MongoDB is the most popular one due to its efficiency, in memory processing and com-
plex data type features [94]. The other databases such as Couchbase, ReThinkDB, Cloud-
ant and CouchDB do not offer in-memory processing features; although the former
three offer a list of data types. MongoDB query languages more like the SQL of RDBMS,
so is easy to use for the programmers. MongoDB is good for the dynamic queries, which
the other document-oriented databases lack, such as CouchDB or Couchbase [95].
Besides this there are different object relational mapping middlewares available [96], to
define out of the box multiple schemas depending upon the application requirements.
The object nature of MongoDB documents makes this mapping even more fluid and
fast, such as while using Mongoose [96] or Morphia [97].

Document databases: MongoDB

MongoDB, created by 10gen in 2007, is a document oriented database for today’s appli-
cations which are not possible to develop using the traditional relational databases
[98]. It is an IoT database which instead of tables (as in RDBMS) provides one or more
collection(s) as main storage components consisted upon similar or different JSON or
BSON based documents or sub documents. Documents that tend to share some of the
similar structure are organized as collections, which can be created at any time, without
predefinitions. A document can simply be considered as a row or instance of an entity in
RDBMS, but the difference is that, in MongoDB we can have instances within instances
or documents with in documents, even lists or arrays of documents. The types for the
attributes of a document can be of any basic data type, such as numbers, strings, dates,
arrays or even a sub-document.

MongoDB provides unique multiple storage engines within a single deployment and
automatically manages the movement of data between storage engine technologies using
native replication. MongoDB 3.2 consists of four efficient storage engines as shown in
Fig. 2, all of which can coexist within a single MongoDB replica set [99]. The default
WiredTiger storage engine provides concurrency control and native compression with
best storage and performance efficiency. MongoDB allows both the combinations of in-
memory engine for ultra low-latency operations with a disk-based engine for persistence
altogether.

It allows to build large-scale, highly available, robust systems and enables different sen-
sors and applications to store their data in a schema flexible manner. There is no data-
base blockage, such as we encounter during alter table commands in RDBMS during
schema migrations. However in rare cases, such as during the write-intensive scenarios
in master-slave nature of MongoDB there may be blockage at the document level or bot-
tleneck to the system if sharding is not used, but these cases are avoidable. MongoDB

Page 14 of 35Mehmood et al. J Big Data (2017) 4:8

Ta
bl

e
4

D
oc

um
en

t-
or

ie
nt

ed
 d

at
ab

as
es

N
am

e
D

at
a

m
od

el
Sc

al
ab

ili
ty

D
es

cr
ip

tio
n

W
ho

 u
se

s
it

M
on

go
D

B
fro

m
 h

tt
p:

//
10

ge
n.

co
m

,
M

on
go

D
B

In
c.

 [3
8]

JS
O

N
-li

ke
 h

ie
ra

rc
hi

ca
l d

oc
um

en
ts

w

ith
 o

r w
ith

ou
t s

ch
em

as
, o

bj
ec

t
m

ap
pi

ng
, B

SO
N

Sh
ar

di
ng

, r
ep

lic
at

io
n

an
d

pe
rs

is
te

nc
y

M
os

t p
op

ul
ar

 JS
O

N
 d

oc
um

en
t s

to
re

,
A

C
ID

, M
ap

Re
du

ce
, p

rim
ar

y
se

co
nd

-
ar

y
in

de
xi

ng
, e

ve
nt

ua
l c

on
si

st
en

cy
,

RE
ST

fu
l

Ex
pe

di
a,

 B
os

h,
 M

et
Li

fe
, F

ac
eb

oo
k,

co

m
ca

st
, s

pr
in

kl
r

Co
uc

hD
B
fro

m
 A

pa
ch

e
[8

8]
N

at
iv

e
JS

O
N

-d
oc

um
en

t s
to

re
; t

yp
es

:
st

rin
gs

, n
um

be
rs

, d
at

es
, o

rd
er

ed
 li

st
s

an
d

as
so

ci
at

iv
e

ar
ra

ys

M
ul

ti-
m

as
te

r r
ep

lic
at

io
n,

Ja
va

Sc
rip

t a
s

qu
er

y
la

ng
ua

ge
 u

si
ng

M

ap
Re

du
ce

, a
nd

 H
TT

P
fo

r a
n

A
PI

,
m

ul
ti-

ve
rs

io
n

co
nc

ur
re

nc
y,

 M
ap

Re
-

du
ce

, A
C

ID
, e

ve
nt

ua
l c

on
si

st
en

cy

m
ee

bo
, A

irF
i S

op
ho

s,
BB

C
, n

pm

C
A

N
A

L+

Co
uc

hb
as

e
fro

m
 C

ou
ch

ba
se

, I
nc

. [
89

]
M

ul
ti-

m
od

el
: k

ey
/v

al
ue

 s
to

re
, d

oc
u-

m
en

t-
st

or
e;

 JS
O

N
 d

oc
um

en
ts

Sh
ar

di
ng

, m
as

te
r-

m
as

te
r a

nd
 m

as
te

r-
sl

av
e

re
pl

ic
at

io
n

Co
uc

hD
B

ba
se

d
w

ith
 M

em
ca

ch
ed

-
co

m
pa

tib
le

 in
te

rf
ac

e,
 e

ve
nt

ua
l

co
ns

is
te

nc
y,

 li
m

ite
d

A
C

ID
, e

ve
nt

ua
l

co
ns

is
te

nc
y,

 R
ES

Tf
ul

 H
TT

P
A

PI

In
fo

rm
at

ic
a,

 J
oy

en
t,

in
te

l, W
ip

ro
,

G
oo

gl
e,

 S
im

ba

Re
th

in
kD

B
[9

0]
JS

O
N

 d
oc

um
en

ts
 w

ith
 d

yn
am

ic

sc
he

m
as

Sh
ar

di
ng

, m
as

te
r-

sl
av

e
re

pl
ic

at
io

n
Pu

sh
 re

al
-t

im
e

da
ta

; R
et

hi
nk

D
B

Q
ue

ry

La
ng

ua
ge

 (R
eQ

L)
;H

ad
oo

p-
st

yl
e

M
ap

Re
du

ce
; p

rim
ar

y&
se

co
nd

ar
y

in
de

xe
s;

N
ot

 A
C

ID

Jiv
e

SW
, M

ed
ia

fly
, P

ris
tin

e
Pl

at
zi

,
C

M
U

N
E,

 W
is

e.
io

C
lo

ud
an

t f
ro
m

 IB
M

, A
pa

ch
e

[9
1]

JS
O

N
 b

as
ed

 fl
ex

ib
le

 d
oc

um
en

ts
Sh

ar
di

ng
, m

as
te

r-
m

as
te

r &
 m

as
te

r-
sl

av
e

re
pl

ic
at

io
n

Co
uc

hD
B

ba
se

d;
 p

rim
ar

y
an

d
se

co
n-

dr
y

in
de

xe
s;

M
ap

Re
du

ce
; E

ve
nt

ua
l

Co
ns

is
te

nc
y;

 R
ES

Tf
ul

 H
TT

P/
JS

O
N

A

PI

Sa
m

su
ng

, I
BM

, E
xp

ed
ia

, D
H

L,
 M

ic
ro

so
ft

,
Pe

ar
so

n

http://10gen.com

Page 15 of 35Mehmood et al. J Big Data (2017) 4:8

enables horizontal scalability because table joins are not as important as they are in the
traditional RDBMS. MongoDB provides auto-sharding in which more replica server
nodes can easily be added to a system. It is a very fast database and provides indexes
not only on the primary attributes rather also on the secondary attributes within the
sub-documents even. For the cross comparison analysis between different collections
we have different technologies, such as aggregation framework [100], MapReduce [101,
102], Hadoop [14, 19] etc. These processing techniques will be targeted in future and are
not currently focused in this paper. Next we discuss the data modeling methodologies,
which is followed by a data model description we used for the storage of the real-time
temporal data of ANT+ sensors in the healthcare domain.

Modeling aspects
The representation of the concepts of data structures required by a database is called a
data model. A data model determines the logical structure of a database and basically
decides in which manner the data can be stored, organized, and manipulated. Such data
structures decide the data objects and their relationships and the semantic data rules
they govern. In software engineering data modeling is a process to create data models
for an information system. There are mainly three types of data model instances, i.e. con-
ceptual, logical and physical [103]. Conceptual data modeling defines the semantics of
an application domain, to elaborate the scope of the model, in order to identify the vari-
ous entities and relationships needed in an application. Logical data model is similar to
conceptual, but with more details, which defines the structure of a domain of informa-
tion. It is also called as a schema model, as it describes the objects with their proper-
ties and relationships to determine the structure of the data, whereas the physical data
model concerns the physical storage of the data.

Although NoSQL approaches provide schema flexibility to the developers which allow
them to store different formats of same entity’s instances in a single storage collection,
but for the rationality, sanity and demonstrating the storage structure they still have to
follow some sort of format logically, at least at the application level and then to store the
data in the selected format(s). In this way one can define as many schema formats for
a single entity and the same collection will allow the storage to all of them, given that a
logical rationality has been maintained through out the definitions, as shown in Fig. 3.
Applications treat each schema differently based upon different logics using advanced

Fig. 2 Flexible storage architecture, optimising MongoDB for unique application demands [99]

Page 16 of 35Mehmood et al. J Big Data (2017) 4:8

programming, such as object oriented principles in the form of polymorphism, classes
inheritance or object arrays etc. Hence developers eagerly define and model the schemas
that yield robust characteristics for their problem domain in general. The initial research
regarding NoSQL database modeling and insights is provided in [104, 105]. Bugiotti et al.
deal with NoSQL modeling approaches in general [106]. How to have NoSQL related
approaches inside the relational databases is discussed in [107]. For the initial thoughts
about NoSQL modeling and its comparison between traditional relational models and
NoSQL models is provided in [102]. A study about normalization and de normalization
during the data modeling is done in [108].

Note that because the document-oriented data models allow sub-documents embed-
ding, so hierarchical principles are their core features; and this create opportunity for
the sub-entities to get embedded and to play the role. A collection can refer to one or
more models, as shown in Fig. 3. A schema can have a single model representing an
entity or can have multiple models representing more entities (may be hierarchical). For
example in Fig. 1, we model two course documents for a course entity. The document
titled as “Programming” is quite simple, whereas the document titled as “data structures”
has a tree structure where a sub-entity books is shown at the second level. Similarly, two
structures are shown for the student collection, where the first with name “Scott” is sim-
ple and the second with the name “Neo” contains a hierarchy. Therefore the collections
having different schemas are actually having different format logics and must be treated
differently.

What and how to model a schema for NoSQL or RDBMS ?

New technologies such as XML and NoSQL databases have put doubts on the useful-
ness of data models, but this is not the case because the significance of data models will
always remain inevitable to understand and demonstrate the logical and storage struc-
tures of the data [8]. Regardless, NoSQL databases are schema flexible and support mul-
tiple schemas but in reality they actually support multiple variants of schema, which is

Fig. 3 Collections, documents and sub-documents in document oriented databases can refer to one or more
schema models

Page 17 of 35Mehmood et al. J Big Data (2017) 4:8

actually some sort of structural representation, if we differentiate and treat them individ-
ually. Therefore for such databases the terms like schema flexible would be more appro-
priate than schema less.

Mainly most RDBMS are built around one particular data model, although it is pos-
sible for a RDBMS to provide more than one data model to an application. Such data
models are fixed structure and require a database locking for a certain period of time
upon migration processes, such as from one version to another version, adding more
attributes to a table etc. Also RDBMS use Data Definition Languages to generate data-
bases from the pre defined schema models [103]. Database designers use the traditional
approach of Entity Relationship Diagrams (ERD) to concentrate on the database struc-
tures and constraints during conceptual database design [109]. ERDs are used to identify
the main entities and their attributes for which the information is required to store in
the database. Besides this it is also required to identify the relationships and relationship
types between the entities, which lead to a natural and logical grouping of the attributes
into relations during the mapping process from ERD’s to the relational schema [103]. In
order to define the linking of different entities between each other, their relationships are
investigated in context to the measurement of the cardinalities.

How good is a schema design?

To be rational about a schema and speaking in context of the RDBMS, during the map-
ping process, we still require some formal efforts to analyse why a relational schema,
with a grouping of attributes, may be better than another. This goodness or measure-
ment of the quality of a structural or relational schema design follows the procedures of
checking data redundancy and data dependency features extensively [110]. For a techni-
cal application domain, we should investigate and compare the available data modeling
approaches to chose the best.

In general, we should consider all the requirements and constraints related to a prob-
lem domain, such as temporal, streaming, distributed aspects, multiple messages for-
mats and their attributes. Modeling for the schema flexibility this investigation needs
intensive care; to allow the storage of multiple structural schemas. This way one main
goal of big data can be achieved i.e. variety. It is to note that schema flexibility, such as
provided by MongoDB, can permit all vendor devices to store data simultaneously with
the time-stamp regardless of different message formats. In context of the IoT perspec-
tive, it supports storage independence of data related to any “thing(s)”.

Goals of normalization

Katsov in his online guide [104], discusses NoSQL data modeling techniques for all the
NoSQL management frameworks in general. He says that denormalization and aggrega-
tion are the main fundamental design drivers, beside thinking about how the application
would address the end user queries. RDBMS do normalization because of three goals,
i.e (i) To free the database of modification anomalies, i.e. to update only one row in one
table against a wrong instance entry, (ii) to minimize the redesign of the database, and
(iii) to avoid biasness towards any particular access patterns. For the third point Mon-
goDB do not care at all, therefore with MongoDB we should not worried about being
biased to a particular access pattern.

Page 18 of 35Mehmood et al. J Big Data (2017) 4:8

One of the big advantage of RDBMS is that they keep the data relational, normalized
and enforce the foreign Keys for the data consistency. But in MongoDB it is only upto
the programmer to keep such a consistency, therefore MongoDB do not provide such
a guarantee. Whereas on the other side, MongoDB allow the embedding of the entire
document and in this case do not have to care about even about the foreign keys at all.
With normalization RDBMS usually perform transactions based upon ACID principles,
which MongoDB does not have to care about. However it allows atomic operations at a
document level.

Normalization or embedding

Normalization was first introduced by E.F. Codd in the field of rational databases and
is explained in many of the database related text, such as [110, 111]. In RDBMS the tra-
ditional practices are to properly normalize the database because it increases the data
integrity and efficiency of the space utilization [103]. In denormalization we reject the
splitting of the physical tables, and keep the data together in a single database table
which have frequent access, to reduce the query processing time, as in this way we can
avoid joins as well and the disk scanning at different location to answer the queries. Fol-
lowing can be the database schemas in normalized forms; for the de-normalized student
and course collections depicted in Fig. 1.

Kanade et al. [108] did a study for NoSQL databases with both normalized and denor-
malized forms using a similar dataset, and have found that the embedded MongoDB
data model provides a much better efficiency as compared to a normalized model.
Therefore, Database designers have confronted that tight normalization degrades the
system performance, hence they recommend to denormalize in many cases. Denor-
malization supports the data read performance, as the spinning disks have a very high
latency; therefore the idea is to keep the data close and together to help avoid disk read
overheads and to decrease the latency. Therefore, denormalization is a key feature of
document databases to support efficient data retrieval and to optimize the data storage
capacity by allowing dataset hierarchies.

Schema modeling using object relational mapping (ORM)

There exists a specific driver for each programming language, including few languages
which are still not much popular, one can see here [112]. Recently a new trend is seen
which provides facility to the programmers to develop NoSQL database applications
through the usage of Object Relational Mapping (ORM) mechanisms. ORM is related
with the mapping of programming language objects to the persistent data storage in
the database and then to the objects usage in the application [113]. In this way the data
becomes more fluid and natural both for the application as well as the used program-
ming language. There are different ORM available for Node.js to model schemas for

Page 19 of 35Mehmood et al. J Big Data (2017) 4:8

the MongoDB database, such as Mongoose [96, 114], Morphia [97], Iridium [115] and
Node-ORM2 [116]. Among these Mongoose provide built-in automatic validation of the
data which you are inserting/updating. Using Mongoose we can also pre-define events
before a document gets saved. In this way we can place the code where it should be next
to the document logic [117].

A beauty of MongoDB is that its documents are objects themselves, which performs
this process even more easily, hence the MongoDB architecture lends itself very well to
ORM as the documents. One example is mongo-Java-orm or “MJORM” a Java ORM for
MongoDB [97, 118]. A plain old Java object (POJO) is an ordinary Java object, not bound
by any special restriction or bogged down by framework extensions [119, 120]. One of
the main advantages for using POJO is its decoupling from the infrastructure frame-
works [119]. POJOs accelerate the development process by separating the persistent
object properties and business logic; hence facilitating the programmers to concentrate
on one thing at a time; i.e, between the business logic and persistence storage. Other
variants of POJO are described in [121–123], and the .Net framework variant of POJO is
POCO [124].

ORM based on mongoose

Although storing accessing and manipulating data in MongoDB is not difficult, but still
application developers find it more convenient and flexible to have a mapping layer
between the application and the NoSQL database, as discussed above. Such a service
is provided by an application layer middleware, which is mostly written in JavaScript
and is designed to work in an asynchronous environment; and helps in validation, type
casting, object mapping, document mapping, query building and building business logic.
It can deliver direct, schema-based modeling solutions to an application in MongoDB
database, for example Mongoose [96, 114]. We may think that, either if it consists upon
the concepts which are not part of the MongoDB framework but are out of the box for a
database management system. There are other ORMs also available, such as Mongorito
[125], Ming [126] and Backbone-ORM [127].

Time series data modeling in MongoDB

As streaming data contains timestamp values within each sequenced message element.
MongoDB is a great fit to handle timestamped data and many organizations are using it
[128]. Some proprietary services are also available and popular in the community, like
MongoDB Management Service (MMS) which models and displays the time-series data
as a dashboard [129]. This facilitates a developer to develop visualization and alerts on
different datasets using metrics.

Schema design for time series: a case study

It is beneficial to have a schema mapping out of the box; thus facilitating the program-
mers in developing scalable distributed systems more rapidly and flexibly. One can
design as many schemas as possible for MongoDB as NOSQL databases are flexible for
this purpose. But to be rational there is a tradeoff between different schemas, and as we
learned that the level of normalization or de-normalization is important. This section
discusses an approach described in a blog, which models time-series data for MongoDB

Page 20 of 35Mehmood et al. J Big Data (2017) 4:8

with respect to different levels of normalization [128, 130]. Before explaining the design
approach for a NoSQL database; first let us observe, how an RDBMS handles time-series
data. This is quite straightforward, i.e. by storing each event as a row within a Table. For
example, a monitoring system stores a temperature sensor measurement in relational
format, as shown in Table 5: But, this approach will save a single document in each row
for MongoDB.

This doc-per-event approach does not take advantage from the document embedding,
and there will be lot of latency in reading the data; for example around 3600 reads for
1 min data, if the sensor transmits one message per second [130]. An alternative is, to
have a single document-per-minute and to save the temperature value against each sec-
ond. Such an approach, as shown bellow, is better and more optimized in the context of
the storage as well as data retrieval.

This model contains sub-documents as values, which are embedded in the main docu-
ment. To store one value per second (against a minute), we can simply represent each
second as separate fields between 0 and 59, as shown in the above code listing. Such
kind of approaches affect the efficiency of systems, in context of the number of inserts
and updates. For example, for one hour read 60 total documents need to scan; and some
systems copy the entire data to a new location against an update, which is not robust
when the data is in large quantity. If the database also has to perform indexing after the
copying process, it will affect adversely. A feature of MongoDB is that it can manage in
place field-level updates as long as the size of the document does not grow more than a
certain limit (i.e, 16 megabytes), which may also contain sub-documents [131]. However
GridFS API of MongoDB provides flexibility to store a document more than the maxi-
mum size [132]. Conclusively, because field level updates are more efficient, so the docu-
ment-embedding is better than the relational design. Writes will be faster as: for updates
(one per second) than for inserts (one per minute) [128]. Because instead of writing a
full document at a new place we will actually request a much smaller update that can be
modeled as described below for the temperature collection:

Table 5 TimeSeries data storage in a traditional RDBMS

Timestamp Temperature

2016-04-10T22:04:23.000Z 24.1

2016-04-10T22:04:24.000Z 24.1

2016-04-10T22:04:25.000Z 24.0

Page 21 of 35Mehmood et al. J Big Data (2017) 4:8

A more compact approach is to store per second data at hourly level, i.e. doc-per-hour.
It has two variants: (i) by second, and (ii) by minute. In the former case seconds are
stored from 0 to 3599 for an hour. This approach cause extra workload during update
operations, because to update the last second 3599 steps are required. To avoid docu-
ment movements pre allocation of the structure space is recommended. However the
later case stores per-second data at the hourly level but with nesting documents for each
minute. This approach is also update driven, but to update the last second it requires
59 + 59 steps. The following MongoDB query depicts the later model, and it is followed
by an update query to modify the last second.

and, to update the last second:
In the next section we select a real time use case regarding sensor network data and

shall model the temporal properties of the message generated from different sensor
devices.

Temporal modeling for an ANT+ sensor use case
To preserve the NoSQL schema flexible goals, i.e, data variety; the model should reside
outside the database and should not be tied with it; and should provide a mirror to the
programming language objects to get mapped seamlessly for persistent storage. The
less energy resourced sensor devices do not communicate directly with the web serv-
ers rather they use a gateway, display device, PC, service or a running application. In
our system, a monitoring Windows service transmits the ANT+ sensor data in near
real-time over the WebSockets protocol, where as the NodeJS [96] context data server
accepts, processes and stores the JSON messages in MongoDB database according to
the defined schema models. The context data server is a NodeJS based JavaScript engine,
which provides a WebSockets based interface for the communication middleware layer
and data processing. The server uses the Mongoose based schemas for the direct docu-
ment mapping to persistently store the JSON messages. Figure 4 depicts a general view
of the real-time distributed system architecture for the prototype; whereas the complete
architecture components are explained in [133]. For temporal storage, data integration
and schema evolution the server executes relevant ANT+ device profile related Mon-
goose schema based storage algorithms against the specific event notifications.

To illustrate the approach through a prototype, we deal with three ANT+ wearable
sensor categories, such as heart rate, foot pod and temperature to monitor a patient’s
body parameters [34, 133]. Next we shall rationally observe the temporal modeling

Page 22 of 35Mehmood et al. J Big Data (2017) 4:8

perspectives of the ANT+ sensor data and will learn the Mongoose schema based algo-
rithm to evolve the schema during the data integration process.

Collection identification vs. entity and entity relationships’ identification: What to model?

An important question during document-oriented schema flexible modeling is what to
model for an application. The ANT+ message protocol and usage document guides us
to work with sensor nodes and to identify the device’s messages in general [134]; but for
more detailed understanding of each device type’s data semantics we should follow the
message format principles described in specific ANT+ Device Profile documents, such
as Environment profile for temperature sensor [135], Stride Based Speed and Distance
Monitor profile for footpod sensor [136] and Heart Rate Monitor profile for heartrate
sensor [137]. A device profile is a defined standard, which confines all the vendors to
manufacture their devices according to the rules and principles defined by ANT+ Alli-
ance. Therefore, if a profile indicates about transmitting a message it means that all the
vendor devices will transmit it, hence we can perform in general similar operations to
the data of a specific type of all the sensors that meet a particular profile. ANT+ devices
transmit monitoring data in the form of data messages which are specific to a profile
type. Next we discuss the software engineering process of data modeling for the ANT+
sensors. We shall be rational during the time-series sensor data modeling for the Mon-
goDB document oriented database, and shall also discuss the relational modeling (i.e.,
denormalization) with respect to our healthcare use case for the comparison purpose.
The following descriptions expose the attributes of the chosen sensors.

Temperature It transmits current, minimum (in previous 24 h) and maximum (in pre-
vious 24 h) temperature in Centigrade (C◦). With each measurement it also transmits
the transmission information, timestamp and the number of event counts—which incre-
ments with each measurement.

Footpod A footpod measures speed, cadence, distance, duration, strides accumulated
and distance accumulated in meters/second, strides/minute, meters, seconds, number of
strides and meters as measurement units respectively.

Heart rate monitor It measures and transmits the heart rate in beats per minutes
(bpm), with heart beat variability, event count and timestamp.

If we consider the profile type as an entity then such data messages will be the attrib-
utes of that actually. The three sensors are actually the instances of the device entity,
but should be treated separately because they do not share attributes. So we allocate
a separate MongoDB collection to each sensor category and define its schema for the

Fig. 4 MongoDB storage architecture: WebSockets based real-time interface with middlewares for JSON
message processing, storage and evolution according to the schema model(s) [133]

Page 23 of 35Mehmood et al. J Big Data (2017) 4:8

document storage. It is to note that a sensor will always have a unique serial number,
manufacturer and model number, although the devices can share manufacturer ids,
device types etc.

However, there are messages which most devices transmit, and those are not specific
to a profile standard; therefore they can be treated as separate common entity with a ref-
erenced instances to the relevant sensors. Such common messages are called as common
data pages or background messages [138]. For example devices transmit their informa-
tion such as battery status, message rate, manufacturer or hardware information etc. We
treat such messages differently during processing and storage depending on the schema
model. Our storage server accepts two types of JSON messages from the sensors: (i) per-
minute timestamped holding sensor data, and (ii) per-hour timestamped holding device
information and other healthcare data depending on the use case.

Because a user can use more than one sensor at a time, so user ID will be an attrib-
ute of each sensor instance. Based on these guidelines an entity relationship diagram is
depicted in Fig. 5, which shows the possible attributes, relationships, relationship types
and primary keys. Then a relational model is drawn in Fig. 6 in 1st and 2nd Normal Form
(1NF) [103].

Discussion w.r.t RDBMS In context to the RDBMS, this model although supports
sensor data storage but it has many flaws, like many joins are required while query-
ing the data for a patient at a particular time. There will be many null values because
sensors will not transmit all the attribute values altogether. If we want to resolve this
issue then we will end-up only with three columns in each of the sensor table i.e.
SensorTable(timestamp, value, event count). This is similar to saving every event mes-
sage, but this will not be robust for SQL as well as for NoSQL because there will be
insertion and update issues besides the computation processing issues, such as aggre-
gates etc.

Discussion w.r.t MongoDB Considering each entity as a possible document collection
will require joins between them which document-oriented databases do not support
natively. However it is possible either within the application or by using data process-
ing analysis tools such as aggregation framework [100], MapReduce [101, 102], Hadoop
[14, 19] etc. With document-oriented databases we do not have problems with the null
values because of schema flexibility, however interestingly, in such a case we will again
end-up with the same every event storage sort of structure, as discussed in the previous

Fig. 5 Entities and their attributes with respect to the discussed use case

Page 24 of 35Mehmood et al. J Big Data (2017) 4:8

discussion. Such a scenario although supports the event message storage but is not
robust with respect to processing and efficiency. We shall discuss it in the next sections.

Timestamped based cardinalities

A message rate is measured in cycles per second and its unit for frequency is Hertz (Hz).
We discuss the data messages of the three device profiles with respect to their allowable
message rates. The discussion provides us to calculate that how many instances of a cer-
tain sensor data message will appear against a time value, such as seconds, minutes and
hours; and Table 6 summarizes the discussion.

Temperature This environmental device broadcasts only at minimum 0.5 Hz or the
maximum 4.0 Hz message periods therefore once per 2 s or once per 0.25 s respectively.

Footpod A device can receive data at the full rate (4.03 Hz) or at half of this rate, there-
fore once per 0.248 s or once per 0.498 s respectively.

Heart rate monitor It transmits at the full rate (4.06 Hz) or at one half or one quarter
of this rate; therefore the data can be received four times per second, twice per second,
or once per second.

Common messages or background messages appear after 64 data messages of each
device profile type [138]. In context to the time it depends upon the message rate, for
example, heartrate with a message rate of 2.03 Hz will transmit almost 2 messages
per second, therefore in this case a background message will appear after 30 seconds

Fig. 6 Data model with entities and their attributes for the use case

Page 25 of 35Mehmood et al. J Big Data (2017) 4:8

approximately, whereas with the message rate of 1.02 Hz (which is the minimum pos-
sible message rate) we shall never receive two background messages in a single same
minute roughly. It is also to notice that such information do not change rapidly, so we
may not require to store every received message, hence it is better to store it either after
every 10, 15 or 20 minutes or only once per hour.

Normalization or embedding: How good is the model?

Designing a better model is the main goal, and its process encounters the tradeoff
between normalization and denormalization. For this we observe the examples for three
different approaches to model the time-series data in MongoDB, i.e. document-per-
event, document-per-minute and document-per-hour. All these three approaches are
different in context of document embedding, and result in different storage space and
hence data retrieval. We have already discussed the document-per-event scenario previ-
ously in the same section during the discussion w.r.t RDBMS. We learned that in such a
case the outcome will be the three columns in each of the sensor table i.e. SensorTable
(timestamp, value, event count).

Data Stream Management Systems (DSMS) are prone to the message arrival rates, and
need adjustments upon any change in the rate. The current prototype does not support
this automatic adjustment. Therefore, to be simple in the current prototype the least
message rates of the sensors are used. We used the document-per-hour approach with
the nested minute documents carrying 0-59 second documents. This approach requires
one insert initially for the hour document, and then only updates are required for each
new second value. To update the last second it requires maximum 59 + 59 steps. Next
section presents the Mongoose based schema model based upon the chosen approach
for the heart rate profile.

Mongoose doc-per-hour schema for heart rate sensor
Since the above three versions of the embedded document storage differentiate the data
into hour, minute and seconds, therefore before going to present the Mongoose schema,
the first step is to separate the hourly, minute and second level data from the heart rate
sensor payload. As stated already, background messages mostly relate with the hardware
information of the sensor device itself, and appear only after 65 other data messages
[139], therefore we keep them at the hourly level for the initial prototype. Since hour-
level document will be a separate document therefore it will also keep a reference of the
patient, as well as the start and end timestamps.

Table 6 Data messages cardinalities with respect to allowable message rates

Device profile Message rate (Hz) Seconds Minutes Hours

Temperature 0.5 0 30 1800

4.0 4 240 14,400

Foot pod 2.01 2 120 7236

4.03 4 241 14,508

Heart rate 1.02 1 61 3672

2.03 2 121 7308

4.06 4 244 14,616

Page 26 of 35Mehmood et al. J Big Data (2017) 4:8

The minutes document will keep seconds’ sub-document inside it. Each second’s sub-
document will have the heart rate data, i.e heart beat, variability and event count. The
ERD in Fig. 5 and data model in Fig. 6 depict these attributes. The Fig. 7a shows an in
general denormalized model for the heart rate sensor, in which the main SchemaSensor
(for hours) contains the SchemaMinute (for minutes), which further contains Schema-
Second as the second’s sub-document schema. Alongside the Fig. 7b shows an in general
Mongoose schema pseudocode for the denormalized schema. We can observe that most
of the values will be at the seconds level, i.e, Heart beat, heart rate variability and event
count as the measurements.

Mongoose schema base temporal data storage and evolution

We require to define a finite set of sequenced steps, to store a JSON message instance
related to an ANT+ profile type. They must perform logically correct updates to a
database, leaving it consistent and concurrent after the manipulations. Following is the
description of the storage algorithm which accepts JSON formatted sensor data mes-
sages to store and evolve the chosen schema model for the MongoDB. This is based
upon the Mongoose object mapping middleware, which is first used to define the time-
series schema model, as in Fig. 7 depicting the rationality and storage structure. The
algorithm will use the object of the Mongoose schema model to perform the inserts and
the updates to the document database, and such manipulations must be performed in a
manner that the new data integration would result into a storage formation as defined
and desired in the model. For this purpose the manipulations need to be done in a con-
trolled logical manner and require an algorithm for this purpose. For the above stated
Mongoose schema i.e, SchemaSensor, the set of tasks which the NodeJS Data Server will
execute once for each new specific sensor event, for the JSON formatted sensor payload,
is provided in the flowchart depicted in Fig. 8. This flowchart shows the logic of the algo-
rithm and emphasises the individual steps and their interactions in a controlled manner

Fig. 7 The denormalized schema and the Mongoose schema for the heart rate sensor

Page 27 of 35Mehmood et al. J Big Data (2017) 4:8

from one action to another. This also depicts how the data flow will take place within the
doc-per-hour schema based upon the Mongoose object mapping middleware. Figure 8 is
preceded with JavaScript code presented in listing , which is the implementation of the
data integration and schema evolver algorithm defined in the flowchart.

Fig. 8 The flowchart of the Mongoose based schema evolver algorithm

Page 28 of 35Mehmood et al. J Big Data (2017) 4:8

The temporal storage algorithm will use a list of input variables, such as Schm: a Mon-
goose Schema; args: a set of JSON arguments; rq: the request object; qryHr: the query
criteria to find the hour document; hrDoc: the JSON object representing the Hour
document object; and similarly the criteria for minutes along the minutes and second
sub-document variables. The sensor schema in JavaScript will be imported first and
will initialize the main schema object variable i.e., Schm (lines 1–2). The Schm object
will be the mapper between the language constructs and the persistency of data in the
MongoDB, and will help also in evolving the database according to the desired temporal
schema logic. It first queries the database for the hours-level document based upon the
time-interval provided in the request object (i.e, rq in line 4). The (qryHr) is a MongoDB
query (in line 5) having the parameter and the projection parameters to fetch the rel-
evant hour’s document. For example the following code constructs the query parameter
to fetch the document where the hrmHour is equal to dateHours and patient is userid.

In Asynchronous JavaScript programming the functions return the results in the last
argument i.e., the callback; therefore the result will be returned in the hrDoc object. The
listing is self explanatory and is having correspondent with the flowchart. If the hrDoc is

Page 29 of 35Mehmood et al. J Big Data (2017) 4:8

found in line 6, the algorithm will go on searching for the minutes document, as in line 7;
otherwise will move to line 18 for a new declaration and creation of the hours document.

Schema for foot pod and temperature and in general approach

The same kind of schema as we saw for the heart rate sensor is possible for the foot pod
and temperature sensor. The difference will be mainly for the second’s level values. The
denormalized schema design for the foot pod sensor, the seconds’ level documents will
hold the values regarding the distance, duration, speed and cadence; where as in the case
of temperature this will hold the values for low, high and current temperature. Similarly
the data integration and schema evolving algorithm will also have the similar kind of
sequence of steps for these sensors, with some modifications in context to the seconds’
level documents and other profile specific values.

Issues

In MongoDB schemas are sometimes prone to update problems related with the deep
nested arrays. For example, the “seconds” dimension contains deep nested arrays of
JSON objects. When this is periodically updated upon receiving values, the algorithm
evolution sometimes result in an error. The author tried to investigate the problem and
found that this is because of the limits in the MongoDB engine in context to updating
the deep nested schemas having arrays. The engine currently does not support several
positioning operator (i.e, “$”) based updates to the nested arrays.1 Only a limited num-
ber of positional operators are currently being supported. During the prototype testing
the schema and relevant algorithm has worked successfully, and only misses few values
because of this. The problem is discussed in an online thread,2 and has solutions that
either to avoid deep nested schemas, or to wait for a fix. Speaking in general the
approach presented in this paper is still useful and valuable for usage to define rational
document-oriented schemas and to develop relevant algorithms for data integration and
evolution. The next we discuss the related work regarding temporal aspects modeling for
sensor data.

Related work
Some related work in context of data modeling for the NoSQL databases is already
pointed out very briefly during the previous subsections. A lot of data modeling stud-
ies has already been conducted by different researchers for NoSQL databases, but non
has provided in depth study for the ANT+ sensor data especially to preserve the data
based on temporal properties, therefore this research is novel in context to the schema
flexible time series of the ANT+ data. The authors in [140] and [8] make models for
the NoSQL databases, such as MongoDB; and present both relational and non-relational
database queries to have a comparison between them. While using simple select queries,
the former researchers present that joins are not required during NoSQL based retrieval,
whereas they are required during SQL based approach. More using MongoDB queries
the data is stored in single document or if needs to store in different documents then

1 https://jira.mongodb.org/browse/SERVER-831.
2 http://stackoverflow.com/questions/14855246/multiple-use-of-the-positional-operator-to-update-nested-arrays.

https://jira.mongodb.org/browse/SERVER-831
http://stackoverflow.com/questions/14855246/multiple-use-of-the-positional-operator-to-update-nested-arrays

Page 30 of 35Mehmood et al. J Big Data (2017) 4:8

documents are related by using reference fields. The latter approach present a schema
modeling case study for both relational and non-relational databases. They explain that
each NoSQL database has its own query language, such as CQL (Cassandra Query Lan-
guage) for Cassandra, MongoDB Query Language for MongoDB, Cypher Query Lan-
guage for Neo4j etc. The latter research presents more general results and show query
syntax for three databases, i.e PostgreSQL for relational database, MongoDB query
language for MongoDB and Cypher query language for Neo4j. They explain that these
NoSQL databases may require extra storage space, because of denormalized data, but
results in overall improvements in performance, flexibility and scalability. However they
do not deal with modeling for the temporal aspects.

Similarly Bugiotti et al. [106] design for a selected NoSQL framework, is based on
best practices and guidelines. They provide a methodology, independent of the specific
target system, which depends upon the initial activities of software design. They make
novel data model for NoSQL databases, named as NoAM (NoSQL Abstract Model).
After outlining the commonalities of various NoSQL systems, they specify a system-
independent representation of the application data. They treat collections separately
as abstract model or table, as in this system. However we have discussed and used the
approach to model time series schema design in MongoDB with different variants dur-
ing the research and the prototype development [128]. Same approach is used for differ-
ent application domains in [141] and [142].

Vera et al. [143] proposes a general data modeling standard in the form of ERD dia-
grams for document-oriented databases. Parker et al. [144] compare the performance
of NoSQL database, MongoDB, with one of the relational database, SQL Server. Their
study shows that for a modest amount of data the performance of MongoDB is equal
or better than the relational database. During this study they consider the three main
aspects for performace i.e.,insert speed, update speed, and select operation speed. In
[12] the authors perform a comparison of 14 different NoSQL Databases based on their
data models, query possibilities, partitioning, and replication opportunities. They rec-
ommend to use NoSQL databases for fast operations over very large datasets. Following
section guides us how we can improve our work in future.

Future work
For the temporal storage of the ANT+ sensor data messages there is a lot of potential for
one to extend this work, especially in context to the adjustment of the different arrival
rates and by offering different different storage models to each of them. This may require
different schema models for each message rate. The other schema techniques also need
attention (i.e., doc-per-minute, etc.) along the algorithm development for the data inte-
gration and the schema evolution. In future, we plan to have a comparison between
the the exact storage measurements with respect to different schema models. For both
relational and NoSQL models, such query based data measurement and comparison
would reveal valuable results in context to the optimized data storage, retrieval and per-
formance measurements. In the NoSQL domain and while using denormalized schema
modeling, the temporal factor is a significant dimension that has not been addressed by
the researchers too much. The approach presented in the form of schema model and
algorithm is not limited to the ANT+ sensor data but is applicable to other domains

Page 31 of 35Mehmood et al. J Big Data (2017) 4:8

also. Using this fundamental study and the referenced information we can define in gen-
eral modeling standards for the document-oriented databases.

Summary
The data-driven monitoring applications rapidly and continuously transmit the sen-
sor data, which is meaningful only when is processed and analysed while considering
the temporal characteristics. Traditional RDBMS has given in managing such variety of
prolific data and the new technologies, such as big data has promised to offer robust
management frameworks to handle such continuous data streams. There are different
NoSQL management frameworks, such as key-value, column-oriented, graph and doc-
ument-oriented. A way to manage this is by defining out of the box optimized storage
schemas and then to store the data into NoSQL databases while abiding by the format
principles. This paper presents the usage of Mongoose middleware, to define document
oriented hierarchical schemas for the temporal modeling of the ANT+ sensor data. The
NodeJS data server uses these schemas to run a sequence of particular operations to be
executed upon a specific event for the data integration and schema evolution. The algo-
rithm automatically integrates the sensor data into a hierarchical structure based upon
the temporal properties. This out of the box schema is modeled for NoSQL using the
traditional ERD data modeling techniques. There are many possible schema variants,
such as (i) document-per-event, (ii) document-per-minute, and (iii) document-per-hour.
In this research, we define denormalized schema to have a document for each hour,
which contains minutes as sub documents containing sensor data in an array of seconds’
sub-documents. The normalization and denormalization of the document hierarchy
decides the quality of a schema with respect to number of reads, updates and storage
space utilization.

Authors’ contributions
NM did the primary literature review, contributed, developed and implemented the idea, designed the
experiments,drafted and wrote the manuscript. RC provided the experimental conceptions and contributed during the
acquisitionof the ANT+ sensor data. LM played a pivotal role by guiding throughout the research work, especially in con-
textto the research directions for real-time systems. All authors read and approved the final manuscript.

Authors’ information
Nadeem Q. Mehmood is a Ph.D. student at the Department of Computer Science, University of Camerino, Italy. Hiscur-
rent research work is in Smart Environments, Artificial Intelligence, Emerging Technologies, Real-time Web, BigData and
Internet of Things (IoT). He has an M.Sc. in Computer Science from PUCIT, Pakistan and a M.S. degreein Data and Knowl-
edge Engineering from Otto-von-Guericke University, Germany in 2004 and 2008 respectively.

Prof. Rosario Culmone is a researcher at the University of Camerino. He teaches programming languages, databas-
esand software engineering. He has been interested in web interaction patterns and more recently on programminglan-
guages based on constraints for Ambient Assisted Living and smart grid.

Prof. Leonardo Mostarda is an associate professor at the Department of Computer Science, University of
Camerino,Italy. He is also a visiting professor at the Department of Computer Science, Middlesex University, England. His-
research interests include Distributed Systems, Sensor Networks, IT Security, Energy Efficient Wireless EmbeddedSystems,
Big Data and Real-time Ubiquitous systems.

Acknowledgements
This work is part of the EUREKA (XXVIII Cycle) project which results from the cooperation between ServiliComputers s.r.l.,
Italy; the University of Camerino (Department of Computer Science), Italy; and the statedepartment Regione Marche,
Italy. I am thankful to the Software Industry; Ministry of Education and Research; andthe University, Italy, for the financial
support of this project.

Competing interests
The authors declares that the grant, scholarship and/or funding mentioned in "Acknowledgements" donot lead to any
competing interests. Additionally, the authors declares that there is no competing interestsregarding the publication of
this manuscript.

Page 32 of 35Mehmood et al. J Big Data (2017) 4:8

Availability of data and materials
The software implementation of the algorithm is uploaded for downloading and customization at GitHub [145].

Consent for publication
I give my permission for the following material to appear in the print, online, and licensed versions of Journal of BigData
to grant permission to third parties to reproduce this material. I understand that my name will not bepublished but
that complete anonymity cannot be guaranteed. I declare that I have read the manuscript or a generaldescription of
what the manuscript contains and reviewed all photographs, illustrations, video, or audio files (ifincluded) in which I am
included that will be published.

Ethics approval and consent to participate
Not applicable, since no patient was involved directly or indirectly to collect the data. The author(s) show(n) theconsent
to participate and was/were the subject(s) of this study.

Received: 19 July 2016 Accepted: 15 March 2017

References
 1. Mauri R. A new generation of data requires next-generation systems. 2015. www.wired.com/insights/2015/01/a-

new-generation-of-data-requires-next-generation-systems. Accessed 20 Oct 2016
 2. Padhy RP, Patra MR, Satapathy SC. RDBMS to NoSQL: reviewing some next-generation non-relational database’s.

Int J Adv Eng Sci Technol. 2011;11(1):15–30.
 3. Michael M, Moreira JE, Shiloach D, Wisniewski RW. Scale-up x scale-out: a case study using nutch/lucene. In: Paral-

lel and distributed processing symposium, 2007. IPDPS 2007. New York: IEEE International; 2007. p. 1–8.
 4. Buneman P. Semistructured data. In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on

principles of database systems. New York City: ACM; 1997. p. 117–21.
 5. Abiteboul S. Querying semi-structured data. In: International conference on database theory. Berlin: Springer;

1997. p. 1–18.
 6. Blumberg R, Atre S. The problem with unstructured data. DM Rev. 2003;13(42–49):62.
 7. Keller AM, Jensen R, Agarwal S. Persistence software: bridging object-oriented programming and relational data-

bases. In: ACM SIGMOD record. vol. 22. New York CIty: ACM. 1993. p. 523–8.
 8. Kaur K, Rani R. Modeling and querying data in NoSQL databases. In: 2013 IEEE international conference on big

data. New York: IEEE; 2013. p. 1–7.
 9. Scherzinger S, Klettke M, Störl U. Managing schema evolution in NoSQL data stores. 2013. arXiv preprint

arXiv:1308.0514.
 10. Gudivada VN, Rao D, Raghavan VV. NoSQL systems for big data management. In: 2014 IEEE world congress on

services (SERVICES). New York: IEEE; 2014. p. 190–7.
 11. Zikopoulos P, Eaton C. Understanding big data: analytics for enterprise class hadoop and streaming data. New

York: McGraw-Hill Osborne Media; 2011. http://www.bdvc.nl/images/Rapporten/ibm-understanding-big-data.pdf.
Accessed 27 Mar 2017.

 12. Hecht R, Jablonski S. NoSQL evaluation: a use case oriented survey. 2011.
 13. Li Y, Manoharan S. A performance comparison of SQL and NoSQL databases. In: 2013 IEEE pacific rim conference

on communications, computers and signal processing (PACRIM). New York: IEEE; 2013. p. 15–9.
 14. Pokornỳ J. New database architectures: steps towards big data processing. In: Palma Dos Reis A, Abraham AP, edi-

tors. Proc. of IADIS European conference on data mining (ECDM’13). IADIS Press; 2013. p. 3–10.
 15. Bajaber F, Sakr S, Batarfi O, Altalhi A, Elshawi R, Barnawi A. Big data processing systems: state-of-the-art and open

challenges. In: 2015 international conference on cloud computing (ICCC). New York: IEEE; 2015. p. 1–8.
 16. Grolinger K, Hayes M, Higashino WA, L’Heureux A, Allison DS, Capretz MAM. Challenges for mapreduce in big data.

In: 2014 IEEE world congress on services (SERVICES). 2014. p. 182–9. doi: 10.1109/SERVICES.2014.41.
 17. Sakr S, Liu A, Fayoumi AG. The family of mapreduce and large-scale data processing systems. ACM Comput Surv.

2013;46(1):11.
 18. Chen CP, Zhang C-Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data.

Inf Sci. 2014;275:314–47.
 19. Hu H, Wen Y, Chua T-S, Li X. Toward scalable systems for big data analytics: a technology tutorial. IEEE Access.

2014;2:652–87.
 20. Ribeiro A, Silva A, da Silva AR. Data modeling and data analytics: a survey from a big data perspective. J Softw Eng

Appl. 2015;8(12):617.
 21. Panigati E, Schreiber FA, Zaniolo C. Data streams and data stream management systems and languages. In: Data

management in pervasive systems. Berlin: Springer. 2015. p. 93–111.
 22. Gregersen H, Jensen CS. Temporal entity-relationship models—a survey. IEEE Trans Knowl Data Eng.

1999;11(3):464–97.
 23. Ozsoyoilu G, Snodgrass RT. Temporal and real-time databases: a survey. IEEE Trans Knowl Data Eng.

1995;7(5):513–32.
 24. Cuzzocrea A. Temporal aspects of big data management: state-of-the-art analysis and future research directions.

In: 2015 22nd international symposium on temporal representation and reasoning (TIME). New York: IEEE; 2015. p.
180–5.

 25. Bonnet P, Gehrke J, Seshadri P. Towards sensor database systems. In: International conference on mobile data
management. Berlin: Springer; 2001. p. 3–14.

http://www.wired.com/insights/2015/01/a-new-generation-of-data-requires-next-generation-systems
http://www.wired.com/insights/2015/01/a-new-generation-of-data-requires-next-generation-systems
http://arxiv.org/abs/1308.0514
http://www.bdvc.nl/images/Rapporten/ibm-understanding-big-data.pdf
http://dx.doi.org/10.1109/SERVICES.2014.41

Page 33 of 35Mehmood et al. J Big Data (2017) 4:8

 26. Gilbert AC, Kotidis Y, Muthukrishnan S, Strauss M. Quicksand: quick summary and analysis of network data. Techni-
cal report. 2001.

 27. Chen J, DeWitt DJ, Tian F, Wang Y. Niagaracq: a scalable continuous query system for internet databases. In: ACM
SIGMOD record. vol. 29. New York City: ACM; 2000. p. 379–90.

 28. Zhu Y, Shasha D. Statstream: statistical monitoring of thousands of data streams in real time. In: Proceedings of the
28th international conference on very large data bases. Toronto: VLDB Endowment; 2002. p. 358–69.

 29. Agrawal R, Somani A, Xu Y. Storage and querying of e-commerce data. VLDB. 2001;1:149–58.
 30. Law Y-N, Wang H, Zaniolo C. Query languages and data models for database sequences and data streams. In: Pro-

ceedings of the 13th int. conference on very large data bases. vol. 30. VLDB ’04. Toronto: VLDB Endowment. 2004.
p. 492–503. http://dl.acm.org/citation.cfm?id=1316689.1316733. Accessed 27 Mar 2017.

 31. Golab L, Özsu MT. Issues in data stream management. SIGMOD Rec. 2003;32(2):5–14. doi:10.1145/776985.776986.
 32. Akulakrishna PK, Lakshmi J, Nandy SK. Efficient storage of big-data for real-time gps applications. In: 2014

IEEE fourth international conference on big data and cloud computing (BdCloud). 2014. p. 1–8. doi: 10.1109/
BDCloud.2014.49.

 33. Ediger D, McColl R, Poovey J, Campbell D. Scalable infrastructures for data in motion. In: 2014 14th IEEE/ACM inter-
national symposium on cluster, cloud and grid computing (CCGrid). 2014. p. 875–82. doi: 10.1109/CCGrid.2014.91.

 34. Mehmood NQ, Culmone R. An ANT+ protocol based health care system. In: 2015 IEEE 29th international confer-
ence on advanced information networking and applications workshops (WAINA). New York: IEEE; 2015. p. 193–8.

 35. Perumal T, Ramli AR, Leong CY, Mansor S, Samsudin K. Interoperability among heterogeneous systems in smart
home environment. In: IEEE international conference on signal image technology and internet based systems,
2008. SITIS ’08. p. 177–86. doi: 10.1109/SITIS.2008.94.

 36. ThisisANT: ThisIsANT: the wireless sensor network solution. http://www.thisisant.com. Accessed 27 Mar 2017.
 37. Li T, Liu Y, Tian Y, Shen S, Mao W. A storage solution for massive iot data based on NoSQL. In: 2012 IEEE interna-

tional conference on green computing and communications (GreenCom). New York: IEEE; 2012. p. 50–7.
 38. MongoDB for GIANT ideas. https://www.mongodb.com. Accessed 27 Mar 2017.
 39. Bray T. The javascript object notation (json) data interchange format. 2014.
 40. Mehmood N, Culmone R. A data acquisition and document oriented storage methodology for ANT+ protocol

sensors in real-time web. In: The 30-th IEEE international conference on advanced information networking and
applications (AINA-2016). Crans-Montana: Centre de Congrès le Régent; 2016.

 41. Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems. New York City: ACM;
2002. p. 1–16.

 42. Hesse G, Lorenz M. Conceptual survey on data stream processing systems. In: 2015 IEEE 21st international confer-
ence on parallel and distributed systems (ICPADS). New York: IEEE; 2015. p. 797–802.

 43. MongoDB University I. NoSQL Vs relational databases. 2016. https://www.mongodb.com/scale/nosql-vs-relational-
databases. Accessed 27 Mar 2017.

 44. Ali S. Comparisons of relational databases with big data: a teaching approach. 2016. www.asee.org/documents/
zones/zone3/2015/Comparisons-of-Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf. Accessed 27
Mar 2017.

 45. Cattell R. Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 2011;39(4):12–27.
 46. Sagiroglu S, Sinanc D. Big data: a review. In: 2013 international conference on collaboration technologies and

systems (CTS). New York: IEEE; 2013. p. 42–7.
 47. Strozzi C. NoSQL—a relational database management system. Lainattu. 1998;5:2014.
 48. Redis is an open source in-memory data store. http://redis.io. Accessed 27 Mar 2017.
 49. Project Aerospike. 2016. http://www.aerospike.com. Accessed 27 Mar 2017.
 50. Project Voldemort. 2013. http://www.project-voldemort.com/voldemort. Accessed 27 Mar 2017.
 51. List of NoSQL databases. http://nosql-database.org. Accessed 27 Mar 2017.
 52. Neo4j. http://neo4j.com. Accessed 27 Mar 2017.
 53. Beyer M. Gartner says solving “big data” challenge involves more than just managing volumes of data. Gartner.

Archived from the original on 10, 2011.
 54. Snow, D.: Adding a 4th V to BIG Data-Veracity. http://dsnowondb2.blogspot.cz/2012/07/adding-4th-v-to-big-data-

veracity.html. Accessed 06 Mar 2016.
 55. Memcached. http://memcached.org. Accessed 27 Mar 2017.
 56. MemcacheDB. http://memcachedb.org. Accessed 27 Mar 2017.
 57. Apache Cassandra database. http://cassandra.apache.org. Accessed 27 Mar 2017.
 58. Jedis-small and sane Redis java client. https://github.com/xetorthio/jedis. Accessed 27 Mar 2017.
 59. r3-Map-Reduce engine for Redis Python client. http://heynemann.github.io/r3/. Accessed 27 Mar 2017.
 60. Basho Data Platform for Riak. http://basho.com/products. Accessed 27 Mar 2017.
 61. Basho Riak KV. http://basho.com/products/riak-kv. Accessed 27 Mar 2017.
 62. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W.

Dynamo: amazon’s highly available key-value store. In: ACM SIGOPS operating systems review. vol. 41. New York
City: ACM; 2007. p. 205–20.

 63. Basho Riak TS. http://basho.com/products/riak-ts/. Accessed 27 Mar 2017.
 64. Project Voldemort Design. 2013. http://www.project-voldemort.com/voldemort/design.html. Accessed 27 Mar

2017.
 65. Amazon DynamoDB. 2012. https://aws.amazon.com/dynamodb. Accessed 27 Mar 2017.
 66. Oracle Berkeley DB. http://www.oracle.com/us/products/database/berkeley-db/overview. Accessed 27 Mar 2017.
 67. Tokyo Cabinet: a modern implementation of DBM. http://fallabs.com/tokyocabinet. Accessed 27 Mar 2017.
 68. Tokyo Tyrant. http://fallabs.com/tokyotyrant. Accessed 27 Mar 2017.
 69. Scalaris, a distributed transactional key-value store. https://code.google.com/archive/p/scalaris. Accessed 27 Mar

2017.

http://dl.acm.org/citation.cfm?id=1316689.1316733
http://dx.doi.org/10.1145/776985.776986
http://dx.doi.org/10.1109/BDCloud.2014.49
http://dx.doi.org/10.1109/BDCloud.2014.49
http://dx.doi.org/10.1109/CCGrid.2014.91
http://dx.doi.org/10.1109/SITIS.2008.94
http://www.thisisant.com
https://www.mongodb.com
https://www.mongodb.com/scale/nosql-vs-relational-databases
https://www.mongodb.com/scale/nosql-vs-relational-databases
http://www.asee.org/documents/zones/zone3/2015/Comparisons-of-Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf
http://www.asee.org/documents/zones/zone3/2015/Comparisons-of-Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf
http://redis.io
http://www.aerospike.com
http://www.project-voldemort.com/voldemort
http://nosql-database.org
http://neo4j.com
http://dsnowondb2.blogspot.cz/2012/07/adding-4th-v-to-big-data-veracity.html
http://dsnowondb2.blogspot.cz/2012/07/adding-4th-v-to-big-data-veracity.html
http://memcached.org
http://memcachedb.org
http://cassandra.apache.org
https://github.com/xetorthio/jedis
http://heynemann.github.io/r3/
http://basho.com/products
http://basho.com/products/riak-kv
http://basho.com/products/riak-ts/
http://www.project-voldemort.com/voldemort/design.html
https://aws.amazon.com/dynamodb
http://www.oracle.com/us/products/database/berkeley-db/overview
http://fallabs.com/tokyocabinet
http://fallabs.com/tokyotyrant
https://code.google.com/archive/p/scalaris

Page 34 of 35Mehmood et al. J Big Data (2017) 4:8

 70. Abadi DJ, Madden SR, Hachem N. Column-stores vs. row-stores: how different are they really? In: Proceedings of
the 2008 ACM SIGMOD international conference on management of data. New York City: ACM; 2008. p. 967–80.

 71. Sarkissian A. Wtf is a supercolumn? An intro to the Cassandra data model. 2009. http://arin.me/blog/wtf-is-a-
supercolumn-cassandra-data-model. Accessed 3 Aug 2011.

 72. Apache HBase. http://hbase.apache.org. Accessed 27 Mar 2017.
 73. Apache Accumulo. https://accumulo.apache.org. Accessed 27 Mar 2017.
 74. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distrib-

uted storage system for structured data. ACM Trans Comput Syst. 2008;26(2):4.
 75. Ghemawat S, Gobioff H, Leung S-T. The google file system. SIGOPS Oper. Syst. Rev. 2003;37(5):29–43.

doi:10.1145/1165389.945450.
 76. Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proceedings of the 7th sympo-

sium on operating systems design and implementation. Seattle: USENIX Association; 2006. p. 335–50. http://
dl.acm.org/citation.cfm?id=1298455.1298487. Accessed 29 Mar 2017.

 77. Lakshman A, Malik P. Cassandra: structured storage system on a p2p network. In: Proceedings of the 28th ACM
symposium on principles of distributed computing. New York City: ACM; 2009. p. 5.

 78. Hypertable. http://www.hypertable.com. Accessed 27 Mar 2017.
 79. AllegroGraph—Graph Database. http://allegrograph.com. Accessed 27 Mar 2017.
 80. ArangoDB. www.arangodb.com. Accessed 27 Mar 2017.
 81. OrientDB. http://orientdb.com. Accessed 27 Mar 2017.
 82. Montag D. Understanding neo4j scalability. Neotechnology: White Paper. 2013.
 83. Prud’Hommeaux E, Seaborne A, et al. SPARQL query language for rdf. W3C recommendation. vol. 15. 2008.
 84. neo4django : an Object Graph Mapper. http://neo4django.readthedocs.io. Accessed 27 Mar 2017.
 85. DB-Engines. http://db-engines.com. Accessed 27 Mar 2017.
 86. Weinberger C. Native multi-model can compete with pure document and graph databases. https://www.aran-

godb.com/2015/06/multi-model-benchmark. Accessed 27 Mar 2017.
 87. Fowler A. NoSQL For Dummies. New York: Wiley. 2015.
 88. Apache CouchDB. http://couchdb.apache.org. Accessed 27 Mar 2017.
 89. Apache CouchBase. http://www.couchbase.com. Accessed 27 Mar 2017.
 90. Rethink DB. https://rethinkdb.com. Accessed 27 Mar 2017.
 91. IBM Cloudant. https://cloudant.com. Accessed 27 Mar 2017.
 92. Polymorphism MongoDB. http://mongodb.github.io/mongo-csharp-driver/2.0/reference/bson/mapping/poly-

morphism. Accessed 27 Mar 2017.
 93. Moniruzzaman A, Hossain SA. NoSQL database: New era of databases for big data analytics-classification, charac-

teristics and comparison. 2013. arXiv preprint arXiv:1307.0191.
 94. Creating a basic custom schema type. http://mongoosejs.com/docs/customschematypes.html.

Accessed 27 Mar 2017.
 95. NoSQL---MongoDB vs CouchDB. http://stackoverflow.com/questions/3375494/nosql-mongodb-vs-couchdb.

Accessed 27 Mar 2017.
 96. Mardan A. Boosting your node.js data with the mongoose orm library. In: Building real-world scalable web apps:

practical node.js. Berlin: Springer; 2014. p. 149–72.
 97. Morphia - MongoDB object-document mapper in Java. https://github.com/mongodb/morphia.

Accessed 27 Mar 2017.
 98. Membrey P, Plugge E, Hawkins D. The definitive guide to MongoDB: the NoSQL database for cloud and desktop

computing. New York City: Apress; 2011.
 99. MongoDB: Mongodb architecture guide 3.2—a mongodb white paper.
 100. MongoDB Aggregation. https://docs.mongodb.org/manual/aggregation. Accessed 27 Mar 2017.
 101. Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.

doi:10.1145/1327452.1327492.
 102. Meijer E, Bierman G. A co-relational model of data for large shared data banks. Commun ACM. 2011;54(4):49–58.
 103. Elmasri R, Navathe S. Fundamentals of database systems. 6th ed. Boston: Addison-Wesley; 2010.
 104. Katsov, I.: NoSQL data modeling techniques. 2012. https://highlyscalable.wordpress.com/2012/03/01/nosql-data-

modeling-techniques. Accessed 27 Mar 2017.
 105. Patel, J.: Cassandra data modeling best practices. 2012. www.ebaytechblog.com/2012/07/16/cassandra-data-

modeling-best-practices-part-1. Accessed 27 Mar 2017.
 106. Bugiotti F, Cabibbo L, Atzeni P, Torlone R. Database design for NoSQL systems. In: 33rd international conference on

conceptual modeling. Berlin: SPringer; 2014. p. 223–31.
 107. Wei-ping Z, Ming-Xin L, Huan C. Using mongodb to implement textbook management system instead of MySQL.

In: IEEE 3rd international conference on communication software and networks (ICCSN). New York: IEEE; 2011. p.
303–5.

 108. Kanade A, Gopal A, Kanade S. A study of normalization and embedding in mongodb. In: 2014 IEEE international
on advance computing conference (IACC). New York: IEEE; 2014. p. 416–21.

 109. Chen PP-S. The entity-relationship model-toward a unified view of data. ACM Trans Database Syst. 1976;1(1):9–36.
 110. Codd EF. A relational model of data for large shared data banks. Commun ACM. 1970;13(6):377–87.

doi:10.1145/362384.362685.
 111. Codd EF. Does your dbms run by the rules? Comput World. 1985;21:11.
 112. MongoDB Drivers. https://docs.mongodb.org/ecosystem/drivers. Accessed 27 Mar 2017.
 113. MongoDB, Java and Object Relational Mapping. http://www.infoq.com/articles/mongodb-java-orm-bcd.

Accessed 27 Mar 2017.
 114. mongoose:elegant mongodb object modeling for node.js. http://mongoosejs.com. Accessed 27 Mar 2017.
 115. Iridium—a high performance MongoDB ORM for Node.js. https://github.com/SierraSoftworks/Iridium.

Accessed 27 Mar 2017.

http://arin.me/blog/wtf-is-a-supercolumn-cassandra-data-model
http://arin.me/blog/wtf-is-a-supercolumn-cassandra-data-model
http://hbase.apache.org
https://accumulo.apache.org
http://dx.doi.org/10.1145/1165389.945450
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://www.hypertable.com
http://allegrograph.com
http://www.arangodb.com
http://orientdb.com
http://neo4django.readthedocs.io
http://db-engines.com
https://www.arangodb.com/2015/06/multi-model-benchmark
https://www.arangodb.com/2015/06/multi-model-benchmark
http://couchdb.apache.org
http://www.couchbase.com
https://rethinkdb.com
https://cloudant.com
http://mongodb.github.io/mongo-csharp-driver/2.0/reference/bson/mapping/polymorphism
http://mongodb.github.io/mongo-csharp-driver/2.0/reference/bson/mapping/polymorphism
http://arxiv.org/abs/1307.0191
http://mongoosejs.com/docs/customschematypes.html
http://stackoverflow.com/questions/3375494/nosql-mongodb-vs-couchdb
https://github.com/mongodb/morphia
https://docs.mongodb.org/manual/aggregation
http://dx.doi.org/10.1145/1327452.1327492
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://www.ebaytechblog.com/2012/07/16/cassandra-data-modeling-best-practices-part-1
http://www.ebaytechblog.com/2012/07/16/cassandra-data-modeling-best-practices-part-1
http://dx.doi.org/10.1145/362384.362685
https://docs.mongodb.org/ecosystem/drivers
http://www.infoq.com/articles/mongodb-java-orm-bcd
http://mongoosejs.com
https://github.com/SierraSoftworks/Iridium

Page 35 of 35Mehmood et al. J Big Data (2017) 4:8

 116. Node ORM2—object relational mapping. https://github.com/dresende/node-orm2. Accessed 27 Mar 2017.
 117. What is the killer reason for using Mongoose ORM? http://stackoverflow.com/questions/5747806/what-is-the-

killer-reason-for-using-mongoose-orm. Accessed 27 Mar 2017.
 118. MJORM (mongo-java-orm)—a MongoDB Java ORM. https://code.google.com/archive/p/mongo-java-orm.

Accessed 27 Mar 2017.
 119. Java IoT: Article Cover Story: What Is POJO Programming? http://java.sys-con.com/node/180374.

Accessed 27 Mar 2017.
 120. Mehta VP. Getting started with object-relational mapping. Pro LINQ Object Relational Mapping with C# 2008.

2008:3–15.
 121. MongoJack. http://mongojack.org. Accessed 27 Mar 2017.
 122. Query in Java as in Mongo shell. http://jongo.org. Accessed 27 Mar 2017.
 123. MongoLink: an object document mapper (ODM) for Java and MongoDB. http://mongolink.org. Accessed 27 Mar

2017.
 124. POCO Support in .NET Framework. https://msdn.microsoft.com/en-us/library/cc681329.aspx. Accessed 27 Mar

2017.
 125. MongoDB ODM for Node.js based on ES6 generators. http://mongorito.com. Accessed 27 Mar 2017.
 126. Ming:Database mapping layer for MongoDB on Python. https://sourceforge.net/projects/merciless. Accessed 27

Mar 2017.
 127. BackboneORM: a polystore ORM for Node.js and the browser. http://vidigami.github.io/backbone-orm. Accessed

27 Mar 2017.
 128. Parikh S, Stirman K. Schema design for time series data in mongodb. vol. 30. 2013. http://blog.mongodb.org.

Accessed 27 Mar 2017.
 129. MongoDB Cloud Manager. https://www.mongodb.com/cloud. Accessed 27 Mar 2017.
 130. MongoDB for time series data (Webinar Series). https://www.mongodb.com/lp/webinar-series/time-series-

july-2014. Accessed 27 Mar 2017.
 131. MongoDB limits and thresholds. https://docs.mongodb.org/manual/reference/limits/. Accessed 27 Mar 2017.
 132. MongoDB GridFS API. https://docs.mongodb.org/manual/core/gridfs/. Accessed 27 Mar 2017.
 133. Mehmood NQ, Culmone R, Mostarda L. A flexible and scalable architecture for real-time ANT+ sensor data acqui-

sition and NoSQL storage. Int J Distrib Sens Netw. 2016;2016:13.
 134. Dynastream Corporation I. ANT message protocol and usage, version 2.1. www.thisisant.com. Accessed 06 Mar

2016.
 135. Dynastream Corporation I. ANT+ device profile: environment, revision 1.0. www.thisisant.com. Accessed 06 Mar

2016.
 136. Dynastream Corporation I. ANT+ device profile: stride based speed and distance monitor, revision 1.3. www.

thisisant.com. Accessed 06 Mar 2016.
 137. Dynastream Corporation I. ANT+ device profile: heart rate monitor, revision 1.13. www.thisisant.com. Accessed 01

May 2015.
 138. Dynastream Corporation I. ANT+ common pages, revision 2.4. www.thisisant.com. Accessed 06 Mar 2016.
 139. Ant message protocol and usage: application notes,version 2.1. online doc, Dynastream innovations Inc. 2007.

www.thisisant.com. Accessed 06 Mar 2016.
 140. Arora R, Aggarwal RR. Modeling and querying data in mongodb. Int J Sci Eng Res. 2013;4(7). https://pdfs.semantic-

scholar.org/bd01/577311001f31d93930586f5ab0ad79bb7564.pdf. Accessed 27 Mar 2017.
 141. Janković O. NoSQL dokument baza podataka: prikaz skladištenja podataka sa osvrtom na podatke sa senzora.

Infoteh-Jahorina, INFOTEH-JAHORINA. 14:561–6. http://infoteh.rs.ba/rad/2015/RSS-3/RSS-3-1.pdf.
Accessed 27 Mar 2017.

 142. Papoutsoglou E, Samourkasidis A, Tsai M-Y, Davey M, Ineichen A, Eeftens M, Athanasiadis IN. Towards an air pollu-
tion health study data management system—a case study from a smoky swiss railway.

 143. Vera H, Wagner Boaventura MH, Guimaraes V, Hondo F. Data modeling for NoSQL document-oriented databases.
 144. Parker Z, Poe S, Vrbsky SV. Comparing NoSQL mongodb to an SQL db. In: Proceedings of the 51st ACM southeast

conference. New York City: ACM; 2013. p. 5.
 145. Nadeem QM. NodeTempANT. 2016. https://github.com/nqaisar/NodeTempANT. Accessed 27 Mar 2017.

https://github.com/dresende/node-orm2
http://stackoverflow.com/questions/5747806/what-is-the-killer-reason-for-using-mongoose-orm
http://stackoverflow.com/questions/5747806/what-is-the-killer-reason-for-using-mongoose-orm
https://code.google.com/archive/p/mongo-java-orm
http://java.sys-con.com/node/180374
http://mongojack.org
http://jongo.org
http://mongolink.org
https://msdn.microsoft.com/en-us/library/cc681329.aspx
http://mongorito.com
https://sourceforge.net/projects/merciless
http://vidigami.github.io/backbone-orm
http://blog.mongodb.org
https://www.mongodb.com/cloud
https://www.mongodb.com/lp/webinar-series/time-series-july-2014
https://www.mongodb.com/lp/webinar-series/time-series-july-2014
https://docs.mongodb.org/manual/reference/limits/
https://docs.mongodb.org/manual/core/gridfs/
http://www.thisisant.com
http://www.thisisant.com
http://www.thisisant.com
http://www.thisisant.com
http://www.thisisant.com
http://www.thisisant.com
http://www.thisisant.com
https://pdfs.semanticscholar.org/bd01/577311001f31d93930586f5ab0ad79bb7564.pdf
https://pdfs.semanticscholar.org/bd01/577311001f31d93930586f5ab0ad79bb7564.pdf
http://infoteh.rs.ba/rad/2015/RSS-3/RSS-3-1.pdf
https://github.com/nqaisar/NodeTempANT

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Modeling temporal aspects of sensor data for MongoDB NoSQL database
	Abstract
	Introduction
	Time series in medical data
	Data stream and data stream management systems (DSMS)
	DBMS comparison with DSMS

	Limitations of RDBMS
	Big data management frameworks
	The V’s of big data
	NoSQL database categories
	Key-value stores
	Column-oriented databases
	Graph databases
	Document databases
	Document databases: MongoDB

	Modeling aspects
	What and how to model a schema for NoSQL or RDBMS ?
	How good is a schema design?
	Goals of normalization
	Normalization or embedding

	Schema modeling using object relational mapping (ORM)
	ORM based on mongoose

	Time series data modeling in MongoDB
	Schema design for time series: a case study

	Temporal modeling for an ANT+ sensor use case
	Collection identification vs. entity and entity relationships’ identification: What to model?
	Timestamped based cardinalities
	Normalization or embedding: How good is the model?

	Mongoose doc-per-hour schema for heart rate sensor
	Mongoose schema base temporal data storage and evolution
	Schema for foot pod and temperature and in general approach
	Issues

	Related work
	Future work
	Summary
	Authors’ contributions
	References

