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Introduction
The emergence of Web 2.0 systems, the Internet of Things (IoT) and millions of users 
have played a vital role to build a global society, which generates volumes of data. At the 
same time, this data tsunami has threatened to overwhelm and disrupt the data centers 
[1]. Due to this constant data growth the information storage, support and maintenance 
have become a challenge while using the traditional data management approaches, such 
as structural relational databases. To support the data storage demands of new genera-
tion applications, the distributed storage mechanisms are becoming the de-facto storage 
method [2]. Scaling can be achieved in two ways, vertical or horizontal, where the for-
mer means adding up resources to a single node, whereas in the latter case we add more 
nodes to the system [3]. For the problems that have arisen due to data proliferation, the 
RDBMS fail to scale the applications horizontally according to the incoming data traffic 
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[2]; because they require data replication on multiple nodes, so they are not flexible to 
allow data and read/write operations distributed over many servers. So we need to find 
systems that would be able to manage big volumes of data.

This flood of data passes challenges not only due to its sheer size but also due to the 
data types, hence demands more robust mechanisms to tackle different data formats. 
The Web, e-science solutions, sensor laboratories and industrial sector produce in abun-
dance both structural, semi-structural and non-structural data [4–6]. This is not a new 
problem, and can be traced back to the history of object-relational databases, under the 
name of Object-Relational Impedance Mismatch [7]. This mismatch is natural, when we 
try to model an object into a fixed relational structure. Similarly, the digital information 
with different structures, such as natural text, PDF, HTML and embedded systems data, 
is not simple enough to capture as entities and relationships [8]. Even if we manage to 
do this, it will not be easy to change afterwards, hence such mechanisms are rigid for 
schema alteration because they demand pre-schema definition techniques. Several new 
generation systems do not like to fix their data structure to a single schema; rather they 
want their schema to evolve in parallel to an entity data type’s adaptation, hence they 
want flexibility [9, 10].

Besides the data abundance and different formats, the rapid flow of data has also 
attracted the researchers to find mechanisms to manage the data in motion. Typically 
this is to consider that, how quickly the data is produced and stored, and its associated 
rates of retrieval and processing. This idea of data in motion is evoking far more interest 
than the conventional definitions, and needs a new way of thinking to solve the prob-
lem [11]. This is not associated only with the growth rate at the data acquisition end, 
but also data-flow rate during transmission; as well the speed at which data is processed 
and stored in the data repositories. Any way, we are aware of the fact that today’s enter-
prises have to deal with petabytes instead of terabytes; and the increase in smart object 
technology alongside the streaming information has led the constant flow of data at a 
pace that has threatened the traditional data management systems [11]. RDBMS use 
two-dimensional tables to represent data and use multi-join transactional queries for the 
database consistency. Although they are mature and still useful for many applications, 
but processing of volumes of data using multi-joins is prone to performance issues [12, 
13]. This problem is evident when extensive data processing is required to find hidden 
useful information in huge data volumes; but such data mining techniques are not in 
our current focus [14–17], as we limit our discussion to NoSQL temporal modeling and 
schema based data integration.

Above discussed problems of prolific, multi-structured heterogeneous data in flow 
urge the researchers to conduct research to find alternate data management mecha-
nisms, hence NoSQL data management systems have appeared and are now becoming 
a standard to cope with big data problems [11, 18]. Such new data management sys-
tems are being used by many companies, such as Google, Amazon etc. The four primary 
categories of their data model are: (i) key-value stores, (ii) column-oriented, (iii) docu-
ment, and (iv) graph databases [19, 20]. For rationality, sanity and demonstrating the 
storage structure, the researchers follow the database schema techniques without losing 
the advantages of schema flexibility provided by NoSQL databases. Such schema mod-
eling strategies in NoSQL databases are quite different from the relational databases. 
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Collections, normalization and document embedding are few variants to consider dur-
ing building schema models because they affect the performance and storage effectively 
because such databases grow very quickly.

While dealing with real-time data, in continuous or sliced snapshot data streams, 
the data items possess observations which are ordered over time [21]. During previous 
years, research efforts had been conducted to capture temporal aspects in the form of 
data models and query languages [22, 23]. But mostly those efforts were for relational or 
object-oriented models [23], and can be considered as a conceptual background to solve 
advanced data management challenges [24]. The emerging applications, such as sensor 
data [25], Internet traffic [26], financial tickers [27, 28] and e-commerce [29], produce 
large volumes of timestamped data continuously in real-time [30, 31]. The current meth-
ods of centralized or distributed storage with static data impose constraints in address-
ing the real-time requirements [32], as they inflict pre-defined time convictions unless 
timestamped attributes are explicitly added [31]. They have limited features to support 
the latest data stream challenges and demand research to augment the existing technol-
ogies [31, 33].

In remote healthcare long term monitoring operations, based on Body Area Networks 
(BAN), demand low energy consumption due to limited memory, processing and bat-
tery resources [34]. These systems also demand communication and data interoperabil-
ity among sensor devices [35]. Recently a propriety protocol ANT+ provides these low 
energy consumption features; and strengthens the goals of IoT through the interopera-
bility of devices based on Machine-to-Machine (M2M) mechanisms, which employs use 
case specific device profile standards [34, 36]. Device interoperability, low energy and 
miniaturisation features allow the building of large ecosystems, hence enable millions of 
vendor devices to get integrated and interoperated. IoT ecosystems want general storage 
mechanisms having structural flexibility to accept different data formats arriving from 
millions of sensory objects [37]. The non-relational or NoSQL databases are schema-free 
[2]; and allow storage of different data formats without prior structural declarations [34, 
37]. However for the storage we need to investigate the NoSQL models to design and 
develop [8, 22]; besides flexibly preserving the big data timestamped characteristics for 
the massive real-time data flow during acquisition processes [24]. Although all NoSQL 
databases have unique advantages, but document-oriented storage, as MongoDB pro-
vides, is considered robust for handling multiple structural information to support IoT 
goals [38]. This rejects the relational structural storage and favours Java Script Object 
Notations (JSON) documents to support dynamic schemas; hence provide integration to 
different data types besides scalability features [39, 40].

This article presents a general approach to model temporal aspects of ANT+ sensor 
data. The authors develop a prototype for the MongoDB NoSQL real-time platform and 
discuss the temporal data modeling challenges and decisions. An algorithm is presented 
which integrates JSON data as hierarchical documents and evolves the proposed schema 
without loosing flexibility and scalability.

This article is organized as follows. "Data stream and data stream management systems 
(DSMS)" is about time series data. Different NoSQL databases are discussed in detail in 
"Limitations of RDBMS". It is followed by a subsection discussing MongoDB as a well-
known document oriented database. "Big data management frameworks", discusses the 
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different techniques to model time series data using MongoDB. This follows a middle-
ware description explaining how to store data in the MongoDB. "Modeling aspects" and 
"Temporal modeling for an ANT+ sensor use case" give future work and a short sum-
mary respectively.

Time series in medical data
A time series is a sequence of numerical measurements from observations collected at 
regular durations of time. Such successive times can either be continuous or discrete 
time periods. These sequence of values at particular intervals are common in situations, 
such as weekly interest rates, stock prices, monthly price indices, yearly sales figures, 
weather reports, patient’s medical reports and so forth.

Healthcare monitoring systems measure physiological and biological body parameters, 
using BAN, of a patient’s body in real-time. Because timely information is an important 
factor to detect immediate situations and to improve decision making processes, based 
on a patient’s medical history, so considering temporal aspects are vital. Such sequence 
of values represent the history of an operational context and is helpful in a number of 
use cases where history or order is required during the analysis. This sequences of data 
flows in streams of different speeds and also needs proper management.

Data stream and data stream management systems (DSMS)
Data streams, as continuous and ordered flow of incoming data records, are common in 
wired or wireless sensor network based monitoring applications [31]. Such widely used 
data intensive applications don’t directly target their data models for persistence stor-
age, because the continuously arriving multiple, rapid, time-varying, and unbounded 
streams lose the support for storage as an entirety [31], and a portion of arrived stream is 
required to keep in the memory for initial processing. This is not feasible using the tradi-
tional DBMS to load the entire data and operate upon it [41]. Golab et al. [31] highlights 
the following requirements for the DSMS.

  • Data models and queries must support order and time based operations.
  • Summarized information is stored, owing to the inability of entire stream storage.
  • Performance and storage constraints do not allow backtracking over a stream.
  • Real-time monitoring applications must react to outlier data values.
  • Shared execution of many continuous queries is needed to ensure scalability.

DBMS comparison with DSMS

There are three main differences while comparing DSMS with the DBMS. First they 
do not directly store the data persistently rather keep the data in the main memory for 
some time for autonomous predictions to respond to outlier values, such as fire alarm, 
emergency situations as in healthcare domain etc [42]. Therefore DSMS computation is 
generally data driven, i.e. to compute the results as the data is available. In such cases the 
computation logic always resides in the main memory in the form of rules or queries. 
On the other hand DBMS approach is query driven, i.e. to compute the results using 
queries over permanently stored data. Because of data driven nature, the very first issue 
which DSMS must solve is to manage the changes in data arrival rate during a specific 
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query lifetime. Second, it is not possible to keep all the previous streams in the memory 
due to their unbounded and massive nature. Therefore only a summary or synopsis is 
kept in the memory to answer the queries whereas the rest of the data is discarded [21]. 
Third, since we cannot control the order of the data arrival, critical to consider the order 
of the arrived data values, hence their temporal attribute is essential. In order to handle 
the unboundedness of the data, the fundamental mechanism used is that of window - 
which is used to define slices upon the continuous data to allow correct data flow in 
finite time [42].

Data-driven computation, unbounded streams and timestamped data are the main 
issues that have arisen while dealing with streaming data, such as during sensor data 
acquisition in monitoring scenarios. This poses novel research challenges and exciting 
directions to follow with focus on temporal model, techniques and algorithms. These 
issues need proper management for any of the relational, object-relational or big data 
management research paradigms; and aim at data modeling and successfully exploit-
ing the time-dependent characteristics for these paradigms ranging from the temporal 
based models to query models. Although the directions, developed in previous years for 
the relational or object-relational domains, provide the basic fundamental footsteps to 
follow; but require further insights to tackle the advanced Big Data challenges [31, 41]. 
In particular the emerging real-time data-driven applications, having volumes of vari-
ous data velocities, demand such research inputs to bring number to advantages to the 
Information and Communication Technology (ICT) world, specially in promoting IoT 
and Web 2.0 and 3.0. Hence it is becoming mandatory to tackle the challenges associated 
with temporal data streams for which the relational database management systems have 
given in.

Limitations of RDBMS
This section explains what traditional relational approaches lack, why they are not best 
fit for managing time-variant, dynamically large and flowing data. This absence has 
opened the door for a disruptive technology to enter into the market and to gain wide-
spread adoption in the form of NoSQL databases, as it offers better, efficient, cheaper, 
flexible and scalable solutions [43]. Features lacking in RDBMS are:

  • Flexibility RDBMS restrict the applications to a predefined schema; so any change 
in the application requirements will lead to the redefinition of the database schema 
[8, 9]. Using RDBMS the developers have to rely on the data architects or modelers, 
as they miss developer centric approach from application inception to the comple-
tion [10]. Even in the case of the schema evolution especially in dynamic applications 
scenarios [9], as this is observed in information changing scenarios during dynamic 
events generation in new generation systems [11]. NoSQL systems have a strong 
coupling between data models and application queries, so any change in the query 
will require changes to the model, which is flexible [10]. In contrast to this RDBMS 
systems have logical and physical data independencies, where database transaction 
queries come into play only when the data model is defined physically [10].

  • Scalability Over more than half a century RDBMS have been used by different 
organizations as they were satisfying the need of business dealing with static, query 
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intensive data sets since these were comparatively small in nature [44]. For the large 
data sets the organizations had to purchase new systems as add-on to the system, as 
the single server host the entire database. For scaling we need to buy a large more 
expensive server [43]. For the big data applications RDBMS systems are forced to use 
distributed storage, which includes table partitioning, data redundancy and replica-
tion; because of disk size limits and to avoid hard disk failures [10]. Such data dis-
tribution involve multiple table joins, transaction operations running upon multiple 
distributed nodes, disk lock management and ACID (atomicity, consistency, isola-
tion, and durability) compliance hence affect the performance adversely. The notion 
of vertical scalability allows the addition of more CPUs, memory and other resources 
[8]; but quickly reaches its saturation point [10].

  • Data structures RDBMS were in the era when the data was fairly structured, but now 
due to the advent of new generation trends, such as IoT, Web 2.0 etc. the data is now 
no more statically structural [43], which involves unstructured data (e.g., texts, social 
media posts, video, email). Therefore RDBMS database transactions and queries 
come to play their role in already designed data models; in contrast to the NoSQL 
databases, which support application specific queries and allow dynamic data mod-
eling [10].

  • Source codes and versioning Relational databases are typically closed source with 
licensing fees. Off-the-shelf RDBMS do not provide support for data versioning, in 
contrast to the NoSQL databases which support natively [10]. A list of open and 
closed source NoSQL databases is present in [45].

  • Sparsity RDBMS databases when deal with large data sets, upon missing values there 
is possibility of a lot of sparsity in the data sets.

Data proliferation, schema flexibility and efficient processing are the problems appearing 
during the development of latest data-driven applications, as we learned in "Introduc-
tion". We learned that RDBMS are not sufficient to deal these issues, and don’t meet 
the latest requirements of the next generation real-time applications [24, 31, 33]. Vol-
ume, Variety and Velocity are the three corresponding big data characteristics [10, 18, 
46], which are discussed in "Big data management frameworks", which is about a precise 
discussion regarding big data frameworks.

Big data management frameworks
A big data management framework means the organization of the information accord-
ing to the principles and practices that would yield high schema flexibility, scalability 
and processing of the huge volumes of data, but for which traditional RDBMSs are not 
well suited and becomes impractical. Therefore, there is a need to devise new data mod-
els and technologies that can handle such big data. Recent research efforts have shown 
that big data management frameworks can be classified into three layers that consist of 
file systems, database technology, and programming models [19]. However in this article 
we shall focus upon database technologies only in context of the healthcare domain with 
real-time and temporal perspective.

NoSQL also be interpreted as the abbreviation of “NOT ONLY SQL” or “no SQL at all” 
[45], whereas this was first used by Carlo Strozzi in 1998 for his RDBMS that did not offer 
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an SQL interface [47]. NoSQL databases are often used for storing of the big data in non-
relational and distributed manner, and its concurrency model is weaker than the ACID 
transactions in relational SQL-like database systems [14]. This is because NoSQL systems 
are ACID non-compliant by design and the complexity involves in enforcing ACID prop-
erties does not exist for most of them [10]. For example some of the ACID compliant 
NOSQL databases are: Redis [48], Aerospike [49] and Voldemort [50] as key-value stores 
[51]; where as Neo4jDB [52] and Sparksee are as graph-based data stores [8, 51]. In con-
trast to this MongoDB is not ACID compliant document-oriented database [8].

The V’s of big data

The V’s of big data is paramountly, even in healthcare, refer to as mainly for Volume, 
Variety, Velocity and Veracity [14]. The first three V have been introduced in [53], and 
the V for Veracity has been introduced by Dwaine Snow in his blog Thoughts on Data-
bases and Data Management [54].

Volume Prolific data at scale creates issues ranging from storage to its processing.
Velocity Real-time data, data streams—analysis of streaming data, data snapshots in 

the memory for quick responses, availability for access and delivery.
Variety Many formats of data—structured, unstructured, semi-structured, media.
Veracity Deals with uncertain or imprecise data, its cleaning before the processing. 

Variety and Velocity goes against it as both do not let to clean the data.

NoSQL database categories

Based on the differences in the respective data models, NoSQL databases can be organ-
ized into following basic categories as: key-value stores, document databases, column-
oriented databases and graph databases [10, 14, 19, 20].

Key‑value stores

These are systems that store values against the index keys, as key-value pairs. The keys 
are unique to identify and request the data values from the collections. Such databases 
has emerged recently and are influenced heavily by Amazon’s Dynamo key-value store 
database, where data is distributed and replicated across multiple servers [62]. The val-
ues in such databases are schema flexible and can be simple text strings or more complex 
structures like arrays. The simplicity of its data model makes the retrieval of information 
very fast, therefore supports the big data real-time processing along the scalability, reli-
ability and highly available characteristics. Some of the key-value databases store data 
ordered on the keys, such as Memcached [55] or Berkeley DB [66]; while others do not, 
such as Voldemort [50] etc. Whereas some keep entire data in memory, such as Aero-
spike [49], Redis [48]; others use it after writing it to the disk permanently (like Aero-
spike, MemcacheDB [56] etc.) with the trade-off replying to the queries in real-time. The 
scalability, durability and flexibility depends upon different mechanisms like partition-
ing, replication, object versioning, schema evolution [19]. Sharding, also known as par-
titioning, is the splitting of the data based upon the keys; whereas the replication, also 
known as mirroring, is the copying of the data to the different nodes.

Amazon’s Dynamo and Voldemort [50], which are used by Linkedin, apply this data 
model successfully. Other databases that use this model of data category are such as: 



Page 8 of 35Mehmood et al. J Big Data  (2017) 4:8 

Redis [48], Tokyo Cabinet [67] and Tokyo Tyrant [68], Memcached [55] and Mem-
cacheDB [56], Basho Riak [60], Berkeley DB [66] and Scalaris [69]. Whereas Cassandra 
is a hybrid of key-value and column-oriented database models [57]. Table 1 summarizes 
the characteristics of some of the Key-value stores.

Column‑oriented databases

Relational databases have their focus on rows in which they store the instances or the 
records and return rows or instances of an entity against a data retrieval query. Such 
rows posses unique keys against each instance for locating the information. Whereas 
column-oriented databases store their data as columns instead of the rows and use index 
based unique keys over the columns for the data retrieval. This supports attribute level 
access rather than the tuple-level access pattern.

Only query relevant necessary columns are required to be loaded, so this reduce the 
I/O cost significantly [70]. These are good for read-intensive applications, as they only 
allow relevant data reads because each column contains contiguous similar values; so 
calculating aggregate values will also be very fast. More columns are easily addable and a 
column may be further restructured called super-column, where it contains nested (sub)
columns (e.g., in Cassandra) [14]. Super columns are key-value pairs, where the values 
are columns. Columns and super-columns are both tuples with a name and value. The 
key difference is that a standard column’s value is a string, whereas a super-column’s 
value is a map of columns. Super-columns are sorted associative array of columns [71].

Google’s Bigtable, which played the inspirational role for the column databases [74], is 
a compressed, high performance, scalable, sparse, distributed multi-dimensional database 
built over a number of technologies, such as Google File System (GFS) [75], a cluster man-
agement system, SSTable file format and Chubby [76]. This provides indexes over rows, col-
umns, as well as a third timestamp dimension. Bigtable is designed to scale across thousands 
of system nodes and allows to add more nodes easily through automatic configuration.

This was the first most popular column oriented database of its type however latter 
many companies introduced some other variants of it. For example Facebook’s Cassan-
dra [77] integrates the distributed system technologies of Dynamo and the data model 
from Bigtable. It distributes multi-dimensional structures across different nodes based 
upon four dimensions: rows, column families, columns, and super columns. Cassan-
dra was open sourced in 2008, and then HBase [72] and Hypertable [78], based upon a 
proprietary Bigtable technology, have emerged to implement similar open source data 
models. Table  2 provides the description about some column-oriented databases in a 
categorical format.

Graph databases

Graph databases, as a category of NoSQL technologies, represent data as a network of 
nodes connected with edges and are having properties of key-value pairs. Working on 
relationships, detecting patterns and finding paths are the best applications to be solved 
by representing them as graphs. Neo4j [52], Allegro Graph [79], ArangoDB [80] and Ori-
entDB [81] are few examples of such systems, and are described along their characteris-
tics in a categorical format in Table 3. Neo4j is the most popular open source, embedded, 
fully transactional with ACID characteristics graph-based database. This is schema 
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flexible to store data as a network of nodes, edges and their attributes. This also supports 
custom data types with its Java persistence engine. Neo4j does not support graph shard-
ing on different nodes, rather it supports in memory cache sharding [52, 82]. The reason 
having that, the mathematical problem of optimally partitioning a graph across a set of 
servers is near-impossible (NP complete) to do for large graphs [82]. Whereas Allegro-
Graph is a Resource Description Framework (RDF) [83] triple store for linked data and 
widely used by different organizations, such as Stanford University, IBM,Ford, AT&T, 
Siemens, NASA and United States Census department.

Document databases

These are the most general models, which use use JSON (JavaScript Object Notation) or 
BSON (Binary JSON) format to represent and store the data structures as documents for 
the data management. Document stores provide schema flexibility by allowing arbitrar-
ily complex documents, i.e. sub-documents within document or sub-documents; and 
documents as lists. A database comprises one or more collections, where each collec-
tion is a named group of documents. A document can be a simple or complex value, a 
set of attribute-value pairs, which can comprise simple values, lists, and even nested sub 
documents. Documents are schema-flexible, as one can alter the schema at the run time 
hence providing flexibility to the programmers to save an object instances in different 
formats, thus supporting polymorphism at the database level [92]. Figure  1 illustrates 
two collections of documents for both students and course within an academic manage-
ment System. It is evident that a collection can have different formats of documents in 
JSON format and they have hierarchies among themselves, such as courses has an attrib-
ute books which contains a list of sub-documents of different formats.

Fig. 1 Example of a documents-oriented database for the academic domain
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These databases store and manage volumes of collections of textual documents (e.g. 
emails, web pages, text file books), semi-structure, as well as no structure and de-nor-
malized data; that would require extensive usage of null values as in RDBMS [93]. Unlike 
key-value stores, the document databases support secondary indexes on sub-documents 
to allow fast searching. They allow horizontal scaling of the data over multiple servers 
called shards. MongoDB [38], CouchDB [88], Couchbase [89], ReThinkDB [90], and 
Cloudant [91] are some of the most popular document-oriented databases, as shown 
in the Table 4 in a categorical format along their different characteristics. Among these 
MongoDB is the most popular one due to its efficiency, in memory processing and com-
plex data type features [94]. The other databases such as Couchbase, ReThinkDB, Cloud-
ant and CouchDB do not offer in-memory processing features; although the former 
three offer a list of data types. MongoDB query languages more like the SQL of RDBMS, 
so is easy to use for the programmers. MongoDB is good for the dynamic queries, which 
the other document-oriented databases lack, such as CouchDB or Couchbase [95]. 
Besides this there are different object relational mapping middlewares available [96], to 
define out of the box multiple schemas depending upon the application requirements. 
The object nature of MongoDB documents makes this mapping even more fluid and 
fast, such as while using Mongoose [96] or Morphia [97].

Document databases: MongoDB

MongoDB, created by 10gen in 2007, is a document oriented database for today’s appli-
cations which are not possible to develop using the traditional relational databases 
[98]. It is an IoT database which instead of tables (as in RDBMS) provides one or more 
collection(s) as main storage components consisted upon similar or different JSON or 
BSON based documents or sub documents. Documents that tend to share some of the 
similar structure are organized as collections, which can be created at any time, without 
predefinitions. A document can simply be considered as a row or instance of an entity in 
RDBMS, but the difference is that, in MongoDB we can have instances within instances 
or documents with in documents, even lists or arrays of documents. The types for the 
attributes of a document can be of any basic data type, such as numbers, strings, dates, 
arrays or even a sub-document.

MongoDB provides unique multiple storage engines within a single deployment and 
automatically manages the movement of data between storage engine technologies using 
native replication. MongoDB 3.2 consists of four efficient storage engines as shown in 
Fig.  2, all of which can coexist within a single MongoDB replica set [99]. The default 
WiredTiger storage engine provides concurrency control and native compression with 
best storage and performance efficiency. MongoDB allows both the combinations of in-
memory engine for ultra low-latency operations with a disk-based engine for persistence 
altogether.

It allows to build large-scale, highly available, robust systems and enables different sen-
sors and applications to store their data in a schema flexible manner. There is no data-
base blockage, such as we encounter during alter table commands in RDBMS during 
schema migrations. However in rare cases, such as during the write-intensive scenarios 
in master-slave nature of MongoDB there may be blockage at the document level or bot-
tleneck to the system if sharding is not used, but these cases are avoidable. MongoDB 
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enables horizontal scalability because table joins are not as important as they are in the 
traditional RDBMS. MongoDB provides auto-sharding in which more replica server 
nodes can easily be added to a system. It is a very fast database and provides indexes 
not only on the primary attributes rather also on the secondary attributes within the 
sub-documents even. For the cross comparison analysis between different collections 
we have different technologies, such as aggregation framework [100], MapReduce [101, 
102], Hadoop [14, 19] etc. These processing techniques will be targeted in future and are 
not currently focused in this paper. Next we discuss the data modeling methodologies, 
which is followed by a data model description we used for the storage of the real-time 
temporal data of ANT+ sensors in the healthcare domain.

Modeling aspects
The representation of the concepts of data structures required by a database is called a 
data model. A data model determines the logical structure of a database and basically 
decides in which manner the data can be stored, organized, and manipulated. Such data 
structures decide the data objects and their relationships and the semantic data rules 
they govern. In software engineering data modeling is a process to create data models 
for an information system. There are mainly three types of data model instances, i.e. con-
ceptual, logical and physical [103]. Conceptual data modeling defines the semantics of 
an application domain, to elaborate the scope of the model, in order to identify the vari-
ous entities and relationships needed in an application. Logical data model is similar to 
conceptual, but with more details, which defines the structure of a domain of informa-
tion. It is also called as a schema model, as it describes the objects with their proper-
ties and relationships to determine the structure of the data, whereas the physical data 
model concerns the physical storage of the data.

Although NoSQL approaches provide schema flexibility to the developers which allow 
them to store different formats of same entity’s instances in a single storage collection, 
but for the rationality, sanity and demonstrating the storage structure they still have to 
follow some sort of format logically, at least at the application level and then to store the 
data in the selected format(s). In this way one can define as many schema formats for 
a single entity and the same collection will allow the storage to all of them, given that a 
logical rationality has been maintained through out the definitions, as shown in Fig. 3. 
Applications treat each schema differently based upon different logics using advanced 

Fig. 2 Flexible storage architecture, optimising MongoDB for unique application demands [99]
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programming, such as object oriented principles in the form of polymorphism, classes 
inheritance or object arrays etc. Hence developers eagerly define and model the schemas 
that yield robust characteristics for their problem domain in general. The initial research 
regarding NoSQL database modeling and insights is provided in [104, 105]. Bugiotti et al. 
deal with NoSQL modeling approaches in general [106]. How to have NoSQL related 
approaches inside the relational databases is discussed in [107]. For the initial thoughts 
about NoSQL modeling and its comparison between traditional relational models and 
NoSQL models is provided in [102]. A study about normalization and de normalization 
during the data modeling is done in [108].

Note that because the document-oriented data models allow sub-documents embed-
ding, so hierarchical principles are their core features; and this create opportunity for 
the sub-entities to get embedded and to play the role. A collection can refer to one or 
more models, as shown in Fig.  3. A schema can have a single model representing an 
entity or can have multiple models representing more entities (may be hierarchical). For 
example in Fig. 1, we model two course documents for a course entity. The document 
titled as “Programming” is quite simple, whereas the document titled as “data structures” 
has a tree structure where a sub-entity books is shown at the second level. Similarly, two 
structures are shown for the student collection, where the first with name “Scott” is sim-
ple and the second with the name “Neo” contains a hierarchy. Therefore the collections 
having different schemas are actually having different format logics and must be treated 
differently.

What and how to model a schema for NoSQL or RDBMS ?

New technologies such as XML and NoSQL databases have put doubts on the useful-
ness of data models, but this is not the case because the significance of data models will 
always remain inevitable to understand and demonstrate the logical and storage struc-
tures of the data [8]. Regardless, NoSQL databases are schema flexible and support mul-
tiple schemas but in reality they actually support multiple variants of schema, which is 

Fig. 3 Collections, documents and sub-documents in document oriented databases can refer to one or more 
schema models
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actually some sort of structural representation, if we differentiate and treat them individ-
ually. Therefore for such databases the terms like schema flexible would be more appro-
priate than schema less.

Mainly most RDBMS are built around one particular data model, although it is pos-
sible for a RDBMS to provide more than one data model to an application. Such data 
models are fixed structure and require a database locking for a certain period of time 
upon migration processes, such as from one version to another version, adding more 
attributes to a table etc. Also RDBMS use Data Definition Languages to generate data-
bases from the pre defined schema models [103]. Database designers use the traditional 
approach of Entity Relationship Diagrams (ERD) to concentrate on the database struc-
tures and constraints during conceptual database design [109]. ERDs are used to identify 
the main entities and their attributes for which the information is required to store in 
the database. Besides this it is also required to identify the relationships and relationship 
types between the entities, which lead to a natural and logical grouping of the attributes 
into relations during the mapping process from ERD’s to the relational schema [103]. In 
order to define the linking of different entities between each other, their relationships are 
investigated in context to the measurement of the cardinalities.

How good is a schema design?

To be rational about a schema and speaking in context of the RDBMS, during the map-
ping process, we still require some formal efforts to analyse why a relational schema, 
with a grouping of attributes, may be better than another. This goodness or measure-
ment of the quality of a structural or relational schema design follows the procedures of 
checking data redundancy and data dependency features extensively [110]. For a techni-
cal application domain, we should investigate and compare the available data modeling 
approaches to chose the best.

In general, we should consider all the requirements and constraints related to a prob-
lem domain, such as temporal, streaming, distributed aspects, multiple messages for-
mats and their attributes. Modeling for the schema flexibility this investigation needs 
intensive care; to allow the storage of multiple structural schemas. This way one main 
goal of big data can be achieved i.e. variety. It is to note that schema flexibility, such as 
provided by MongoDB, can permit all vendor devices to store data simultaneously with 
the time-stamp regardless of different message formats. In context of the IoT perspec-
tive, it supports storage independence of data related to any “thing(s)”.

Goals of normalization

Katsov in his online guide [104], discusses NoSQL data modeling techniques for all the 
NoSQL management frameworks in general. He says that denormalization and aggrega-
tion are the main fundamental design drivers, beside thinking about how the application 
would address the end user queries. RDBMS do normalization because of three goals, 
i.e (i) To free the database of modification anomalies, i.e. to update only one row in one 
table against a wrong instance entry, (ii) to minimize the redesign of the database, and 
(iii) to avoid biasness towards any particular access patterns. For the third point Mon-
goDB do not care at all, therefore with MongoDB we should not worried about being 
biased to a particular access pattern.
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One of the big advantage of RDBMS is that they keep the data relational, normalized 
and enforce the foreign Keys for the data consistency. But in MongoDB it is only upto 
the programmer to keep such a consistency, therefore MongoDB do not provide such 
a guarantee. Whereas on the other side, MongoDB allow the embedding of the entire 
document and in this case do not have to care about even about the foreign keys at all. 
With normalization RDBMS usually perform transactions based upon ACID principles, 
which MongoDB does not have to care about. However it allows atomic operations at a 
document level.

Normalization or embedding

Normalization was first introduced by E.F. Codd in the field of rational databases and 
is explained in many of the database related text, such as [110, 111]. In RDBMS the tra-
ditional practices are to properly normalize the database because it increases the data 
integrity and efficiency of the space utilization [103]. In denormalization we reject the 
splitting of the physical tables, and keep the data together in a single database table 
which have frequent access, to reduce the query processing time, as in this way we can 
avoid joins as well and the disk scanning at different location to answer the queries. Fol-
lowing can be the database schemas in normalized forms; for the de-normalized student 
and course collections depicted in Fig. 1.

Kanade et al. [108] did a study for NoSQL databases with both normalized and denor-
malized forms using a similar dataset, and have found that the embedded MongoDB 
data model provides a much better efficiency as compared to a normalized model. 
Therefore, Database designers have confronted that tight normalization degrades the 
system performance, hence they recommend to denormalize in many cases. Denor-
malization supports the data read performance, as the spinning disks have a very high 
latency; therefore the idea is to keep the data close and together to help avoid disk read 
overheads and to decrease the latency. Therefore, denormalization is a key feature of 
document databases to support efficient data retrieval and to optimize the data storage 
capacity by allowing dataset hierarchies.

Schema modeling using object relational mapping (ORM)

There exists a specific driver for each programming language, including few languages 
which are still not much popular, one can see here [112]. Recently a new trend is seen 
which provides facility to the programmers to develop NoSQL database applications 
through the usage of Object Relational Mapping (ORM) mechanisms. ORM is related 
with the mapping of programming language objects to the persistent data storage in 
the database and then to the objects usage in the application [113]. In this way the data 
becomes more fluid and natural both for the application as well as the used program-
ming language. There are different ORM available for Node.js to model schemas for 
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the MongoDB database, such as Mongoose [96, 114], Morphia [97], Iridium [115] and 
Node-ORM2 [116]. Among these Mongoose provide built-in automatic validation of the 
data which you are inserting/updating. Using Mongoose we can also pre-define events 
before a document gets saved. In this way we can place the code where it should be next 
to the document logic [117].

A beauty of MongoDB is that its documents are objects themselves, which performs 
this process even more easily, hence the MongoDB architecture lends itself very well to 
ORM as the documents. One example is mongo-Java-orm or “MJORM” a Java ORM for 
MongoDB [97, 118]. A plain old Java object (POJO) is an ordinary Java object, not bound 
by any special restriction or bogged down by framework extensions [119, 120]. One of 
the main advantages for using POJO is its decoupling from the infrastructure frame-
works [119]. POJOs accelerate the development process by separating the persistent 
object properties and business logic; hence facilitating the programmers to concentrate 
on one thing at a time; i.e, between the business logic and persistence storage. Other 
variants of POJO are described in [121–123], and the .Net framework variant of POJO is 
POCO [124].

ORM based on mongoose

Although storing accessing and manipulating data in MongoDB is not difficult, but still 
application developers find it more convenient and flexible to have a mapping layer 
between the application and the NoSQL database, as discussed above. Such a service 
is provided by an application layer middleware, which is mostly written in JavaScript 
and is designed to work in an asynchronous environment; and helps in validation, type 
casting, object mapping, document mapping, query building and building business logic. 
It can deliver direct, schema-based modeling solutions to an application in MongoDB 
database, for example Mongoose [96, 114]. We may think that, either if it consists upon 
the concepts which are not part of the MongoDB framework but are out of the box for a 
database management system. There are other ORMs also available, such as Mongorito 
[125], Ming [126] and Backbone-ORM [127].

Time series data modeling in MongoDB

As streaming data contains timestamp values within each sequenced message element. 
MongoDB is a great fit to handle timestamped data and many organizations are using it 
[128]. Some proprietary services are also available and popular in the community, like 
MongoDB Management Service (MMS) which models and displays the time-series data 
as a dashboard [129]. This facilitates a developer to develop visualization and alerts on 
different datasets using metrics.

Schema design for time series: a case study

It is beneficial to have a schema mapping out of the box; thus facilitating the program-
mers in developing scalable distributed systems more rapidly and flexibly. One can 
design as many schemas as possible for MongoDB as NOSQL databases are flexible for 
this purpose. But to be rational there is a tradeoff between different schemas, and as we 
learned that the level of normalization or de-normalization is important. This section 
discusses an approach described in a blog, which models time-series data for MongoDB 
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with respect to different levels of normalization [128, 130]. Before explaining the design 
approach for a NoSQL database; first let us observe, how an RDBMS handles time-series 
data. This is quite straightforward, i.e. by storing each event as a row within a Table. For 
example, a monitoring system stores a temperature sensor measurement in relational 
format, as shown in Table 5: But, this approach will save a single document in each row 
for MongoDB.

This doc-per-event approach does not take advantage from the document embedding, 
and there will be lot of latency in reading the data; for example around 3600 reads for 
1 min data, if the sensor transmits one message per second [130]. An alternative is, to 
have a single document-per-minute and to save the temperature value against each sec-
ond. Such an approach, as shown bellow, is better and more optimized in the context of 
the storage as well as data retrieval.

This model contains sub-documents as values, which are embedded in the main docu-
ment. To store one value per second (against a minute), we can simply represent each 
second as separate fields between 0 and 59, as shown in the above code listing. Such 
kind of approaches affect the efficiency of systems, in context of the number of inserts 
and updates. For example, for one hour read 60 total documents need to scan; and some 
systems copy the entire data to a new location against an update, which is not robust 
when the data is in large quantity. If the database also has to perform indexing after the 
copying process, it will affect adversely. A feature of MongoDB is that it can manage in 
place field-level updates as long as the size of the document does not grow more than a 
certain limit (i.e, 16 megabytes), which may also contain sub-documents [131]. However 
GridFS API of MongoDB provides flexibility to store a document more than the maxi-
mum size [132]. Conclusively, because field level updates are more efficient, so the docu-
ment-embedding is better than the relational design. Writes will be faster as: for updates 
(one per second) than for inserts (one per minute) [128]. Because instead of writing a 
full document at a new place we will actually request a much smaller update that can be 
modeled as described below for the temperature collection:

Table 5 TimeSeries data storage in a traditional RDBMS

Timestamp Temperature

2016-04-10T22:04:23.000Z 24.1

2016-04-10T22:04:24.000Z 24.1

2016-04-10T22:04:25.000Z 24.0
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A more compact approach is to store per second data at hourly level, i.e. doc-per-hour. 
It has two variants: (i) by second, and (ii) by minute. In the former case seconds are 
stored from 0 to 3599 for an hour. This approach cause extra workload during update 
operations, because to update the last second 3599 steps are required. To avoid docu-
ment movements pre allocation of the structure space is recommended. However the 
later case stores per-second data at the hourly level but with nesting documents for each 
minute. This approach is also update driven, but to update the last second it requires 
59 + 59 steps. The following MongoDB query depicts the later model, and it is followed 
by an update query to modify the last second.

and, to update the last second:
In the next section we select a real time use case regarding sensor network data and 

shall model the temporal properties of the message generated from different sensor 
devices.

Temporal modeling for an ANT+ sensor use case
To preserve the NoSQL schema flexible goals, i.e, data variety; the model should reside 
outside the database and should not be tied with it; and should provide a mirror to the 
programming language objects to get mapped seamlessly for persistent storage. The 
less energy resourced sensor devices do not communicate directly with the web serv-
ers rather they use a gateway, display device, PC, service or a running application. In 
our system, a monitoring Windows service transmits the ANT+ sensor data in near 
real-time over the WebSockets protocol, where as the NodeJS [96] context data server 
accepts, processes and stores the JSON messages in MongoDB database according to 
the defined schema models. The context data server is a NodeJS based JavaScript engine, 
which provides a WebSockets based interface for the communication middleware layer 
and data processing. The server uses the Mongoose based schemas for the direct docu-
ment mapping to persistently store the JSON messages. Figure 4 depicts a general view 
of the real-time distributed system architecture for the prototype; whereas the complete 
architecture components are explained in [133]. For temporal storage, data integration 
and schema evolution the server executes relevant ANT+ device profile related Mon-
goose schema based storage algorithms against the specific event notifications.

To illustrate the approach through a prototype, we deal with three ANT+ wearable 
sensor categories, such as heart rate, foot pod and temperature to monitor a patient’s 
body parameters [34, 133]. Next we shall rationally observe the temporal modeling 
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perspectives of the ANT+ sensor data and will learn the Mongoose schema based algo-
rithm to evolve the schema during the data integration process.

Collection identification vs. entity and entity relationships’ identification: What to model?

An important question during document-oriented schema flexible modeling is what to 
model for an application. The ANT+ message protocol and usage document guides us 
to work with sensor nodes and to identify the device’s messages in general [134]; but for 
more detailed understanding of each device type’s data semantics we should follow the 
message format principles described in specific ANT+ Device Profile documents, such 
as Environment profile for temperature sensor [135], Stride Based Speed and Distance 
Monitor profile for footpod sensor [136] and Heart Rate Monitor profile for heartrate 
sensor [137]. A device profile is a defined standard, which confines all the vendors to 
manufacture their devices according to the rules and principles defined by ANT+ Alli-
ance. Therefore, if a profile indicates about transmitting a message it means that all the 
vendor devices will transmit it, hence we can perform in general similar operations to 
the data of a specific type of all the sensors that meet a particular profile. ANT+ devices 
transmit monitoring data in the form of data messages which are specific to a profile 
type. Next we discuss the software engineering process of data modeling for the ANT+ 
sensors. We shall be rational during the time-series sensor data modeling for the Mon-
goDB document oriented database, and shall also discuss the relational modeling (i.e., 
denormalization) with respect to our healthcare use case for the comparison purpose. 
The following descriptions expose the attributes of the chosen sensors.

Temperature It transmits current, minimum (in previous 24 h) and maximum (in pre-
vious 24 h) temperature in Centigrade (C◦). With each measurement it also transmits 
the transmission information, timestamp and the number of event counts—which incre-
ments with each measurement.

Footpod A footpod measures speed, cadence, distance, duration, strides accumulated 
and distance accumulated in meters/second, strides/minute, meters, seconds, number of 
strides and meters as measurement units respectively.

Heart rate monitor It measures and transmits the heart rate in beats per minutes 
(bpm), with heart beat variability, event count and timestamp.

If we consider the profile type as an entity then such data messages will be the attrib-
utes of that actually. The three sensors are actually the instances of the device entity, 
but should be treated separately because they do not share attributes. So we allocate 
a separate MongoDB collection to each sensor category and define its schema for the 

Fig. 4 MongoDB storage architecture: WebSockets based real-time interface with middlewares for JSON 
message processing, storage and evolution according to the schema model(s) [133]
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document storage. It is to note that a sensor will always have a unique serial number, 
manufacturer and model number, although the devices can share manufacturer ids, 
device types etc.

However, there are messages which most devices transmit, and those are not specific 
to a profile standard; therefore they can be treated as separate common entity with a ref-
erenced instances to the relevant sensors. Such common messages are called as common 
data pages or background messages [138]. For example devices transmit their informa-
tion such as battery status, message rate, manufacturer or hardware information etc. We 
treat such messages differently during processing and storage depending on the schema 
model. Our storage server accepts two types of JSON messages from the sensors: (i) per-
minute timestamped holding sensor data, and (ii) per-hour timestamped holding device 
information and other healthcare data depending on the use case.

Because a user can use more than one sensor at a time, so user ID will be an attrib-
ute of each sensor instance. Based on these guidelines an entity relationship diagram is 
depicted in Fig. 5, which shows the possible attributes, relationships, relationship types 
and primary keys. Then a relational model is drawn in Fig. 6 in 1st and 2nd Normal Form 
(1NF) [103].

Discussion w.r.t RDBMS In context to the RDBMS, this model although supports 
sensor data storage but it has many flaws, like many joins are required while query-
ing the data for a patient at a particular time. There will be many null values because 
sensors will not transmit all the attribute values altogether. If we want to resolve this 
issue then we will end-up only with three columns in each of the sensor table i.e. 
SensorTable(timestamp, value, event count). This is similar to saving every event mes-
sage, but this will not be robust for SQL as well as for NoSQL because there will be 
insertion and update issues besides the computation processing issues, such as aggre-
gates etc.

Discussion w.r.t MongoDB Considering each entity as a possible document collection 
will require joins between them which document-oriented databases do not support 
natively. However it is possible either within the application or by using data process-
ing analysis tools such as aggregation framework [100], MapReduce [101, 102], Hadoop 
[14, 19] etc. With document-oriented databases we do not have problems with the null 
values because of schema flexibility, however interestingly, in such a case we will again 
end-up with the same every event storage sort of structure, as discussed in the previous 

Fig. 5 Entities and their attributes with respect to the discussed use case
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discussion. Such a scenario although supports the event message storage but is not 
robust with respect to processing and efficiency. We shall discuss it in the next sections.

Timestamped based cardinalities

A message rate is measured in cycles per second and its unit for frequency is Hertz (Hz). 
We discuss the data messages of the three device profiles with respect to their allowable 
message rates. The discussion provides us to calculate that how many instances of a cer-
tain sensor data message will appear against a time value, such as seconds, minutes and 
hours; and Table 6 summarizes the discussion.

Temperature This environmental device broadcasts only at minimum 0.5  Hz or the 
maximum 4.0 Hz message periods therefore once per 2 s or once per 0.25 s respectively.

Footpod A device can receive data at the full rate ( 4.03 Hz) or at half of this rate, there-
fore once per 0.248 s or once per 0.498 s respectively.

Heart rate monitor It transmits at the full rate ( 4.06 Hz) or at one half or one quarter 
of this rate; therefore the data can be received four times per second, twice per second, 
or once per second.

Common messages or background messages appear after 64 data messages of each 
device profile type [138]. In context to the time it depends upon the message rate, for 
example, heartrate with a message rate of   2.03 Hz will transmit almost 2 messages 
per second, therefore in this case a background message will appear after 30 seconds 

Fig. 6 Data model with entities and their attributes for the use case
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approximately, whereas with the message rate of  1.02 Hz (which is the minimum pos-
sible message rate) we shall never receive two background messages in a single same 
minute roughly. It is also to notice that such information do not change rapidly, so we 
may not require to store every received message, hence it is better to store it either after 
every 10, 15 or 20 minutes or only once per hour.

Normalization or embedding: How good is the model?

Designing a better model is the main goal, and its process encounters the tradeoff 
between normalization and denormalization. For this we observe the examples for three 
different approaches to model the time-series data in MongoDB, i.e. document-per-
event, document-per-minute and document-per-hour. All these three approaches are 
different in context of document embedding, and result in different storage space and 
hence data retrieval. We have already discussed the document-per-event scenario previ-
ously in the same section during the discussion w.r.t RDBMS. We learned that in such a 
case the outcome will be the three columns in each of the sensor table i.e. SensorTable 
(timestamp, value, event count).

Data Stream Management Systems (DSMS) are prone to the message arrival rates, and 
need adjustments upon any change in the rate. The current prototype does not support 
this automatic adjustment. Therefore, to be simple in the current prototype the least 
message rates of the sensors are used. We used the document-per-hour approach with 
the nested minute documents carrying 0-59 second documents. This approach requires 
one insert initially for the hour document, and then only updates are required for each 
new second value. To update the last second it requires maximum 59 + 59 steps. Next 
section presents the Mongoose based schema model based upon the chosen approach 
for the heart rate profile.

Mongoose doc-per-hour schema for heart rate sensor
Since the above three versions of the embedded document storage differentiate the data 
into hour, minute and seconds, therefore before going to present the Mongoose schema, 
the first step is to separate the hourly, minute and second level data from the heart rate 
sensor payload. As stated already, background messages mostly relate with the hardware 
information of the sensor device itself, and appear only after 65 other data messages 
[139], therefore we keep them at the hourly level for the initial prototype. Since hour-
level document will be a separate document therefore it will also keep a reference of the 
patient, as well as the start and end timestamps.

Table 6 Data messages cardinalities with respect to allowable message rates

Device profile Message rate (Hz) Seconds Minutes Hours

Temperature 0.5 0 30 1800

4.0 4 240 14,400

Foot pod 2.01 2 120 7236

4.03 4 241 14,508

Heart rate 1.02 1 61 3672

2.03 2 121 7308

4.06 4 244 14,616
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The minutes document will keep seconds’ sub-document inside it. Each second’s sub-
document will have the heart rate data, i.e heart beat, variability and event count. The 
ERD in Fig. 5 and data model in Fig. 6 depict these attributes. The Fig. 7a shows an in 
general denormalized model for the heart rate sensor, in which the main SchemaSensor 
(for hours) contains the SchemaMinute (for minutes), which further contains Schema-
Second as the second’s sub-document schema. Alongside the Fig. 7b shows an in general 
Mongoose schema pseudocode for the denormalized schema. We can observe that most 
of the values will be at the seconds level, i.e, Heart beat, heart rate variability and event 
count as the measurements.

Mongoose schema base temporal data storage and evolution

We require to define a finite set of sequenced steps, to store a JSON message instance 
related to an ANT+ profile type. They must perform logically correct updates to a 
database, leaving it consistent and concurrent after the manipulations. Following is the 
description of the storage algorithm which accepts JSON formatted sensor data mes-
sages to store and evolve the chosen schema model for the MongoDB. This is based 
upon the Mongoose object mapping middleware, which is first used to define the time-
series schema model, as in Fig.  7 depicting the rationality and storage structure. The 
algorithm will use the object of the Mongoose schema model to perform the inserts and 
the updates to the document database, and such manipulations must be performed in a 
manner that the new data integration would result into a storage formation as defined 
and desired in the model. For this purpose the manipulations need to be done in a con-
trolled logical manner and require an algorithm for this purpose. For the above stated 
Mongoose schema i.e, SchemaSensor, the set of tasks which the NodeJS Data Server will 
execute once for each new specific sensor event, for the JSON formatted sensor payload, 
is provided in the flowchart depicted in Fig. 8. This flowchart shows the logic of the algo-
rithm and emphasises the individual steps and their interactions in a controlled manner 

Fig. 7 The denormalized schema and the Mongoose schema for the heart rate sensor



Page 27 of 35Mehmood et al. J Big Data  (2017) 4:8 

from one action to another. This also depicts how the data flow will take place within the 
doc-per-hour schema based upon the Mongoose object mapping middleware. Figure 8 is 
preceded with JavaScript code presented in listing , which is the implementation of the 
data integration and schema evolver algorithm defined in the flowchart.

Fig. 8 The flowchart of the Mongoose based schema evolver algorithm
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The temporal storage algorithm will use a list of input variables, such as Schm: a Mon-
goose Schema; args: a set of JSON arguments; rq: the request object; qryHr: the query 
criteria to find the hour document; hrDoc: the JSON object representing the Hour 
document object; and similarly the criteria for minutes along the minutes and second 
sub-document variables. The sensor schema in JavaScript will be imported first and 
will initialize the main schema object variable i.e., Schm (lines 1–2). The Schm object 
will be the mapper between the language constructs and the persistency of data in the 
MongoDB, and will help also in evolving the database according to the desired temporal 
schema logic. It first queries the database for the hours-level document based upon the 
time-interval provided in the request object (i.e, rq in line 4). The (qryHr) is a MongoDB 
query (in line 5) having the parameter and the projection parameters to fetch the rel-
evant hour’s document. For example the following code constructs the query parameter 
to fetch the document where the hrmHour is equal to dateHours and patient is userid.

In Asynchronous JavaScript programming the functions return the results in the last 
argument i.e., the callback; therefore the result will be returned in the hrDoc object. The 
listing is self explanatory and is having correspondent with the flowchart. If the hrDoc is 
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found in line 6, the algorithm will go on searching for the minutes document, as in line 7; 
otherwise will move to line 18 for a new declaration and creation of the hours document.

Schema for foot pod and temperature and in general approach

The same kind of schema as we saw for the heart rate sensor is possible for the foot pod 
and temperature sensor. The difference will be mainly for the second’s level values. The 
denormalized schema design for the foot pod sensor, the seconds’ level documents will 
hold the values regarding the distance, duration, speed and cadence; where as in the case 
of temperature this will hold the values for low, high and current temperature. Similarly 
the data integration and schema evolving algorithm will also have the similar kind of 
sequence of steps for these sensors, with some modifications in context to the seconds’ 
level documents and other profile specific values.

Issues

In MongoDB schemas are sometimes prone to update problems related with the deep 
nested arrays. For example, the “seconds” dimension contains deep nested arrays of 
JSON objects. When this is periodically updated upon receiving values, the algorithm 
evolution sometimes result in an error. The author tried to investigate the problem and 
found that this is because of the limits in the MongoDB engine in context to updating 
the deep nested schemas having arrays. The engine currently does not support several 
positioning operator (i.e, “$”) based updates to the nested arrays.1 Only a limited num-
ber of positional operators are currently being supported. During the prototype testing 
the schema and relevant algorithm has worked successfully, and only misses few values 
because of this. The problem is discussed in an online thread,2 and has solutions that 
either to avoid deep nested schemas, or to wait for a fix. Speaking in general the 
approach presented in this paper is still useful and valuable for usage to define rational 
document-oriented schemas and to develop relevant algorithms for data integration and 
evolution. The next we discuss the related work regarding temporal aspects modeling for 
sensor data.

Related work
Some related work in context of data modeling for the NoSQL databases is already 
pointed out very briefly during the previous subsections. A lot of data modeling stud-
ies has already been conducted by different researchers for NoSQL databases, but non 
has provided in depth study for the ANT+ sensor data especially to preserve the data 
based on temporal properties, therefore this research is novel in context to the schema 
flexible time series of the ANT+ data. The authors in [140] and [8] make models for 
the NoSQL databases, such as MongoDB; and present both relational and non-relational 
database queries to have a comparison between them. While using simple select queries, 
the former researchers present that joins are not required during NoSQL based retrieval, 
whereas they are required during SQL based approach. More using MongoDB queries 
the data is stored in single document or if needs to store in different documents then 

1 https://jira.mongodb.org/browse/SERVER-831.
2 http://stackoverflow.com/questions/14855246/multiple-use-of-the-positional-operator-to-update-nested-arrays.

https://jira.mongodb.org/browse/SERVER-831
http://stackoverflow.com/questions/14855246/multiple-use-of-the-positional-operator-to-update-nested-arrays
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documents are related by using reference fields. The latter approach present a schema 
modeling case study for both relational and non-relational databases. They explain that 
each NoSQL database has its own query language, such as CQL (Cassandra Query Lan-
guage) for Cassandra, MongoDB Query Language for MongoDB, Cypher Query Lan-
guage for Neo4j etc. The latter research presents more general results and show query 
syntax for three databases, i.e PostgreSQL for relational database, MongoDB query 
language for MongoDB and Cypher query language for Neo4j. They explain that these 
NoSQL databases may require extra storage space, because of denormalized data, but 
results in overall improvements in performance, flexibility and scalability. However they 
do not deal with modeling for the temporal aspects.

Similarly Bugiotti et  al. [106] design for a selected NoSQL framework, is based on 
best practices and guidelines. They provide a methodology, independent of the specific 
target system, which depends upon the initial activities of software design. They make 
novel data model for NoSQL databases, named as NoAM (NoSQL Abstract Model). 
After outlining the commonalities of various NoSQL systems, they specify a system-
independent representation of the application data. They treat collections separately 
as abstract model or table, as in this system. However we have discussed and used the 
approach to model time series schema design in MongoDB with different variants dur-
ing the research and the prototype development [128]. Same approach is used for differ-
ent application domains in [141] and [142].

Vera et al. [143] proposes a general data modeling standard in the form of ERD dia-
grams for document-oriented databases. Parker et  al. [144] compare the performance 
of NoSQL database, MongoDB, with one of the relational database, SQL Server. Their 
study shows that for a modest amount of data the performance of MongoDB is equal 
or better than the relational database. During this study they consider the three main 
aspects for performace i.e.,insert speed, update speed, and select operation speed. In 
[12] the authors perform a comparison of 14 different NoSQL Databases based on their 
data models, query possibilities, partitioning, and replication opportunities. They rec-
ommend to use NoSQL databases for fast operations over very large datasets. Following 
section guides us how we can improve our work in future.

Future work
For the temporal storage of the ANT+ sensor data messages there is a lot of potential for 
one to extend this work, especially in context to the adjustment of the different arrival 
rates and by offering different different storage models to each of them. This may require 
different schema models for each message rate. The other schema techniques also need 
attention (i.e., doc-per-minute, etc.) along the algorithm development for the data inte-
gration and the schema evolution. In future, we plan to have a comparison between 
the the exact storage measurements with respect to different schema models. For both 
relational and NoSQL models, such query based data measurement and comparison 
would reveal valuable results in context to the optimized data storage, retrieval and per-
formance measurements. In the NoSQL domain and while using denormalized schema 
modeling, the temporal factor is a significant dimension that has not been addressed by 
the researchers too much. The approach presented in the form of schema model and 
algorithm is not limited to the ANT+ sensor data but is applicable to other domains 
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also. Using this fundamental study and the referenced information we can define in gen-
eral modeling standards for the document-oriented databases.

Summary
The data-driven monitoring applications rapidly and continuously transmit the sen-
sor data, which is meaningful only when is processed and analysed while considering 
the temporal characteristics. Traditional RDBMS has given in managing such variety of 
prolific data and the new technologies, such as big data has promised to offer robust 
management frameworks to handle such continuous data streams. There are different 
NoSQL management frameworks, such as key-value, column-oriented, graph and doc-
ument-oriented. A way to manage this is by defining out of the box optimized storage 
schemas and then to store the data into NoSQL databases while abiding by the format 
principles. This paper presents the usage of Mongoose middleware, to define document 
oriented hierarchical schemas for the temporal modeling of the ANT+ sensor data. The 
NodeJS data server uses these schemas to run a sequence of particular operations to be 
executed upon a specific event for the data integration and schema evolution. The algo-
rithm automatically integrates the sensor data into a hierarchical structure based upon 
the temporal properties. This out of the box schema is modeled for NoSQL using the 
traditional ERD data modeling techniques. There are many possible schema variants, 
such as (i) document-per-event, (ii) document-per-minute, and (iii) document-per-hour. 
In this research, we define denormalized schema to have a document for each hour, 
which contains minutes as sub documents containing sensor data in an array of seconds’ 
sub-documents. The normalization and denormalization of the document hierarchy 
decides the quality of a schema with respect to number of reads, updates and storage 
space utilization.
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