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Summary

The eventual consistency model has been widely adopted in NoSQL systems. By tolerating weak

consistency, these systems attain high throughput and availability while sustaining side effects on

user experience and developer friendliness. Trading off consistency from latency has been a com-

mon consensus. An important but widely ignored problem is how to control the consistency of

an existing system without the necessity of modifying the system implementation. In this paper,

we present a systematic study on the client-centric consistency of a NoSQL system, Cassandra,

and disclose how the consistency can be substantially enhanced by tuning the system configura-

tions when users use partial quorum settings. We use session guarantee as the consistency model

and analyze the root cause of consistency violation, testifying that the length of the write queue

is a reasonable indicator for consistency quantification. For inconsistency mitigation, we show

through extensive experiments how the consistency is affected by the read and write processes

of the system, and how the consistency can be improved by tuning system configurations. In par-

ticular, we provide developers with recommended configurations by changing the write thread

number and the fine-grained quorum setting for enhanced consistency control. Because consis-

tency anomalies do not occur uniformly, we discuss how to stabilize the consistency by analyzing

system logs.
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1 INTRODUCTION

A storage system providing weak replica consistency model is easier to

achieve high availability, high throughput, and low latency. Therefore,

many NoSQL systems, especially quorum systems such as DynamoDB,

Voldemort, Riak, and Cassandra opt for eventual consistency, a typi-

cal weak replica consistency model.1 These systems become popular

choices by users with the awareness that they may read stale data with

certain probability. Since eventually consistent systems make no rig-

orous guarantees on the staleness of data items returned, it is very

important for users and developers to quantify how eventual the con-

sistency is, how to program under the eventually consistent systems

and how to provide stronger consistency while keeping its benefits.2

Ongoing research efforts are made to quantify the consistency

in NoSQL systems.3,4 Most works focus on the consistency–latency

trade-off according to the PACELC criteria.1 For example, Wada et al

claimed that with eventual consistency, the probability of reading the

latest data within 0 and 450 ms is 33% in a low workload using Ama-

zon SimpleDB.5 Bails et al showed that the average latency is 25 ms

in LinkedIn’s single-node Voldemort system and the maximal latency

is 5s in Yammer’s Riak cluster.6 Some works consider how to pro-

gram in these NoSQL systems. For example, the Consistency As Logical

Monotonicity (CALM) theorem was proposed for guiding developers

to design programs under the eventually consistent systems.7 Other

works focus on designing new read and write protocols to support

stronger consistency.8–11 For example, Bails et al proposed a “bolt-on"

layer to support causal consistency.11 Zhu and Wang proposed replica

consistency-on-demand store to facilitate on-demand consistency by

controlling the steps of read/write process.12

However, an important but widely ignored problem, especially for

developers, is that given a workload for a storage system, whether there

is a way to control the consistency of an existing system without the

necessity of modifying the system implementation. That is, how devel-

opers can achieve a desired consistency degree by merely tuning the

configuration parameters according to the hardware specification and

how to make consistency anomalies uniformly distributed and avoid
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consistency anomalies outbreak, which is caused by system-level inci-

dental events13 and will severely hurt user experience since the bursty

of consistency anomalies in which users read many stale data within a

very short time, need to be considered.

In this paper, we address the above problems by presenting a sys-

tematic study on the client-centric consistency of a popular quorum

NoSQL system, Cassandra. We analyze the root cause of consistency

anomalies using the write queue and propose solutions to control the

replica consistency under the session guarantee consistency model.14

First, we analyze the read/write process and summarize why the consis-

tency anomalies occur. We testify through extensive experiments that

the consistency is closely related to the length of the write queue and

can be substantially enhanced by tweaking the system configurations.

Second, we empirically evaluate 2 potential enhancement methods for

the replica consistency by modifying 2 kinds of system configurations.

We devise the way to stabilize the distribution of consistency by mit-

igating the influence from system-level incidental events. While this

study is mainly conducted on Cassandra, our conclusions are general-

izable to other quorum systems such as Riak and Voldemort, given that

they have similar architecture as Cassandra.

In summary, we make the following contributions in this paper:

• We theoretically reveal the root cause of consistency anomalies and

analyze how the write queue impacts the replica consistency. We

show that the length of write queue can be used as a reasonable

indicator for quantifying consistency in real time because a longer

queue leads to worse consistency, which is verified in our experi-

ments under different workloads. We also summarize 3 bottlenecks

to the write queue length that lead to the weak and unstable consis-

tency.

• Two methods by tuning the write thread number according to the

hardware specifications and by adjusting the quorum parameters

are proposed to improve the replica consistency in Cassandra. In

the experiments with different cluster environments, these methods

can improve the replica consistency while somewhat sacrificing the

read latency.

• Internal events in Cassandra that generate the consistency jitter are

observed by analyzing the Cassandra logs in experiments. We find

the event of flushing memtable may interrupt the write queue while

a small memtable size can help make the distribution of consistency

anomalies nearly uniform.

• Quantitative methods that optimize system configurations for con-

trolling the consistency are summarized for practitioners:

1. An appropriate number of the concurrent write threads can

improve the replica consistency. The number of threads is deter-

mined by the CPU cores in that the best empirical value is twice

of the CPU cores in different hardware environments.

2. When the sum of read consistency level (r) and write consis-

tency level (w), ie, r+w keeps constant, changing r and w leads to

different consistency and throughput trade-offs. The best con-

figuration for maximized consistency is w − r ⩽ 1.

3. A small memtable size is useful to alleviate the jitter of the

write-queue length and hence mitigate the consistency anoma-

lies outbreak in a short time for improved user experience. In our

experiments, 512MB is suitable for the servers whose memory

size is less than 32GB.

The remainder of the paper is organized as follows: In Section 2,

we introduce the 4 types of session guarantee consistencies and some

basic concepts in Cassandra. In Section 3, we sketch the read and write

process in Cassandra and analyze the causes of inconsistency, based

on which we propose the write-queue length as a reasonable indicator

for consistency quantification. Then, we propose 3 methods to control

the queue length and make the queue more stable. In Section 4, we

describe the experiment environment and workloads setup. In Section

5, we experimentally study the relationship between the write-queue

length and the consistency degree under different workloads (through-

put, number of concurrent clients, number of replicas, read/write ratio,

and read/write consistency level). In Section 6, we validate the effec-

tiveness of the 3 consistency-control methods both independently and

collectively and discuss their adverse effects. In Section 7, we compare

the related works with ours. In Section 8, we conclude this study.

2 BACKGROUND

2.1 Session guarantee consistency models

As one of the well–known client-centric replica consistency models,

session guarantee was first introduced in Terry et al14 and further dis-

cussed and formalized in recent years.5,15–17 Session guarantee con-

tains 4 types of consistency models: read your writes, monotonic reads,

writes follow reads, and monotonic writes.

Read your writes consistency: In 1 session, if a read R follows a write

W, the returned version of R must be fresher than or equal to the

version that W writes. Then the system satisfies read your writes

consistency (denoted by RYWC16).

Monotonic reads consistency: In 1 session, if a read gets a data ver-

sion v, then the versions that the subsequent reads get must be

fresher than or equal to the version v. Then, the system satisfies

monotonic reads consistency (denoted by MRC16) .

Monotonic writes consistency: In 1 session, if a write updates a

data item as version v, then the subsequent writes must be applied

on replicas whose versions of this data item are fresher than or

equal to v. Then the system satisfies monotonic writes consistency

(denoted by MWC16).

Writes follow reads consistency: In 1 session, assuming that a write

W follows a read R and the version which R gets is v, w can only be

applied on the replicas whose data item version is fresher than or

equal to v. Then the system satisfies writes follow reads consistency

(denoted by WFRC16).

2.1.1 The scope of session guarantee consistency

To analyze the internal cause, we should clarify the meaning of “in a ses-

sion". A session represents that 1 and only 1 connection is established

between the client and the cluster. The most important constraint is

that the client can send a new request only after it has received a

response of the previous request. Therefore, there is no chance that

the cluster receives the latter request earlier than the previous one.
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However, the constraint does not restrict the concurrency of the 2

requests. For example, the cluster can respond immediately after it

receives a request and then executes the request asynchronously. In

this way, though the client has to send requests one by one, the cluster

may execute them in parallel.

2.2 Concepts in Cassandra

Coordinator. When a client connects to the Cassandra cluster and

sends a request, the node that the client connects to is called the

coordinator. Other nodes that participate in handling the request

are called noncoordinators (abbr. non-coor). The coordinator may

have a replica of the required data item or not. Each noncoordinator

has 1 replica of the data item.

Quorum Size. Cassandra uses quorum consensus18 to tuning the

consistency. A quorum consists of the write consistency level w and

read consistency level r. Write consistency level w means that the

write operation must be finished for at least w replicas. Read consis-

tency level r means the coordinator reads data from r replicas and

gets the latest version from them. Suppose the number of replicas

for each data item is n. There is a common insight: If w + r > n, the

system provides strong consistency. Otherwise, the system acts as

a weakly consistent system and the consistency becomes stronger

along with the increment of w + r. We call w + r <= n as a partial

quorum,6 and the paper mainly focuses on this scenario.

Stage Event-Driven Architecture (SEDA). Cassandra is designed as

a SEDA (SEDA19) to support high concurrency. Under this archi-

tecture, the computing resources are divided into several pieces

and nonoverlapping thread resources are allocated to the read and

write processes.

3 THE WRITE QUEUE AND CONSISTENCY

3.1 Read and write process in Cassandra

First, we define some terminologies and symbols. In this discussion, we

only concern on the participated nodes (coordinator and noncoordina-

tor nodes) for a request. The value of data item a on the ith node (the ith

replica, denoted by Ni) is a[i]. Read(a) represents a read request for the

data item a, Read(a, v) represents the returned value of the read request

for a is v. Write(a, v) represents modifying the value of a as v.

Figure 1 shows the read and write processes in Cassandra. The

figure illustrates that a read request Read(a) follows a write request

Write(a,2) and then a write request Write(a,3) comes in 1 session. The

coordinator N0 is responsible for 1 replica of item a. Before the client

sends Write(a,2) request, the values of a in all the replicas are 1.

Bails et al named the read and write processes of Cassandra as the

Write, Acknowledge, Read, and reSponse model (WARS)6 and showed

how message reordering gives rise to the staleness. Steps 1, 4, 5, and

10 in Figure 1 constitute the WARS model. We extend the WARS model

to explain why consistency anomalies occur in 1 session by splitting the

write/read process into fine-grained steps.

In our extended WARS model, a write operation can be divided into

4 steps: write, propagate, response, and acknowledge (Step 1 ∼ Step 4

in Figure 1). Note that Cassandra will send response to the client once

the update is finished for w replicas instead of all replicas. The updates

of the rest replicas are executed asynchronously.

A read operation can be divided into 6 steps: read, digest propagate,

digest response, propagate, response, and return result (Step 5 ∼ Step

10 in Figure 1). Cassandra only requests data from r replicas that are

considered as the fastest nodes by the coordinator.

3.2 Scenarios of consistency anomalies

Read your writes consistency. In Figure 1, Write(a,2) and Read(a,1)
trigger a read your writes anomaly. From the figure, we can find that

the direct reason of Read(a) getting a stale value is that noncoordi-

nators Nw+2 ∼ Nw+r reorder the read and write operations so that

the read operation is finished before the write operation.

Considering the constraint of “in 1 session" in Section 2.1.1, the only

reason of the reordering is that the write operation waits too long

time for being executed in at least r nodes.

Monotonic writes consistency. Write(a,2) and Write(a,3) trigger a

monotonic writes consistency anomaly. The reason of the anomaly

is the first write operation waits too long time for being executed

and Cassandra executes the latter operations in parallel.

However, we cannot observe this anomaly in client-centric view.

After Write(a,3) is finished, the old write operation Write(a,2) will

be aborted due to Cassandra’s conflict reconciliation mechanism.

Cassandra uses the operation’s time stamp to determine which

operation is the latest. Then Cassandra aborts the older write oper-

ation when it finds a more recent version having been written into

memory. To observe the anomaly, we need add logs in Cassandra.

Monotonic reads consistency and writes follow reads consistency.

These 2 consistency anomalies are subclasses of read your writes

and monotonic writes15 anomalies. Therefore, the reasons for

these 2 anomalies are similar with the above discussion.

3.3 Consistency metrics

In this paper, we do not sentence that whether a system satisfies or

violates a kind of consistency model. Instead, we count how many oper-

ations violate a given consistency model and calculate the rate of con-

sistency to indicate the consistency intensity of the system. It is similar

with Wada et al.5 In Wada et al,5 they counted the rate of inconsistency

phenomenon in a time window.

Consistency Intensity. In an experiment for session guarantee con-

sistency model C, suppose the observer client sends m request

pairs. In these m request pairs, there are k pairs that violate the

consistency model C. Then the consistency intensity is

IC = 1 − k
m

(1)

Request pair is defined as the following: If the consistency model C

is the read your writes consistency model, a write operation and a

read operation form a request pair. If C is the monotonic reads con-

sistency model, a write operation for updating the item value and
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FIGURE 1 Sequence diagram of read/write processes in Cassandra

2 read operations form a request pair. If C is the monotonic writes

consistency model, 2 write operations form a request pair. If C is the

write follows reads consistency model, a write operation for updat-

ing the item value, a read operation and another write operation

form a request pair.

3.4 The root cause of consistency anomalies

According to the discussions about scenarios of consistency anoma-

lies, we summarize a major reason, which causes the inconsistency:

Some write requests wait too long to be finished so that the global exe-

cution ordering is not guaranteed (reordering happens). If the write

requests can be finished in time before the read request comes, the

inconsistency is avoided.

A corresponding structure for writing data in Cassandra is the write

queue, which obeys the First In, First Out (FIFO) strategy. All the write

requests a node receives enter the write queue (ie, enqueue) and wait

to be executed (ie, dequeue). The longer the write queue is, the higher

probability that the condition of read your writes anomaly could be met.

Therefore, we conjecture that the length of the write queue can be a

reasonable indicator for quantifying the degree of consistency.

Figure 2 is a sketch of how to use the write-queue length to quan-

tify the consistency in real time. We acquire the queue length by Java

Management Extensions (JMX) in real time for each node. If the queue

length of 1 node is exceptionally long, we can conjecture that the con-

sistency anomalies outbreak may happen. If the queue length becomes

shorter, we can make a decision that the consistency becomes stronger.

Cassandra also has a read queue to cache the read requests. We do

not consider the read queue for 2 reasons: (1) Read operation cannot

change the value of the replica, while write queue is closely related to

the essence of inconsistency between replicas. (2) In our experiments

(Section 5), we find the length of the read queue is always less than 200

even when we use a read-intensive workload. Hence, the read queue is

not suitable for observing the replica consistency.

FIGURE 2 The write queue as a real-time indicator of consistency

3.5 System configurations and events that impact

the consistency

Because a long write queue implies high inconsistency, in this subsec-

tion, we discuss what factors give rise to a long write queue. Tackling the

bottlenecks of long write queues can help improve the replica consis-

tency. Figure 3 shows the write process in Cassandra and its 3 potential

bottlenecks (the green dashed boxes).

3.5.1 Insufficient service capacity

Considering the write queue and the write threads as a queueing sys-

tem, the queueing system arrives at stable state if and only if

𝜌 = 𝜆∕𝜑 ⩽ 1, (2)

where 𝜆 is the enqueue speed of the write requests and 𝜑 is the

dequeue speed. Therefore, one of the immediate causes of a long write

queue is that 𝜑 is smaller than 𝜆, which means that the node executes

write operations slower than requested. We denote the bottleneck as

the insufficient service capacity of the node. Solving the bottleneck can

improve the degree of the consistency.
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FIGURE 3 The write process in Cassandra and potential bottlenecks

3.5.2 Improper quorum decision

According to the discussion of Section 3.2, when the read your writes

consistency anomaly occurs, at least r nodes have not finished the write

operation and only these nodes receive the propagated read operation.

The phenomenon is triggered when users choose an improper quorum

decision (read consistency level and write consistency level in Cas-

sandra). We denote the bottleneck as the improper quorum decision.

Solving the bottleneck can also improve the degree of the consistency.

3.5.3 System events interference

We find that the queue length is not absolutely stable in our exper-

iments. When the peaks of the queue length appear, the consistency

anomalies will outbreak in a short time, which is undesirable for user

experiences. There are 2 reasons that may lead to the queue length

jitter. One is the query distribution changes, which depends on the

application requirements and the other is that some internal events in

Cassandra impact the departure speed of the write queue. We denote

the latter as system events interference. Finding out what events inter-

rupt the write process and alleviate the adverse effects can make the

consistency more stable.

3.6 Methods for improving consistency

The first 2 bottlenecks lead to a long queue length and the third one

incurs the jitter of the queue length. In this section, we firstly propose

2 methods for controlling the queue length. When we consider the

write queue in 1 node, we adjust its service capacity to shorten the

queue length. When we consider the whole cluster, we can control the

request propagation among nodes to decrease the queue length. Then,

we investigate what internal events of Cassandra affect the stabiliza-

tion of the queue and reduce that impact.

3.6.1 Changing the write thread number

The first method is to control the write queue of each node. If we

enhance the service capacity of the node (increase dequeue speed 𝜑),

the sojourn time (W) of write operations will be reduced. According to

Little’s law, queue length L = 𝜆W, hence L will decrease accordingly. For

a queueing system, we can either improve the capacity of each counter

or add more counters to increase 𝜑.

Because the counter is the write thread in Cassandra, improving the

capacity of the counters means improving the capacity of the write

threads. To achieve that, we have to scale up the cluster by upgrading

the hardware especially CPU specification, because the CPU perfor-

mance decides the concurrency capacity and the speed of the threads.

Upgrading hardware is a trivial solution that increases the budget.

Hence, adding more counters is more sensible.

Adding counters means that increasing the write threads in the

thread pool. Fortunately, Cassandra use the SEDA architecture so that

modifying the thread number is easy to achieve. Cassandra has a con-

figuration parameterconcurrent_writes. It represents the number

of write threads in 1 node. We can tune this parameter to control the

queue length henceforth tuning the consistency.

However, as a limited resource, write threads cannot be increased

unlimitedly. Give a hardware specification, how many threads should

we assign is empirically discussed in the experimental study.

There is another way to reduce 𝜑: speeding up each counter by

improving the write implementation locally. In Cassandra, when a write

thread begins to process a write operation, it firstly writes data into

the commitlog, and then writes data into the memtable. Memtable

will be flushed on disk in background. To speedup each counter, we

have to modify the above process. For example, sending acknowledg-

ment immediately once the server writes data into the commitlog. After

that, the server writes data into the memtable in background. How-

ever, the above improvement violates our original purpose: improv-

ing the consistency without the necessity of modifying the system

implementation.

3.6.2 Changing the quorum in fine-grained

Currently, Cassandra uses the sum of read and write consistency level,

ie, w + r to tune the quorum size. The common insight is that increasing

w + r can improve the consistency. Some works focus on discussing the

relation between w + r and the consistency. For example, Probabilisti-

cally Bounded Staleness (PBS)6 predicts the consistency according to

w, r, and operation time cost.

However, increasing w+ r brings high read and write latencies. What

we consider is that if we keep w + r constant, whether changing w and r

impacts the consistency. To date, no previous works have discussed this

problem theoretically.

Considering an operation sequence: Write(a) and Read(a). To simplify

the running example, we suppose only w of n nodes finish the write

operation. According to the discussion in Section 3.2, if the operation

sequence satisfies read your writes consistency, the read operation

must be executed on at least one of the w nodes. If n = 4 and (r,w) =
(1,3), the probability is

C1
3

C1
4

= 3

4
. If (r,w) = (3,1), the probability is

C2
3

C3
4

=
3

4
. If (r,w) = (2,2), there are 2 cases: the first is reading 1 replica from

the w nodes and reading another from the n − w nodes. The second is

reading 2 replicas from the w nodes. So the probability is
(C1

2

C1
2
+C2

2
)
C2

4
= 5

6
.

In all, the read your writes consistency intensity when (r,w) = (2,2)
is better than (1,3) or (3,1). Therefore, we conjecture that the better

policy is that let w − r ⩽ 1 in this case.
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Theorem 1. In a quorum-based system, if r + w < n and r + w is fixed

constant, then the optimal choice is to let w − r ⩽ 1.

Proof. Suppose r + w = k, k is constant and r,w ∈ [1, k). To simplify

the problem, we suppose only w of n nodes finish the write operation.

As discussed above, if the operation sequence satisfies read your writes

consistency, the read operation must be executed on at least one of the

w nodes. Mark the probability of this case as f(r). If w+ r > n, then f(r) =
1. Otherwise

f(r) = 1 −
Cr

n−w

Cr
n

= 1 − (n − w)!(n − r)!
n!(n − w − r)!

≜ 1 − g(r).

If we increase r and want to increase the probability f(r), then

f(r + 1) > f(r) ⇒ g(r + 1) < g(r)

⇒ g(r + 1)∕g(r) < 1

⇒
n − w + 1

n − r
< 1

⇒ w − r > 1.

So w − r = 1 is the inflexion point of f(r). we can increase r until w −
r ⩽ 1 to increase the probability. Besides, both of w and r are integers.

Therefore, if kmod2 = 0, r = w = k∕2 is the best choice. Otherwise

r = ⌊k∕2⌋±1 is the best choice.

3.6.3 Stabilizing the consistency

We investigate when the query distribution keeps constant, what inter-

nal events incur the jitter of the queue length by analyzing the Cassan-

dra logs. Based on this analysis, we can tweak the relevant parameters

to mitigate the adverse effects.

The memtable flushing event. One of the most frequent events in

the Cassandra log is flushing a memtable into the disk. Memtable

is a memory data structure in Cassandra for storing data, which

will be flushed into the disk if it spends too much memory. At this

time, Cassandra will generate a new memtable to store data and

then flush the old one asynchronously. Switching the memtables

may lead to redo of some write requests because Cassandra insures

row-level atomicity for write operations, which means either all the

columns in a row are written into the memtable or none of them is

written successfully. Besides, flushing the memtable into the disk

has I/O cost. According to our experiments in Section 6.3, if we

decrease the duration for a memtable flushing event, the peak of

the queue can be eliminated to some extent.

Other events. Another frequent event in Cassandra log is JVM GC

(garbage collection) event. The impact of GC is discussed in Fan

et al.20 In our experiment in Section 6.3, Cassandra executes GC

periodically, and the impact of the normal GC event is negligible for

the session guarantee consistency.

However, the phenomenon of “pause"20 in Cassandra exists. The

phenomenon is caused by a self-inspection function, which is called

as StatusLogger in Cassandra. Many scenarios can trigger the func-

tion and one of them is a long configurable time GC, while we

conjecture these GC events are the things discussed in Fan et al.20

Therefore, GC is not a special event for us. Besides, StatusLogger

just counts the statistical information of the system, prints them

into the console or log files and we can disable it without any

adverse effect. Therefore, we do not consider the event of GC in this

paper.

4 EXPERIMENT SETUP

First, we design experiments to verify whether the queue length can be

a good indicator of the consistency. In this section, we observe the rela-

tion between them in different workloads, such as different through-

put, concurrent client number, and query distribution. Read-intensive,

write-intensive, and mix workload are covered in the experiments. Sec-

ond, we verify whether the first 2 methods are effective for improving

the consistency. The adverse effects (read and write latency) are also

considered in these experiments. Third, we verify the third method by

analyzing why the queue jitters and discuss how to configure Cassan-

dra to alleviate the wave. Then, we give an example to combine all the 3

methods to tune the consistency in Cassandra. In the paper, we design

experiments to compare our conclusion with 2 latest related works,

which include consistency prediction model PBS6 and an explanation

for atomicity consistency model in Cassandra.20

4.1 Heavy workload setup

When we reproduce the experiment in Wada et al,5 we find session

guarantee anomalies exist in Cassandra, but the number of anomalies is

few (0.03%∼1%). We conjecture the workload in Wada et al5 is so light

that all the replicas are consistent before the read operation comes.

To observe the consistency anomaly more clearly, we design a heavy

workload for Cassandra. We classify the clients as 2 classes: the first

class is called as pressure client, which is a normal Yahoo! Cloud Serving

Benchmarking (YCSB)21 client and sends read/write request quickly.

The second class is called as observer client, which sends particular

requests to the cluster and records all the results to judge whether the

read or write operation violates the consistency models. We design the

workload with 3 reasons:

a. (1) This workload simulates the scenario of session guarantee well.

Session guarantee focuses on the feeling of 1 session. We use the

observer client to observe the feeling of 1 session. Besides, it is

impossible that only 1 user use the whole cluster. Therefore, we run

many pressure clients to provide background workloads.

b. (2) This workload is suitable for analysis. If all the clients are

observer clients, the whole workload is out of control because con-

trolling the write speed of the observer client is more complex than

normal YCSB clients. Besides, too many observation behaviors may

impact the results like the observer effect of Schrodinger’s Cat.

c. (3) Heavy workload is more suitable for benchmarking NoSQL sys-

tems because many applications have heavily write workloads. For

example, the peak write speed may be 100 000 records/s in China

Sany Group’s time serial application in our practice.

To cover all the types of workload (read intensive, write intensive,

and mix workload), we change the read and write ratios of the pressure

clients: 0% write and 100% read, 25% write and 75% read, 50% write

and 50% read, 75% read and 25% write, and 100% write and 0% read.
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The observer client has special behaviors. After making a decision

about whether the operation violates some consistency models, the

client triggers a strong consistent write operation to make sure all the

replicas have been updated to the latest status. For example, if the

observer client observes a read your writes consistency anomaly, it

sends a write operation with Consistency ALL level declaration in Cas-

sandra. If the observer client does not observe any anomaly, it also sends

a strong consistency write operation because observing none anomaly

does not mean that all the replicas are consistent. A strong consistency

write can eliminate the cumulative anomalies. To our knowledge, the

behavior of the observer client is similar with the method in Bermbach

and Tai.22

When we experiment with the heavy workload, we make some other

settings. First, we disable the read repair mechanism in Cassandra like

what Bailis et al6 does in their experiments. Read repair, which acts

like an additional write for each read who reads old data, is an addi-

tional remedial mechanism to improve the consistency level. Second,

the write latency may be very high with the heavy workload. There-

fore, we set the operation time-out time as 100 seconds to avoid the

time-outs.

Under this workload, we can find about 1%∼ 50% operations violate

the session guarantee consistency.

4.2 Experiment environment

To make the experiments more reliable, we run our experiments on

different clusters: local cluster and cluster in the cloud.

Local cluster: We use Fujitsu Primergy RX600 S6, which has 4 × 10

cores processors, 512GB memory and 8TB disk spaces, as our phys-

ical server. The physical server provides tens of virtual machines by

VMware vSphere software. In this environment, we can change the

specification of virtual machines easily. For example, in our experi-

ments, we modify the CPU cores of these virtual machines from 1 core

to 4 cores to observe the impact of different hardware performances.

Both of our Cassandra cluster and workload clients are running on the

physical server. To screen unknown factors, there is no other virtual

machines on the physical server.

Cluster in the cloud: We deploy the Cassandra cluster and work-

load clients on Amazon EC2. Amazon EC2 is another way to provide a

pay-as-you-go virtualization solution. We use 2 types of specifications

virtual machines in our experiments. The first is t2.small, which has 1 vir-

tual CPU and 2GB memory. The second is t2.medium, which has 2 virtual

CPUs and 4GB memory. The price of the latter is twice of the former.

Table 1 summarizes the experiment environments. Most of the exper-

iments run on Amazon EC2 cluster C5. But when we consider the dif-

ferent network environment and CPU capacity, we use all of the 5

clusters.

It is no doubt that YCSB21 has been a standard benchmark tool for

NoSQLs. We use YCSB as the workload generator and performance

reporter of the pressure client. In our experiments, the row key of data

is a long integer and the value size of a column is 10 bytes. We set the

YCSB maximal executing time as 500 seconds. For each experiment,

we run 5 rounds and discard the result of the first round to avoid the

problem of cold start. Then, we calculate the average throughput as the

final results. Because official YCSB does not support Cassandra 2.0, we

use Cassandra 1.2.11 in experiments.

TABLE 1 Environment setup with different cluster specifications

Cluster C1 C2 C3 C4 C5

Virtualization VMware sPhere Amazon EC2(us-west-2)

Physical server Fujitsu Primergy RX600 S6 -

40 cores, 512GB memory

Network Gigabit ethernet Low to moderate

Instance 2GHz (CPU) t2.small t2.medium

CPU Cors 1 2 4 1 2

Memory 8GB 8GB 8GB 2GB 4GB

Disk 200GB SATA with RAID0 40GB SSD

Cluster size 5 nodes with Cassandra 1.2.11

YCSB clients Up to 6 nodes with YCSB 0.1.4

Because monotonic writes consistency and write follows reads con-

sistency are invisible in Cassandra, additional information should be

collected for observing the 2 anomalies. Therefore, we add additional

logs when a write operation dequeues and is finished.

5 QUEUE LENGTH AS AN INDICATOR
OF CONSISTENCY

5.1 The relation between the queue and the

consistency

To show the effectiveness of using the queue length as an indicator

in real time, we collect the queue length and occurrence time of the

consistency anomalies in real time.

Figure 4 describes an instance of Figure 2. It shows the length of the

write queue on 1 node per 1 ms and the occurrence time of the con-

sistency anomalies when the query distribution is uniform. The red line

shows the changes of the queue of 1 node in the cluster. The length of

the queue fluctuates sometimes in the figure. After collecting the CPU

utilization of the Cassandra process and plotting the result, we can see

when the CPU utilization changes, the length of the queue waves.

The bars show how many consistency anomalies occur in 10 seconds.

We can find that the consistency anomalies assemble when the instan-

taneous length of the queue is long. The result obeys our conjecture

about the relation of the length of the queue and the consistency.

Therefore, we can use the queue length to observe the consistency

in real time. When the query distribution is uniform, observe any 1 node

is adequate. But if the query distribution is skewed, we should monitor

FIGURE 4 The relationship between the change of the queue length
and the number of read your writes consistency anomalies
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all the nodes because any node has a long queue may leads to serious

inconsistency. We will show the result in Section 5.2.

In our experiments, read your writes consistency anomalies are fre-

quent while other consistency anomalies are rare (1%∼5%). Therefore,

we mainly discuss the relation between the queue and read your writes

consistency model in the paper.

5.2 Generalizability of the relation between

the queue and the consistency

To prove the generalizability of the conjecture about the relation

between the queue and the consistency, we reproduce the above exper-

iment with different workloads, such as different throughput, different

read/write ratio and query distribution skewness scenario, in different

clusters.

In this section, we draw the average length of the queue of all the

nodes and the consistency intensity for each experiment when the data

distribution is uniform. Otherwise, we draw the average lengths of the

queues in different nodes.

5.2.1 Concurrent client number and throughput

In this experiment, we change the throughput from 47 500 to 60 000

per second and the concurrent client number from 1500 to 2500.

The replica number is 3 and read/write consistency levels are 1. The

data distribution and client requests are uniform. To eliminate the net-

work’s effect and show the relation between the queue length and the

consistency intensity on different hardwares, we run the experiment

on both vMware vSphere (Cluster C2) and Amazon EC2 environment

(Cluster C5).

Figure 5 shows the results. The intensity of read your writes consis-

tency decreases along with the increment of the throughput and the

number of the concurrent client. At the same time, the length of the

queue increases. The results prove that the intensity of the consistency

is negatively correlated to the length of the queue.

5.2.2 Different read and write ratios

In the experiments above, we use write-intensive workload, which the

write/read ratio is 1:0. To prove the generalizability of the conjecture,

we change the write/read ratio in the following experiments.

Figure 6 shows the relation between the intensity of the consis-

tency and the queue length with a mix-intensive workload, which the

read/write ratio is 1:1. The experiment also proves that when the write

queue length increases, the consistency intensity decreases. Besides,

in this experiment, the lengths of the read queue are always less than

200. Comparing with the length of the write queue, the change of the

read queue is smaller so that it is inappropriate as an indicator of the

consistency intensity. The result matches the discussion in Section 3.4.

However, the results above may mislead us that the throughput can

also indicate the consistency. If so, using the length of queue as an

FIGURE 6 The relation between the queue length and consistency in
mix-intensive workload (50% read and 50% write). The consistency is
also negatively correlated to the queue length in this case

FIGURE 5 The relation between queue length and consistency intensity with different throughputs and concurrent client numbers in different
environment. When the length of write queue increases, the intensity of the consistency decreases
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indicator of the consistency is needless. In fact, they cannot indicate the

consistency correctly. To prove that, we design another experiment on

Amazon EC2 C5. In this experiment, we change the read/write ratio and

observe the queue length and throughput. Figure 7 shows the results. In

this experiment, when the write ratio increases, the intensity of the con-

sistency decreases and the length of the write pending queue becomes

longer. However, the throughput decreases at the same time. The phe-

nomenon to conflict the conjecture that increasing the throughput will

decrease the consistency intensity. Therefore, we cannot judge the con-

sistency just according to the throughput. Second, we explain why the

throughput decreases when the write ratio increases. In a quorum data

storage system with n replicas, the write operations need to be propa-

gated n times and the read operations need only r times (r ⩽ n). Suppose

a client sends k requests, which includes a writes and k − a reads. The

cluster needs to process n×a+r×(k−a) tasks. If a increases, the cluster

will need to do more tasks. That is why the throughput decreases.

5.2.3 Query distribution skewness

All the above show the relation between the write pending queue and

the consistency when the data distribution and client requests are uni-

form. We design new experiments to investigate the length of queue

and the consistency when the data distribution and requests are not

uniform. In this experiment, we generate data and operations by power

law distribution (20% data items are involved in 80% operations). Then,

we calculate the queue length of the coordinator and the average length

of the noncoordinators. Figure 8 shows the lengths of the queues for

imbalanced data distribution and the consistency intensity. Comparing

with the green and the carmine bars, we can find that when the data

FIGURE 7 The counterexample of the relation that the consistency is
negatively correlated to the throughput. Therefore, throughput
cannot reflect the consistency intensity

FIGURE 8 The consistency intensity when the query distribution is
skew (power law distribution). The consistency is negatively correlated
to the queue length in this case and the system is heavily inconsistent

FIGURE 9 Queue length and the atomicity consistency model with 𝛤

metric. When the peak of the queue length appears, there is high
probability to find out the atomicity inconsistency

distribution is imbalanced, the queue length difference between the

coordinator and noncoordinator is large. At this time, the intensity of

the consistency is low to less than 0.3 (the line with +). The experiment

shows that when the query distribution is skew, the conjecture of that

the consistency intensity is negatively correlated with the queue length

is still true. Besides, when the query distribution is skew, the system is

heavily inconsistent.

5.2.4 Relation with other consistency models

All the experiments above show the queue length can indicate the

session guarantee consistency model well. Actually, because the

write queue reveals the essence of the inconsistency—a long queue

length prevents the global ordering of the requests in the system;

we conjecture that the write queue can also explain other consis-

tency models. For example, Hua Fan et al measure the atomicity

consistency13 with 𝛤 metric and explain the phenomenon with JVM

GC pause.20 We make a comparison with the work to investigate that

whether the queue can explain the atomicity consistency.

Figure 9 shows the reproduction of Fan et al.20 The read cross “+“

represents the atomicity consistency anomaly and the black “x” refers

to the JVM GC. The figure shows that when the atomicity consistency

anomaly occurs, the length of the queue is long. Therefore, the queue

can explain the atomicity consistency with 𝛤 metric well. However,

many GC events do not lead to atomicity inconsistency. Therefore, we

think the write queue is more suitable than GC events for explaining the

consistency.

All the experiments in this section show that queue length is a good

indicator of the consistency intensity. Therefore, if the queue lengths

of some nodes in the cluster are high, there will be many consistency

anomalies.

6 IMPROVEMENT AND STABILIZATION
OF THE CONSISTENCY

In Section 3.6, we propose 2 methods to improve the consistency. One

is enhancing the service capacity of nodes in the cluster by adding the

write thread number, the other is change the quorum in fine grained. In

Section 3.6.3, we make a conjecture that reduce the memtable size to

stabilize the write queue. In this section, we verify the effectiveness of

these methods.
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6.1 Changing the write thread number

We conjecture adding the write thread number can improve the consis-

tency. However, a quantitative conclusion is not proposed. We will make

an empirically quantitative conclusion in this section.

6.1.1 Effectiveness verification

First, we show how the thread number changes impacts the queue

length. We monitor the queue length in real time on cluster C2. In this

experiment, we increase the enqueue speed 𝜆 by adding concurrent

clients from 0 to 2500 until the queue arrives to the steady state. Then,

we change the thread number to modify the dequeue speed 𝜑. As dis-

cussed in Section 3.6.1, the modification of the 𝜑 is implemented by

changing the parameter of concurrent writes in Cassandra. The modi-

fication of concurrent writes is dynamic by JMX technology according

to modifying the core_thread_number of the write thread pool.

Figure 10 shows the result. At first, the queue length is short because

𝜆 is small. When the number of the concurrent clients reaches to

2500, the queue length is out of the steady state and the queue length

increases slowly. Then, we add the write thread number from 2 to 4,

the queue arrives to the steady state again and the length keeps as

about 500. Then, we continue to increase the thread number from 4

to 8 and 16, the queue length stops the increment but begins to wave.

After we set the thread number to 4 again, the queue length keeps sta-

ble again. The experiment proves that thread number can control the

queue length well and there is a best value for the thread number. The

number of the CPU cores of the cluster C2 is 2, so that the best thread

number is the twice of the CPU cores in this scenario.

Besides, we can find that when we increase the thread number, the

queue increases quickly (250 s, 350 s, and 450 s in the figure). It is

caused by the dynamic modification by JMX. Dynamic increasing the

thread pool size leads to some exception in the thread pool. However,

the thread pool can recover autonomously.

6.1.2 Generalizability of the quantitative conclusion
of the thread number

The experiment above shows that the best thread number is the twice

of the CPU cores. In this section, we design experiments to modify the

FIGURE 10 The changes of the queue length in real time on Cluster
C2. When the concurrent client number is less than 2500, the service
capacity of the node is enough. The node cannot handle so many
requests when the client number is equal with 2500. When the thread
number is equal with 2 × the number of CPU cores (4 = 2 × 2), the
node can provide the maximal service capacity

FIGURE 11 The consistency intensity and length of queue with
different thread numbers and CPU specifications. In different
hardwares, the best thread numbers are twice of the CPU cores

write thread number in different CPU specifications to investigate that

whether the quantitative conclusion is suitable for other hardwares. In

these experiments, we use cluster C1 ∼ C5 to observe the behavior

of different thread number and CPU specifications. In the local envi-

ronment, we change the cluster instances from 1 CPU core to 4 cores

(Cluster C1 to C3). In Amazon EC2 environment, we change the clus-

ter instances from t2.small to t2.medium (Cluster C4 and C5). We set

the replica number as 3 and the read/write consistency level as 1. The

concurrent client is 2500.

Read your writes consistency. Figure 11 shows the results of the

read your writes consistency intensity and the length of the write

pending queue. When the write thread number keeps constant, a

better CPU specification generally brings better read your writes

consistency intensity. But if the write thread number is not appro-

priate, we can get some opposite results. For example, when the

number of the write thread is 2, the read your writes consistency

intensity of the cluster C2 whose node has 2 cores is worse than C1

and C4 whose node has 1 core.

For a particular CPU specification (except 1 core), the read your

writes consistency intensity increases first and then decreases

when the concurrent write thread increases. We notice that the

peak of the intensity always occurs when the number of the write

threads is 2 × cores. For example, when the CPU has 2 cores, the

system gets the highest intensity when the number is 4 and when

the CPU has 4 cores, the system gets the highest intensity when the

number is 8. This principle stands in all the 5 clusters. We believe the

cluster with 1 core instances also obey the principle because at this

time, the number of the thread as 2 is the best. Unfortunately, we

cannot verify the result when the number of the thread is 1 because

Cassandra limits the number greater than 1.

Other consistency models. According to the cause of the monotonic

writes and the write follows reads anomaly, the write thread num-

ber is the most important factors. If there is only 1 write thread,

because Cassandra uses FIFO policy for the write pending queue,

the latter write operation never dequeues earlier than the previ-

ous operations. But if there are more than 1 write thread, the latter

write operation has opportunities to be executed in parallel with the

previous operations and then be finished earlier than the previous

operations.

Figure 12 shows the results and verifies our conjecture. The inten-

sity of monotonic writes and write follows reads decrease along
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FIGURE 12 The other consistency intensities and thread number. The
consistency intensity decreases along with the increment of the
thread number

FIGURE 13 Read and write latency with different thread numbers
and CPU specifications. Increasing the write thread number brings
many read latencies while adding the write latency little

with the increment of write thread number. Besides, we notice that

when the nodes in the cluster have only 1 core per node, the inten-

sity of monotonic writes decreases more slowly than the nodes

with 2 or 4 cores. We conjecture the reason is that the concurrent

capacity for a single core is weaker than multicores. However, we

should point out that though the downtrend is obvious, the differ-

ence is little. For example, the maximum difference comes from the

4 cores-MWC scenario and the difference is less than 6%.

6.1.3 Adverse effect of changing the thread number

As one of the limited resources, the more of threads does not mean

the better. Imbalanced resource allocation leads to other modules lack

of the computing resources. That is why increasing the write thread

number will bring some adverse effects.

Figure 13 shows the write latency and read latency of the experiment

in Section 6.1.2. The write latency increases little along with the incre-

ment of the write thread number. However, the read latency increases

substantially. To analyze why the read latency increases, we collect the

detailed information of CPU under each number of write threads by

using “dstat” command on Ubuntu. First, in all the rounds of the experi-

ment, the utilization rates of CPU are all about 90%. Second, when the

number of write threads are 2, 4, 8, 16, 24, and 32, there are 21.5K,

22.9K, 23.3K, 24.4K, 25K, and 25.4 K system interruption events in

1 second. Therefore, we conjecture that it is because the write mod-

ule of Cassandra takes so many threads that the read module does not

have enough threads. As a result, many thread switch events occur and

thereby they increase the latency.

6.2 Optimizing the quorum in fine grained

We have proved that if we keep the sum of r+w constant and r+w ⩽ n,

a better policy is that let |r − w| < 1 in Section 3.6.2. In this section,

we investigate how different write and read consistency level impact

the consistency by experiments first. Second. we analyze the adverse

effects of read/write consistency level. The experiment runs on Ama-

zon EC2 cluster C5. 5 YCSB clients act as pressure clients, and they

establish 2500 concurrent connections with the cluster. We change the

replica number from 2 to 4. We also compare our results with PBS6 to

show the conclusion is suitable for more scenarios.

6.2.1 Effectiveness verification

The Figure 14 shows the result of read your writes consistency. When

r + w < n, e.g., n = 2 and (r,w) is (1,2), (2,1) or (2,2) or n = 3 and

(r,w) = (2,2), the intensity of read your writes consistency is 100%

all the time. We omit these result in the figure for the conciseness. But

when w+r < n, the intensity of read your writes consistency is less than

100% (see n = 4 and (r,w) = (1,1), (1,2), (2,1), (3,1) or (1,3)). Besides,

the intensity of read your writes consistency increases along with the

sum of r + w. All of these observations obey common insights and are

reasonable. When user uses strong consistency level (w + r > n), the

scenario does not satisfy the condition we discuss in Section 3.2 and we

cannot find read your writes anomaly. When w + r < n, the smaller the

w+r is, the easier the condition of read your writes consistency anomaly

is satisfied.

Now, we analyze the consistency difference when we keep w+ r con-

stant. In Figure 14, the pink bars show the read your writes consistency

intensity when the replica number is 4. The read your writes consis-

tency intensity when (r,w) = (2,2) is higher than the intensity when

(r,w) = (3,1) or (1,3). The result is coincident with the conclusion in

Section 3.6.2.

FIGURE 14 Intensity of read your writes consistency with different
quorum size and replica number (the cases of r + w > n are omitted). If
r + w ⩽ n and r + w keeps constant, the consistency are the best when
w − r ⩽ 1
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6.2.2 Generalizability of the quorum decision

The experiment above only shows that when n = 4, the conclusion

that (r,w) = 2 is the best. In this section, we will use PBS to simu-

late more cases of replica number n, read consistency level r, and write

consistency level w to prove the conclusion.

Bailis et al proposed PBS to predict the consistency.6 They believed

the quorum size impacts the consistency significantly and given a for-

mula to calculate the probability of k-staleness.6 But they did not dis-

cuss the relation between r and w when r + w keeps constant. We

will use the formula to simulate more scenarios to show whether our

conclusion is right.

Because 1-staleness in PBS is similar with read your writes con-

sistency, we use PBS to simulate the probabilities of 1-staleness with

different quorum (r, w, and n). Figure 15 shows the simulation. We can

find that if r+w keeps constant, the system can get the best consistency

when w − r ⩽ 1. For example, when n = 6 and r + w = 4, (r,w) = (2,2) is

the best. When n = 6 and r+w = 6, (r,w) = (3,3) is the best. The simula-

tions show our conclusion is suitable for more scenarios and coincident

with PBS.

6.2.3 The adverse effect of changing the quorum

The common insight is that increasing r + w will decrease the through-

put. However, Figure 16 shows another interesting phenomenons

about quorum and throughput: When we keep the quorum size r +
w constant, the throughput differs. For example, the throughput with

FIGURE 15 One-staleness simulation of Probabilistically Bounded
Staleness. All the 3 groups of the simulations match our conclusion
that when r + w keeps constant, w − r ⩽ 1 can get the best consistency
intensity

FIGURE 16 Throughput with different quorum. Increasing the read
consistency level will decrease the throughput sharply while
increasing the write consistency level impacting the throughput little

(r,w) = (1,3) is higher than the throughput with (r,w) = (2,2) and

more than twice of that with (r,w) = (3,1). Besides, when the replica

number n and read consistency level r keep constant, the throughput

changes little along with the change of write consistency level w. For

example, the throughputs when (r,w) = (1,1), (1,2) are approximate.

(r,w) = (2,1), (2,2) show the same result.

According to the experiments, we make a conclusion that increasing

the read consistency level will decrease the throughput sharply while

increasing the write consistency level impacting the throughput little.

We give an explanation: Write operation is propagated n times no mat-

ter what w is. w only impacts the number of ack messages the coordi-

nator receives. However, r decides how many times the read operation

will be propagated. Therefore, the cluster has to do more operations

when r increases. That is why in Figure 16, the throughput changes little

when n and r are constant and the throughput decreases sharply when

r increases.

We omit the results of read and write latencies because they obey

common insights: read (write) latency increases along with the incre-

ment of r (w).

6.3 Stabilizing the write queue

Figure 4 has showed that the consistency anomalies assemble when the

instantaneous length of the queue is long. For example, about 20% con-

sistency anomalies occurs in (110 s and 120 s) in the figure. However,

the skew distribution of the consistency is what we do not want. In this

section, we collect the logs of Cassandra to analyze that what events

disturb the stable of consistency and queue length. Then, we discuss

how to make the queue length more stable.

6.3.1 The JVM GC event

Figure 17 shows the length of the write queue, JVM GC and memtable

flushing events in real time when we write data uniformly. We find that

JVM GC is triggered periodically and does not impact the queue length

distinctly. But when the memtable flushing event occurs, the queue

length gets a peak. Therefore, in our experiments, we make a conclusion

that JVM GC has no impact for the queue length while the memtable

flushing event impacts the queue length obviously.

FIGURE 17 Queue length and other events in realtime. The garbage
collection event occurs periodically and impacts the queue length
little. But the memtable flushing event impacts the queue obviously
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FIGURE 18 Queue and memtable flushing with different memtable
size parameter. Smaller memtable size makes the queue length more
stable

6.3.2 The memtable flushing event

The reason why the memtable flushing event impacts the queue length

has been discussed in Section 3.6.3. To alleviate the jitter of the queue,

we change the memtable_total_size_in_mb parameter of Cassandra,

which means the total memory size the memtables can use. To get more

experiments results and screen other unknown reasons, we use 5 phys-

ical servers, which have 32GB RAM instead of C1 to C5. In this exper-

iment, we set the parameter memtable_total_size_in_mb as 512MB ∼
8GB.

Figure 18 shows the results. When the memtable size is 512MB,

the duration of flushing a memtable is less than 1 second and only a

part of the flushing events leads to the queue slightly waves. The dura-

tion of flushing a memtable increases along with the increment of the

memtable size. At the same time, the queue has higher peaks than the

case with 512MB.

Considering the results in Figure 4 and Figure 18 together, we

can make a conclusion that the memtable_total_size_in_mb is not

“the larger, the better," because the consistency anomalies will

assemble nearby the peak of the queue. Therefore, an appropriate

memtable_total_size_in_mb configuration can bring users a more uni-

form consistency experience. In our experiments in the clusters C1 to

C3, which each node has 8GB memory, setting the memtable size as

512MB is a good choice.

Changing the value of memtable_total_size_in_mb not only impacts

the consistency but also has some adverse effects. Figure 19 shows the

results. According to the experiment, we find that a small memtable can

reduce the average write latency. However, the impaction is little: the

system just enhances about 1 ms when we double the memtable size.

Meanwhile, the size of each sstable is positively correlated with the

parameter. Besides, small sstable size will lead to amount of sstable

files. If there is no compaction mechanism, the large amount of sstable

FIGURE 19 Adverse effects of increasing the value of
memtable_total_size_in_mb

files will reduce the read speed. It is because (1) Data in 1 sstable is

ordered and indexed, so that Cassandra reads data from 1 sstable is

fast even though the size of the sstable is large; (2) For each read oper-

ation, Cassandra has to scan all the sstable files. The above analysis

is corresponding to our experiment results: if there is only 2 sstable

files, the read latency is about 28 ms. If there are about 100 sstables,

the read latency is about 684 ms in our experiment. If the compaction

mechanism is enabled, small sstable files may increase the frequency of

compaction, which is a little harmful for hard disk. Fortunately, the com-

paction impacts the write throughput little because Cassandra limits

the computation resources of the compaction.

6.4 Methods summarization

In this section, we verify the 3 methods to tune and stabilize the consis-

tency and investigate their adverse effects.

For the first method, we make the conclusions: (1) Setting the concur-

rent write thread number as twice of the CPU cores is an appropriate

choice. (2) Increasing the write thread number is not free; the read

latency increases while the write latency has little increment. There-

fore, for a read latency intensive application, the method is not suitable.

According to the second method, we recommend some policies to

determine how to set the value of read and write consistency level (r

and w). (1) Increasing r+w improves the consistency of Cassandra while

decreasing the throughput. (2) When we keep the sum of r + w con-

stant, we can get the best consistency if w − r ⩽ 1. (3) When we keep

the sum of r+w constant, a larger r leads to a lower throughput. There-

fore, for applications with high-throughput workload, increase the read

consistency level r.

Conclusively, we summarize the first 2 methods in Table 2.

For the third method, we propose that a smaller memtable size is

helpful to stabilize the write queue. In our experiments, 512MB is a

better size if the memory size is less than 32GB.

We combine all the 3 methods together to show how to improve

the consistency in Cassandra. We run the experiment on Cluster

C3. First, we set the total_memtable_size as 512MB. After measur-

ing the read your writes consistency intensity, we set the concur-

rent_thread_number from 2 to 8. Finally, we set the read consistency

level and write consistency level from (r,w) = (1,3) to (2,2). We run 5

rounds of the experiments and collect the consistency intensity, write

latency, and read latency. Figure 20 shows the average values. After the

3 methods are used totally, the consistency intensity is the largest. The

figure also shows that the adverse effect of changing the write threads
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TABLE 2 Summary of first 2 methods for tuning consistency

Best Choice Adverse Effect

Tuning Method for Consistency (trends of latency or throughput)

Increasing the write threads number of write threads read latency ↗

=2× CPU cores write latency →

Increasing read consistency level w − r ⩽ 1 throughput ↘

(keeping r + w constant)

FIGURE 20 Combining the 3 tuning methods in 1 cluster

can be eliminated by decreasing the write consistency level w. Besides,

increasing the read consistency level r takes many read latencies and

it cannot be eliminated by other methods. The experiment proves that

our improvements still obey PACELC criterion.1

7 RELATED WORKS

Many theorems, such as Consistence, Availability and network Parti-

tioning (CAP)23 and PACELC1 indicated that developers have to make

many trade-offs when they design distributed systems. For example,

the CAP theorem pointed out that a system has to give up one of the

3 features: consistency, availability, and partitioning. Cassandra allows

users choosing the quorum size to tune the consistency. In this paper,

we choose partial quorum, which is w + r ⩽ n, to observe the weak

consistency. For another example, PACELC pointed out another sce-

nario: if there is no network partitioning, users need to make a trade-off

between consistency and latency. In this paper, we also discuss the

changes of latencies when we tune the consistency.

When we say the terminology of consistency, it means the replica

consistency model. Consistency model is defined as a contract between

processes and the data store.24 There are many kinds of con-

sistency models, and they can be classified as data centric and

client centric.24 Data-centric consistency model defines that which

ordering of read and write operations on shared, replicated data is

right.25 Lineariability,26 sequential consistency,27 causal consistency,28

and FIFO consistency29 (also called as PRAM consistency) belong

to data-centric consistency model. Client-centric consistency model

defines that what the data should be from a client view.24 Therefore,

client-centric consistency model is more intuitive for terminal users. In

this paper, we focus on a kind of client-centric consistency model, which

is called as session guarantees. Alvaro et al7 also focused on the same

consistency model. However, it just considered the measurement of the

consistency, while our purpose is tuning and enhancing the consistency.

There are many ways to measure consistency. The first way is

assertion. That is, if a system never violates a kind of consistency

model, we say that the system supports that consistency. For example,

Cassandra supports eventual consistency30 and HBase supports

timeline-consistency*. This metric is coarse because some applications

just require systems guarantee a given consistency model in a high

probability. Some works focus on analyzing the source code for infer-

ing the consistency. For example, Jiang et al proposed code verification

for synchronization,31,32 which can be used for replica consistency

analytics. The other way is using the probability to describe a system’s

consistency. For example, Facebook claimed that there are 0.0004%

read operations returning different results in its linearizable system.33

Bailis et al6,34 proposed a probability model to measure and predict

the consistency of quorum systems. The consistency intensity in this

paper also belongs to this kind of measurement.

Another view to describe the consistency is using latency or data

item version. For example, t-staleness and 𝛥-consistency are proposed

and predicted.6𝛤 metric13 is proposed to describe the atomicity con-

sistency more accurately. Some explanation about𝛤 is also proposed.20

In this paper, we show that the write queue length can indicate the 𝛤

metric with atomicity consistency better.

There are many benchmarks for consistency measurement. For

example, Bailis et al35 presented a client-centric benchmark and

Bermbach, Zhao, and Sakr36 proposed a more comprehensive bench-

mark. Different from just measuring the consistency as above, our

another purpose is to reveal the cause of inconsistency and help users

tuning the consistency.

Many new protocols and methods are proposed for enhancing the

consistency. For example, Google used atomic clock to implement

strong consistency in globally data centers.37 Bails et al proposed using

a middle layer to support the causal consistency.11 They implemented

the consistency by storing all data’s causal relationship in the mid-

dle layers’ memory. Zhu et al proposed replica consistency-on-demand

store10 to provide on-demand consistency. The main idea is if the opera-

tion execution time has exceeded user’s expectation, the system returns

results (eg, null, stale version, or latest data) to the user immediately.

*https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin&uscore;hbase&
uscore;read&uscore;replicas.html

https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin&uscore;hbase&uscore;read&uscore;replicas.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin&uscore;hbase&uscore;read&uscore;replicas.html
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Different from the above works, our purpose is for enhancing the con-

sistency without the necessity of modifying the existing system imple-

mentation.

8 SUMMARY AND DISCUSSION

In this section, we summarize the key insights from the results pre-

sented in this paper and discuss how the conclusions help developers

and researchers to improve their works.

In this paper, we investigate the read and write process in Cassandra

to analyze whether Cassandra satisfies four session guarantee con-

sistencies: read your writes, monotonic reads, monotonic writes, and

write follow reads consistency. By analyzing why the inconsistency

occurs, we propose using the length of the write pending queue as an

indicator of the consistency. Then, we propose how to improve the con-

sistency: changing the thread number, configuring the quorum in fine

grained, and set a small memtable size according to the memory size.

We investigate the distribution of the consistency anomalies by ana-

lyzing the events in Cassandra logs, verify the effectiveness of these

methods, and discuss the adverse effects about the methods. In the

experiments, we compare our work with 2 latest related works, atom-

icity consistency model with𝛤 metric and PBS prediction in the experi-

ments. The comparisons show that the queue length is also suitable for

atomicity consistency and our conclusion is coincident with PBS.

It is believable that our work is helpful for both of developers and

researchers.

Developer. The observation of queue length is easy to be imple-

mented by JMX technology. Therefore, developers can observe the

current length of the queue to monitor the consistency in real

time. When the workload of the application changes, developers

can tune the consistency intensity to guarantee the user experi-

ences by using proposed 3 methods. When using the methods, they

can also make a trade-off between the consistency and latency or

throughput. In a word, developers can configure the system better

according to our conclusions in the paper.

Researcher. The paper proposes a new view to control the consis-

tency. Researchers can analyze the system with queueing theory

and design new consistency control methods according to the infor-

mation of the queue length. For 1 example, we can limit the maximal

length of the queue by simply blocking the following requests. For

another example, we can use simple consistency control methods

when the queue length is short. But when the queue length is long,

we can use complicated control methods to guarantee the consis-

tency.
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