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Abstract

The adoption of the Internet of Things (IoT) in industry provides the opportunity to gather valuable data. Nevertheless, this amount of data must
be analyzed to identify patterns in the data, model behaviors of equipment and to enable prediction. Although big data found its initiation already
some years ago, there are still many challenges to be solved, e.g. metadata representation and management are still a research topic. The big data
architecture of the RISC data analytics framework relies on the combination of big data technologies with semantic approaches, to process and
store large volumes of data from heterogeneous sources, provided by FILL, which is a key machine tool provider. The proposed architecture is
capable of handling sensor data using big data technologies such as Spark on Hadoop, InfluxDB and Elasticsearch. The metadata representation
and management approach is adopted in order to define the structure and the relations (i.e., the connections) between the various data sources
provided by the sensors and logging information system. On the other hand, using a metadata approach in our big data environment enhances
RISC data analytics framework by making it generic, reusable and responsive in case of changes, thus keeping the data lakes up-to-date and
ensuring the validity of the analytics results. The work presented here is part of an ongoing project (BOOST 4.0) currently addressed under the
EU H2020 program.
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1. Introduction

In the context of the European project called Big Data Value
Spaces for COmpetitiveness of European COnnected Smart
FacTories 4.0 (BOOST 4.0) [19, 2] RISC Software GmbH
(RISC) and Fill Gesellschaft m.b.H. (FILL) together with other
partners try to achieve a better understanding of the machin-
ery by detecting cause-and-effect relationships in the related
stored data. Thus, understanding the data, finding patterns in
the data, generating prediction models and checking machine
data against machine specification have been identified as main
project goals.

The evolvement of cloud and cluster infrastructures together
with the adoption of the Internet of Things (IoT) in industry en-
abled the rise of big data and concurrently reinvented the idea of
Artificial Intelligence (AI). Most organizations today see their
data as a big opportunity to gather insights into their processes,
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tools, machines, materials, etc. After gathering data, one starts
to think about exploiting data in order to generate useful results
that can be further used in the big data engineering and analysis
process.

To address big data challenges as data and infrastructure
management, i.e., to be able to do something useful with large
amounts of data, an innovative big data strategy based on meta-
data representation [4] is indispensable. Most of the IoT and big
data platform approaches focus on operations and not on the en-
gineering process of such production systems. Closing this loop
leads to the next evolutionary step in the engineering method-
ologies like model based engineering and model based systems
engineering. RISC data analytics framework implements the
previously mentioned big data strategy by applying lossless and
highest standardized data interoperability between engineering
tools, processes and domains at different levels: process, tech-
nical, syntax and semantic level [31].

The data sets generated by sensors can be analyzed using
methods from data mining, such as machine learning, which
can be used to derive information about correlations, existing
patterns and anomalies in the data pool.

This paper describes an approach for metadata representa-
tion and management in a big data environment, based on a real2351-9789 c© 2020 The Authors. Published by Elsevier B.V.
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application example. Initially, we shortly describe the goals and
objectives of RISC and FILL together with the other partners
inside BOOST 4.0 and conclude with the identified challenges
related to the analysis objectives.

2. FILL pilot in BOOST 4.0

BOOST 4.0 project addresses the need for development of
large scale experimentation and demonstration of data-driven
“connected smart” Factories 4.0 by demonstrating in a measur-
able and replicable way, a shared data-driven Factory 4.0 model
through 10 lighthouse factories. One of these 10 factories is rep-
resented by the FILL Pilot, who addresses this objective from
the proposal: leverage smart integration of industry 4.0, real-
time architectures, big data predictive analytics and data/knowl-
edge protection with Industrial Data Spaces. Activities under
this objective are: design and deliver a scalable holistic analyt-
ical framework - data mining, machine learning, information
visualization, correlation analysis and user interaction methods
for heterogeneous for big industrial data.

2.1. Short pilot overview

The FILL pilot is about a lot-size-one machine tool circu-
lar engineering in a factory 4.0. FILL as key machine tool
provider delivers in the order of 100 production systems per
year to around 50 customers worldwide. 90% of FILL machines
and systems are exported to automotive, aerospace, sports, con-
struction and housing and renewable energy sectors. Zero de-
fect production demand that machines cost-effectively flexibly
adapt to optimum production configurations. Therefore, ma-
chine tools are increasingly customizable (lot-size 1 production
scheme). Rigid engineering processes designed for mass pro-
duction are not able to optimize smart connected machine tool
lot-size 1 engineering and fail to incorporate external opera-
tional data to optimize machine self-configuration and adapta-
tion features. The FILL trial primarily serves the engineering
process of the machine builder. It allows for a better under-
standing of machinery by detecting cause-and-effect relation-
ships due to anomalies and patterns.

FILL’s system Machine Workflow collects data from the pro-
duction process of the machine, stores them in database systems
and makes them available for further evaluation with regard to
the produced product. Currently, FILL provides us historical
batch data from InfluxDB and Elasticsearch. In an initial step
we hope to get more closely insights about the machines and
their conditions during operation through data exploration and
analysis and, in a subsequent step, to establish a pattern and
anomaly detection framework based on machine learning algo-
rithms.

2.2. Challenges for the data analysis

It is well known that in some cases the schema-less environ-
ment offered by big data ecosystems is seen as an advantage,
because of the agile nature and flexibility of the data develop-
ment. But, interpreting the data available in a big data system

does not receive much support from this thinking. As mentioned
in [25], the need for metadata management support in big data
environments was proved by use cases that require validity of
analytics results or when one wants to scale from answering
a small narrow business question to a large-scale analysis en-
vironment. We systematically analyzed our use cases in this
project and from the many challenges big data poses [24] we
identified the following:

• machine learning algorithms are not that flexible and
their use in an analysis that spans over long time periods
represents a big challenge;
• integration of machine learning algorithms in a large-

scale analysis environment can be quite complicated;
• many analysis conditions used in machine learning algo-

rithms are being hardcoded;
• ensuring the validity of the analysis;
• frequent evolution of data sources;
• sharing of algorithms.

After researching for similar problems and their related so-
lutions, we understood that defining metadata for big data helps
us in overcoming the previously mentioned challenges.

3. Related Work

Taking it incrementally, we started by searching for solu-
tions to represent our data via suitable schemata, but this is not
straightforward in big data context. Therefore, the next thought
was to represent and manage metadata, i.e., the syntax and the
semantics of the data. By semantics we limited ourselves to rep-
resent the relations between the data. Starting with these ideas
in mind, we discovered that the interest in using metadata in
big data environments has increased over the last few years. Lo-
cal different solutions were developed by big companies or re-
search groups. Open II [23] addresses a more generic approach
by creating and integrating tools for metadata in big data in-
frastructures. Though a great idea, it looks like this work was no
longer continued, because we couldn’t find how we could apply
it to our specific data sources. LinkedIn tried to overcome some
of the challenges mentioned before by engineering a data model
based on combining Apache Avro [26] and Pegasus [12, 13].
Differently, our data pipeline is offline, so using Avro in our
case will not require the integration of Kafka [28, 8].

Another approach to deal with the non-uniformity of big
data is related to graph databases, whose use significantly in-
creased over the last years [5]. Graph databases are considered
schema-less, which make them suitable for big data and there-
fore many companies have turned to use them [3, 9, 14]. Al-
though already many tools integrate graph databases and on-
tologies [15] with Spark, these can be explored only using RDF-
specific query languages, like SPARQL [32] or Streaming and
Temporal ontology Access with a Reasoning-based Query Lan-
guage (STARQL)-SPARK query engine [18, 21]. Thus, knowl-
edge and experience with Web Ontology Language (OWL) and
Resource Description Framework (RDF) are required.
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We want to develop a different approach, which uses some
features offered by ontologies for the metadata management,
but in the backend, does not make use of the traditional imple-
mentation based on OWL and RDF, and therefore supporting
the use of the default querying language in Spark. This way we
want to reduce the challenges posed to our developers (which
are not having a background in semantics) by specific query
languages, like SPARQL or STARQL. Of course, on the one
hand, as a consequence the benefits proposed by ontologies will
be reduced, but, on the other hand, by integrating Avro and Se-
mantic Annotations for Linked Avro Data (SALAD) schemas,
we will still be able to design the data model with the corre-
sponding metadata and specify validation conditions.

4. RISC data analytics framework

The main tasks of RISC in the pilot factory led by FILL are
focusing on the selection of appropriate machine learning and
data analysis algorithms and their algorithmic optimizations for
the given problem statements, i.e., find the appropriate methods
that are suitable for very large data and that have the potential
for parallel implementation.

4.1. Motivation

After analyzing the big data use cases we are dealing with,
significant aspects for the project have been identified, namely,
the analysis should work over long periods of time, data should
be consolidated (some information is derived from another and
this should be kept clear), combining data should not break
the analytic algorithms and data discovery should be facili-
tated. For now, we do an historical analysis, but the data is
relatively new (approximately one year and during this time
the data has changed several times). Therefore, the algorithms
should be developed to analyze in an initial phase the historical
data we have, but after being integrated in the FILL ecosys-
tem, they should succeed in analyzing near to real time data.
Thus, reusability is very important. Another aspect, which re-
quires flexible and reusable algorithms is the lack of historical
bad data (data that represents failures). In this case, the algo-
rithms should learn over time from the changing data sets.

To accomplish the tasks defined in the project, we under-
stood that we have to enhance our data analytics framework
in the direction of big data fabric [33]. One of the biggest chal-
lenges identified was dealing with disparate data sources, which
provide high velocity sensor data, on one side, and log informa-
tion (alarm messages), on the other side. Additionally, another
challenge represents linking the data provided by the different
data sources. Therefore, democratizing data by representing re-
lated metadata is indispensable in order to minimize the effort
spent for ingesting, integrating, curating the data [33], i.e., to re-
duce the complexity of the data analysis process. Data analysis
is a cumbersome process of reviewing, cleansing, transforming
and modeling data with the aim of discovering useful informa-
tion, drawing conclusions and supporting decision-making.

To succeed with our objectives, we need to design a central-
ize pipeline. This requires to integrate a metadata representation
approach in our big data infrastructure. All data is ingested into
our data storage layer, which builds on top of a central reposi-
tory (i.e., reader and writer always use the same schema) con-
taining all metadata schemas. Relational mapping is not a trivial
task in big data, therefore special handling is required. Model
information of the machines is designed in the form of ontolo-
gies and registered in a generic database system.

4.2. Structuring big data using ontologies

Semantic technology [30] was initially used in the Seman-
tic Web context in order to allow the meaning of associations
between information (building relationships between various
formats of data) to be known and processed at execution time.
Therefore, metadata is a fundamental component of the Seman-
tic Web, together with the main standards on which it builds
on: the RDF, SPARQL and OWL. Another very important layer
in the Semantic Web’s architecture is the ”Ontology vocabu-
lary”, which can be translated into metadata vocabularies and
therefore considered to be the Semantic Web’s central metadata
artery [10].

The term ontology originally comes from the field of theo-
retical philosophy. In computer science, the use of ontologies is
a common methodology for modelling knowledge digitally and
formally. Hence, it is a formal description of complex facts and
expertise (to conserve and share it, but also to machine it (fur-
ther) to process and expand [22, 11, 6]). While the use of on-
tologies has long been limited to the scientific-academic field
(especially computer science biomedicine, biotechnology and
medical informatics), in recent years, more and more applica-
tions in the area of big data, data integration, data analysis and
industry 4.0 have been found [7].

Ontologies use semantic search technology in order to dis-
cover meaningful information from structured and unstructured
data. They also help addressing the challenges that data inte-
gration presents: data sourcing, data connectivity and data mi-
gration. Another benefit is the ability to overcome the lack of
flexibility and the significant delay time that data integration
cannot cope with during changes in data types, data sources, or
datasets. A big topic for ontologies is the connection of data
from different data sources and their interpretations. The data
agility, data-first approach - data building (data first, schema /
structure later) - and the step-by-step data integration process
provide a foundation for a new way to manage enterprise data
collections and big data [17, 16].

Behind the tasks of the selection of the most appropriate ma-
chine learning algorithms, data analysis algorithms and their
optimizations, a more hidden goal of our team is to create a big
data analysis environment that enables ontology modeling for
metadata management and metadata representation, together
with data exploration and analysis for big data lakes.

One of the reasons for the decision of employing an
ontology-based approach that relinquishes their traditional use
based on RDF and SPARQL, was lowering the fundamental
barriers to adoption of semantic technologies. However, this
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approach still enables some of the benefits of the knowledge
graph capabilities by allowing us to keep the initial database in-
frastructure. Another reason to base our implementation on the
W3C Semantic Web principles is to enable relations between
concepts in Structured Query Language (SQL). Moreover, we
can do complex analytics using the same tools we currently use
to access and query the databases mentioned in Fig. 1 and sub-
section 4.3 and in addition, this concept facilitates sophisticated
query of big data without requiring high knowledge in semantic
technology.

RISC data analysis framework employs Spark SQL, which
allows relational queries expressed in SQL – the most widely
known database language, to eliminate the technological barri-
ers to entry for using knowledge graphs. Therefore, together
with the integration of Avro and Salad, it enables modeling
of data as connected, context-enriched concepts with infer-
ence, while being queryable in standard SQL, to transform
data into connected data that is seamlessly accessible to our
machine learning algorithms. Modeling of concepts extends
schema and table definitions with abstractions, in form of meta-
data. Hence, our framework facilitates standardization of data
meaning across our team and makes data understandable to both
users and machines. It also enables data engineers and scientists
to be highly productive doing data preprocessing, feature engi-
neering, data analysis and building accurate and flexible ma-
chine learning models.

In the next subsections, the focus lies on describing the big
data architecture we build on and first ideas on representing the
metadata with Avro and Salad. As future work, we plan to im-
plement the metadata management by extending our in-house
ontology-based tool, to integrate it with the metadata represen-
tation technologies and, in the last stage of the project, incorpo-
rate the data exploration and visualization approaches and the
appropriate machine learning algorithms.

4.3. Big data architecture

The big data architecture of the RISC data analytics frame-
work is designed as pictured in Fig. 1 and relies on the open
source software collection Apache Hadoop [27] for data storage
and computation. Running on a cluster of computers, Apache
Hadoop provides a software framework for distributed storage
and processing of big data using the MapReduce programming
model. To process data in parallel, Hadoop sends packaged
code to each node and takes advantage of data locality, mean-
ing that each node only manipulates the data it has access to.
We rely on Apache Spark [29] for cluster computing, because
it provides high-level APIs in various languages (Java, Scala,
Python and R) that perfectly integrate with machine learning li-
braries. Spark keeps track of the data that each of the operators
produces, and enables applications to reliably store this data in
memory. This is the key to Spark’s performance, as it allows
applications to avoid costly disk accesses.

Spark programs can be submitted from outside to the clus-
ter, for example from within the web-based IPython interpreter
Jupyter or directly from an IDE (e.g. by using Livy-Sessions).
This way, after the cluster has done some heavy lifting, results

Fig. 1. RISC data analytics framework - Big Data architecture

can be plotted immediately using libraries such as matplotlib or
plotly.

As it can be seen Fig. 1 the architecture is split into two com-
ponents: the cluster, which is the main component, and the local
component. Most of the data engineering is happening on the
cluster side, where two layers were designed: the data storage
and the data engineering and analysis layer.

In a first step, the data which arises from various data sources
is being ingested in the corresponding databases in the data
storage layer (big data batches - sensor data of the produc-
tion process or machine operation - are stored in an InfluxDB
and log information is stored in Elasticsearch). Afterwards, the
data sets are interpreted in the appropriate way and imported
to comma-separated values (CSV) files, which are stored on
Hadoop Distributed File System (HDFS), in the data engineer-
ing and analysis layer. At this initial stage, only simple data
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validation and correction happens. In order to enhance the flex-
ibility and applicability of the system, additional input data con-
nectors were implemented. At syntax level, the structure of the
imported data was defined by representing its related metadata
information through Avro schemas. In a further step, the data
is being validated, cleaned, correspondingly transformed and
stored into Spark tables. Using Spark SQL together with Livy,
we can rapidly conduct some first data explorations in order to
gain initial insights about the data.

A central aspect of this project is the involvement of the ex-
perts in data analysis and interpretation. After seeing the first
data explorations and consulting the domain experts, a semantic
representation of the metadata is designed, with a focus on con-
necting the information from the multiple sources, i.e., linking
the data. By implementing the relations between the different
data sources at a different level, the complexity of the queries is
reduced (i.e., less JOINs). Therefore, the data analysis process
becomes simpler and more intuitive.

For the metadata management task, an in-house ontology-
based research infrastructure for domain-expert-driven knowl-
edge discovery is being used. The main principle behind the
system is to put the domain experts with their knowledge and
experience in the center of the knowledge discovery process.
Therefore, the metadata information of the linked data and
model information of the machine (i.e., one of the machines
produced by FILL) are being represented as a domain ontology
in a generic database system (different from a traditional ontol-
ogy system based on OWL and RDF). This tool is mainly based
upon Java enterprise technology and uses Maria DB as data
storage system. The system is also able to access data from ex-
ternal systems, by either importing it into its internal data stor-
age or accessing the external data at runtime. We enhanced the
ontology-based tool in order to able to integrate it as a backend
component into our data analytics framework for managing the
metadata representation, especially for the semantic informa-
tion necessary for linking the data. Furthermore, the elaborated
meta-information from the domain ontology is used to actively
support the data scientists in complex data science tasks, such
as data preparation, data selection and filtering, data cleaning
and plausibilization, data exploration and analytics.

As mentioned before, we use Avro as intermediate format
to define data schemas in JavaScript Object Notation (JSON)
for representing the syntactic metadata. The implementation is
straightforward, but it is not rich enough to facilitate the rep-
resentation of data relations. Therefore, we have researched for
a more powerful metadata representation approach and discov-
ered Salad [1]. Salad is a schema language for describing struc-
tured linked data in JSON or YAML (a recursive acronym for
”YAML Ain’t Markup Language”) documents. By declaring a
Salad schema, rules for preprocessing, structural validation, and
link checking for documents can be defined. Salad fills in the
gap between the record oriented data modeling supported by
Apache Avro and the Semantic Web, by extending Avro with
features for rich data.

Data aggregation and record linkage is followed by data pro-
cessing and query steps. At this stage, explorative data analysis
is conducted to properly prepare the data for time series anal-

ysis (as it is in our case). From here on, there are two possi-
bilities: to reduce the data and load it locally into pandas data
frames that will feed the machine learning models or train the
machine learning models on the cluster using libraries like mlib,
CaffeOnSpark, or H2O (Sparkling Water).

4.4. Representing metadata

The AVRO schema plays a key role in defining the syntax
of the data being processed and can be used to validate data as
well as for automated data processing operations. Some of the
advantages of Avro that convinced us to use it for represent-
ing data information are that it integrates with Hadoop, schema
changes are handled transparently and it offers programmatic
compatibility model.

While the AVRO schema only contains syntactic informa-
tion, it can be used to convey information, which is required
for automated data processing, such as the resolution of the
Timestamp information as in the example in Listing 1. While
it may be obvious to a human reader, whether the long value
of time represents milli- or microseconds, that information is
crucial for the correct automated conversion to other datatypes
such a Spark timestamp. Such information can be attributed to
the struct fields within the schema.

1 {
2 "type" : "record",

3 "name" : "OperatingState",

4 "namespace" : "lfd",

5 "fields" : [

6 {
7 "name" : "time",

8 "type" :

9 {
10 "type" : "long",

11 "logicalType" : "timestamp -micros"

12 }
13 } ,
14 {
15 "name" : "active",

16 "type" : "boolean"

17 } ,
18 {
19 "name" : "name",

20 "type" : "string"

21 }
22 ]

23 }
Listing 1. An example of an Avro schema

A downside of Avro is that it does not support the definition
of direct relationships. It turns out that Avro does natively not
facilitate a way of linking data across different types. The only
option would be to nest the data for one entity within another
entity data. However, this is not a flexible solution [20]. For
this reason, Salad schema was created, i.e., a schema language
that supports linked data through annotations, which describe
the linked data interpretation of the content. We will define re-
lations between data and describe rules for preprocessing and
structural validation inside Salad schemas. Beside offering rich
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data modeling with inheritance, Salad looks promising to us,
because it supports object identifiers, object references, docu-
mentation generation and code generation (see Listing 2). In
this paper we provide some Salad schemas examples, in which
we describe YAML structured linked data documents.

$ schema -salad -tool --codegen=python

alarm_schema.yml > alarm_schema.py
Listing 2. Generate Python classes described by the Salad schema

Listing 3 is our starting point, in which we define the top
entity, meaning the log file that contains all the alarms stored
in Elasticsearch. Therefore, we have to continue by defining a
schema for the Alarm record. As it can be seen in Listing 4, the
fields which are known are being defined.

1 - name: LogInfo

2 doc: |

3 A collection of alarms. The

4 ’documentRoot ’ field indicates it is a

5 valid starting point for a document.

6 The ’logInfo ’ field will

7 validate subtypes of ’Alarm ’.

8 type: record

9 documentRoot: true

10 fields:

11 logInfo:

12 type:

13 type: array

14 items: Alarm
Listing 3. Salad schema for the alarms saved inside Elasticsearch

1 - name: Alarm

2 doc: |

3 The base type for an alarm. This is an

4 abstract type, so it can ’t be used

5 directly, but can be used to define

6 other types.

7 type: record

8 abstract: true

9 fields:

10 number: integer

11 text: string

12 priority:

13 type:

14 type: enum

15 symbols:

16 - message

17 - warning

18 - failure

19 source: string

20 manumber: string
Listing 4. Salad schema for an alarm

We have decided to extend the Alarm record based on the
values of the state field, in order to be more flexible when val-
idating the pairwise alarms (in a perfect scenario, an alarm has
an entry in the database for the time when it was triggered and
one for the time when it was solved). This is possible in Salad
schema by using the extends keyword.

1 - name: AlarmTriggered

2 doc: |

3 An alarm that is triggered.

4 type: record

5 extends: Alarm

6 fields:

7 state:

8 type:

9 type: enum

10 symbols:

11 - 21

12 jsonldPredicate: ’#state ’

13 start: long
Listing 5. Salad schema that extends Alarm record

1 - name: AlarmSolved

2 doc: |

3 An alarm that is solved.

4 type: record

5 extends: Alarm

6 fields:

7 state:

8 type:

9 type: enum

10 symbols:

11 - 20

12 jsonldPredicate: ’#state ’

13 ends: long
Listing 6. Salad schema that extends Alarm record

After defining the salad schemas one can validate the schema
against the related document by using the following command:

$ schema -salad -tool alarm_schema.yml

alarm.yml

Document ‘alarm.yml ‘ is valid
Listing 7. Command to validate a Salad schema

5. Future Work

As mentioned before, the work presented in this paper is part
of an European project that runs till the end of the year 2020,
i.e., it is an ongoing work. Thus, the activities mentioned below
will be conducted during the remaining of this year and next
year.

Following the ideas presented in section 4, we will fine-tune
the representation of the metadata for the data sources described
under the data storage layer. Afterwards, the in-house ontology-
based tool will be extended such that it will enable the manage-
ment of the metadata represented in form of Avro and Salad
schemas, i.e., the resulting schemas will be integrated. In a
further step, the schemas will be broaden in order to include
metadata that will be used by the data analysis algorithms. Ac-
complishing these tasks, we will continue exploring the data
and will be able to start with the more closely related machine
learning activities, like data segregation (feature engineering),
model selection, model training, model evaluation and valida-
tion, model deployment and model integration in the large-scale
data analysis system of FILL.
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6. Conclusion

By representing the metadata information, we also move
away from hardcoding essential information for the data analy-
sis step inside the code. Hence, we revolutionize RISC data ana-
lytics framework by making it generic, reusable and responsive
in case of changes. Keeping the data lake up-to-date is another
important issue in big data infrastructures, because refreshing
the content of a data lake is a complex process. Therefore, han-
dling the integration of data in a data lake in an almost auto-
matic way is a key feature of our framework.

The integration and synchronization of different data sources
combining big data technologies with a semantic approach will
improve the informative value of the analysis output, the quality
of the developed models and will increase the model diversity.
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