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Consistent Query Answering for Self-Join-Free Conjunctive Queries
Under Primary Key Constraints

PARASCHOS KOUTRIS, University of Washington
JEF WIJSEN, University of Mons

A relational database is said to be uncertain if primary key constraints can possibly be violated. A repair (or
possible world) of an uncertain database is obtained by selecting a maximal number of tuples without ever
selecting two distinct tuples with the same primary key value. For any Boolean query q, CERTAINTY(q) is
the problem that takes an uncertain database db as input and asks whether q is true in every repair of db.
The complexity of this problem has been particularly studied for q ranging over the class of self-join-free
Boolean conjunctive queries. A research challenge is to determine, given q, whether CERTAINTY(q) belongs
to complexity classes FO, P, or coNP-complete.

In this article, we combine existing techniques for studying this complexity classification task. We show
that, for any self-join-free Boolean conjunctive query q, it can be decided whether or not CERTAINTY(q) is
in FO. We additionally show how to construct a single SQL query for solving CERTAINTY(q) if it is in FO.
Further, for any self-join-free Boolean conjunctive query q, CERTAINTY(q) is either in P or coNP-complete
and the complexity dichotomy is effective. This settles a research question that has been open for 10 years.
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1. INTRODUCTION

A database is inconsistent if it violates one or more integrity constraints that the data
is required to obey. Inconsistency in the data can arise in various settings. For example,
if data is integrated from different sources, then the resulting integrated database can
be inconsistent even if each individual source was consistent.

The standard method of dealing with inconsistency is data cleaning, in which the
database is first repaired to satisfy the integrity constraints and then the cleaned
version is used to answer queries. Since an inconsistent database can typically be
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9:2 P. Koutris and J. Wijsen

Fig. 1. Example of an inconsistent database that violates the primary key constraints.

repaired in many different ways, it happens that data cleaners make arbitrary choices
about which data to keep and which data to delete, which means that information may
be lost. An alternative to data cleaning is consistent query answering (CQA), which was
first introduced in [2]. In this paradigm, no data is lost and queries are answered by
considering all possible repairs of the inconsistent database.

In this article, we focus on integrity constraints that are primary key constraints.
Consider the database in Figure 1, which includes the table E that stores employee
information and the table D that stores department information. The first line in table
E stores that Smith was born in London and works for the Training department. The
first line in table D stores that the Training department is located in London and
managed by employee E3, with a budget of 120. The primary keys of E and D are EID
and DNAME, respectively. There are two foreign keys: every DNAME-value in E must
occur in the DNAME-column of D, and every MGR-value in D must occur in the EID-
column of E. Employees can manage departments that are distinct from the department
they are working for. This typically happens when one department is subordinate to
another department. For example, Training may be managed by an employee of Human
Resources (HR).

Both tables in the database contain primary key violations: for example, the employee
with EID E3 has two entries in table E. Two or more tuples that agree on their primary
key represent mutually exclusive possibilities. Such tuples are said to form a block;
in Figure 1, blocks are separated by dashed lines for readability. The reader should
note that even though we do not know the exact city where Blake was born, we still
know that it is either Paris or London; contrast this with the case in which we would
represent Blake’s city of birth by a single uninformative NULL. Likewise, the uncertain
database represents that the HR department is either managed by E3 with a budget
of 300 or by E5 with a budget of 310.

Blocks with two or more tuples model uncertainty: exactly one of the tuples is true,
but we do not know which one is true. Therefore, we use the term uncertain database to
refer to databases that can contain primary key violations. A repair (or possible world)
of an uncertain database is obtained by selecting exactly one tuple from each block.
Although we will not deal with foreign key constraints from here, we incidentally note
that if an uncertain database satisfies some foreign key constraint, then each repair
will satisfy this foreign key constraint as well, because all primary-key values that are
present in the uncertain database will be present in each repair.

In this article, we study how to answer conjunctive queries on uncertain databases.
We allow joins, but we disallow that a table be joined with itself (called a self-join). Con-
junctive queries without self-joins are widely used database queries. They correspond
to SQL queries of the form SELECT...FROM...WHERE..., in which no relation occurs
more than once after the FROM-clause and in which the WHERE-clause equates attributes
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with each other or with constant values. It is natural to distinguish between possible
and certain answers: the possible answer to a query consists of the tuples that are
in the answer to the query on some repair, while the certain (or consistent) answer
consists of the tuples that are in the answer to the query on every repair. Consider,
for example, the query “Get names for employees who were born in London,” which is
encoded in SQL as follows.

SELECT E1.ENAME
FROM E AS E1
WHERE E1.CITY=‘London’;

The possible answer to this query consists of Smith, Clark, and Blake. The certain
answer consists of Smith and Clark. Blake does not belong to the certain answer since
the database leaves open the possibility that Blake was born in Paris. For conjunctive
queries without self-joins, it is easy to see that the possible answer is obtained by
executing the query on the uncertain database. Computing certain answers is a more
difficult task. Interestingly, the certain answer to the preceding query is computed by
the following SQL query.

SELECT E1.ENAME
FROM E AS E1
WHERE E1.CITY=‘London’
AND NOT EXISTS ( SELECT ∗

FROM E AS E2
WHERE E2.EID=E1.EID
AND E2.CITY �=‘London’ );

The NOT EXISTS subquery checks the nonexistence of a city of birth other than London
and thus excludes Blake from the answer. Unfortunately, it is not always possible to
obtain certain answers directly in SQL. We show in this article that, for all conjunctive
queries without self-joins, CQA with respect to primary keys can be classified into one
of three classes of increasing complexity:

(1) For some queries, the certain answer can be expressed in relational calculus (or
first-order logic), thus can be written in SQL. One such query was shown before; as
we will see in Section 3, another example is the query “Get names for departments
that are self-managed (i.e., are managed by one of their own employees).”

SELECT D.DNAME
FROM E, D
WHERE E.EID=D.MGR
AND E.DNAME=D.DNAME;

The certain answer consists of HR. Notice that although there are two possibilities
for the manager of HR, we know for certain that HR is self-managed. The SQL
query that computes certain answers is shown at the end of Section 5.3.

(2) For some queries, the certain answer can be computed in polynomial time (with
respect to the database size) but cannot be expressed in relational calculus. We will
see in Section 3 that an example of such a query is “Get names for employees who
manage the department for which they work.”

SELECT E.ENAME
FROM E, D
WHERE E.EID=D.MGR
AND E.DNAME=D.DNAME;
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The certain answer is empty. Note that the only difference between the latter query
and the previous one is the attribute that occurs after SELECT (E.ENAME versus
D.DNAME).

(3) For some queries, the certain answer cannot be obtained in polynomial time (unless
P = NP), since it is coNP-hard to compute the certain answer. We will see in
Section 3 that an example of such a query is “Get names for employees who work in
the city of their birth.”

SELECT E.ENAME
FROM E, D
WHERE E.CITY=D.CITY
AND E.DNAME=D.DNAME;

The certain answer consists only of Smith.

This threefold complexity classification gives rise to the following contributions of
practical interest.

• In Section 3, we exhibit an easy-to-implement decision procedure that takes as input
a conjunctive query q without self-joins and decides to which of the three aforemen-
tioned classes q belongs.

• In Section 5, we outline an easy-to-implement procedure whose input is a query q
belonging to the first class and whose output is an SQL query that computes the
certain answers to q.

• In Sections 7 and 8, we specify a procedure whose input is a query q belonging to
the first or second class and whose output is a polynomial-time program (but not an
SQL query) that computes the certain answers to q.

For every conjunctive query q, practitioners can always fall back on procedures that
build a Disjunctive Logic Program [19] or a Binary Integer Program [22] whose exe-
cutions yield the certain answers to q. These executions will in the worst case take
exponential time in the size of the database, which is unnecessarily expensive for
queries q falling in the first or second class. As summarized in [38], with our results,
“it is now possible to determine and delegate the computation of CQA to the right
engine; pushing computations to the RDBMS whenever possible, and relying on more
algorithmic or expressive engines otherwise.”

The remainder of this section pinpoints the theoretical contribution of this article. For
every Boolean query q, define CERTAINTY(q) as the following computational problem.

PROBLEM: CERTAINTY(q)
INPUT: uncertain database db
QUESTION: Does every repair of db satisfy q?

Significantly, the Boolean query q is not part of the input. Every Boolean query q
thus gives rise to a new problem. Since the input to CERTAINTY(q) is an uncertain
database, we consider the data complexity of the problem. The restriction to Boolean
queries q in the complexity study of CERTAINTY(q) eases the technical treatment but
is not fundamental. In Section 3.3, we will show how our complexity results carry over
to queries with free variables.

Although the problem CERTAINTY(q) is defined for arbitrary Boolean queries q,
its complexity will only be studied for queries q that are expressible in particular
fragments of first-order logic. For every first-order query q, the problem CERTAINTY(q)
is in coNP, because a nondeterministic Turing machine can guess a repair and verify
in polynomial time that it falsifies q. Further, it has been known for several years [9, 17,
42] that there exist Boolean conjunctive queries q1, q2, and q3 such that CERTAINTY(q1)
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is in FO, CERTAINTY(q2) is in P \ FO, and CERTAINTY(q3) is coNP-hard. It is then
significant to ask whether we can determine the complexity of CERTAINTY(q) for every
Boolean conjunctive query q:

COMPLEXITY CLASSIFICATION TASK

INPUT: A Boolean conjunctive query q
QUESTION: What complexity classes does CERTAINTY(q) belong to, for

which complexity classes of interest are FO, P, and
coNP-complete?

We recall from descriptive complexity theory (see, e.g., [20]) that membership of
CERTAINTY(q1) in FO is equivalent to the existence of a Boolean first-order query
ϕ1, called consistent first-order rewriting in our setting, such that, for every uncertain
database db, the answer to CERTAINTY(q1) is “yes” on input db if and only if db
satisfies ϕ1. If CERTAINTY(q1) is in FO, then CERTAINTY(q1) is in P, and thus “ef-
ficiently solvable.” Of more interest to database practitioners perhaps, if the problem
CERTAINTY(q1) is in FO, then the problem is “solvable in SQL” using standard database
technology by executing an SQL encoding of a consistent first-order rewriting.

In this article, we make significant progress in the complexity classification task
under the restriction that conjunctive queries are self-join-free (i.e., contain no self-join)
and contain no built-in predicates. Our main contribution is that, for every self-join-free
Boolean conjunctive query q,

(1) it can be decided whether or not CERTAINTY(q) is in FO; and
(2) CERTAINTY(q) is either in P or coNP-complete and it can be decided which of the

two cases applies.

In connection with the latter item, we recall that under the widely believed conjecture
P �= coNP, there exist problems in coNP that are neither in P nor coNP-complete [26].
It is therefore significant that a dichotomy between P and coNP-complete exists in the
class of problems that contains CERTAINTY(q) whenever q is a self-join-free Boolean
conjunctive query.

The complexity classification task of CERTAINTY(q) for self-join-free Boolean con-
junctive queries q has been studied since 2005 [17] and the following results were
obtained before the current article: CERTAINTY(q) is either in P or coNP-complete if q
joins at most two relations [21] or if all primary keys consist of a single attribute [23];
Wijsen [41, 43] showed that membership of CERTAINTY(q) in FO is decidable if q is α-
acyclic in the sense of [13]. It is noteworthy that, for Boolean conjunctive queries q with
self-joins or built-in predicates, the complexity classification task for CERTAINTY(q) re-
mains largely open today. On the other hand, the extension from Boolean queries to
queries with free variables is well understood and explained in Section 3.3.

This article is organized as follows. Section 2 introduces our data and query
model. Section 3 defines attack graphs for Boolean conjunctive queries, extending an
older notion of attack graph [43] that was defined exclusively for α-acyclic Boolean
conjunctive queries. Section 3 also states the main result of the article, Theorem 3.2.
Section 4 establishes an effective procedure that takes in a self-join-free Boolean
conjunctive query q, and decides whether CERTAINTY(q) is in FO. Section 5 explains
how to express CERTAINTY(q) in SQL if CERTAINTY(q) is in FO. Section 6 provides a
sufficient condition for coNP-hardness of CERTAINTY(q) for any self-join-free Boolean
conjunctive query q. Sections 7 and 8 show that if the condition is not satisfied, then
CERTAINTY(q) is in P. Section 9 discusses related work. The appendix contains proofs
of lemmas and theorems.
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2. PRELIMINARIES

We assume disjoint sets of variables and constants. If �x is a sequence containing vari-
ables and constants, then vars(�x) denotes the set of variables that occur in �x. A valuation
over a set U of variables is a total mapping θ from U to the set of constants. At several
places, it is implicitly understood that such a valuation θ is extended to be the identity
on constants and on variables not in U . If V ⊆ U , then θ [V ] denotes the restriction of
θ to V .

If θ is a valuation over a set U of variables, x is a variable, and a is a constant, then
θ[x �→a] is the valuation over U ∪ {x} such that θ[x �→a](x) = a and for every variable y such
that y �= x, θ[x �→a](y) = θ (y). Note that x ∈ U is allowed.

Atoms and key-equal facts. Each relation name R of arity n, n ≥ 1, has a unique
primary key that is a set {1, 2, . . . , k}, where 1 ≤ k ≤ n. We say that R has signature
[n, k] if R has arity n and primary key {1, 2, . . . , k}. We say that R is simple-key if k = 1.
Elements of the primary key are called primary-key positions, while k + 1, k + 2, . . . , n
are nonprimary-key positions. For all positive integers n, k such that 1 ≤ k ≤ n, we
assume denumerably many relation names with signature [n, k]. For example, the
relation name E from Figure 1 has signature [4, 1] and is simple-key.

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called an R-atom
(or simply atom), where each si is either a constant or a variable (1 ≤ i ≤ n). Such
an atom is commonly written as R(�x, �y), where the primary-key value �x = s1, . . . , sk is
underlined and �y = sk+1, . . . , sn. An R-fact (or simply fact) is an R-atom in which no
variable occurs. Two facts R1(�a1, �b1), R2(�a2, �b2) are key-equal if R1 = R2 and �a1 = �a2. An
R-atom or an R-fact is simple-key if R is simple-key.

We will use the letters F, G, H for atoms. For an atom F = R(�x, �y), we denote by
key(F) the set of variables that occur in �x and by vars(F) the set of variables that occur
in F, that is, key(F) = vars(�x) and vars(F) = vars(�x) ∪ vars(�y).

Uncertain databases, blocks, and repairs. A database schema is a finite set of relation
names. All constructs that follow are defined relative to a fixed database schema.

An uncertain database is a finite set db of facts using only the relation names of the
schema. We refer to databases as “uncertain databases” to stress that such databases
can violate primary key constraints.

We write adom(db) for the active domain of db (i.e., the set of constants that occur in
db). A block of db is a maximal set of key-equal facts of db. The term R-block refers to a
block of R-facts, that is, facts with relation name R. If A is a fact of db, then block(A, db)
denotes the block of db that contains A. An uncertain database db is consistent if no
two distinct facts are key-equal (i.e., if every block of db is a singleton). A repair of db
is a maximal (with respect to set inclusion) consistent subset of db. We write rset(db)
for the set of repairs of db.

Example 2.1. In the uncertain database of Figure 1, blocks are separated by dashed
lines. This uncertain database contains one E-block of cardinality 2 and one D-block
of cardinality 2; all other blocks have cardinality 1. This uncertain database has four
repairs, each of which can be obtained by selecting exactly one fact from each block.

Boolean conjunctive queries. A Boolean query is a mapping q that associates a Boolean
(true or false) to each uncertain database, such that q is closed under isomorphism [28].
We write db |= q to denote that q associates true to db, in which case db is said to
satisfy q. A Boolean query q can be viewed as a decision problem that takes an uncertain
database as input and asks whether db satisfies q. In this article, the complexity class
FO stands for the set of Boolean queries that can be defined in first-order logic with
equality and constants, but without other built-in predicates or function symbols.
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A Boolean conjunctive query is a finite set q = {R1(�x1, �y1), . . . , Rn(�xn, �yn)} of atoms,
without equality or built-in predicates. We denote by vars(q) the set of variables that
occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk
(
R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by an uncertain database db if
there exists a valuation θ over vars(q) such that, for each i ∈ {1, . . . , n}, Ri(�a, �b) ∈ db
with �a = θ (�xi) and �b = θ (�yi).

We say that a Boolean conjunctive query q has a self-join if some relation name occurs
more than once in q. If q has no self-join, then it is called self-join-free. We write BCQ
for the class of Boolean conjunctive queries, and sjfBCQ for the class of self-join-free
Boolean conjunctive queries. If q is an sjfBCQ query with an R-atom, then, by an abuse
of notation, we write R to mean the R-atom of q.

If q is a Boolean conjunctive query, �x = 〈x1, . . . , x�〉 is a sequence of distinct variables
that occur in q, and �a = 〈a1, . . . , a�〉 is a sequence of constants, then q[�x �→�a] denotes the
query obtained from q by replacing all occurrences of xi with ai for all 1 ≤ i ≤ �.

We now introduce some notions that will facilitate the complexity study of
CERTAINTY(q), as expressed by Lemmas 2.4 and 2.5.

Typed uncertain databases. For every variable x, we assume an infinite set of con-
stants, denoted type(x), such that x �= y implies type(x) ∩ type(y) = ∅. Let q ∈ sjfBCQ
and let db be an uncertain database. We say that db is typed relative to q if, for every
atom R(x1, . . . , xn) in q, for every i ∈ {1, . . . , n}, if xi is a variable, then for every fact
R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does not occur in q.

An uncertain database db can be trivially transformed into an uncertain database
db′ that is typed relative to q such that the problem CERTAINTY(q) yields the same
answer on problem instances db and db′. Indeed, we can take db′ to be the smallest
database such that, for every atom R(x1, . . . , xn) in q, if db contains R(a1, . . . , an), then
db′ contains R(a1

x1 , . . . , an
xn). Here, each cs denotes a constant such that (i) c1

s1 = c2
s2

if and only if both c1 = c2 and s1 = s2 and (ii) cs = c if and only if c = s. Further, if x
is a variable, then type(x) contains all (and only) constants of the form cx. Intuitively,
occurrences of constants in db are “tagged” by the variable or constant that occurs at
the same position in q, and these tags are unique because q is self-join-free. Because
of this transformation, the assumption that uncertain databases are typed can be
made without loss of generality in the complexity classification task of CERTAINTY(q)
for sjfBCQ queries q. This assumption is useful because it simplifies the technical
treatment, especially in Section 8.

Purified uncertain databases. Let q be a Boolean conjunctive query and let db be
an uncertain database. We say that a fact A ∈ db is relevant for q in db if, for some
valuation θ over vars(q), A ∈ θ (q) ⊆ db. We say that db is purified relative to q if every
fact A ∈ db is relevant for q in db.

Example 2.2. Let q be the query {E(m, n, c1, d), D(d, b, c2, m)}, where m, n, c1, d, b, c2
are variables. This query asks whether some department is managed by one of its
own employees. The database of Figure 1 is not purified relative to q, because the fact
D(Training, 120, London, E3) is not relevant (there is no tuple in E containing both
E3 and Training). On the other hand, the database of Figure 1 is purified relative to
{E(e, n, c1, d), D(d, b, c2, m)}, because every department name in either table is present
in the other table.

Note, incidentally, that the uncertain database of Figure 1 is not typed relative to q
because c1 �= c2 but the value ‘Paris’ occurs both in the position of c1 and the position
of c2.
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Frugal repairs. For every uncertain database db, Boolean conjunctive query q, and
X ⊆ vars(q), we define a preorder �X

q on rset(db), as follows. For every two repairs r1, r2,
we define r1 �X

q r2 if, for every valuation θ over X, r1 |= θ (q) implies that r2 |= θ (q).
Here, θ (q) is the query obtained from q by replacing all occurrences of each x ∈ X with
θ (x); variables not in X remain unaffected (i.e., θ is understood to be the identity on
variables not in X). Clearly, �X

q is a preorder (i.e., it is reflexive and transitive); its
minimal elements are called �X

q -frugal repairs.1

Example 2.3. The relation D of Figure 1 has two repairs, denoted r1 and r2, contain-
ing D(HR, 300, Paris, E3) and D(HR, 310, Paris, E5), respectively. Both repairs contain
D(Training, 120, London, E3). Consider the query q = {D(u, v, w, x)}. The repair r1 sat-
isfies q when x is mapped to E3, but not when x is mapped to E5; the repair r2 satisfies
q when x is mapped to E5 or E3. It is then correct to write r1 �{x}

q r2, but r2 ��{x}
q r1. The

repair r1 is �{x}
q -frugal but r2 is not.

Functional dependencies. Let q be a Boolean conjunctive query. A functional depen-
dency for q is an expression X → Y , where X, Y ⊆ vars(q). Let V be a finite set of
valuations over vars(q). We say that V satisfies X → Y if, for all θ, μ ∈ V, if θ [X] = μ[X],
then θ [Y ] = μ[Y ]. Let � be a set of functional dependencies for q. We write � |= X → Y
if, for every set V of valuations over vars(q), if V satisfies each functional dependency in
�, then V satisfies X → Y . Note that the foregoing conforms with standard dependency
theory if variables are viewed as attributes and valuations as tuples.

Consistent query answering. For every Boolean query q, the decision problem
CERTAINTY(q) takes as input an uncertain database db and asks whether q is sat-
isfied by every repair of db. It is straightforward that, for every Boolean first-order
query q, CERTAINTY(q) is in coNP.

The following two lemmas are useful in the study of the complexity of CERTAINTY(q).

LEMMA 2.4 ([44]). Let q be a Boolean conjunctive query. Let db be an uncertain
database. It is possible to compute in polynomial time an uncertain database db′ that
is purified relative to q such that every repair of db satisfies q if and only if every repair
of db′ satisfies q.

LEMMA 2.5. Let q be a Boolean conjunctive query and let X ⊆ vars(q). Let db be an
uncertain database. Then, every repair of db satisfies q if and only if every �X

q -frugal
repair of db satisfies q.

First-order reduction. In this article, all considered decision problems take as input
databases over some fixed schema. Let P1 and P2 be two such decision problems over
schemas S1 and S2, respectively. A many-one reduction ρ from P1 to P2 is said to
be first-order if for every n-ary relation name R in S2, there exists a first-order query
ϕR(x1, . . . , xn) over S1 such that, for every database I over S1, for all constants a1, . . . , an,
we have that R(a1, . . . , an) ∈ ρ(I) if and only if I |= ϕR((a1, . . . , an).

3. ATTACK GRAPHS AND MAIN RESULTS

Wijsen [41] introduced attack graphs for studying first-order expressibility of
CERTAINTY(q) for sjfBCQ queries q that are α-acyclic. Here, we extend the notion
of attack graph to all sjfBCQ queries.

This section contains five subsections. Section 3.1 defines attack graphs. Section 3.2
presents Theorem 3.2, which is the main theorem of the article, settling the complexity
classification task introduced in Section 1. This theorem is stated only for queries that

1r1 is minimal if, for all r2, if r2 �X
q r1, then r1 �X

q r2.
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Fig. 2. Attack graph of the query in Example 3.1.

are Boolean. Since non-Boolean queries are common in practice, we explain in Sec-
tion 3.3 how the theorem can be applied to non-Boolean queries. Section 3.4 illustrates
the complexity classification by means of the queries introduced in Section 1. Finally,
Section 3.5 introduces some helpful constructs and lemmas that will be used later in
the proof of Theorem 3.2.

3.1. The Attack Graph Tool

Let q ∈ sjfBCQ. We define K(q) as the following set of functional dependencies:

K(q) := {key(F) → vars(F) | F ∈ q}.
For every atom F ∈ q, we define F+,q and F�,q as the following sets of variables:

F+,q := {x ∈ vars(q) | K(q \ {F}) |= key(F) → x},
F�,q := {x ∈ vars(q) | K(q) |= key(F) → x}.

The attack graph of q is a directed graph whose vertices are the atoms of q. There is
a directed edge from F to G (F �= G) if there exists a sequence

F0, F1, . . . , Fn (1)

of (not necessarily distinct) atoms of q such that

• F0 = F and Fn = G; and
• for all i ∈ {0, . . . , n − 1}, vars(Fi) ∩ vars(Fi+1) � F+,q.

A directed edge from F to G in the attack graph of q is also called an attack from F
to G, denoted by F

q� G. The sequence (1) is called a witness for the attack F
q� G.

We will often add variables to a witness: if we write F0

z1

� F1

z2

� F2 · · ·
zn

� Fn, then it is
understood that, for i ∈ {1, . . . , n}, zi ∈ vars(Fi−1) ∩ vars(Fi) and zi �∈ F0

+,q. If F
q� G,

then we also say that F attacks G (or that G is attacked by F).
An attack from F to G is called weak if K(q) |= key(F) → key(G); otherwise, it is

strong. A directed cycle in the attack graph of q is called weak if all attacks in the cycle
are weak; otherwise, the cycle is called strong.

Example 3.1. Let q = {R(x, y), S(y, z), T (z, x), U (x, u), V (x, u, v)}. By a little abuse
of notation, we denote each atom by its relation name (e.g., R is used to denote the
atom R(x, y)). We have that K(q \ {R}) = {y → z, z → x, x → u, {x, u} → v}. We have
that R+,q = {x, u, v}, the closure of key(R) = {x} with respect to K(q \ {R}). A witness

for R
q� T is R

y
� S

z
� T . The complete attack graph is shown in Figure 2. All attacks
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are weak. Since K(q) = {x → y, y → z, z → x, x → u, {x, u} → v}, we have that
R�,q = {x, y, z, u, v}.
3.2. Main Theorem

Equipped with the notion of attack graph, we can now present our threefold solution to
the complexity classification task for CERTAINTY(q) with q ∈ sjfBCQ. In the statement
of the following theorem, L is the class of decision problems solvable in deterministic
logarithmic space.

THEOREM 3.2. For every q ∈ sjfBCQ,

(1) if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
(2) if the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is

in P and is L-hard (under first-order reductions); and
(3) if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-

complete.

Furthermore, it can be decided in quadratic time in the size of q which of these three
cases applies.

The following lemma establishes that the three if conditions in Theorem 3.2 can be
decided in quadratic time in the size of q; its proof is given in Appendix A and relies on
an existing algorithm [43].

LEMMA 3.3. Given sjfBCQ query q, the following questions can be answered in
quadratic time in the size of q:

(1) Does the attack graph of q contain a strong cycle?
(2) Does the attack graph of q contain a weak cycle?

The rest of the article completes the proof of Theorem 3.2. We conclude this section
by pointing out that our results are valid only for self-join-free conjunctive queries. The
presence of self-joins complicates consistent query answering in a way that is currently
not well understood. For example, for the sjfBCQ query q0 = {R(x, y), S(y, a)}, where
a is a constant, we have that CERTAINTY(q0) is in FO. On the other hand, for the
Boolean conjunctive query q1 = {R(x, y), R(y, a)}, with a self-join, it is known [40] that
CERTAINTY(q1) is not in FO.

3.3. Certain Answers to Non-Boolean Queries

If q = {R1(�x1, �y1), . . . , Rn(�xn, �yn)} is a finite set of atoms and �f is a sequence of distinct
variables of vars(q), then �f ← q is a conjunctive query whose set of free variables
is vars( �f ). The conjunctive query �f ← q represents the following query in relational
calculus: { �f | ∃u1 · · · ∃uk

(
R1(�x1, �y1) ∧ · · · ∧ R1(�xn, �yn)

)}
,

where {u1, . . . , uk} = vars(q) \ vars( �f ). The conjunctive query �f ← q is self-join-free if q
is self-join-free. The syntax �f ← q is adopted from rule-based conjunctive queries [1,
page 41] and datalog.

The decision problem CERTAINTY(q) is naturally generalized to queries with free
variables, as follows. Given an uncertain database db, the certain answer to the con-
junctive query �f ← q is the set of all sequences �a of constants (of the same length as �f )
such that q[ �f �→�a] is satisfied by every repair of db. That is, given an uncertain database
db, the certain answer contains �a if and only if the answer to the decision problem
CERTAINTY(q[ �f �→�a]) is “yes.” Intuitively, the certain answer contains each tuple that
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belongs to the output of �f ← q for every repair of db. Then, for any fixed conjunctive
query �f ← q, consistent query answering is the function problem that takes an uncer-
tain database db as input and asks to compute the certain answer to �f ← q.

We now argue that our results in the complexity classification task of CERTAINTY(q)
still stand when free variables are introduced, by treating the free variables as con-
stants. Let �f ← q with �f = 〈x1, . . . , x�〉 be a self-join-free conjunctive query and let
�c = 〈c1, . . . , c�〉 be a sequence of constants. We ask whether �c belongs to the certain an-
swer, that is, whether the answer to the decision problem CERTAINTY(q[ �f �→�c]) is “yes.”
The complexity of the latter problem does not depend on the choice of �c, since uncer-
tain databases can be assumed to be typed (see Section 2; in particular, c1, . . . , c� can
be assumed to be mutually distinct) and since constants are generic. Therefore, the
following implications hold:

• If CERTAINTY(q[ �f �→�c]) is in FO, then there exists a relational calculus query that
takes in an uncertain database and outputs the certain answer to �f ← q. This case
is illustrated by Example 3.4.

• If CERTAINTY(q[ �f �→�c]) is in P, then there exists a polynomial-time algorithm that
takes in an uncertain database and outputs the certain answer to �f ← q.

The converse implications are obviously true. The following is also true:

• If CERTAINTY(q[ �f �→�c]) is coNP-hard, then, unless P = NP, there exists no
polynomial-time algorithm that takes in an uncertain database and outputs the
certain answer to �f ← q.

Then, since the constants in the sequence �c are arbitrary, the complexity of computing
the certain answer to �f ← q can be obtained from Theorem 3.2 by treating free
variables like constants in the computation of the attack graph. This is illustrated in
Section 3.4.

Example 3.4. The following conjunctive query with free variables e and c asks for
identifiers and cities of employees:

〈e, c〉 ← E(e, n, c, d). (2)

If we replace in (2) the variables e and c by two arbitrary constants—say, E1 and
Rome—we obtain the Boolean conjunctive query {E(‘E1’, n, ‘Rome’, d)}, asking whether
employee E1 was born in Rome. It can be easily seen that the latter query is true
in every repair of an uncertain database db if and only if db satisfies the following
Boolean first-order query:

∃n∃d
(
E(‘E1’, n, ‘Rome’, d) ∧ ∀n∀c′∀d

(
E(‘E1’, n, c′, d) → c′ = ‘Rome’

))
.

If we substitute back e and c for E1 and Rome in the latter query, we obtain a relational
calculus query that computes the certain answer to (2):{

e, c | ∃n∃d
(
E(e, n, c, d) ∧ ∀n∀c′∀d

(
E(e, n, c′, d) → c′ = c

))}
.

3.4. Complexity Classification Examples: Non-Boolean Queries

The query “Get names for departments that are self-managed (i.e., are managed by
one of their own employees),” introduced in Section 1, is expressed by the following
conjunctive query:

q1 : d ← E(m, n, c1, d), D(d, b, c2, m).
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When we treat the free variable d as a constant, we obtain E(m, n, c1, d)+,q1 = {m, b, c2}
and D(d, b, c2, m)+,q1 = {}. Note that since d is treated like a constant, the D-atom gives
rise to a functional dependency {} → {b, c2, m}, whose left-hand side is the empty set.
The only attack is from the D-atom to the E-atom. Since the attack graph is acyclic, the
certain answer to this query can be obtained by a single SQL query whose construction
will be given in Section 5.3.

Next, consider the query “Get names for employees who manage the department for
which they work.”

q2 : n ← E(m, n, c1, d), D(d, b, c2, m).

We have that E(m, n, c1, d)+,q2 = {m} and D(d, b, c2, m)+,q2 = {d}. The E-atom attacks the
D-atom because of the shared variable d, and the D-atom attacks the E-atom because
of the shared variable m. The attack graph is cyclic, but contains no strong cycle.
Therefore, the certain answer to this query can be computed in polynomial time but
not in first-order logic or SQL.

Finally, consider the query “Get names for employees who work in the city of their
birth.”

q3 : n ← E(e, n, c, d), D(d, b, c, m).

We have that E(e, n, c, d)+,q3 = {e} and D(d, b, c, m)+,q3 = {d}. Both atoms attack each
other because of the shared variable c. Moreover, the attack from the D-atom to the
E-atom is strong. Since the attack graph contains a strong cycle, there exists no
polynomial-time algorithm for computing the certain answer to this query (unless
P = NP).

3.5. Auxiliary Lemmas and Constructs

The following lemmas are proved in Appendix A.

LEMMA 3.5. For every query q ∈ sjfBCQ, if F
q� G and G

q� H, then either F
q� H or

G
q� F (or both).

LEMMA 3.6. For every query q ∈ sjfBCQ,

(1) if the attack graph of q contains a cycle, then it contains a cycle of size two; and
(2) if the attack graph of q contains a strong cycle, then it contains a strong cycle of size

two.

LEMMA 3.7. Let q ∈ sjfBCQ. Let x ∈ vars(q) and let a be an arbitrary constant.

(1) If the attack graph of q is acyclic, then the attack graph of q[x �→a] is acyclic.
(2) If the attack graph of q contains no strong cycle, then the attack graph of q[x �→a]

contains no strong cycle.

We conclude this section with three definitions. The following definition is taken
from [5] and applies to directed graphs in general.

Definition 3.8 (Strongly Connected Components). A directed graph is strongly con-
nected if there is a directed path from any vertex to any other. The maximal strongly
connected subgraphs of a graph are vertex-disjoint and are called its strong compo-
nents. If S1 and S2 are strong components such that an edge leads from a vertex in S1
to a vertex in S2, then S1 is a predecessor of S2 and S2 is a successor of S1. A strong
component is called initial if it has no predecessor.

Strong components in the attack graph should not be confused with strong attacks.

Example 3.9. In the attack graph of Figure 2, the atoms R(x, y), S(y, z), and T (z, x)
together constitute an initial strong component.
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So far, we have defined an attack from an atom to another atom. The following
definition introduces attacks from an atom to a variable.

Definition 3.10. Let q ∈ sjfBCQ. Let R be a relation name with signature [1, 1] such
that R does not occur in q. For F ∈ q and z ∈ vars(q), we say that F attacks z, denoted

F
q� z, if F

q′
� R(z) where q′ = q ∪ {R(z)}.

Example 3.11. Clearly, if F0

z1

� F1 · · ·
zn

� Fn is a witness for F0
q� Fn, then F0

q� zi for
every i ∈ {1, . . . , n}. Note also that if q = {R(x, y)}, then the attack graph of q contains
no edge, yet R attacks y, denoted R

q� y.

Finally, we introduce the notion of sequential proof , which mimics an algorithm for
testing logical implication for functional dependencies [1, Algorithm 8.2.7].

Definition 3.12. Let q be a self-join-free Boolean conjunctive query. Let X ⊆ vars(q)
and y ∈ vars(q). A sequential proof of K(q) |= X → y is a sequence H0, H1, . . . , H� of
atoms of q such that

• y ∈ X ∪ ⋃�
i=0 vars(Hi); and

• for i ∈ {0, . . . , �}, key(Hi) ⊆ X ∪ ⋃i−1
j=0 vars(Hj).

Note that if y ∈ X, then the empty sequence is a sequential proof of K(q) |= X → y.

4. FIRST-ORDER EXPRESSIBILITY

In this section, we prove the first item in the statement of Theorem 3.2 as well as the
L-hard lower complexity bound stated in the second item. Taken together, this leads to
the following characterization of first-order expressibility of CERTAINTY(q).

THEOREM 4.1. For every q ∈ sjfBCQ, the following are equivalent:

(1) CERTAINTY(q) is in FO;
(2) the attack graph of q is acyclic.

In [41], this theorem was proved under the assumption that queries are α-acyclic.
In Section 4.1, we show the contrapositive of the implication 1 ⇒ 2. In Section 4.2, we
show the implication 2 ⇒ 1.

4.1. Cyclic Attack Graph

Let q0 = {R0(x, y), S0(y, x)}. In [42], it was shown that CERTAINTY(q0) is not in FO. The
following lemma shows a stronger result.

LEMMA 4.2. Let q0 = {R0(x, y), S0(y, x)}. Then, CERTAINTY(q0) is L-hard.

LEMMA 4.3. For every q ∈ sjfBCQ, if the attack graph of q is cyclic, then CERTAINTY(q)
is L-hard (and thus not in FO).

PROOF. Assume that the attack graph of q is cyclic. We show next that there exists
a first-order many-one reduction from CERTAINTY(q0) to CERTAINTY(q). The desired
result then follows from Lemma 4.2.

By Lemma 3.6, we can assume two distinct atoms F, G ∈ q such that F
q� G

q� F is
an attack cycle of size two. We will assume from here that the relation names in F and
G are R and S, respectively.

For all constants a, b, we define the valuation �a
b over vars(q) as follows. Let ⊥ be a

fixed constant not occurring elsewhere. For every variable u ∈ vars(q),
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(1) if u ∈ F+,q \ G+,q, then �a
b(u) = a;

(2) if u ∈ G+,q \ F+,q, then �a
b(u) = b;

(3) if u ∈ F+,q ∩ G+,q, then �a
b(u) = ⊥;

(4) if u ∈ vars(q) \ (F+,q ∪ G+,q), then �a
b(u) = 〈a, b〉.

SUBLEMMA 1. For all constants a, b, a′, b′, if H ∈ q \ {F, G}, then {�a
b(H),�a′

b′ (H)} is
consistent.

PROOF OF SUBLEMMA 1. Assume that for all u ∈ key(H), �a
b(u) = �a′

b′ (u). We distinguish
four cases.

Case a = a′ and b = b′. Then, �a
b(H) = �a′

b′ (H).
Case a = a′ and b �= b′. Then, key(H) ⊆ F+,q; thus, vars(H) ⊆ F+,q. Then, �a

b(H) =
�a′

b′ (H).
Case a �= a′ and b = b′. Then, key(H) ⊆ G+,q; thus, vars(H) ⊆ G+,q. Then, �a

b(H) =
�a′

b′ (H).
Case a �= a′ and b �= b′. Then, key(H) ⊆ F+,q ∩ G+,q; thus, vars(H) ⊆ F+,q ∩ G+,q.

Then, �a
b(H) = �a′

b′ (H).

This concludes the proof of Sublemma 1. �

SUBLEMMA 2. For all constants a, b, a′, b′,

(1) �a
b(F) and �a′

b′ (F) are key-equal if and only if a = a′.
(2) �a

b(F) = �a′
b′ (F) if and only if a = a′ and b = b′.

(3) �a
b(G) and �a′

b′ (G) are key-equal if and only if b = b′.
(4) �a

b(G) = �a′
b′ (G) if and only if a = a′ and b = b′.

PROOF OF SUBLEMMA 2. 1. ⇒ Consequence of key(F) � G+,q (because G
q� F).

1. ⇐= Consequence of key(F) ⊆ F+,q. 2. ⇒ Consequence of vars(F) � F+,q (because
F

q� G). 2. ⇐= Trivial.
The proof of the remaining items is analogous. �

For every uncertain database db with R0-facts and S0-facts, we define f (db) as the
following uncertain database:

(1) for every R0(a, b) in db, f (db) contains �a
b(q \ {G}); and

(2) for every S0(b, a) in db, f (db) contains �a
b(q \ {F}).

It is easy to see that f is computable in FO.
In what follows, we assume that db is typed, as explained in Section 2. It will be

understood that a, a1, a2, . . . belong to type(x), and that b, b1, b2, . . . belong to type(y).
Let us define g(db) as follows:

g(db) := f (db) \ ({�a
b(F) | R0(a, b) ∈ db} ∪ {�a

b(G) | S0(b, a) ∈ db}) .

That is, g(db) contains all facts of f (db) that are neither R-facts nor S-facts.
By Sublemmas 1 and 2,

rset( f (db)) = { f (r) ∪ g(db) | r ∈ rset(db)}. (3)

Let db be an arbitrary database with R0-facts and S0-facts. It suffices to show that the
following are equivalent for every repair r of db:

(1) r satisfies q0;
(2) f (r) ∪ g(db) satisfies q.
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1 ⇒ 2 Assume that r satisfies q0. We can assume constants a, b such that
R0(a, b), S0(b, a) ∈ r. Then, f (r) contains �a

b(q\{G})∪�a
b(q\{F}) = �a

b(q). It follows that
f (r) satisfies q. 2 ⇒ 1 Let θ be a substitution over vars(q) such that θ (q) ⊆ f (r) ∪ g(db).
By our construction, we can assume some R0(a, b) ∈ r such that θ (F) ∈ �a

b(q\{G}). Like-
wise, we can assume some S0(b′, a′) ∈ r such that θ (G) ∈ �a′

b′ (q \ {F}). It suffices to show
that a = a′ and b = b′.

Before giving the proof, we provide some intuition. For every fact A ∈ f (db), we can
assume an atom in q, denoted HA, such that A = �a

b(HA) for some constant a ∈ type(x)
and some constant b ∈ type(y). Then, for all z ∈ vars(HA), �a

b(z) ∈ {⊥, a, b, 〈a, b〉}. The
constants in the latter set allow one to “trace back” A to some facts R0(a, b) or S0(b, a)
in db.

With this intuition in mind, it is easy to show that b = b′ (the proof of a = a′ is
symmetrical). Since F

q� G, there exists a sequence F0, F1, . . . , Fn of atoms of q such
that

• F0 = F and Fn = G; and
• for all i ∈ {0, . . . , n − 1}, we can assume some ui ∈ vars(Fi) ∩ vars(Fi+1) such that

ui �∈ F+,q.

We show by induction on increasing i that for all i ∈ {0, . . . , n − 1}, there exists
constant ai such that for all wi ∈ vars(Fi), we have that θ (wi) ∈ {⊥, ai, b, 〈ai, b〉}.

Basis i = 0. Since θ (F) ∈ �a
b(q \ {G}), for all w0 ∈ vars(F0), we have that θ (w0) ∈ {⊥,

a, b, 〈a, b〉}.
Step i → i + 1. By the induction hypothesis, there exists constant ai such that for

all wi ∈ vars(Fi), we have that θ (wi) ∈ {⊥, ai, b, 〈ai, b〉}. From ui �∈ F+,q, it follows
that θ (ui) ∈ {b, 〈ai, b〉}. Since ui ∈ vars(Fi+1), it follows that there exists constant
ai+1 such that for all wi+1 ∈ vars(Fi+1), we have that θ (wi+1) ∈ {⊥, ai+1, b, 〈ai+1, b〉}.

It follows that for un−1 ∈ vars(G), there exists constant an−1 such that θ (un−1) ∈ {b,
〈an−1, b〉}. From θ (G) ∈ �a′

b′ (q \ {F}), it follows that θ (un−1) ∈ {b′, 〈a′, b′〉}. Consequently,
b = b′. This concludes the proof of Lemma 4.3.

4.2. Acyclic Attack Graph

In this section, we show that CERTAINTY(q) is in FO if the attack graph of q is acyclic.

LEMMA 4.4. Let q be a sjfBCQ query. Let F be an atom of q such that in the attack
graph of q, the indegree of F is zero. Let k = |key(F)| and let �x = 〈x1, . . . , xk〉 be a sequence
containing (exactly once) each variable of key(F). Then, the following are equivalent for
every uncertain database db:

(1) q is true in every repair of db;
(2) for some �a ∈ (adom(db))k, it is the case that q[�x �→�a] is true in every repair of db.

Lemma 4.4 immediately leads to the following result.

LEMMA 4.5. For every query q ∈ sjfBCQ, if the attack graph of q is acyclic, then
CERTAINTY(q) is in FO.

PROOF. Assume that the attack graph of q is acyclic. The proof runs by induction on
|q|. If |q| = 0, then CERTAINTY(q) is obviously in FO. Assume next that |q| > 0.

Let db be an uncertain database that is input to CERTAINTY(q). Since the attack
graph of q is acyclic, we can assume an atom R(�x, �y) that is not attacked in the attack
graph of q. By Lemma 4.4, the following are equivalent:
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(1) q is true in every repair of db.
(2) For some fact R(�a, �b) ∈ db, there exists a valuation θ over vars(�x) such that θ (�x) = �a

and such that for all key-equal facts R(�a, �b′) in db, the valuation θ can be extended
to a valuation θ+ over vars(�x) ∪ vars(�y) such that θ+(�y) = �b′ and θ+(q′) is true in
every repair of db, where q′ = q \ {R(�x, �y)}.

From Lemma 3.7, it follows that the attack graph of θ+(q′) is acyclic; thus,
CERTAINTY(θ+(q′)) is in FO by the induction hypothesis. It is then clear that the
latter condition 2 can be checked in FO.

5. CONSISTENT FIRST-ORDER REWRITING IN SQL

We explain in this section how to solve CERTAINTY(q) in SQL when q is a sjfBCQ
query such that CERTAINTY(q) is in FO. Section 5.1 defines the construct of consistent
first-order rewriting. Section 5.2 shows how to construct such a rewriting in SQL. The
overall construction is summarized and illustrated in Section 5.3.

5.1. Consistent First-Order Rewriting: Definition

A consistent first-order rewriting for a Boolean conjunctive query q is a Boolean first-
order query ϕ such that, for every uncertain database db, the following equivalence
holds: every repair of db satisfies q if and only if db satisfies ϕ. If q ∈ sjfBCQ such
that CERTAINTY(q) is in FO, then there exists a consistent first-order rewriting for q
(by definition of the complexity class FO). Such a first-order rewriting is actually an
implementation, in first-order logic, of the algorithm in the proof of Lemma 4.5. This
is illustrated next.

Example 5.1. Let q = {R(x, y), S(y, b)}, where b is a constant. The attack graph
of q contains a single directed edge, from the R-atom to the S-atom. The following
first-order sentence is a consistent first-order rewriting for q:

∃x∃y(R(x, y) ∧ ∀y(R(x, y) → (S(y, b) ∧ ∀z(S(y, z) → z = b)))).

This definition is naturally generalized to non-Boolean queries, as follows. A consis-
tent first-order rewriting for a conjunctive query �f ← q is a first-order query ϕ( �f ) with
free variables �f such that for every sequence �a of constants (of the same length as �f ),
for every uncertain database db, the following are equivalent:

(1) the certain answer to �f ← q contains �a; and
(2) db |= ϕ(�a).

Our theoretical development in Section 4 is focused on queries without free variables.
Nevertheless, if conjunctive queries are self-join-free, then the presence of free variables
causes no difficulty. According to the argumentation in Section 3.3, in the construction
of a consistent first-order rewriting for �f ← q, free variables can be treated like
constants.

5.2. Consistent First-Order Rewriting: Construction

We now put the theoretical results of Section 4 into practice. We explain how to
construct a consistent first-order rewriting in a subset of tuple relational calculus
(TRC) [39, page 157]. The subset is chosen such that the translation from TRC queries
into SQL will be straightforward.

In TRC, variables represent tuples, which is different from first-order logic, in which
variables represent atomic values. For our purpose, it is sufficient to have tuple vari-
ables that range over the tuples of a single relation in the same way as aliases in SQL
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range over the rows of one table. We use TRC rather than pure SQL because TRC
allows universal quantifiers (∀) and implication (→), which leads to better readability.

It is straightforward to translate conjunctive queries into TRC. For example, the
conjunctive query

〈x, z〉 ← {R1(x, y), R2(x, y, z, a)},
where a is a constant, reads as follows in TRC:{

f (2) | ∃r1 ∈ R1∃r2 ∈ R2

(
r1[1] = f [1] ∧ r1[1] = r2[1] ∧ r1[2] = r2[2]∧
r2[3] = f [2] ∧ r2[4] = a

)}
.

The notation f (2) indicates that f is a free tuple variable that represents a tuple of
arity 2. The notation r1 ∈ R1 introduces a tuple variable r1 that ranges over the tuples
of the relation R1. The notation r1[1] refers to the first argument of r1 and so on.
The previous query equates f [2] to r2[3] and equates f [1] to both r1[1] and r2[1] (by
transitivity and symmetry of equality).

Formally, a term is either a constant or a component reference of the form t[i], where
t is a tuple variable of arity n and 1 ≤ i ≤ n. A self-join-free conjunctive query in TRC
has the form

{ f (m) | ∃r1 ∈ R1 · · · ∃r� ∈ R� (ϕ)}, (4)
where

(1) f is the only free tuple variable, whose arity is m;
(2) R1, . . . , R� are distinct relation names;
(3) for i ∈ {1, . . . , �}, ri is a tuple variable of the same arity as the relation name Ri;

and
(4) ϕ is a satisfiable conjunction of equalities between terms, such that, for every

constant a and j ∈ {1, . . . , m}, ϕ �|= ( f [ j] = a) and for all j1, j2 ∈ {1, . . . , m} such
that j1 �= j2, ϕ �|= ( f [ j1] = f [ j2]). That is, ϕ equates no component of the free tuple
f to a constant or to another component. Further, to guarantee safety, for every
j ∈ {1, . . . , m}, ϕ must equate f [ j] to some component of some ri (1 ≤ i ≤ �).

Now, assume that the attack graph of the self-join-free conjunctive query (4) is acyclic
and that the relation names occur in a topological ordering of the attack graph. That
is, the R1-atom precedes the R2-atom in the topological ordering, the R2-atom precedes
the R3-atom, and so on. For every i ∈ {1, . . . , �}, we assume a tuple variable si with
the same arity as Ri. Further, for i ∈ {1, . . . , �}, we write si ∼ ri as shorthand for∧k

j=1 si[ j] = ri[ j], where k is the cardinality of the primary key of Ri. That is, si ∼ ri

expresses that si and ri are key-equal. Then, the following is a consistent first-order
rewriting, in prenex normal form, for the query (4):{

f (m) | ∃s1 ∈ R1∀r1 ∈ R1 · · · ∃s� ∈ R�∀r� ∈ R�

((
�∧

i=1

si ∼ ri

)
→ ϕ

)}
. (5)

Intuitively, each ∃si chooses an Ri-block, and the successive ∀ri can be assumed to range
only over the tuples of that block (because of the condition si ∼ ri in the premise). The
conclusion ϕ, which is copied from (4), does not refer to any si.

Example 5.2. The conjunctive query y ← {R1(x, y)} is equivalent to the TRC query

{ f (1) | ∃r1 ∈ R1 (r1[2] = f [1])},
whose consistent first-order rewriting according to (5) is:

{ f (1) | ∃s1 ∈ R1∀r1 ∈ R1 (s1[1] = r1[1] → r1[2] = f [1])}.
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If we eliminate ∀ and → from the latter query, we obtain:

{ f (1) | ∃s1 ∈ R1¬∃r1 ∈ R1(s1[1] = r1[1] ∧ r1[2] �= f [1])}.
The translation of TRC queries of the form (5) into SQL is fairly straightforward. As

illustrated in Example 5.2, the query can be easily rewritten to eliminate the usage
of universal quantifiers (∀) and implications (→), which are not directly available in
SQL. Then, the only significant difference between our TRC and SQL is the free tuple
variable f (m), which has no direct counterpart in SQL. In general, this difference can
be overcome by translating (5) into an SQL query of the following form:

SELECT DISTINCT ti1 .A1, . . . , tim .Am
FROM R1 AS t1, . . . , R� AS t�
WHERE ψ ;

(6)

For every j ∈ {1, . . . , m}, the component reference f [ j] is translated into ti j .Aj , where i j

and Aj are picked such that ϕ |= ( f [ j] = rij [Aj]). That is, each Aj is a column position
in the table Rij , and the domain of interpretation for the jth component of f can be
safely restricted to the values in that column. The expression (6) is not a genuine SQL
query, because it uses column positions in the SELECT clause. In the final SQL query,
these positions are to be replaced by their corresponding column names. As each of
the SQL aliases ti ranges over the tuples of its table Ri, all instantiations for the free
tuple f will be considered and the ones that make ψ true are selected. Finally, the
formula ψ is a straightforward translation into SQL of the TRC formula in (5) (i.e., of
the formula starting with ∃s1 ∈ R1), where each component reference f [ j] is replaced
by its translation ti j .Aj .

Example 5.3. For the query in Example 5.2, assume the relation schema R1[A, B].
The only possible translation for f [1] is t1.B. The translation in SQL is as follows:

SELECT DISTINCT t1.B
FROM R1 AS t1
WHERE EXISTS ( SELECT ∗

FROM R1 AS s1
WHERE NOT EXISTS ( SELECT ∗

FROM R1 AS r1
WHERE s1.A = r1.A
AND r1.B �= t1.B) );

The subquery that occurs after WHERE EXISTS is a straightforward translation of
the TRC formula in the last query in Example 5.2. The preceding SQL query can be
simplified as follows.

SELECT DISTINCT s1.B
FROM R1 AS s1
WHERE NOT EXISTS ( SELECT ∗

FROM R1 AS r1
WHERE s1.A = r1.A
AND r1.B �= s1.B );

Simplification of consistent first-order rewriting in SQL has been studied in [12].

5.3. Elaborated Example

In four steps, we build a consistent first-order rewriting in SQL for the query “Get
names for departments that are self-managed (i.e., are managed by one of their own
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employees).” This query was introduced in Section 1 and is expressed by the following
conjunctive query:

q1 : d ← E(m, n, c1, d), D(d, b, c2, m).

As argued in Section 3.4, the only attack is from the D-atom to the E-atom. The first
step is to write this query in the form (4):{

f (1) | ∃r1 ∈ D∃r2 ∈ E (r1[1] = f [1] ∧ r1[1] = r2[4] ∧ r1[4] = r2[1])
}
.

Significantly, ∃r1 ∈ D precedes ∃r2 ∈ E because the D-atom attacks the E-atom. In the
second step, we construct a consistent first-order rewriting in the form (5), where we
use that the primary key of both D and E consists of the first position:{

f (1) | ∃s1 ∈ D∀r1 ∈ D∃s2 ∈ E∀r2 ∈ E

((
s1[1] = r1[1]

∧ s2[1] = r2[1]

)
→

( r1[1] = f [1]
∧ r1[1] = r2[4]
∧ r1[4] = r2[1]

))}
.

In the third step, we equivalently rewrite this query without universal quantification
and implication:{

f (1) | ∃s1 ∈ D¬∃r1 ∈ D¬∃s2 ∈ E¬∃r2 ∈ E

((
s1[1] = r1[1]

∧ s2[1] = r2[1]

)
∧

( r1[1] �= f [1]
∨ r1[1] �= r2[4]
∨ r1[4] �= r2[1]

))}
.

Note that we have chosen to push negation inward using De Morgan’s laws. In the
fourth step, we translate the preceding query in an SQL query of the form (6), where
attribute positions are replaced with their names, and f [1] is translated by t1.DNAME.

SELECT DISTINCT t1.DNAME FROM D AS t1, E AS t2
WHERE EXISTS (

SELECT ∗ FROM D AS s1
WHERE NOT EXISTS (

SELECT ∗ FROM D AS r1
WHERE NOT EXISTS (

SELECT ∗ FROM E AS s2
WHERE NOT EXISTS (

SELECT ∗ FROM E AS r2
WHERE s1.DNAME = r1.DNAME
AND s2.EID = r2.EID
AND ( r1.DNAME �= t1.DNAME

OR r1.DNAME �= r2.DNAME
OR r1.MGR �= r2.EID ) ) ) ) );

Eventually, it is possible to simplify this SQL query, as in Example 5.3.

6. INTRACTABILITY RESULT

In this section, we prove the coNP-hard lower complexity bound stated in the third
item of Theorem 3.2.

THEOREM 6.1. For every q ∈ sjfBCQ, if the attack graph of q contains a strong cycle,
then CERTAINTY(q) is coNP-hard.

PROOF. Let q ∈ sjfBCQ. Assume that the attack graph of q contains a strong cycle.
By Lemma 3.6, we can assume some F, G ∈ q such that F

q� G
q� F and the attack

F
q� G is strong. We will assume from here that the relation names in F and G are R

and S, respectively.
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Fig. 3. Help for the proof of Theorem 6.1.

Let q1 = {R1(x, y), S1(y, z, x)}. We show next that there exists a polynomial-time (and
even first-order) many-one reduction from CERTAINTY(q1) to CERTAINTY(q). Since it is
known [21] that CERTAINTY(q1) is coNP-hard, it follows that CERTAINTY(q) is coNP-
hard.

For all constants a, b, c, we define �a
b,c as the following valuation over vars(q) (see

Figure 3 for a mnemonic). Let ⊥ be some fixed constant.

(1) If u ∈ F+,q ∩ G+,q, then �a
b,c(u) = ⊥;

(2) if u ∈ F+,q \ G+,q, then �a
b,c(u) = a;

(3) if u ∈ G+,q \ F�,q, then �a
b,c(u) = 〈b, c〉;

(4) if u ∈ (
G+,q ∩ F�,q

) \ F+,q, then �a
b,c(u) = b;

(5) if u ∈ F�,q \ (F+,q ∪ G+,q), then �a
b,c(u) = 〈a, b〉; and

(6) if u �∈ F�,q ∪ G+,q, then �a
b,c(u) = 〈a, b, c〉.

SUBLEMMA 3. For all constants a, b, c, a′, b′, c′, if H ∈ q\{F, G}, then {�a
b,c(H),�a′

b′,c′ (H)}
is consistent.

PROOF OF SUBLEMMA 3. Assume that for all u ∈ key(H),

�a
b,c(u) = �a′

b′,c′ (u). (7)

We distinguish four cases.

Case a = a′ and b = b′. If c = c′, then �a
b,c(H) = �a′

b′,c′ (H). Assume next that c �= c′.
From Equation (7), it follows that key(H) ⊆ F�,q. Consequently, vars(H) ⊆ F�,q.
Since c does not occur inside F�,q in the Venn diagram of Figure 3, we have that
�a

b,c(H) = �a′
b′,c′ (H).

Case a = a′ and b �= b′. From Equation (7), it follows that key(H) ⊆ F+,q; thus,
vars(H) ⊆ F+,q. Since b and c do not occur inside F+,q in the Venn diagram,
�a

b,c(H) = �a′
b′,c′ (H).
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Case a �= a′ and b = b′. First, assume that c = c′. From Equation (7), it follows that
key(H) ⊆ G+,q; thus, vars(H) ⊆ G+,q. Since a does not occur inside G+,q in the
Venn diagram, �a

b,c(H) = �a′
b′,c′ (H).

Next, assume that c �= c′. From Equation (7), it follows that key(H) ⊆ F�,q∩G+,q;
thus, vars(H) ⊆ F�,q ∩ G+,q. Since a and c do not occur inside F�,q ∩ G+,q in the
Venn diagram, �a

b,c(H) = �a′
b′,c′ (H).

Case a �= a′ and b �= b′. From Equation (7), it follows that key(H) ⊆ F+,q ∩G+,q; thus,
vars(H) ⊆ F+,q ∩ G+,q. Since a, b, c do not occur inside F+,q ∩ G+,q in the Venn
diagram, �a

b,c(H) = �a′
b′,c′ (H).

This concludes the proof of Sublemma 3. �

SUBLEMMA 4. For all constants a, b, c, a′, b′, c′,

(1) �a
b,c(F) and �a′

b′,c′ (F) are key-equal if and only if a = a′.
(2) �a

b,c(F) = �a′
b′,c′ (F) if and only if a = a′ and b = b′.

(3) �a
b,c(G) and �a′

b′,c′ (G) are key-equal if and only if b = b′ and c = c′.
(4) �a

b,c(G) = �a′
b′,c′ (G) if and only if a = a′ and b = b′ and c = c′.

PROOF OF SUBLEMMA 4. 1. ⇒ Consequence of key(F) � G+,q (because G
q� F).

1. ⇐= Consequence of key(F) ⊆ F+,q. 2. ⇒ Consequence of vars(F) � F+,q (because
F

q� G). 2. ⇐= Consequence of vars(F) ⊆ F�,q. 3. ⇒ Consequence of key(G) � F�,q

(because F
q� G is a strong attack). 3. ⇐= Consequence of key(G) ⊆ G+,q. 4. ⇒

Consequence of item 3 and vars(G) � G+,q (because G
q� F). 4. ⇐= Trivial. �

Let db be an uncertain database with R1-facts and S1-facts. In what follows, we as-
sume that db is typed, as explained in Section 2. It will be understood that a, a1, a2, . . .
belong to type(x), that b, b1, b2, . . . belong to type(y), and that c, c1, c2, . . . belong to
type(z).

We define f (db) as the following uncertain database:

(1) for every R1(a, b) in db, f (db) contains �a
b,c(F) for some arbitrary constant c; note

that the choice of c does not matter because of the second item in Sublemma 4;
(2) for every S1(b, c, a) in db, f (db) contains �a

b,c(q \ {F}).
It is easy to see that f is computable in FO.

Let g(db) be the subset of f (db) containing all facts of f (db) that are neither R-facts
nor S-facts. By Sublemmas 3 and 4,

rset( f (db)) = { f (r) ∪ g(db) | r ∈ rset(db)}. (8)

Let db be an arbitrary database with R1-facts and S1-facts. It suffices to show that the
following are equivalent for every repair r of db:

(1) r satisfies q1;
(2) f (r) ∪ g(db) satisfies q.

1 ⇒ 2 Assume that r satisfies q1. Then, we can assume constants a, b, c such that
R1(a, b), S1(b, c, a) ∈ r. Then, f (r) contains {�a

b,c′ (F)} ∪ �a
b,c(q \ {F}) for some constant

c′. Since �a
b,c′ (F) = �a

b,c(F), we have that f (r) contains �a
b,c(q). Consequently, f (r)

satisfies q. 2 ⇒ 1 Let θ be a substitution over vars(q) such that θ (q) ⊆ f (r) ∪ g(db).
By our construction, we can assume some R1(a, b) ∈ r and some constant c such
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that θ (F) = �a
b,c(F). Likewise, we can assume some S1(b′, c′, a′) ∈ r such that

θ (G) ∈ �a′
b′,c′ (q \ {F}). It suffices to show that a = a′ and b = b′.

b = b′ Since F
q� G, there exists a sequence F0, F1, . . . , Fn of distinct atoms of q such

that

• F0 = F and Fn = G; and
• for all i ∈ {0, . . . , n − 1}, we can assume some ui ∈ vars(Fi) ∩ vars(Fi+1) such that

ui �∈ F+,q.

We show by induction on increasing i that for all i ∈ {0, . . . , n − 1}, there exist
constants ai and ci such that for all wi ∈ vars(Fi), we have that θ (wi) ∈ {⊥, ai, b, 〈ai, b〉,
〈b, ci〉, 〈ai, b, ci〉}.

Basis i = 0. Since θ (F) = �a
b,c(F), for all w0 ∈ vars(F0), we have that θ (w0) ∈ {⊥, a,

b, 〈a, b〉, 〈b, c〉, 〈a, b, c〉}.
Step i → i +1. By the induction hypothesis, there exist constants ai and ci such that

for all wi ∈ vars(Fi), we have that θ (wi) ∈ {⊥, ai, b, 〈ai, b〉, 〈b, ci〉, 〈ai, b, ci〉}. From
ui �∈ F+,q, it follows that θ (ui) ∈ {b, 〈ai, b〉, 〈b, ci〉, 〈ai, b, ci〉}. Since ui ∈ vars(Fi+1), it
follows that there exist constants ai+1 and ci+1 such that for all wi+1 ∈ vars(Fi+1),
we have that θ (wi+1) ∈ {⊥, ai+1, b, 〈ai+1, b〉, 〈b, ci+1〉, 〈ai+1, b, ci+1〉}.

It follows that for un−1 ∈ vars(G), there exist constants an−1 and cn−1 such that
θ (un−1) ∈ {b, 〈an−1, b〉, 〈b, cn−1〉, 〈an−1, b, cn−1〉}. From θ (G) ∈ �a′

b′,c′ (q \ {F}), it follows that
θ (un−1) ∈ {b′, 〈a′, b′〉, 〈b′, c′〉, 〈a′, b′, c′〉}. Consequently, b = b′.

a = a′ Analogous. This concludes the proof of Theorem 6.1.

7. POLYNOMIAL-TIME TRACTABILITY

In this section, we prove the P upper complexity bound stated in the second item of
Theorem 3.2.

THEOREM 7.1. For every q ∈ sjfBCQ, if the attack graph of q contains no strong cycle,
then CERTAINTY(q) is in P.

A very high-level outline of the proof of Theorem 7.1 is as follows. Let q be a sjfBCQ
query such that the attack graph of q contains no strong cycle. The proof will run by
structural induction. If the attack graph of q contains an atom F without incoming
attacks, then Lemma 4.4 tells us that the answer to CERTAINTY(q) can be obtained in
polynomial time from the answers to a polynomial number of problems CERTAINTY(q′),
all of which are in P by the induction hypothesis. The more difficult case is if all
atoms have incoming attacks in the attack graph of q. We will show that, in this case,
CERTAINTY(q) can be reduced in polynomial time to some problem CERTAINTY(q′′),
which is in P by the induction hypothesis. The query q′′ is obtained from q by a
technique called “dissolution of Markov cycles.”

The proof of Theorem 7.1 is technically involved. We start by introducing in Sec-
tion 7.1 an extension of the data model that allows some syntactic simplifications,
expressed in Section 7.2. In Section 7.3, we introduce the notion of Markov cycle, and
show how the dissolution of Markov cycles is helpful in the proof of Theorem 7.1, which
is given in Section 7.4. The dissolution of Markov cycles will be explained in detail in
Section 8.
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7.1. Relations Known to Be Consistent

We conservatively extend our data model. We first distinguish between two kinds of
relation names: those that can be inconsistent and those that cannot.

The mode of a relation name. Every relation name has a unique and fixed mode,
which is an element in {i, c}. It will come in handy to think of i and c as inconsistent
and consistent respectively. We often write Rc to denote that R is a relation name with
mode c. If q ∈ sjfBCQ, then [[q]] denotes the subset of q containing each atom whose
relation name has mode c. The inconsistency count of q, denoted incnt(q), is the number
of relation names with mode i in q. Modes carry over to atoms and facts: the mode of
an atom R(�x, �y) or a fact R(�a, �b) is the mode of R.

The intended semantics is that if a relation name R has mode c, then the set of
R-facts of an uncertain database will always be consistent.

Certain query answering with consistent and inconsistent relations. The problem
CERTAINTY(q) now takes as input an uncertain database db such that for every relation
name R in q, if R has mode c, then the set of R-facts of db is consistent. The problem
is to determine whether every repair of db satisfies q.

All constructs and results shown in previous sections assumed that all relation names
had mode i. Nevertheless, Proposition 7.2 indicates that in the tractability study of
CERTAINTY(q), relation names with mode c can be simulated by means exclusively
of relation names with mode i. Therefore, having relation names with mode c will be
convenient, but is not fundamental.

PROPOSITION 7.2. Let q be a self-join-free Boolean conjunctive query. Let Rc(�x, �y) be
an atom with mode c in q. Let R1 and R2 be two relation names, both with mode
i and with the same signature as R, such that neither R1 nor R2 occurs in q. Let
q′ = (q \ {Rc(�x, �y)}) ∪ {R1(�x, �y), R2(�x, �y)}. Then, CERTAINTY(q) and CERTAINTY(q′) are
equivalent under first-order reductions.

If relation names with mode c are allowed for syntactic convenience, the definition
of F+,q needs a slight change:

F+,q := {x ∈ vars(q) | K((q \ F) ∪ [[q]]) |= key(F) → x}.
Modulo this redefinition, the notion of attack graph remains unchanged.

Proposition 7.2 explains how to replace atoms with mode c. Conversely, the following
lemma states that in pursuing a proof for Theorem 7.1, there are cases in which a
sjfBCQ query can be extended with atoms of mode c.

LEMMA 7.3. Let q ∈ sjfBCQ. Let x, z ∈ vars(q) such that K(q) |= x → z and for every

F ∈ q, if K(q) |= x → key(F), then F
q
�� x and F

q
�� z. Let q′ = q ∪ {T c(x, z)}, where T is

a fresh relation name with mode c. Then,

(1) there exists a polynomial-time many-one reduction from CERTAINTY(q) to
CERTAINTY(q′); and

(2) if the attack graph of q contains no strong cycle, then the attack graph of q′ contains
no strong cycle either.

Saturated queries. Given a query in sjfBCQ, the reduction of Lemma 7.3 can be
repeated until it can no longer be applied. The query so obtained will be called saturated.

Definition 7.4. We say that q ∈ sjfBCQ is saturated if whenever x, z ∈ vars(q) such
that K(q) |= x → z and K([[q]]) �|= x → z, then there exists an atom F ∈ q with
K(q) |= x → key(F) such that F

q� x or F
q� z.
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Example 7.5. Consider the query q = {R(x, y), S1(y, z), S2(y, z), T c(x, z, w), U (w, x)}.
We have that K(q) |= y → z and K([[q]]) �|= y → z. The set {F ∈ q | K(q) |= y → key(F)}
equals {S1, S2}. We have neither S1

q� y nor S1
q� z. Likewise, neither S2

q� y nor
S2

q� z. Thus, q is not saturated. By Lemma 7.3, there exists a polynomial-time many-
one reduction from CERTAINTY(q) to CERTAINTY(q′) with q′ = q ∪ {Sc(y, z)}, where S
is a fresh relation name with mode c. It can be verified that the query q′ is saturated.

7.2. Syntactic Simplifications

The following lemma shows that any proof of Theorem 7.1 can assume some syntactic
simplifications without loss of generality.

LEMMA 7.6. For every q ∈ sjfBCQ, there exists a polynomial-time many-one reduc-
tion from CERTAINTY(q) to CERTAINTY(q′) for some q′ ∈ sjfBCQ with the following
properties:

• incnt(q′) ≤ incnt(q);
• no atom in q′ contains two occurrences of the same variable;
• constants occur in q′ exclusively at the primary-key position of simple-key atoms;
• every atom with mode i in q′ is simple-key;
• q′ is saturated; and
• if the attack graph of q contains no strong cycle, then the attack graph of q′ contains

no strong cycle either.

The proof of Lemma 7.6 is given in Appendix C and proceeds as follows. For
q ∈ sjfBCQ, we first exhibit a family of polynomial-time many-one reductions from
CERTAINTY(q) to CERTAINTY(q′), where q′ possesses more of the desirable properties
in the statement of the lemma. Significantly, all these reductions are such that if the
attack graph of q contains no strong cycle, then the attack graph of q′ contains no
strong cycle either. The overall result then follows from composing these reductions.

7.3. Dissolving Markov Cycles

The following definition introduces Markov graphs. The notion of Markov graph will
only be defined for sjfBCQ queries in which all atoms of mode i are simple-key. It is
a (simple) directed graph whose vertices are the variables of the query. If a query
contains an atom R(x, �y) of mode i, then its Markov graph will contain directed edges
from x to each variable y in �y with y �= x. Moreover, if a query contains an atom Sc(�u, �w)
of mode c and the Markov graph already contains edges from x to each variable u in �u
with u �= x, then the Markov graph contains directed edges from x to each variable w
in �w with w �= x.

Definition 7.7. Let q ∈ sjfBCQ such that every atom with mode i in q is simple-key.
For every x ∈ vars(q), we define

Cq(x) := {F ∈ q | F has mode i and key(F) = {x}}.
Note that Cq(x) can be empty.

The Markov graph of q is a directed graph whose vertex set is vars(q). There is a
directed edge from x to y, denoted x

q,M−→ y, if x �= y and K(Cq(x) ∪ [[q]]) |= x → y. If the
query q is clear from the context, then x

q,M−→ y can be shortened into x M−→ y.2

2The term Markov refers to the intuition that along a path in the Markov graph, each variable functionally
determines the next variable in the path independently of preceding variables.
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Fig. 4. Attack graph (left) and Markov graph (right) of the query {R(x, y, v), S(y, x), V c
1 (v, w), W (w, v)

V c
2 (w, y)}.

An elementary directed cycle C in the Markov graph of q is said to be premier if there
exists a variable x ∈ vars(q) such that

(1) {x} = key(F0) for some atom F0 with mode i that belongs to an initial strong
component of the attack graph of q; and

(2) for some y in C, we have that K(q) |= y → x and the Markov graph contains a
directed path from x to y.

The term Markov path is used for a path in the Markov graph; the term Markov cycle
is used for a cycle in the Markov graph.

Example 7.8. Let q = {R(x, y, v), S(y, x), V c
1 (v,w), W(w, v) V c

2 (w, y)}. All atoms in
q are simple-key. Then, [[q]] = {V c

1 (v,w), V c
2 (w, y)}. We have that Cq(x) = {R(x, v, y)}.

Since K(Cq(x) ∪ [[q]]) |= x → {y, v, w}, the Markov graph of q contains directed edges
from x to each of y, v, and w. We have that Cq(v) = ∅. Since K(Cq(v) ∪ [[q]]) |= v → {y, w},
the Markov graph of q contains directed edges from v to both y and w. The complete
Markov graph of q is shown in Figure 4 (right).

The attack graph of q is shown in Figure 4 (left). The atoms R(x, y, v) and S(y, x)
together constitute an initial strong component of the attack graph. It is then straight-
forward that each cycle in the Markov graph of q that contains x or y must be premier.
Further, the cycle 〈v,w, v〉 in the Markov graph of q is also premier because there is a
Markov path from x to v, and K(q) |= v → x.

Semantically, Definition 7.7 means the following for sjfBCQ query q and variable x.
Let db be an uncertain database, and let θ1, θ2 be two valuations over vars(q) such
that θ1(q) ⊆ db and θ2(q) ⊆ db. If θ1(F) = θ2(F) for all atoms F ∈ q with mode i such
that key(F) = {x}, then θ1(y) = θ2(y) for every variable y that is reachable from x in
the Markov graph of q. That is, if y is reachable from x and θ is a valuation such that
θ (q) ⊆ db, then θ (y) is fully determined if we know θ (F) for all atoms F ∈ q with mode
i such that key(F) = {x}.

Let q be as in Definition 7.7 and assume that the Markov graph of q contains an
elementary directed cycle C. Lemma 7.11 states that CERTAINTY(q) can be reduced
in polynomial time to CERTAINTY(q∗), where q∗ is obtained from q by “dissolving” the
Markov cycle C as defined in Definition 7.9. Moreover, we will show (Lemma 7.12) that
if C is premier and the attack graph of q contains no strong cycle, then the attack graph
of q∗ will contain no strong cycle either. The reduction that “dissolves” Markov cycles
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Fig. 5. Attack graph of the query that results from dissolving the Markov cycle 〈x, w, y, x〉 in the query of
Figure 4.

will be the central idea in our polynomial-time algorithm for CERTAINTY(q) when the
attack graph of q contains no strong cycle.

Definition 7.9. Let q ∈ sjfBCQ such that every atom with mode i in q is simple-key.
Let C be an elementary directed cycle of length k ≥ 2 in the Markov graph of q. Then,
dissolve(C, q) denotes the sjfBCQ query defined next. Let x0, . . . , xk−1 be the variables
in C, and let q0 = ⋃k−1

i=0 Cq(xi). Let �y be a sequence of variables containing exactly once
each variable of vars(q0) \ {x0, . . . , xk−1}. Let q1 = {T (u, x0, . . . , xk−1, �y)} ∪ {U c

i (xi, u)}k−1
i=0 ,

where u is a fresh variable, T is a fresh relation name with mode i, and U1, . . . ,Uk−1
are fresh relation names with mode c. Then, we define

dissolve(C, q) := (q \ q0) ∪ q1.

Note that dissolve(C, q) is unique up to a renaming of the variable u and the relation
names in q1.

Example 7.10. Let q be the query of Figure 4. Let C be the cycle 〈x, w, y, x〉 in the
Markov graph of q. Using the notation of Definition 7.9, we have that

q0 = {R(x, y, v), S(y, x), W(w, v)},
q1 = {T (u, x, w, y, v),U c

1(x, u),U c
2(w, u),U c

3(y, u)}.
Thus, dissolve(C, q) = {V c

1 (v,w), V c
2 (w, y), T (u, x, w, y, v), U c

1(x, u), U c
2(w, u), U c

3(y, u)}.
The attack graph of the latter query is shown in Figure 5.

LEMMA 7.11 (DISSOLUTION LEMMA). Let q ∈ sjfBCQ such that every atom with mode i
in q is simple-key. Let C be an elementary directed cycle in the Markov graph of q and
let q∗ = dissolve(C, q). Then, there exists a polynomial-time many-one reduction from
CERTAINTY(q) to CERTAINTY(q∗).

The reduction of Lemma 7.11 will be explained in Section 8. To use the reduction in
a proof of Theorem 7.1, two more results are needed:

• First, we need to show that the dissolution of Markov cycles can be done while
keeping the attack graph free of strong cycles (this is Lemma 7.12). This turns out
to be true only for Markov cycles that are premier (as defined in Definition 7.7).

• Second, we need to show the existence of premier Markov cycles that can be “dis-
solved” (this is Lemma 7.13).
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LEMMA 7.12. Let q ∈ sjfBCQ such that every atom with mode i in q is simple-key. Let
C be an elementary directed cycle in the Markov graph of q such that C is premier and
let q∗ = dissolve(C, q). If the attack graph of q contains no strong cycle, then the attack
graph of q∗ contains no strong cycle either.

LEMMA 7.13. Let q ∈ sjfBCQ such that

• for every atom F ∈ q, if F has mode i, then F is simple-key and key(F) �= ∅;
• q is saturated;
• the attack graph of q contains no strong cycle; and
• the attack graph of q contains an initial strong component with two or more atoms.

Then, the Markov graph of q contains an elementary directed cycle that is premier
and such that for every y in C, Cq(y) �= ∅.

The condition Cq(y) �= ∅ for every y in C guarantees that dissolve(C, q) will contain
strictly less atoms of mode i than q. This condition will be used in the proof of Theo-
rem 7.1, which runs by induction on the number of atoms with mode i. The following
example shows that Lemma 7.13 is no longer true if q is not saturated.

Example 7.14. Continuing Example 7.5. The query q of Example 7.5 is not saturated
but satisfies all other conditions in the statement of Lemma 7.13. In particular, the
attack graph of q contains a weak cycle R

q� U
q� R, which is part of an initial strong

component. The Markov graph of q consists of a single path w
q,M−→ x

q,M−→ y
q,M−→ z, thus

is acyclic.

The query q′ of Example 7.5 is saturated and we have x
q′,M−→ w

q′,M−→ x, a Markov cycle
which can be shown to be premier.

7.4. The Proof of Theorem 7.1

PROOF OF THEOREM 7.1. Assume that the attack graph of q contains no strong cycle.
The proof runs by induction on increasing incnt(q). The desired result is obvious if
incnt(q) = 0. Assume that incnt(q) > 0 in the remainder of the proof. Let db be an
uncertain database that is input to CERTAINTY(q).

First, we reduce in polynomial time CERTAINTY(q) to CERTAINTY(q′) with q′ as in
Lemma 7.6. We now distinguish two cases.
Case: Some atom F of mode i in q′ has zero indegree in the attack graph of q′.
We can assume that either F = R(x, �y) or F = R(a, �y), where �y is a sequence of distinct
variables. In the remainder, we treat the case F = R(x, �y) (the case F = R(a, �y) is even
simpler).

Let q′′ = q′ \ {R(x, �y)}. By Lemma 4.4, every repair of db satisfies q′ if and only if
db includes an R-block b (there are only polynomially many such blocks) such that for
every R(a, �b) ∈ b, every repair of db satisfies q′′

[x,�y�→a,�b]. By Lemma 3.7, the attack graph
of q′′

[x,�y�→a,�b] contains no strong cycle. From incnt(q′′
[x,�y�→a,�b]) = incnt(q′) − 1 < incnt(q), it

follows that CERTAINTY(q′′
[x,�y�→a,�b]) is in P by the induction hypothesis. It follows that

CERTAINTY(q) is in P as well.
Case: Each atom F of mode i in q′ has an incoming attack in the attack graph of q′.
It will be the case that no constant occurs in an atom of mode i in q′.

Then, the attack graph of q′ must contain an initial strong component with two or
more atoms. By Lemma 7.13, the Markov graph of q′ contains an elementary directed
cycle C that is premier and such that for every y in C, Cq′ (y) �= ∅. By Lemma 7.11, we can
reduce in polynomial time CERTAINTY(q′) to CERTAINTY(q∗), where q∗ = dissolve(C, q′).
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Since the attack graph of q′ contains no strong cycle, it follows by Lemma 7.12 that the
attack graph of q∗ contains no strong cycle either.

Let k ≥ 2 be the size of C. It can be easily verified that incnt(q∗) ≤ (
incnt(q′) − k

)+1 <

incnt(q′). By the induction hypothesis, CERTAINTY(q∗) is in P. Since there exists a
polynomial-time reduction from CERTAINTY(q) to CERTAINTY(q∗), we conclude that
CERTAINTY(q) is in P as well.

This concludes the proof that CERTAINTY(q) is in P.

8. PROOF OF THE DISSOLUTION LEMMA (LEMMA 7.11)

In this section, we spell out the reduction of Lemma 7.11, called the Dissolution Lemma,
and then prove the lemma. The example in Section 8.1 illustrates the main ideas of
the reduction. Sections 8.2 and 8.3 generalize the notions of relevant facts and purified
databases, respectively, which were introduced in Section 2. Given an sjfBCQ query q,
these notions serve to remove from an uncertain database db some blocks that are not
relevant to the problem CERTAINTY(q). Section 8.4 introduces the graph-theoretical
representation of database facts that underlies the reduction of the Dissolution Lemma.
The reduction itself is specified in Section 8.5. Finally, the Dissolution Lemma is shown
in Section 8.6.

8.1. Introductory Example

We present an example to illustrate the main ideas behind the reduction in the Dis-
solution Lemma. Let q ∈ sjfBCQ such that q includes q0 = {R(x, y), S(y, z), V (z, x)}.
Then, the Markov graph of q contains a cycle x M−→ y M−→ z M−→ x. Let db be an uncer-
tain database that is purified relative to q. Let db0 be the subset of db containing all
R-facts, S-facts, and V -facts of db. Assume that the following three tables represent
all facts of db0 (for convenience, we use variables as attribute names and we blur the
distinction between a relation name R and a table representing a set of R-facts).

R x y
1 a

2 b
2 c

3 d
3 e
4 e
4 f

S y z
a α
a κ

b β
c γ

d δ
e ε
e δ
f φ

V z x
α 1
κ 1

β 2
γ 2

δ 3
ε 3
δ 4
φ 4

}
db01}
db02⎫⎪⎪⎬⎪⎪⎭ db03

As indicated, we can partition db0 into three subsets db01, db02, and db03 whose
active domains have, pairwise, no constants in common. Consider each of these three
subsets in turn.

(1) db01 has two repairs, each of which satisfies q0. For every repair r of db, either
r |= q0[x,y,z�→1,a,α] or r |= q0[x,y,z�→1,a,κ].

(2) db02 has two repairs, each of which satisfies q0. For every repair r of db, either
r |= q0[x,y,z�→2,b,β] or r |= q0[x,y,z�→2,c,γ ].

(3) db03 has 16 repairs, and for s := {R(3, d), S(d, δ), V (δ, 4), R(4, e), S(e, ε), V (ε, 3),
S( f , φ), V (φ, 4)}, we have that s is a repair of db03 that falsifies q0. It can be easily
seen that every repair of db satisfies q if and only if every repair of db \ db03
satisfies q. That is, db03 can be ignored from this point on.
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Fig. 6. 3-partite digraph representing the database facts of the example in Section 8.1. Square vertices have
outdegree 2. Round vertices have outdegree 1.

The following table T summarizes our findings. In the first column (named with a
fresh variable u), the values 01 and 02 refer to db01 and db02, respectively. The table
includes two blocks (separated by a dashed line for clarity). The first block indicates
that for every repair r of db, either r |= q0[x,y,z�→1,a,α] or r |= q0[x,y,z�→1,a,κ]. Likewise for
the second block.

T u x y z
01 1 a α

01 1 a κ

02 2 b β

02 2 c γ

The following table Ux is the projection of T on attributes x and u. This table must be
consistent because, by construction, the active domains of db01 and db02 are disjoint.
Likewise for Uy and Uz.

U c
x x u

1 01
2 02

U c
y y u

a 01
b 02
c 02

U c
z z u

α 01
κ 01
β 02
γ 02

Let db′ be the database that extends db with all facts shown in tables T , Ux, Uy, and
Uz.3 Let q∗ = (q \ q0) ∪ {T (u, x, y, z), U c

x (x, u), U c
y(y, u), U c

z (z, u)}. From our construction,
it follows that every repair of db satisfies q if and only if every repair of db′ satisfies
q∗.

We now give a graph-theoretical interpretation of the example. The directed graph of
Figure 6 is a straightforward representation of the database facts of db0: the vertices
are the constants in db and a directed edge from s to t means that db contains a fact
whose primary-key position contains s, and whose nonprimary-key position contains
t. For example, R(a, α) gives rise to the directed edge (a, α). The graph is 3-partite
because every constant in db0 belongs to exactly one set among type(x), type(y), and
type(z). The square nodes have outdegree 2 and correspond to primary-key violations in
the database. The directed graph has three strong components corresponding to db01,
db02, and db03.

3Facts of db0 can be omitted from db′, but that is not important.
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In this graphical representation, a repair is any subgraph that can be obtained by
selecting exactly one outgoing edge for each vertex. Such a repair will satisfy q0 if
and only if it contains an elementary cycle of length 3. The component db03 has a
cycle 〈3, d, δ, 4, e, ε, 3〉 of length 6; if we add the edges ( f, φ) and (φ, 4) to the edges of
this cycle, then we obtain a repair of db03 without cycles of length 3. This subgraph
corresponds to the repair s found before.

When we repair the strong component db01, we cannot avoid creating either the
cycle 〈1, a, α〉 or the cycle 〈1, a, κ〉, both of length 3. Likewise, the strong component
db02 cannot be repaired without creating one of the cycles 〈2, b, β〉 or 〈2, c, γ 〉. These
unavoidable cycles of length 3 are encoded in the table T .

8.2. Relevance of Subsets of Repairs

In Section 2, we distinguished database facts that are relevant for a query from those
that are not. This notion is extended next.

Definition 8.1. Let q ∈ sjfBCQ and let db be an uncertain database. A consistent
subset s of db is said to be grelevant for q in db (generalized relevant) if it can be
extended into a repair r of db such that some fact of s is relevant for q in r.

It can be seen that A ∈ db is relevant for q in db if and only if {A} is grelevant for q
in db. Therefore, “grelevant” is a notion that generalizes “relevant.”

Example 8.2. In the example of Section 8.1, the repair s of db03 is not grelevant for
q in db. As a consequence, every repair of db satisfies q if and only if every repair of
db \ db03 satisfies q.

LEMMA 8.3. Let q ∈ sjfBCQ and let db be an uncertain database. Let s be a consistent
subset of db that is not grelevant for q in db. Let db0 = ⋃{block(A, db) | A ∈ s}. Then,
the following are equivalent:

(1) every repair of db satisfies q;
(2) every repair of db \ db0 satisfies q.

PROOF. 1 ⇒ 2 By contraposition. Let r be a repair of db \db0 that falsifies q. Then,
r ∪ s is a repair of db. If r ∪ s |= q, then it must be the case that s is grelevant for q in
db, a contradiction. We conclude by contradiction that r ∪ s �|= q. 2 ⇒ 1 Trivial.

8.3. Gblocks and Gpurification

The following definition strengthens the notion of purification introduced earlier in
Section 2.

Definition 8.4. Let q ∈ sjfBCQ such that all atoms with mode i in q are simple-key.
Let db be an uncertain database that is purified and typed relative to q. A gblock
(generalized block) of db relative to q is a maximal (with respect to ⊆) subset g of db
such that all facts in g have mode i and agree on their primary-key position (but may
disagree on their relation name). Note that a gblock has at most polynomially many
repairs (in the size of db).4 We say that db is gpurified relative to q if for every gblock
g of db, every repair of g is grelevant for q in db.

Clearly, every gblock is the union of one or more blocks. Two facts of the same gblock
have the same primary-key value but can have distinct relation names.

4Indeed, since db is purified relative to q, every gblock of db contains at most |q| distinct relation names,
thus has at most |db||q| distinct repairs.
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Example 8.5. Let q = {R(x, y), S(x, y)}. Let db = {R(a, 1), R(a, 2), S(a, 1), S(a, 2)}.
Then, db is purified and typed relative to q. All facts of db together constitute a gblock.
The uncertain database db is not gpurified since s = {R(a, 1), S(a, 2)} is a repair of the
gblock and also a repair of db. However, neither R(a, 1) nor S(a, 2) is relevant for q
in s.

Example 8.6. Let q = {R1(x, y), R2(x, z), S(y, z)}, where the signature of S is [2, 2].
Let db be the uncertain database containing the following facts.

R1 x y
a 1
a 2

R2 x z
a 3
a 4

S y z
1 3
2 4

Then, db is purified and typed relative to q. All R1-facts and R2-facts together constitute
a gblock. A repair of this gblock is s = {R1(a, 1), R2(a, 4)}. The uncertain database db is
not gpurified. The only repair of db that extends s is {R1(a, 1), R2(a, 4), S(1, 3), S(2, 4)}
(call it r). Neither R1(a, 1) nor R2(a, 4) is relevant for q in r.

The following lemma is similar to Lemma 2.4 and has an easy proof.

LEMMA 8.7. Let q ∈ sjfBCQ such that all atoms with mode i in q are simple-key. Let
db be an uncertain database that is purified and typed relative to q. It is possible to
compute in polynomial time an uncertain database db′ that is gpurified relative to q
such that every repair of db satisfies q if and only if every repair of db′ satisfies q.

8.4. k-Partite Digraph Representation of Database Facts

Let q and C be as in the statement of Lemma 7.11. Assume that the elementary directed
cycle C in the Markov graph of q is x0

M−→ x1 · · · M−→ xk−1
M−→ x0. In what follows, let

dissolve(C, q) be as in Definition 7.9, with q0, q1, �y, u, T , and U0, . . . ,Uk−1 as defined
there. Moreover, we write ⊕ for addition modulo k, and � for subtraction modulo k. For
every i ∈ {0, . . . , k − 1}, we define Xi as follows:

Xi := vars(Cq(xi)).

The reduction of Lemma 7.11 will be described under the following simplifying as-
sumptions, which can be made without loss of generality:

• Every uncertain database db that is input to CERTAINTY(q) is typed, purified, and
gpurified relative to q. This assumption is without loss of generality as argued in
Section 2 and by Lemmas 2.4 and 8.7; and

• for every i ∈ {0, . . . , k−1}, no atom of Cq(xi) contains constants or double occurrences
of the same variable. This assumption is without loss of generality by Lemma 7.6.

The reduction will rely on a graph representation of database facts as defined
next and illustrated in Figure 6. Let db be an uncertain database that is input to
CERTAINTY(q). Define a k-partite directed graph, denoted G(db), as follows:

(1) the vertex set of G(db) is
⋃k−1

i=0 type(xi); and
(2) there is a directed edge from a ∈ type(xi) to b ∈ type(xi⊕1) if for some valuation θ

over vars(q), we have that θ (q) ⊆ db and θ (xi) = a and θ (xi⊕1) = b. In this case, we
say that θ [Xi] realizes the edge (a, b), where θ [Xi] denotes the restriction of θ on Xi.

Note that distinct valuations can realize the same edge of G(db) (but if db is consis-
tent, then every edge in G(db) is realized at most once).

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 9, Publication date: April 2017.



9:32 P. Koutris and J. Wijsen

Example 8.8. Let q = {R1(x0, y1), R2(x0, y2), Sc(y1, y2, x1), R3(x0, y3), V (x1, x0)}. Then,

x0
M−→ x1 and X0 = {x0, y1, y2, y3}. Assume an uncertain database db containing, among

others, the following facts.

R1 x0 y1

a c1

R2 x0 y2

a c2
a c3

Sc y1 y2 x1

c1 c2 1
c1 c3 1

R3 x0 y3

a β
a γ

The graph G(db) contains a directed edge (a, 1), which is realized by {x0 �→ a, y1 �→ c1,
y2 �→ c2, y3 �→ β}. The edge (a, 1) is also realized by {x0 �→ a, y1 �→ c1, y2 �→ c3, y3 �→ γ }.

Let [[db]] be the subset of db that contains all facts with mode c. A useful insight
is that the edges in G(db) outgoing from some constant a ∈ type(xj) (for some j ∈
{0, . . . , k − 1}) are fully determined by [[db]] and the gblock of db containing all facts
whose relation name is in Cq(xj) and whose primary-key position contains the constant
a (call this gblock ga). In other words, ga contains all facts that are of the form Ri(a, �b)
for some �b and some relation name R of mode i. As a matter of fact, since db is gpurified,
for every repair s of ga, there exists a unique constant b ∈ type(xj⊕1) such that

s ∪ [[db]] |= (
Cq(xj) ∪ [[q]]

)
[xj ,xj⊕1 �→a,b],

in which case G(db) will contain a directed edge from a to b. Uniqueness of b follows
from K(Cq(xj) ∪ [[q]]) |= xj → xj⊕1 and [43, Lemma 4.3].

8.5. Specification of the Reduction of Lemma 7.11

Under the notations and assumptions of Section 8.4, we now specify the reduction of
the Dissolution Lemma. Since db is assumed to be gpurified, G(db) is a vertex-disjoint
union of strong components such that no edge leads from one strong component to
another strong component (i.e., all strong components are initial).5 In what follows, let
D be a strong component of G(db). Since G(db) is k-partite, the length of any cycle in
G(db) must be a multiple of k, that is, must be in {k, 2k, 3k, . . . }. Let dbD be the subset
of db that contains R(a, �b) whenever R is of mode i and the constant a is a vertex in D
(and �b is any sequence of constants). Obviously, every block of db is either included in
dbD or disjoint with dbD.

Clearly, D must contain a cycle. Among the cycles in D of length exactly k, we now
distinguish the cycles that support q from those that do not, as defined next. Let this
cycle in D be

〈a0, a1, . . . , ak−1, a0〉, (9)

where for i ∈ {0, . . . , k − 1}, ai ∈ type(xi). For i ∈ {0, . . . , k − 1}, let �i be the set of all
valuations over Xi that realize (ai, ai⊕1). We say that the cycle (9) supports q if for all
i, j ∈ {0, . . . , k − 1}, for all μi ∈ �i and μ j ∈ � j , it is the case that μi and μ j agree on
all variables in Xi ∩ Xj . Note that Xi ∩ Xj can be empty. The cycle (9) may not support
q, because μi and μ j can disagree on variables in Xi ∩ Xj ∩ vars(�y), as illustrated next.
Recall from the first paragraph of Section 8.4 that �y is as in Definition 7.9.

5Strong components are defined by Definition 3.8.
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Example 8.9. Let q = {R(x0, x1, y), S(x1, x0, y)}. We have that x0
M−→ x1

M−→ x0. Let
db be the uncertain database containing the following facts.

R x0 x1 y
a 1 α
a 1 β

S x1 x0 y
1 a α
1 a β

The edge set of G(db) is {(a, 1), (1, a)}. Both (a, 1) and (1, a) are realized by the valuations
{x0 �→ a, x1 �→ 1, y �→ α} and {x0 �→ a, x1 �→ 1, y �→ β}, which disagree on y. Thus,
the cycle 〈a, 1, a〉 does not support q. Despite that the cycle 〈a, 1, a〉 contains both edges
of G(db), we can still construct a repair that falsifies q by choosing an R-fact and an
S-fact that disagree on the position of y, for example, {R(a, 1, α), S(1, a, β)}.

On the other hand, we can assume without loss of generality that μi and μ j agree on
all variables in Xi ∩ Xj ∩{x0, . . . , xk−1}. In particular, if xi ∈ Xj , then μ j(xi) = μi(xi) = ai.
To see why this is the case, assume that xi ∈ Xj , where i, j ∈ {0, . . . , k − 1} and i �= j.
Then, it must be that xj

M−→ xi. Two cases can occur:

• if j = i � 1, then μ j realizes the edge (ai�1, ai) and μ j(xi) = ai; and
• if j �= i � 1, then xj

M−→ xi
M−→ xi⊕1 · · · M−→ xj�1

M−→ xj is a shorter Markov cycle.

The second case can be avoided by picking C to be the shorter cycle, as illustrated
by Example 8.10. It can be seen that such choice of C is without loss of generality. In
particular, in Lemma 7.13, if C was premier, then the shorter cycle will also be premier.

Example 8.10. Let q = {R(x0, x1), S(x1, x2, x0), V (x2, x0)}. Then, x0
M−→ x1

M−→ x2
M−→

x0. We have that X0 = {x0, x1}, X1 = {x1, x2, x0}, and X2 = {x2, x0}. Assume an uncertain
database db with the following facts.

R x0 x1

a 1
b 1

S x1 x2 x0

1 β a
1 β b

V x2 x0

β a
β b

The graph G(db) contains an elementary directed cycle 〈a, 1, β, a〉. The edge (a, 1) is
realized by μ0 = {x0 �→ a, x1 �→ 1}. The edge (1, β) is realized, among others, by
μ1 = {x1 �→ 1, x2 �→ β, x0 �→ b}. Note that μ0 and μ1 disagree on x0. Although it would
be easy to deal with this situation in which two valuations disagree on a variable in
the Markov cycle, it is even easier to avoid this situation by working with the shorter
Markov cycle x0

M−→ x1
M−→ x0.

If we start with x0
M−→ x1

M−→ x0, we find that G(db) contains elementary cycles
〈a, 1, a〉 and 〈b, 1, b〉. The edges (a, 1) and (1, a) are realized by the valuations {x0 �→ a,
x1 �→ 1} and {x0 �→ a, x1 �→ 1, x2 �→ β}, respectively, which agree on x0 and x1. Likewise,
the edges (b, 1) and (1, b) are realized by {x0 �→ b, x1 �→ 1} and {x0 �→ b, x1 �→ 1,
x2 �→ β},respectively, which agree on x0 and x1.

We now distinguish two cases that are handled in Sections 8.5.1 and 8.5.2, respec-
tively.

8.5.1. Case: D Contains Either an Elementary Directed Cycle of Size k that Does Not Support q
or an Elementary Directed Cycle of Size Strictly Greater than k. We now show how to construct
a repair s of dbD such that s is not grelevant for q in db. Then, by Lemma 8.3, every
repair of db satisfies q if and only if every repair of db \ dbD satisfies q. In this case,
the reduction deletes from db all facts of dbD.

The construction of s proceeds as follows. Pick an elementary cycle in D that has size
strictly greater than k or that has size k but does not support q. The cycle picked will
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be denoted by E from this point on. It is trivial to build in polynomial time a subgraph
of D that contains one outgoing edge for every vertex in D such that E is the only cycle
in the subgraph. Essentially, for every vertex u not in the cycle E , the subgraph will
contain a path from u to some vertex in E . Let E be the edge set of this subgraph.

To construct s, for each j ∈ {0, . . . , k − 1}, for each vertex a in D that belongs to
type(xj), select some valuation μ that realizes the edge in E outgoing from a and add
μ(Cq(xj)) to s. If E has size k, then the valuations μ should be selected such that for
some vertices a, b in E , the valuations chosen for a and b disagree on some variable of
vars(�y). It is not hard to see that the set s so obtained is a repair of dbD that is not
grelevant for q in db.

We illustrate this construction by two examples.

Example 8.11. In Example 8.9, one can choose s = {R(a, 1, α), S(1, a, β)}. The treat-
ment of a directed cycle of size strictly greater than k is illustrated by db03 in the
example of Section 8.1.

Example 8.12. Let q = {R(x0, y1, y2), V (x1, y2), Sc
1(y1, y2, x1), Sc

2(y2, x0)}. We have that

x0
M−→ x1

M−→ x0, X0 = {x0, y1, y2}, and X1 = {x1, y2}. Let db be an uncertain database
with the following facts.

R x0 y1 y2

a 1 2
a 3 4
a 1 6

V x1 y2

γ 2
γ 4
β 6

Sc
1 y1 y2 x1

1 2 γ
3 4 γ
1 6 β

Sc
2 y2 x0

2 a
4 a
6 a

The following table lists the edges in G(db) by type along with the valuations that
realize each edge.

Edges in type(x0) × type(x1)
Edge Realized by
(a, γ ) {x0 �→ a, y1 �→ 1, y2 �→ 2}=μ1

{x0 �→ a, y1 �→ 3, y2 �→ 4}=μ2
(a, β) {x0 �→ a, y1 �→ 1, y2 �→ 6}=μ3

Edges in type(x1) × type(x0)
Edge Realized by
(γ, a) {x1 �→ γ, y2 �→ 2}=μ4

{x1 �→ γ, y2 �→ 4}=μ5
(β, a) {x1 �→ β, y2 �→ 6}=μ6

Then, G(db) contains two elementary cycles, 〈a, γ, a〉 and 〈a, β, a〉, both of length 2.
The cycle 〈a, β, a〉 supports q. The cycle 〈a, γ, a〉 does not support q because μ1 and
μ5 disagree on y2. Therefore, the edges (a, γ ) and (γ, a), along with μ1 and μ5, will be
used in the construction of a consistent set s that is not grelevant for q in db. For the
remaining vertex β, we add the edge (β, a), which is only realized by μ6. Then, s contains
the R-fact R(a, 1, 2) (because of μ1), and the V -facts V (γ , 4) and V (β, 6) (because of μ5

and μ6, respectively). In this example, there is only one repair that contains s, and this
repair falsifies q.

8.5.2. Case: Every Elementary Directed Cycle in D Has Length k and Supports q. In this case,
we will encode each cycle of D as a set of T -facts, as follows. Consider any cycle of the
form (9) in D and take the cross product

�0 × �2 × · · · × �k−1, (10)

which is of polynomial size (in the size of db). Since we are in the case in which any cycle
of the form (9) supports q, for every tuple (μ0, μ1, . . . , μk−1) in the cross product (10),
the set μ := ⋃k−1

i=0 μi is a well-defined valuation over {x0, . . . , xk−1} ∪ vars(�y). In this
case, for each such tuple, the reduction adds the following 1 + k facts:

T (D, a0, . . . , ak−1, μ(�y)),U c
0(a0, D),U c

1(a0, D), . . . ,U c
k−1(ak−1, D),
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in which D is used as a constant. Recall that ai = μ(xi) for i ∈ {0, . . . , k−1}. Note that if
the sequence �y is empty, then the reduction will add exactly one T -fact for every cycle
of the form (9). Otherwise, the reduction may add multiple T -facts for the same cycle,
as illustrated next.

Example 8.13. Let q = {R(x0, x1, y), S(x1, x0)}. We have that x0
M−→ x1

M−→ x0,
X0 = {x0, x1, y}, and X1 = {x0, x1}. Let db be the uncertain database containing the
following facts.

R x0 x1 y
a 1 α
a 1 β

S x1 x0

1 a

The edge set of G(db) is {(a, 1), (1, a)}. The edge (a, 1) is realized by both {x0 �→ a,
x1 �→ 1, y �→ α} and {x0 �→ a, x1 �→ 1, y �→ β}. The edge (1, a) is realized only by {x0 �→ a,
x1 �→ 1}. The cycle 〈a, 1, a〉 in G(db) supports q. The reduction will add the following
T -facts (for some identifier D):

T u x0 x1 y
D a 1 α
D a 1 β

Example 8.14. Take the query q of Example 8.12, with the following uncertain
database db.

R x0 y1 y2

a 1 2
a 1 6
a 3 6

V x1 y2

γ 2
β 6

Sc
1 y1 y2 x1

1 2 γ
1 6 β
3 6 β

Sc
2 y2 x0

2 a
6 a

Then, G(db) contains two elementary cycles, 〈a, γ, a〉 and 〈a, β, a〉, both of length 2 and
both supporting q. The reduction will add the following T -facts (for some identifier D):

T u x0 x1 y1 y2

D a γ 1 2
D a β 1 6
D a β 3 6

Each relation U c
i encodes that each constant in type(xi) ∩ adom(db) occurs in a

unique strong component of G(db). The meaning of the T -facts is as follows. Let V =
{x0, . . . , xk−1} ∪ vars(�y). Let �D be the set of all valuations μ over V such that

T (D, μ(x1), . . . , μ(xk−1), μ(�y))

has been added by the reduction. Then, the following hold (recall that q0 =⋃k−1
i=0 Cq(xi)):

• for every repair r of db, there exists μ ∈ �D such that r |= μ(q0); and
• for every μ ∈ �D, there exists a repair r of db such that

(a) r |= μ(q0); and
(b) for each μ′ ∈ �D, if μ′ �= μ, then r �|= μ′(q0).

The cycles in D can be found in polynomial time by solving reachability problems, as
explained in [44, Theorem 4] and [23]. The crux is that the number of cycles in G(db)
of length exactly k is polynomially bounded. Any longer cycle consists of an elementary
path 〈a0, a1, . . . , ak−1, a′

0〉 of length k (a0 �= a′
0), concatenated with an elementary path
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from a′
0 to a0 that contains no vertex in {a1, . . . , ak−1}. Note incidentally that the reduc-

tion needs to know the existence (or not) of cycles of size strictly greater than k in any
strong component D, but the vertices on this cycle need not be remembered.

8.6. Proof of Lemma 7.11

The reduction of Section 8.5, by its construction, results in a database db′ that is as in
the following lemma.

LEMMA 8.15. Let q and C be as in the statement of Lemma 7.11. Let q∗ = dissolve(q, C),
and let the variable u be as in Definition 7.9. Let db be an uncertain database that is
input to CERTAINTY(q). We can compute in polynomial time an uncertain database db′

that is a legal input to CERTAINTY(q∗) such that the following hold:

(1) for every repair r of db, there exists a repair r′ of db′ such that for every valuation
θ over vars(q∗), if θ (q∗) ⊆ r′, then θ (q) ⊆ r; and

(2) for every repair r′ of db′, there exists a repair r of db such that for every valuation
θ over vars(q), if θ (q) ⊆ r, then there exists a constant D such that θ[u�→D](q∗) ⊆ r′.

We can now prove Lemma 7.11.

PROOF OF LEMMA 7.11. Let db be an uncertain database that is input to
CERTAINTY(q). By Lemma 8.15, we can compute in polynomial time an uncertain
database db′ that is a legal input to CERTAINTY(q∗) such that db′ satisfies condi-
tions 1 and 2 in the statement of Lemma 8.15. It suffices to show that the following are
equivalent.

(1) Every repair of db satisfies q.
(2) Every repair of db′ satisfies q∗.

1⇒ 2 Proof by contraposition. Assume a repair r′ of db′ such that r′ �|= q∗. By item 2
in the statement of Lemma 8.15, we can assume a repair r of db such that for every
valuation θ over vars(q), if θ (q) ⊆ r, then there exists a constant D such that θ[u�→D](q∗) ⊆
r′. Obviously, if r |= q, then r′ |= q∗, a contradiction. We conclude by contradiction that
r �|= q. 2 ⇒ 1 Proof by contraposition. Assume a repair r of db such that r �|= q. By
item 1 in the statement of Lemma 8.15, we can assume a repair r′ of db′ such that for
every valuation θ over vars(q∗), if θ (q∗) ⊆ r′, then θ (q) ⊆ r. Obviously, r′ �|= q∗.

9. RELATED WORK

Theoretical developments. CQA goes back to the seminal work by Arenas, Bertossi, and
Chomicki [2]. Fuxman and Miller [17, 18] were the first to focus on CQA under the
restrictions that consistency is only with respect to primary keys and that queries are
self-join-free conjunctive. The term CERTAINTY(q) was coined in [41]. A recent and
comprehensive survey on CERTAINTY(q) is [45].

In the past decade, a variety of tools and techniques have been used in the complexity
classification task for CERTAINTY(q) with q ∈ sjfBCQ. In their pioneering work, Fux-
man and Miller [17] introduced the notion of join graph (not to be confused with the
classical notion of join tree). Later, Wijsen [41] introduced the notion of attack graph.
Kolaitis and Pema [21] showed that, under some conditions, Minty’s algorithm [35] can
be used to solve CERTAINTY(q). Koutris and Suciu [23] introduced the notion of query
graph and the distinction between consistent and possibly inconsistent relations. All
these techniques have limited applicability: join graphs seem too rudimentary to obtain
general complexity dichotomies; the earliest notion of attack graph enables character-
ization of first-order expressibility of CERTAINTY(q), but only for α-acyclic queries q;
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Minty’s algorithm has been used to establish a P-coNP-complete dichotomy in the
complexity of CERTAINTY(q), but only for queries q with exactly two atoms; the frame-
work of Koutris and Suciu has also resulted in a P-coNP-complete dichotomy, but only
when all primary keys consist of a single attribute. On top of the limited applicabil-
ity of each individual technique, there is the difficulty that complexity classifications
expressed in terms of different techniques cannot be easily compared.

Little is known about CERTAINTY(q) beyond self-join-free conjunctive queries. An
interesting recent result by Fontaine [15] goes as follows. Let UCQ be the class of
Boolean first-order queries that can be expressed as disjunctions of Boolean conjunctive
queries (possibly with constants and self-joins). A daring conjecture is that, for every
query q in UCQ, CERTAINTY(q) is either in P or coNP-complete. Fontaine showed
that this conjecture implies Bulatov’s dichotomy theorem for conservative CSP [8], the
proof of which is highly involved. The complexity of CQA for aggregation queries with
respect to violations of functional dependencies has been studied in [4].

The counting variant of CERTAINTY(q), denoted �CERTAINTY(q), asks to deter-
mine the exact number of repairs that satisfy some Boolean query q. In [32], it was
shown that, for every self-join-free Boolean conjunctive query q, the counting problem
�CERTAINTY(q) is either in FP or �P-complete. For conjunctive queries q with self-
joins, the complexity of �CERTAINTY(q) has been established under the restriction that
all primary keys consist of a single attribute [33].

The work on database repairing has inspired work on inconsistency-tolerant query
answering in ontology-based data access [7, 27, 29]. It is common to assume that the on-
tological theory (usually a TBox in some description logic) is correct, while the database
(ABox) may contain erroneous facts that are not consistent with the ontological theory.
A repair is defined as a maximal (with respect to set inclusion) subset of the ABox that
is consistent with the TBox. Since computing the intersection of query answers over
all repairs is generally intractable, alternative query semantics have been introduced.
In particular, the Intersection ABox Repair (IAR) semantics executes queries on the
intersection of all repairs (instead of intersecting query answers). Note that in our
setting, given an uncertain database, the intersection of its repairs can be computed
in polynomial time by removing all blocks that contain at least two facts. Other ap-
proaches for restricting repairs are based on preference orders [14, 37] and user-defined
policies [31].

Implemented systems. In the past, the paradigm of consistent query answering, and
CERTAINTY(q) in particular, has been implemented in expressive formalisms such as
Disjunctive Logic Programming [3, 19, 30] and Binary Integer Programming (BIP) [22].
In these formalisms, it is relatively easy to express exponential-time algorithms for
CERTAINTY(q). The drawback is that the efficiency of these algorithms is likely to
be far from optimal in the case that the certain answer is computable in polynomial
time or expressible in first-order logic. In the latter case, the consistent answer can be
computed by a single SQL query using standard database technology, including query
optimization. In [6, page 38], the author mentions that logic programs for CQA cannot
compete with first-order query rewriting mechanisms when they exist. Likewise, in an
experimental comparison of EQUIP [22] and ConQuer [16], the authors of the former
system found that BIP never outperformed first-order query rewriting.

The Hippo system [10] implements a polynomial-time algorithm for CQA with respect
to denial constraints for quantifier-free first-order queries. Since primary keys are
denial constraints, this algorithm can be used in our setting for computing certain
answers to self-join-free conjunctive queries in which all variables are free. However,
from our discussion in Section 3.3, it follows that such queries also have consistent
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first-order rewritings because their attack graphs are empty (and thus acyclic) when
free variables are treated as constants.

In summary, the practical relevance of our results is that they tell us when computa-
tionally expensive formalisms can be avoided in the computation of consistent answers.
Moreover, by looking at practical examples, we found that many natural self-join-free
conjunctive queries have a consistent first-order rewriting. That is, the “easiest” case
is by no means exceptional. For example, as soon as a self-join-free conjunctive query,
expressed in SQL, on the example database of Figure 1 satisfies one of the following
conditions, then its certain answer can be computed in SQL:

• the FROM clause contains only one table;
• the SELECT clause includes one or both primary keys (i.e., E.EID or D.DNAME); or
• the WHERE clause joins E and D on either E.EID = D.MGR or E.DNAME = D.DNAME

(but not on both). In other words, the join is a simple primary-to-foreign key join.

10. CONCLUSION

This article settles a long-standing open question in consistent query answering by
solving the complexity classification task for CERTAINTY(q) with q ∈ sjfBCQ. In par-
ticular, we showed that, given q ∈ sjfBCQ, there exists a procedure that looks at the
structure of the attack graph of q and decides whether CERTAINTY(q) is in FO, in
P \ FO, or coNP-complete.

An exciting question is whether our results can be extended beyond self-join-free
conjunctive queries to conjunctive queries with self-joins and unions of conjunctive
queries.

APPENDIXES

A. PROOFS FOR SECTION 3

A.1. Proof of Lemma 3.3

PROOF OF LEMMA 3.3. Let q ∈ sjfBCQ. The attack graph of q can be computed by
means of the algorithm QuadAttack in [43], which runs in quadratic time in the size
of q. Moreover, the algorithm QuadAttack decides whether the attack graph contains a
cycle. Significantly, although QuadAttack was originally presented for sjfBCQ queries
that are α-acyclic in the sense of [13], nothing in the algorithm actually requires α-
acyclicity.

The algorithm can be easily extended to compute for each attack whether the attack
is weak or strong, as follows. For every atom F of q, the set F�,q can be computed
in linear time in the size of q (in a way similar to the computation of F+,q). The
computation of F�,q also yields an array COUNT of size |q| indicating, for every atom
G in q, whether key(G) ⊆ F�,q. Then, when an attack F

q� G is discovered, the array
COUNT allows one to determine in constant time whether or not the attack is weak.
Finally, by Lemma 3.6, to test whether the attack graph contains a strong cycle, it
suffices to test whether the attack graph contains a strong cycle of size two.

A.2. Proof of Lemma 3.5

We use the following helpful lemma.

LEMMA A.1. Let q ∈ sjfBCQ. Let F, G ∈ q such that F
q� G. Then, for every x ∈

F+,q \ G+,q, there exists a sequence F0, F1, . . . , Fn of atoms of q such that F0 = F,
x ∈ vars(Fn), and, for all i ∈ {0, . . . , n − 1}, vars(Fi) ∩ vars(Fi+1) � G+,q.
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PROOF. Consider a maximal sequence

key(F) = S0 H1
S1 H2

...
...

Sk−1 Hk
Sk

where
(1) S0 � S1 � · · · � Sk−1 � Sk; and
(2) for every i ∈ {1, 2, . . . , k},

(a) Hi ∈ q \ {F}. Thus, K(q \ {F}) contains the functional dependency key(Hi) →
vars(Hi).

(b) key(Hi) ⊆ Si−1 and Si = Si−1 ∪ vars(Hi).

Then, Sk = F+,q. From F
q� G, it follows that G �∈ {H1, . . . , Hk}. For every v ∈ Sk, define

d(v) as the smallest integer i such that v ∈ Si. Let x ∈ F+,q \G+,q. We define the desired
result by induction on d(x).

Basis: d(x) = 0. Then, the desired sequence is F.
Step: d(x) = i. Thus, x ∈ Si and x �∈ Si−1. Then, x �∈ key(Hi) ⊆ Si−1 and x ∈ vars(Hi).

Since Hi �= G, we have that key(Hi) � G+,q, or else x ∈ G+,q, a contradiction. Therefore,
we can assume some variable y ∈ key(Hi)\G+,q. Since y ∈ Si−1, we have that d(y) < d(x).
By the induction hypothesis, there exists a sequence F0, F1, . . . , Fn of atoms of q such
that

• F0 = F;
• for all i ∈ {0, . . . , n − 1}, vars(Fi) ∩ vars(Fi+1) � G+,q; and
• y ∈ vars(Fn).

The desired sequence is F0, F1, . . . , Fn, Hi.

The proof of Lemma 3.5 is given next.

PROOF OF LEMMA 3.5. Assume that F
q� G, G

q� H, and F
q
�� H.

Since F
q� G, there exists a sequence F0, F1, . . . , Fn of atoms of q such that

• F0 = F and Fn = G; and
• for all i ∈ {0, . . . , n − 1}, vars(Fi) ∩ vars(Fi+1) � F+,q.

Since G
q� H, there exists a sequence G0, G1, . . . , Gm of atoms of q such that

• G0 = G and Gm = H; and
• for all i ∈ {0, . . . , m− 1}, vars(Gi) ∩ vars(Gi+1) � G+,q.

Consider the sequence

F0, F1, . . . , Fn, G1, G2, . . . , Gm,

where F0 = F, Fn = G = G0, and Gm = H. Since F
q
�� H, we can assume some

j ∈ {0, . . . , m−1} such that vars(Gj) ∩ vars(Gj+1) ⊆ F+,q. Since vars(Gj) ∩ vars(Gj+1) �
G+,q, we can assume some x ∈ vars(Gj) ∩ vars(Gj+1) such that x ∈ F+,q \ G+,q.

By Lemma A.1, there exists a sequence H0, H1, . . . , Hk of atoms of q such that

• H0 = F;
• for all i ∈ {0, . . . , k − 1}, vars(Hi) ∩ vars(Hi+1) � G+,q; and
• x ∈ vars(Hk).
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Consider the sequence

G0, G1, . . . , Gj, Hk, Hk−1, . . . , H0,

where G0 = G and H0 = F. Every two consecutive atoms in this sequence share a
variable not in G+,q. In particular, Gj and Hk share the variable x. It follows that
G

q� F.

A.3. Proof of Lemma 3.6

PROOF OF LEMMA 3.6. The first item is an immediate consequence of Lemma 3.5. In
what follows, we show the second item.

We show that if the attack graph of q contains a strong cycle of length n with n ≥ 3,
then it contains a strong cycle of some length m with m < n.

Let H0
q� H1

q� H2
q� · · · q� Hn−1

q� H0 be a strong cycle of length n (n ≥ 3) in the
attack graph of q, where i �= j implies Hi �= Hj . Assume without loss of generality that
the attack H0

q� H1 is strong. Thus, K(q) �|= key(H0) → key(H1).
We write i⊕ j as shorthand for (i+ j) mod n. If H1

q� H1⊕2, then H0
q� H1

q� H1⊕2
q�

· · · q� Hn−1
q� H0 is a strong cycle of length n− 1, and the desired result holds. Assume

next that H1

q
�� H1⊕2. By Lemma 3.5, H2

q� H1. We distinguish two cases.

• Case H2
q� H1 is a strong attack. Then, H1

q� H2
q� H1 is a strong cycle of length

2 < n.
• Case H2

q� H1 is a weak attack. If H1
q� H0, then H0

q� H1
q� H0 is a strong

cycle of length 2 < n. Assume next that H1

q
�� H0. Then, from H0

q� H1
q� H2 and

Lemma 3.5, it follows that H0
q� H2. The cycle H0

q� H2
q� H2⊕1

q� · · · q� Hn−1
q� H0

has length n − 1. It suffices to show that the attack H0
q� H2 is strong. Assume

toward a contradiction that the attack H0
q� H2 is weak. Then, K(q) |= key(H0) →

key(H2). Since H2
q� H1 is a weak attack, K(q) |= key(H2) → key(H1). By transitivity,

K(q) |= key(H0) → key(H1), a contradiction. This concludes the proof.

A.4. Proof of Lemma 3.7

PROOF OF LEMMA 3.7. Let q′ = q[x �→a]. For every F ∈ q′, there exists a (unique) atom
F̂ ∈ q such that F = F̂[x �→a]. It can be easily shown that, for every F ∈ q′, we have
F̂+,q \ {x} ⊆ F+,q′

.

Assume that F
q′
� G. Then, there exists a witness F0

z1

� F1

z2

� F2 · · ·
zn

� Fn for F
q′
� G,

where F0 = F and Fn = G. It can now be easily seen that F̂0

z1

� F̂1

z2

� F̂2 · · ·
zn

� F̂n is a
witness for F̂

q� Ĝ. Therefore, if the attack graph of q′ is cyclic, then the attack graph
of q is cyclic.

The second item in the statement of Lemma 3.7 follows from the observation that,
for all F, G ∈ q′, if K(q) |= key(F̂) → key(Ĝ), then K(q′) |= key(F) → key(G).

B. PROOFS FOR SECTION 4

B.1. Proof of Lemma 4.2

PROOF OF LEMMA 4.2. We show a first-order reduction from the problem Undirected
Forest Accessibility (UFA) [11] to CERTAINTY(q0). In UFA, we are given an acyclic
undirected graph and nodes u, v. The problem is to determine whether there is a path
between u and v. The problem is L-complete and remains L-complete when the given
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graph has exactly two connected components. Moreover, we can assume in the reduction
that the two connected components each contain at least one edge.

Given an acyclic undirected graph G = (V, E) with exactly two connected components
and two nodes u, v, we construct an uncertain database db as follows:

(1) for every edge {a, b} in E, the uncertain database db contains the facts R0(a, {a, b}),
R0(b, {a, b}), S0({a, b}, a), and S0({a, b}, b), in which {a, b} is treated as a constant;
and

(2) db contains R0(u, t) and R0(v, t), where t is a new value not occurring elsewhere.

Clearly, the computation of db from G is in FO.
We next show that there exists a path between u and v in G if and only if every repair

of db satisfies q0.
Assume first that u, v belong to the same connected component. Let db′ be the

uncertain database that is constructed from the connected component not containing
u, v. Let a0, b0, a1, b1, . . . , an−1, bn−1, an be a sequence of distinct constants such that

(1) a0 = an and for 0 ≤ i < j ≤ n − 1, ai �= aj and bi �= bj ; and
(2) for i ∈ {0, . . . , n − 1}, db′ contains R0(ai, bi) and S0(bi, ai+1).

Since G is acyclic, any such sequence satisfies n = 1. An existing algorithm for
CERTAINTY(q0) [23, 44] will return that every repair of db′ satisfies q0. Consequently,
every repair of db satisfies q0.

For the opposite implication, assume that u and v belong to distinct connected com-
ponents. By Lemma 2.4, there exists an uncertain database db′ that is purified relative
to q0 such that q0 is true in every repair of db′ if and only if q0 is true in every repair of
db. It is easy to see that if u and v belong to distinct connected components, then this
purified uncertain database db′ will be the empty database whose only repair is the
empty repair that falsifies q0. It follows that q0 is not true in every repair of db.

B.2. Proof of Lemma 4.4

We first show two helpful lemmas.

LEMMA B.1. Let q ∈ sjfBCQ. Let X ⊆ vars(q) and let G ∈ q be an R-atom such that for

every x ∈ X, G
q
�� x. Let r be a repair of some database such that r |= q. Let A ∈ r be an

R-fact that is relevant for q in r. Let B be key-equal to A and rB = (r \ {A}) ∪ {B}. Then,
for every valuation ζ over X, if rB |= ζ (q), then r |= ζ (q).

PROOF. Let ζ be a valuation over X such that rB |= ζ (q). We can assume a valuation
ζ+ over vars(q) such that ζ+[X] = ζ [X] and ζ+(q) ⊆ rB. Thus, ζ+ extends ζ to vars(q). We
need to show that r |= ζ (q), which is obvious if B �∈ ζ+(q). Assume next that B ∈ ζ+(q).
Since A is relevant for q in r, we can assume a valuation μ over vars(q) such that
A ∈ μ(q) ⊆ r. Let q′ = q \ {G}. Let r′ = rB \ {B} = r \ {A}. Since q′ contains no R-atom
(no self-join), ζ+(q′) ⊆ r′ and μ(q′) ⊆ r′. Moreover, ζ+[key(G)] = μ[key(G)] because A
and B are key-equal. From K(q′) |= key(G) → G+,q and [43, Lemma 4.3], it follows that
ζ+[G+,q] = μ[G+,q].

Let qG be the subset of q that contains G as well as every atom H ∈ q such that
G

q� H. Let qX = q \ qG. Let κ be the valuation over vars(q) such that, for every
x ∈ vars(q),

κ(x) =
{

μ(x) if x ∈ vars(qG)
ζ+(x) if x ∈ vars(qX).
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We show that κ is well defined. Assume that x ∈ vars(qX) ∩ vars(qG). Then, there exist

atoms F ′ ∈ qX and G′ ∈ qG such that x ∈ vars(F ′) ∩ vars(G′). Since G
q
�� F ′ and either

G = G′ or G
q� G′, it follows that vars(F ′) ∩ vars(G′) ⊆ G+,q. Consequently, x ∈ G+,q.

Since ζ+[G+,q] = μ[G+,q], it follows that μ(x) = ζ+(x).
Obviously, κ(q) ⊆ r. Finally, we show that, for every u ∈ X, κ(u) = ζ (u). This is obvious

if u ∈ X ∩ G+,q. Assume next that u ∈ X \ G+,q. Since G
q
�� u by the assumption in the

statement of Lemma B.1, it must be the case that u ∈ vars(qX); thus, κ(u) = ζ+(u) = ζ (u).
It follows that r |= ζ (q). This concludes the proof.

The following helpful lemma extends [43, Lemma B.1].

LEMMA 12.2. Let q ∈ sjfBCQ. Let F ∈ q such that F has zero indegree in the attack
graph of q. Let r be a repair of some database. Let A ∈ r such that A is relevant for q
in r.6 Let B be key-equal to A and rB = (r \ {A}) ∪ {B}. Then, for every valuation ζ over
key(F), if rB |= ζ (q), then r |= ζ (q).

PROOF. The proof is obvious if A has the same relation name as F. Assume next that
relation names in Aand F are distinct. We can assume some atom G ∈ q\{F} such that

A has the same relation name as G. Since G
q
�� F, we have that, for each x ∈ key(F),

G
q
�� x. The desired result then follows by Lemma B.1.

Assume that a sjfBCQ query q contains an R-atom that has no incoming attack in
the attack graph of q. Paraphrasing Lemma B.2, if one replaces, in a repair r, some
relevant fact A with another fact B that belongs to the same block as A, then every
R-fact of r that was not relevant in r will remain nonrelevant in (r \ {A}) ∪ {B}. Note,
however, that the fact B may be nonrelevant in the new repair (r \ {A}) ∪ {B}.

The proof of Lemma 4.4 can now be given.

PROOF OF LEMMA 4.4. Let X = key(F). Let db be an uncertain database.

2 ⇒ 1 Trivial. 1 ⇒ 2 Assume that q is true in every repair of db. We can assume
a repair r of db that is �X

q -frugal. Let s be any repair of db. Construct a maximal
sequence

r0, r1, . . . , rn, (11)

where

(1) r0 = r; and
(2) for every i ∈ {1, . . . , n}, ri = (ri−1 \ {A}) ∪ {B} for distinct, key-equal facts A, B such

that A ∈ ri−1, B ∈ s, and A is relevant for q in ri−1.

The sequence obviously terminates when for every A that is relevant for q in rn, we
have A ∈ s. It follows that, for every valuation θ over X,

rn |= θ (q) ⇒ s |= θ (q). (12)

By Lemma B.2, for every valuation θ over X,

rn |= θ (q) ⇒ r |= θ (q). (13)

From Equation (13) and since r is �X
q -frugal, it follows that, for every valuation θ over

X,

rn |= θ (q) ⇐⇒ r |= θ (q). (14)

6Recall from Section 2 that A ∈ r is relevant for q in r if A ∈ θ (q) ⊆ r for some valuation θ over vars(q).
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From Equations (14) and (12), it follows that, for every valuation θ over X,

r |= θ (q) ⇒ s |= θ (q). (15)

Since r |= q, we can assume a valuation μ over X such that r |= μ(q). By (15), s |= μ(q).
Since s is an arbitrary repair, the desired result follows.

C. PROOFS FOR SECTIONS 7 AND 8

See the online appendix of this article, which can be accessed in the ACM Digital
Library.
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