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Summary

The two-phase commit (2PC) protocol has long been known to have a provably inevitable

vulnerability to blocking or non-progress amidst server crashes, even when the distributed

database system guarantees the most demanding timing-related or ‘‘synchrony’’ requirements.

Our aim here is to eliminate this vulnerability by using a blockchain for coordinating 2PC

execution. We present the impossibilities, the possibilities, the cost, and the trade-offs in

this blockchain-based approach to blocking-free management of distributed transactions. We

prove that a non-blocking and blockchain-coordinated 2PC protocol can exist only if both

the blockchain and distributed database systems meet synchrony requirements; otherwise,

although blocking remains eliminated, transactions can unnecessarily abort. We present a

blockchain-coordinated 2PC protocol and provide rigorous arguments for its correctness under

the synchrony requirements. We then implement this protocol on the Ethereum Testnet and

demonstrate, through our experiments, that the monetary cost of executing smart contracts

is quite small, that the protocol performance slows down when using a public blockchain like

Ethereum, and that even major violations of synchrony requirements lead only to relatively

small increases in unnecessary aborts. We thus identify a trade-off between improving protocol

performance and admitting a risk that transactions could occasionally abort unnecessarily.
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1 INTRODUCTION

Since the advent of bitcoin as introduced by Satoshi,1 cryptocurrencies have gained considerable interest. This is then followed by an even larger

interest being accorded to bitcoin's underlying technology, the blockchain, and to Ethereum's development of smart contracts that empower

users to execute custom-made programs on a blockchain. A variety of applications outside the cryptocurrency domain, such as finance,2 banking,

and energy trade,3 have been leveraging blockchain and smart contract technologies to enhance accountability, auditability, and trust in their

core processes.

This paper investigates the use of these technologies in enhancing the availability of distributed database management systems4,5 and the

associated cost. Precisely, we revisit a well-known impossibility result6,7 related to blocking in atomically committing database transactions and

demonstrate that these new technologies, under certain conditions, help accomplish what would otherwise be impossible.

When a database transaction is executed by multiple processes in a distributed system, an atomic commit protocol ensures the essential

requirement that all processes either commit the transaction or abort it—a requirement that is commonly known as Atomicity or Agreement. The

two-phase commit (2PC, for short) protocol is widely used as an atomic commit protocol due to its conceptual simplicity, ease of implementation,

and low message cost. It is, however, vulnerable to periods of non-progress or blocking. This vulnerability is proven6 to be inevitable even in

synchronous distributed systems, where bounds on delays (eg, message transfer delays) can be reliably estimated and the only type of undesirable

events that can occur is process crash.

The definition of a ‘‘synchronous’’ distributed system has long been established in the literature.8 In our earlier work,9 we extended this

definition for a blockchain system and developed a protocol in which the blockchain plays specific roles in the execution of 2PC. This protocol

was shown to eliminate blocking when both the distributed system and the blockchain used are synchronous. Its design, however, required that
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the timestamps of blocks in a blockchain be increasing in value and that they emulate ‘‘ticks’’ of a global clock to database servers. While the

Ethereum blockchain meets this requirement, other blockchain systems do not, and newly emerging ones may not. Hence, in this paper, we

remove this requirement and present a new protocol together with correctness arguments. This new version also eliminates blocking under

synchronous constraints and retains the native structure of 2PC for database processes, which makes it easily adoptable in legacy systems.

To the best of our knowledge, our earlier paper9 is the first in the literature to demonstrate that the impossibility result in the work of

Skeen6 can be circumvented in synchronous distributed systems by using a synchronous blockchain. This revised and extended version not only

improves on the earlier protocol but also addresses two significantly pertinent questions: can blocking be eliminated if the blockchain or the

distributed system is not synchronous, and, if the answer is no, what are the practical implications if the blockchain and the distributed system

can be synchronous most of the time, but not always?

Some blockchain systems, typically the public ones with miners having the freedom of choice in composing their blocks, may cease to

be synchronous if it becomes harder to accurately estimate delay bounds. Similarly, a cluster hosting distributed database servers becomes

asynchronous if accurate delay-bound estimation within the cluster is not guaranteed.

We are thus faced with four possible combinations: (1) the blockchain is synchronous and the database cluster is asynchronous, (2) the

blockchain is asynchronous and the cluster is synchronous, (3) both are asynchronous, and (4) both are synchronous. 2PC blocking is eliminated

for case (4) as our protocol would demonstrate. Still to be addressed, therefore, is the question of whether 2PC blocking can be eliminated for

the other three cases.

We argued in our earlier work9 that the elimination of 2PC blocking cannot be guaranteed for (3). We prove here that the same impossibility

holds for more restricted cases of (1) and (2) as well. Thus, the impossibility results presented here are stronger than those shown in our earlier

paper9 and point to quite a fundamental result: a non-blocking 2PC using a blockchain is possible if and only if both the blockchain and the

database cluster are synchronous. That is, many desirable features that a blockchain system has, such as reliability, immutability, etc, are not, by

themselves, sufficient to eliminate 2PC blocking, and synchrony is required additionally.

Finally, when the blockchain and the distributed system are considered to be synchronous, even carefully computed delay-bound estimates are

at risk of being violated, eg, due to bursts in network traffic. We argue that such violations can cause some commit-worthy database transactions

to abort unnecessarily but cannot undermine the core Atomicity requirement that all servers either commit or abort. We investigate the relation

between the number of unwarranted aborts and the degree of violations in the synchronous assumption and observe that the former is small

even when the latter is large.

In summary, this paper explores and exposes the impossibilities, the possibilities, the cost, and the trade-offs involved in using a blockchain to

implement non-blocking atomic commit. Its structure and contributions are as follows. The next section presents the atomic commit problem that

2PC solves, the notion of blocking, and the distinction between synchronous versus asynchronous distributed systems. Assuming a synchronous

system, Section 3 describes the traditional version of 2PC and explains the causes of 2PC blocking. It thus provides the essential background

for Section 4, which describes in detail our first contribution that is in the domain of protocol design: a non-blocking 2PC with a synchronous

blockchain, together with pseudocode for smart contracts and correctness arguments. Section 5 presents our second conceptual contribution: the

impossibility results that prove that non-blocking 2PC is not possible when either the blockchain or the distributed system is asynchronous and

the observation that synchrony violations in a blockchain-coordinated 2PC have no impact on non-blocking atomic commit except for potential

to cause unwarranted aborts. Our practical contributions are detailed in Section 6, which describes an Ethereum Testnet–based implementation

of the protocol of Section 5 and discusses the results of our experiments. The discussions present the cost of smart contract execution, report

both the estimated and observed worst-case 2PC execution latency values, quantify the probability of occurrence of unwarranted aborts caused

by synchrony violations, and point out the scope for trade-off between improving performance and minimizing wasteful aborts. Finally, Section 7

concludes this paper.

2 THE ATOMIC COMMIT PROBLEM

The problem is specified in the context of a set of distributed processes Π = {P1,P2, … ,Pn}, where n > 1 is known. A process Pi, 1 ≤ i ≤ n, can

crash at any time and recover after some arbitrary amount of time. Information logged in the disk prior to crash survives the crash. At any given

instance, there are two complementary subsets of Π: the crashed and the operative. For discussions, we would assume that the former is small

and a strict subset of Π.

Each operative process autonomously evaluates a vote that can be either yes or no. The problem is to have processes decide either on commit

or abort, subject to the following four requirements.10

• Agreement: No two processes decide differently.

• Termination: All operative processes decide.

• Abort-Validity: Abort is the only possible decision if some process votes no or does not vote at all.

• Commit-Validity: Commit is the only possible decision if every process is operative and votes yes.

Agreement requires any two decided processes, currently crashed or operative, to have decided identically. For instance, Pk decides on commit

and immediately crashes; then, no other process can decide on abort even if all but Pk are operative and deduce Pk to have crashed. Termination



EZHILCHELVAN ET AL. 3 of 17

ensures that the decision be available to all working processes; in particular, if a process crashes undecided, it should be able to decide when it

becomes operative again, post-recovery.

Abort-Validity permits a process with no vote not to exercise its vote at all. Commit-Validity rules out trivial solutions such as all processes

perforce decide on abort irrespective of their votes. This last requirement, as we shall see in Section 5, is impossible to guarantee even in

blockchain-based solutions when the worst-case delay estimates being used are not guaranteed to hold.

Observe that any nontrivial solution to atomic commit requires operative processes of Π to interact among themselves—either directly leading

to decentralized protocols or via a protocol coordinator C leading to centralized versions. The former extracts a huge message cost. The widely

used 2PC protocol is a centralized one and is highly message efficient. It would be our focus here. (In practice, the role of C is typically played by

a designated process in Π.)

Definition 1. An atomic commit protocol is said to be blocking if there can exist executions in which operative processes cannot decide

until some nonempty subset of crashed processes ought to recover.6,11 Blocking is thus undesirable as the progress of operative processes,

normally larger in number, is dictated by the recovery times of crashed ones. A protocol is non-blocking if operative processes are guaranteed

to decide even if each crashed process is never to recover. Whether one can have a non-blocking atomic commit protocol or not depends

on if the distributed system is synchronous or asynchronous.7,10

2.1 Synchronous vs asynchronous systems

Definition 2. A distributed system is said to be synchronous if bounds on processing delays and inter-process communication delays can be

reliably estimated; otherwise, it is said to be asynchronous.7,10

Note that the bound estimates in a synchronous system can be large (typically, worst-case estimates) but must be finite and hold reliably.

Typically, distributed systems where delays can fluctuate arbitrarily and, therefore, reliable bound estimations are not possible are classed as

asynchronous.

It is known that non-blocking atomic commit is not possible when the distributed database system is asynchronous,7 unless the system obliges

every execution by behaving in certain desirable ways.10 It is, however, possible to have a non-blocking atomic commit in a synchronous system

by using the message-expensive, decentralized approach.12,13 Intuitively, the design rationale in this approach is as follows. Reliable bound

estimates in a synchronous system are used to implement perfect crash detection using timeouts: a crash is always detected and an operative

process is never mis-detected (no false positive/negative). In addition, protocol performance is speeded up by assuming a bound on the maximum

number of processes that can crash.13

Nevertheless, the centralized 2PC is a blocking protocol even in a synchronous system,6 ie, even when a cluster hosting Π supports delay

bounds to be estimated reliably and can thereby facilitate perfect crash detection.

2.2 Synchronous vs asynchronous blockchains

We observe that this synchronous vs asynchronous classification holds for blockchain-based systems9 as much as for traditional distributed

systems. (Earlier definitions9 will be restated in Section 4.2 for completeness.) In public blockchain systems, such as Ethereum, the time taken for

a valid transaction to be confirmed or irreversibly placed in the blockchain is determined by a variety of delay-prone factors—both human as well

as system related; for instance, a miner being (un)willing to include a transaction in their block14 falls under the former category, and factors such

as the required number of follow-up blocks to assure blockchain linearity and incoming transaction rate fall under the latter.

Ethereum blockchain confirmation time for a transaction can be unbounded with a significant probability,14 suggesting large variances in

end-to-end processing delays within the blockchain infrastructure. On the other hand, permissioned blockchain systems (eg, HyperLedger15) with

their hardened modular implementation of consensus protocols16 over dedicated machines appear to promise that the delays for transaction

confirmation have small mean (in the order of milliseconds) and small variance and can, therefore, be reliably bounded, thus making such systems

candidates for a synchronous blockchain.

3 2PC IN SYNCHRONOUS SYSTEMS

The 2PC protocol is explained below in the context of database transactions.5 Shards of a database are distributed over processes in Π. We

assume that a crash-prone process, called the coordinator and denoted as C, launches a multi-shard transaction that requires every process in Π
to execute a set of serializable operations on their respective shards. We refer to this launching by C as each process in Π getting_work from C.

Let 𝜔 and 𝛿 denote upper-bound estimates on the time any operative Pi ∈ Π takes to complete its work and on message transfer delays

between any two operative processes, respectively. Since the system is assumed to be synchronous, 𝜔 and 𝛿 always hold.

C disseminates the work and awaits on a timeout of (𝜔 + 𝛿) duration, which is sufficient for any operative Pi to receive and complete the work

given to it. At the expiry of the timeout, it initiates an execution of 2PC by broadcasting cast_vote to all processes, as shown in line 1 of phase 1

for Coordinator C in Figure 1. This is then followed by setting a timer for Δ = 2𝛿 and proceeding to phase 2. (Note: C waiting for (𝜔 + 𝛿) time

before broadcasting cast_vote is not shown in Figure 1.)
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FIGURE 1 Two-phase commit protocol

When Pi receives work from C, it computes Ti as the local time when a duration (𝜔 + 2𝛿) would elapse after the receipt of the work. While

doing the work, Pi will either complete it and set its vote Vi = 1 or decide that work cannot be completed in a serializable manner and set

Vi = 0. In the latter case, by the Abort-Validity property, Pi can deduce that the decision or verdict is abort, ie, the transaction would be aborted

system-wide; hence, Pi quits executing 2PC, as shown in line 1 of phase 1 for Pi in Figure 1.

Note that it is possible to have a 2PC implementation that makes Pi send Vi = 0 to C; we consider such an implementation only where relevant

(Section 5.2); otherwise, we will assume the common (and message-optimal) case of Pi with Vi = 0 simply halting the execution with an abort

decision.

If Pi has set Vi = 1, it waits to receive cast_vote. If the cast_vote message is not received until Ti, Pi assumes that C has crashed, decides abort,

and quits its execution of 2PC. If, on the other hand, cast_vote arrives by Ti, Pi continues executing 2PC by logging its vote Vi = 1, sending Vi to

C, and proceeding to phase 2. That is, the ‘‘ELSE’’ part in line 1 of phase 1 for Pi in Figure 1 is executed when (cast_vote not received until Ti or

Vi = 0) is false, which is equivalent to (cast_vote received before Ti and Vi = 1) becoming true.

Note that while a given Pi may or may not enter phase 2, C always does. When its Δ-timeout expires, C counts an absent vote from any Pk as

Vk = 0; it decides on commit verdict, if Vi = 1,∀i ∶ 1 ≤ i ≤ n; on abort verdict, otherwise. The verdict decided is logged and broadcast to all Pi

(see phase 2 of Figure 1).

Any Pi that executes phase 2 awaits verdict from C and requests C periodically (as per some timer value), if verdict is not forthcoming. This

periodic request will prompt a crashed C to respond after its recovery by referring to the verdict it logged prior to the crash. If no verdict has been

logged, C must have crashed prior to computing the verdict; in that case, C's response would be abort.

Similarly, if Pi crashes after sending Vi = 1 to C, it will observe, after recovery, the log entry of Vi = 1 and request C to send the verdict. Thus,

all operative processes, including those that crash during execution and recover, decide, ensuring Termination. It is easy to see that the other

three requirements of atomic commit are also met in 2PC.

Figure 2 depicts the state transition diagram for any Pi, where a circle denotes a state and a double circle denotes a terminal state; a state

transition is indicated by a unidirectional arrow with a label I
O

, where I indicates the input received by Pi, which causes the transition, and O

indicates any output produced by Pi after the transition. (‘‘–’’ indicates null output.) WG, W1, and W2 represent states where Pi is doing the work

given, waiting for cast_vote (see line 1, phase 1 in Figure 1) and for verdict (line 1, phase 2 in Figure 1), respectively; a and c denote the terminal

states where Pi aborts and commits, respectively.

FIGURE 2 2PC state transition diagram for process Pi
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3.1 Inevitability of blocking in 2PC

While Skeen6 formally proves this inevitability, we offer here, for completeness, an intuitive understanding of the reasons for it. By the definition

of blocking (see Section 2), in every execution of a non-blocking 2PC protocol, operative processes decide despite some processes crashing and

staying crashed, ie, operative processes reach a verdict that satisfies the atomic commit requirements without having to wait for any crashed

process to recover.

We present three distinct execution scenarios of 2PC and show that no mechanism can possibly exist that avoids blocking in all scenarios and

all meets all atomic commit requirements.

Scenario 1. In this execution of 2PC, every Pi ∈ Π votes Vi = 1, and C crashes just before it is to broadcast its verdict. C remains crashed,

ie, does not recover, for a long time.

Each Pi is blocked until C recovers. Suppose that blocking is avoided by using some repair sub-protocol  that enables operative processes

to decide on a verdict (here, commit) without waiting for the crashed C to recover. For example,  may require operative processes to interact

among themselves on how they voted and to arrive at a verdict that C would have broadcast had it not crashed. Next, two scenarios prove

that  cannot exist.

Scenario 2. It is identical to scenario 1, except that one Pk ∈ Π could not complete its work, decides on abort, and, then, crashes. Pk also

remains crashed for a long time.

 must now enable all operative Pi, i ≠ k, to decide on abort without waiting for Pk or C to recover.

Scenario 3. It is also identical to scenario 1, except that C crashes after sending verdict = commit only to Pk, which crashes soon after logging

the received verdict. Pk, as in scenario 2, remains crashed for a long time.

 must now lead all operative Pi, i ≠ k, to decide on commit without waiting for Pk or C to recover.

We observe that the execution environments of scenarios 2 and 3 are identical for all operative Pi, i ≠ k: first, both C and Pk remain

crashed until all Pi decide on verdict; second, there is no interaction between Pk and C in Scenario 2 after C broadcast cast-vote and Pi cannot

deduce any of the precrash interactions between Pk and C in Scenario 3 until one of the crashed ones recovers. Thus,  is expected to make

all operative Pi decide differently in identical execution environments. Such an  cannot be designed, and hence, 2PC blocking is inevitable.

Remark 1. As per Skeen,6 the root causes for the inevitability of 2PC blocking are 2-fold: (1) both terminal states, c and a, are one-step

reachable from W2, as can be seen in Figure 2, and (2) it is possible to have an operative Pi waiting in W2 and a crashed Pk either in a (see

scenario 2) or in c (see scenario 3). In Skeen's terminology, (2) is referred to as the terminal states, c and a, being in the concurrency set of

W2. Designing  involves modifying 2PC itself and introducing new preterminal ‘‘buffer’’ states so that both terminal states are not in the

concurrency set of W2. This 2PC modification leads to three-phase commit, and details are given in the work of Skeen.6

4 NON-BLOCKING WITH BLOCKCHAIN

4.1 Approach

We can observe that if C were never to crash during 2PC execution, then blocking cannot happen. We build on this observation by having C

initiate a transaction by delegating work to all Pi and then entrust the 2PC coordination responsibilities to a blockchain infrastructure (BC, for

short), which, being a replicated state machine, must coordinate 2PC execution in a crash-free manner. To accomplish this, several aspects of BC

will be made use of, and they are listed below.

Event ordering. Events directed at a BC are also called transactions. BC puts a total order on these events and records them in that order; event

recording is immutable, and recorded events are permanently visible to all concerned parties. Event ordering in BC can also be used to ensure

exactly once execution of an action, for instance, A when multiple sources, eg, processes in Π, can request A's execution: BC can be programmed

(see smart contract below) to accept only the first request for A in the total order and ignore the duplicates.

Smart contract. A smart contract is a computer program stored within, and run by, BC in response to a function call embedded within an

ordered transaction. Execution is guaranteed to be correct and is publicly verifiable. A smart contract has a unique address, and its code is

stored within BC. The latter is structured as a collection of deterministic functions that can only be invoked by transactions admitted into BC.

In Ethereum (see next item), contract code is written in languages like Serpent, LLL, or Solidity.17 Irrespective of the language used, the code is

compiled into bytecode and interpreted by a BC component, such as an Ethereum virtual machine.

Ethereum.18 Ethereum is a popular platform that supports smart contract technology and is used in our implementation described in Section 6.

A user process, such as C, can deploy a smart contract in BC by launching a transaction whose data field contains the bytecode of the smart

contract with parameters appropriately initialized. Once this transaction is accepted in BC, any named process, such as Pi, can invoke a contract

function by submitting a transaction. The invoking transaction is constructed with (1) the receiver address pointing to the contract address and

(2) the parameter values for the function call. In addition, in Ethereum, a transaction includes two more fields: GAS and GAS PRICE.18 The miner
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who adds a block to BC will use the GAS PRICE to convert the amount of GAS consumed into the Ethereum's native currency called Ether. Thus,

the sender of an invoking transaction is charged for executing the contract.

4.2 Synchronous blockchain

Similar to definitions of 𝜔 and 𝛿, let 𝛽 be the block construction bound on the delay that can elapse between the instant when a user process U

launches a valid (blockchain) transaction TXU and the instant when a block containing TXU is (irreversibly) added in BC; let 𝛼 be the awareness

bound on the delay that can elapse between the instant when TXU enters BC irreversibly and the instant when any interested party gets aware

of TXU in BC. A BC infrastructure (together with miner/consensus nodes) is said to be9synchronous if it supports reliable estimation of bounds 𝛽

and 𝛼; otherwise, it is said to be asynchronous.

The assumption of a synchronous BC implies that several requirements have been met: a valid transaction submitted to BC is never lost but is

always considered for entry into the BC in a timely manner, a party interested in a given TXU is periodically scanning BC, etc. This is just like the

validity of 𝛿 bound requiring that no message be lost but every message be queued, transmitted, received, and delivered, all in a timely manner.

4.3 2PC with synchronous blockchain

We explain here (1) how C hands over the coordination responsibilities for 2PC execution to the BC infrastructure and (2) how Pi interacts with

BC to execute 2PC in two phases. Informally, Pi uses phase 1 to register its vote in BC and phase 2 to receive the verdict, very similar to the

traditional 2PC execution. We also assume that the cluster hosting database processes Π is synchronous as well. We do not, however, require

processes of Π to directly detect each other's crash (eg, by operating a failure detector). This is also the case in the traditional 2PC version.

4.3.1 Coordinator C

C disseminates the work to each Pi ∈ Π, and, immediately after that dissemination, it enters phase 1 to hand over the coordination to BC

infrastructure. On entering phase 1, C launches a blockchain transaction TXC that sets up the 2PC coordination smart contract in BC with initial

state = VOTING.

Phase 1 for C ends with the launch of TXC , and there is no phase 2. Another major difference from the traditional 2PC is that C does not wait on

any timeout between disseminating its work to Π and entering phase 1. Note that C may crash during work dissemination or after dissemination

and before launching TXC .

Although Section 4.4 is devoted to explaining the smart contract in detail, the roles of two of its functions are briefly explained here for ease

of understanding: function VOTER enables Pi to enter its vote in BC and computes the verdict once all Pi ∈ Π have voted, and function VERDICT

allows a Pi to explicitly request for the verdict to be computed. Moreover, once the smart contract computes the verdict, it changes the initial

state to display the computed verdict, ie, to COMMIT or ABORT.

4.3.2 Get-Work by Pi

When Pi receives work from C, it records its current local clock time as Ti and enters the ‘‘working’’ state WG (see Figure 3). If C has indeed launched

TXC , then TXC must enter BC no later than the local time Ti + 𝛿 + 𝛽 and Pi must observe TXC in BC no later than its local time Ti + 𝛿 + 𝛽 + 𝛼.

If Pi cannot complete the work due to serializability constraints, it unilaterally decides on abort and terminates the execution. This is shown by

the state transition from WG to a in Figure 3.

If, on the other hand, Pi completes the work from C, it enters phase 1 by transiting from WG to the first wait state W1 in Figure 3.

FIGURE 3 State diagram for 2PC with blockchain
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4.3.3 Phase 1 by Pi

Pi starts phase 1 by looking for TXC in BC. If it does not observe TXC in BC until its clock has exceeded Ti + 𝛼 + 𝛽 + 𝛿, it deduces that C crashed

before launching TXC and subsequently aborts, as shown by the transition from W1 to a in Figure 3. Pi awaiting TXC to appear in BC is similar to

its waiting for cast_vote in Figure 1. Moreover, the transitions from state WG in Figure 3 are identical to the traditional 2PC execution shown in

Figure 2. (Transitions from WG are also called ‘‘off-chain’’ activities.19)

If Pi gets aware of TXC by local time Ti + 𝛼 + 𝛽 + 𝛿, it logs Ti first, followed by logging of Vi = 1 (the latter as in phase 1 of Figure 1). The

logging order of Ti and then Vi is important for post-recovery execution, by which Pi can decide if it crashed undecided after this point in 2PC

execution (description is given in Section 4.3.5).

After logging Ti and Vi, Pi launches transaction TXi with its vote Vi = 1. It then enters phase 2, with its state transiting from W1 to a second

wait state W2 in Figure 3. Note that Pi launching its TXi must happen by its clock time Ti + max{𝛼 + 𝛽 + 𝛿, 𝜔}, where max{𝛼 + 𝛽 + 𝛿, 𝜔} is the

larger of (𝛼 + 𝛽 + 𝛿) and 𝜔: Pi must observe TXC in BC by clock time Ti + 𝛼 + 𝛽 + 𝛿 and complete its work by Ti + 𝜔.

4.3.4 Phase 2 by Pi

When TXi is accepted in BC, it invokes the VOTER function of the smart contract with Vi = 1 as input. Moreover, if all Pj ∈ Π launch TXj, ie, vote

Vj = 1, then the VOTER function would compute verdict = commit and display state = COMMIT when the last V = 1 is counted; otherwise, the

state of BC will remain at the initial state = VOTING (details are given in Section 4.4).

Let Δ = max{𝛼 + 𝛽 + 𝛿, 𝜔} + 𝛼 + 𝛽 + 𝛿. Pi in phase 2 waits for the BC state to change to state = COMMIT until its clock time Ti + Δ. If Pi

observes BC state = COMMIT by then, it decides verdict = commit.

If Pi, on the other hand, still observes state = VOTING until its clock exceeds Ti + Δ, this means that some Pk, k ≠ i, did not launch TXk. Hence,

verdict must be abort. Although Pi can now safely decide abort, our description here assumes that Pi decides on verdict = abort in response to

such an indication from BC, just as in the traditional 2PC description where a Pi that voted Vi = 1 decides on abort by receiving verdict from C.

When BC state = VOTING and clock exceeds Ti + Δ, Pi launches TXVi
to invoke the VERDICT function of the smart contract so that verdict

is computed in BC and displayed. In Figure 3, Pi does W2 → W3 after launching TXVi
, waits in W3 until BC indicates state = ABORT, and, then,

decides verdict = abort.

Waiting by Pi in W3 must terminate as BC is reliable. It is likely that several other Pj launch their own TXVj
around about the same time when Pi

launches TXVi
. If so, only one will be effective in executing VERDICT (like A in Section 4.1). Once BC indicates state = ABORT, Pi decides on abort

and terminates the execution (W3 to a in Figure 3).

4.3.5 Post-recovery execution

It is possible that some Pk ∈ Π crashes during the protocol execution. When it recovers, there are two possible cases: log of Pk has or does not

have entry Vk = 1.

The absence of entry Vk = 1 means that TXk was never launched and any work done by Pk has been erased from its (volatile) memory during

the crash. Hence, the recovered Pk has no knowledge of the database transaction that triggered the 2PC execution. Pk could, and hence would,

do nothing regarding that database transaction; in other words, Pk indirectly decides on abort. Furthermore, any Pi, i ≠ k, that logged Vi = 1 can

also decide only on abort.

Suppose that the log of Pk has the entry Vk = 1. This means that Pk, prior to its crash, must have observed TXC in BC during its precrash

execution of phase 1 and also logged the local time Tk (see Section 4.3.3). Pk will resume executing 2PC starting from phase 2 (with its state in

W2) and get the verdict from BC.

Since Tk is logged prior to logging Vk = 1, the log that contains Vk = 1 must have Tk as well. If Pk had crashed after logging Tk but before Vk

(hence, before launching TXk), then Vk would not be found in the postcrash execution and the entry Tk without a matching Vk is simply deleted.

Note that the post-recovery execution enables Pk to decide even if Pk is the only process in Π to have logged Vk = 1 and crashed before

launching TXk, while all others transited from WG to a: the recovered Pk would then launch TXVk
when its clock > Tk + Δ, and BC would

subsequently change its state from VOTING to ABORT. Note also that there is no assumption on how long a crashed Pk can take to recover.

4.4 Smart contract pseudocode

Figure 4 presents the pseudocode of 2PC coordination, and the description here assumes that the contract is already deployed on the blockchain

with a unique address. The deployed contract is in the initial state INIT and has two set variables, namely, Σ and ΣV, which are the set of

participants eligible to vote and the set of those who actually voted, respectively; both sets are initially empty (when BC state = INIT). The smart

contract has three functions, as follows:

• REQUEST() invoked by TXC to initialize the contract,

• VOTER() invoked by TXi to register the vote of Pi and to compute verdict once all Pi ∈ Π voted, and

• VERDICT() invoked by TXVi
to request the verdict to be computed, if not already done.
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FIGURE 4 Pseudocode for 2PC coordination smart contract

TXC submitted by C contains Π and invokes the REQUEST function. This invocation succeeds only if C is asserted to have ownership rights to

invoke this function and the code is in the initial state INIT, as indicated in the Assert statement. If this assertion succeeds, TXC is accepted, and

the state of the contract is changed to VOTING and Σ to Π; otherwise, TXC is ignored.

Note that it is the feature of any blockchain that a transaction, such as TXC , is rejected if any of the pre-invocation assertions fails. Throughout

this description here, assertions are assumed to succeed, except for those TXV that seek to invoke the VERDICT function not for the first time.

Having observed TXC in BC, a Pi ∈ Π with vote Vi = 1 launches its TXi. After asserting that state = VOTING, Vi = 1, and Pi ∈ Σ = Π, the

contract records Pi to have voted by adding it in ΣV. The BC state is changed to COMMIT when ΣV = Σ.

Any Pi in W2 that finds state = VOTING even after its clock has read Ti + Δ invokes the VERDICT function by submitting TXVi
. The invocation

succeeds only if Pi ∈ Σ = Π and state = VOTING. If it succeeds, it sets state = ABORT. An attempt to redundantly invoke VERDICT when state =
ABORT will not meet the latter condition and not succeed.

4.5 Correctness arguments

They are based on the assumption that BC and the cluster hosting Π are both synchronous, ie, the bound estimates 𝛼, 𝛽 , 𝛿, and 𝜔—as defined in

Sections 3 and 4.2—are reliable and are never violated at any point during an execution.

Lemma 1. If any Pi that received work from C at local clock time Ti does not observe TXC in BC until local clock exceeds Ti + 𝛼 + 𝛽 + 𝛿, then TXC

was never launched and would never enter BC.

Proof. C is to launch TXC immediately after it disseminates work to Π. By the definition of 𝛿, work dissemination by C must complete within

𝛿 time, and the subsequent launching of TXC must occur at or before Pi's clock time Ti + 𝛿 even if the work message had taken near-zero

time to reach Pi, ie, even if C started its dissemination just before Pi's clock read Ti.

By the definitions of bound estimates 𝛽 and 𝛼, Pi must observe TXC in BC at or before its clock time Ti + 𝛼 + 𝛽 + 𝛿. If Pi cannot

observe TXC until its clock exceeds that time, then either C did not launch TXC or C launched TXC and some bound estimate(s) got violated.

When bound estimates are reliable and inviolable, the former ought to be the only underlying cause, and hence, the lemma ought to

be correct.

Lemma 2. If any Pi that launched TXi does not observe BC state = COMMIT until its local clock = Ti + Δ, then there must be some Pj that did not

launch TXj, where Δ = max{𝛼 + 𝛽 + 𝛿, 𝜔} + 𝛼 + 𝛽 + 𝛿 as defined in Section 4.3.4.

Proof. Recall that Pi launches its TXi no later than its clock time Ti + max{𝛼 + 𝛽 + 𝛿, 𝜔}, as noted in Section 4.3.3. Suppose that another

Pj ∈ Π, j ≠ i, launches its TXj at its clock time Tj + max{𝛼 + 𝛽 + 𝛿, 𝜔}.

Pj receives its work from C at local time Tj, which can be as late as Pi's clock time Ti + 𝛿 because it is possible that C's work message to Pi

took near-zero transmission delay whereas that to Pj suffered a maximum delay of 𝛿. Thus, Pi could expect Pj to launch its TXj no later than

its clock time Ti + max{𝛼 + 𝛽 + 𝛿, 𝜔} + 𝛿. This means that TXj must enter BC and that its vote Vj = 1 must be counted no later than Pi's

clock time Ti + max{𝛼 + 𝛽 + 𝛿, 𝜔} + 𝛿 + 𝛽 .

Therefore, if every other Pj ∈ Π had launched its TXj, BC must have state = COMMIT no later than Pi's clock time Ti + max{𝛼 + 𝛽 +
𝛿, 𝜔} + 𝛿 + 𝛽 , and Pi must get aware of this new BC state no later than its clock time Ti + max{𝛼 + 𝛽 + 𝛿, 𝜔} + 𝛿 + 𝛽 + 𝛼. If Pi observes BC

in its initial state = voting when its clock exceeds Ti + Δ, then some Pj did not launch TXj. Hence, the lemma is proved.

Corollary 1. If Pi launches TXVi
when its clock exceeds Ti + Δ, there cannot be any TXj from some Pj ∈ Π that is yet to enter BC.

Follows from Lemma 2.

4.5.1 Agreement

Lemma 3. In any execution, the Agreement requirement is met: no two processes decide differently.
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Proof. Consider Pi,Pj ∈ Π and j ≠ i. Suppose that they both decide. Without loss of generality, we will choose Pi to consider how it could

decide on some verdict ∈ {commit, abort} and argue that Pj cannot decide differently. Pi can decide in four ways, as follows.

1. Pi decides by observing BC state ≠ VOTING: Once the BC state changes to COMMIT from VOTING, no TXV, if ever any launched, can reset

state = ABORT because the assertion state = VOTING in the VERDICT function is not true. Similarly, once the BC state changes to ABORT

from VOTING, no TXi, if any launched, can reset state = COMMIT because the assertion state = VOTING in the VOTER function is not true.

Thus, if Pj also decides on a verdict by observing BC state ≠ VOTING, it cannot decide differently to Pi.

2. Pi decides by transiting WG to a: Pi decides verdict = abort without ever launching TXi. Assuming that C launches TXC , the Boolean condition

(ΣV == Σ) in the VOTER function will not become true, and BC state = COMMIT cannot happen. If Pj does not take the transition WG to a

(as Pi) but goes on to launch TXj, it cannot decide differently as verdict = commit when BC state ≠ VOTING.

3. Pi decides by observing TXC ∉ BC when clock > Ti + 𝛼 + 𝛽 + 𝛿: By Lemma 1, TXC was never launched, and hence, Pj would also observe

TXC ∉ BC. Both identically decide on abort.

4. Crashed Pi executes post-recovery: For instance, its log has no entry for Vi. Hence, prior to crash, Pi may have decided on verdict = abort

by modes (2) and (3) above; otherwise, it decides indirectly on abort during its post-recovery execution, as explained in Section 4.3.5. From

Pj's perspective, Pi deciding indirectly is the same as Pi deciding by mode (2) in its crash-free execution if Pj observes TXC in BC or by mode

(3) otherwise. If the recovered Pi finds a log entry Vi = 1, then it decides by mode (1). Thus, Pj cannot decide differently to Pi.

Thus, given that Pi and Pj, i ≠ j, decide, they cannot decide differently.

4.5.2 Termination and non-blocking

Termination requires that all operative processes decide. An operative process also refers to the one that recovers after a crash.

This requirement is met for any Pi that executes the protocol without crashing: it decides either (1) at the expiry of timeout (𝛼 + 𝛽 + 𝛿) based

on its local clock or (2) when BC changes from state = VOTING. Since BC is reliable, when Pi launches TXVi
after its clock time Ti + Δ, the BC state

is guaranteed to change to state ≠ VOTING if it has not already.

Consider a Pk that crashes without deciding. After recovery, it either decides indirectly on abort or decide by (2) above. Thus, every operative

process in Π decides.

Furthermore, neither (1) nor (2) above requires an operative process to wait until another crashed process in Π or crashed C to recover. Hence,

the protocol is non-blocking.

4.5.3 Commit-Validity

Lemma 4. In any execution, the Commit-Validity requirement is met: commit is the only possible decision if every process is operative and votes yes.

Proof. By given, every Pi logs Vi = 1 and votes by launching TXi. Hence, C must have launched TXC , and the smart contract must have

been initialized. The only way the BC state can be changed from VOTING to ABORT is to have some TXVi
enter BC and execute the VOTER

function before some TXj can enter BC. By the corollary above, this cannot happen. Thus, the BC state can change only to COMMIT. Any Pi

that launches TXi can decide only by observing BC state ≠ VOTING. Thus, commit is the only possible decision.

4.5.4 Abort-Validity

Abort-Validity requires that abort be the only possible decision if some process votes no or does not vote at all.

We have shown that all operative processes in Π decide in an execution, including those that crash and recover. In our protocol, a process

Pj ∈ Π either votes yes by launching TXj with Vj = 1 or does not vote at all by never launching TXj. When Pj does not launch TXj, the Boolean

condition (ΣV == Σ) in the VOTER function cannot become true, and BC state = COMMIT cannot happen. Furthermore, in our protocol, a decision

can be either commit or abort, and an operative Pi can decide commit only by observing BC state = COMMIT. Hence, every operative Pi can decide

only abort when some Pj does not vote at all.

Putting these arguments together, we can claim that our 2PC protocol with BC meets all four requirements of the atomic commit problem

(Section 2) and is also non-blocking.

5 ASYNCHRONY AND IMPOSSIBILITIES

When bounds 𝛼 and 𝛽 cannot be reliably estimated, BC becomes asynchronous (see Section 4.2); similarly, when estimates of bounds 𝛿 and 𝜔 are

not guaranteed to hold, the cluster hosting Π becomes asynchronous (Section 2.1).

Note that a public BC can be asynchronous even if the underlying distributed system is synchronous. For example, if miners, at the time of TXC

launch, also encounter several other transactions that are more financially attractive to work on compared to TXC , then TXC could take longer
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to enter BC, if at all, than any 𝛽 estimated in more favorable environments.14 Similarly, BC can be synchronous while the underlying distributed

system is asynchronous. Thus, from the synchrony requirements perspective, our system is made up of two distinct subsystems: BC and database

cluster. This leads to three pertinent questions: can we have a non-blocking 2PC in which coordinator C offloads its coordinating responsibilities

to a BC, when:

1. the BC being used is synchronous and the cluster hosting Π is asynchronous?

2. the BC is asynchronous and the cluster is synchronous?

3. both the BC and the cluster are asynchronous?

Our earlier paper9 answered question (3) in the negative but left (1) and (2) open. Furthermore, we also hinted in our earlier work9 that it may

be possible to have a non-blocking 2PC for (2) because processes of Π in (2) are endowed with an advantage of being able to accurately detect

their crashed counterparts (ie, perfect failure detection).

We formally answer these open questions here and show that non-blocking 2PC is not possible in cases (1) and (2) as well. It turns out that the

perfect failure detection capability within Π when the cluster is synchronous is not enough to construct a non-blocking 2PC if BC is asynchronous;

our optimistic hint expressed in our earlier work9 for case (2) is misplaced.

We next present the impossibility proofs. Our approach is to prove, by contradiction, which involves three steps: we will (1) hypothesize

the opposite of the impossibility, ie, suppose the existence of some correct non-blocking 2PC protocol, for example,  that meets all four

requirements of atomic commit in every possible execution scenario; (2) construct two execution scenarios that are indistinguishable from the

perspective of any operative Pi ∈ Π; and (3) show that if  is correct in one scenario, it cannot be so in the other. This contradiction will

demonstrate that no such  can exist and, thus, prove the impossibility.

The two execution scenarios we construct will have the following features in common.

• C never crashes, and the bound estimates used in  hold for all messages/requests sent by C.

• Every process Pi ∈ Π − {Pk} is operative and wishes to commit by submitting a ‘‘yes’’ vote, Vi = 1.

• Ti denotes the local clock time when an operative Pi receives ‘‘work’’ from C.

Note that asynchrony in BC or cluster does not mean that the bound estimates used in  are always violated; they can be met on many an

occasion. Hence, the first feature is a possibility that is assumed to hold in the chosen execution scenarios. It ensures that both executions have

C offloading its coordination responsibilities in a timely manner and every operative Pi observing TXC in BC also in a timely manner. The second

feature leads to Pi launching TXi with Vi = 1, when it observes TXC in BC.

5.1 Synchronous BC, asynchronous cluster

Let us first observe that the cluster is asynchronous, ie, with 𝛿 and 𝜔 being likely to be violated. Crash detection is typically done by periodically

querying another process with ‘‘are you alive’’ pings and awaiting responses to be received within a set timeout duration. It cannot, therefore, be

guaranteed to be perfect: an operative process may be seen, at least temporarily, to have crashed, and it may take several nonresponsive pings,

and hence a long time, to affirmatively conclude that a process has indeed crashed.

Impossibility 1. It is not possible to have a non-blocking 2PC protocol where coordinator C offloads its coordinating responsibilities to a BC

when that BC is synchronous and the cluster hosting Π = {P1,P2, … ,Pn} is asynchronous.

Proof. Let us hypothesize that Impossibility 1 is wrong and that there exists a non-blocking 2PC protocol  . Consider two executions of 

that have the common features mentioned earlier.

Execution 1. Pk does WG → a and then crashes. All other Pi's are operative and wish to commit and launch TXi. Since  is presumed to solve

atomic commit, each Pi, i ≠ k, must decide eventually, in this case on abort; for instance, Pi decides at its local time Ti +i in this execution,

for some (finite) i. Furthermore, Pk does not recover in this execution until after every operative process has decided, ie, until the local time

of every Pi reads or exceeds Ti +i.

Execution 2. Every process of Π and C starts the execution at the same time as in Execution 1. Moreover, every Pi, i ≠ k, sends and receives

the same set of messages (including ping and ping-response messages) from each other until a decision as in Execution 1 and each such

message are sent or received at the same local clock time as well. That is, the behavior of every undecided Pi toward every other undecided

Pj, j ≠ k, is identical in both executions.

Pk does not crash but observes TXC by its clock time Tk + 𝛼 + 𝛽 + 𝛿 (due to the first common feature) and completes its work. However,

the bound estimate 𝜔 is violated so much, and the launching of its TXk (with Vk = 1) is so delayed that TXk does not enter BC until after the

clock of every Pi, i ≠ k, reads or exceeds Ti +i. Moreover, every message sent by Pk (including Pk's response to ping) is delayed arbitrarily

such that it does not reach its destination until after the clock of every Pi reads or exceeds Ti +i. This is possible because the cluster, of

which Pk is a part, is asynchronous.
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Execution 2 is indistinguishable from Execution 1 for any Pi, i ≠ k, until its clock time Ti +i. In the former, Pk appears nonresponsive to

any Pi until Ti + i, whereas it remains crashed until Ti + i in the latter. Hence, as in Execution 1, Pi must decide on abort at Ti + i. This

violates the Commit-Validity requirement: if no process crashes and all vote ‘‘yes,’’ the decision ought to be commit (see Section 2). Thus, the

hypothesis is contradicted, and the impossibility is proved.

Remark 2. The proof makes no assumption on whether transmission delays of messages exchanged between any Pi,Pj ∈ Π − {Pk}, adhered

to or violated the bound estimate 𝛿. It is only assumed that the delay experienced by a given message is identical in both executions, which is

a possibility that cannot be ruled out. Since  is supposed to work for an asynchronous cluster, there must be a finite i for every Pi, i ≠ k,

in Execution 1. Messages from Pk taking longer than i to reach Pi in Execution 2 is another possibility in an asynchronous cluster, which is

also assumed. Thus, Execution 2 is a feasible execution scenario for  .

5.2 Asynchronous BC, synchronous cluster

Since the cluster is synchronous, bound estimates 𝛿 and 𝜔 remain inviolable. Therefore, a pinging process can affirm that a pinged process is

operative or crashed if the latter does or does not respond within 2𝛿 time, respectively; neither false positives nor false negatives are possible.

The availability of this perfect failure detection capability is taken into consideration in constructing the impossibility proof below.

Impossibility 2. It is not possible to have a non-blocking 2PC protocol where coordinator C offloads its coordinating responsibilities to a BC

when that BC is asynchronous and the cluster hosting Π = {P1,P2, … ,Pn} is synchronous.

Proof. Let us hypothesize that Impossibility 2 is wrong and that there exists a non-blocking 2PC protocol  for asynchronous BC and

synchronous cluster. Consider two executions of  that have all the common features mentioned earlier.

Execution 1. Pk remains operative, does WG → a, decides on abort, and quits the execution without ever submitting TXk to BC. All other Pi's

also remain operative but wish to commit and launch TXi. Since  is presumed to solve atomic commit, each Pi, i ≠ k, must also decide on

abort eventually; for instance, every Pi decides on abort at its local time Ti +i in this execution, for some (finite) i.

Execution 2. Every process of Π and C starts the execution at the same time as in Execution 1. Moreover, every Pi, i ≠ k, sends and receives

the same set of messages (including ping and ping-response messages) from each other until a decision as in Execution 1 and each such

message are sent or received at the same local clock time as well. That is, the behavior of every undecided Pi toward every other undecided

Pj, j ≠ k, is identical in both executions.

Pk does not crash, and, like every other operative Pi, i ≠ k, launches its TXk. However, while every TXi enters BC taking the same delay as

in Execution 1, TXk enters BC after a delay that is the maximum in {i ∶ ∀Pi ∈ Π− {Pk}}. Consequently, TXk does not enter BC until after the

local clock of every Pi reads Ti +i. Note that TXk taking longer than 𝛽 to enter BC is possible since BC is asynchronous.

Execution 2 is indistinguishable for any Pi, i ≠ k, from Execution 1 until its clock time Ti +i. In the former, Pk never submits TXk, whereas,

in the latter, TXk does not appear in BC until after every Pi decides. Moreover, in both executions, perfect failure detectors of Pi will report

Pk as an operative process. Hence, as in Execution 1, Pi must decide on abort at Ti + i. This violates the Commit-Validity requirement: no

process crashed, and all voted yes (see Section 2). Thus, the hypothesis about  is contradicted, and the impossibility is proved.

Remark 3. We noted in Section 3 that some 2PC implementations force a process with a ‘‘no’’ vote to explicitly cast its vote. In such an

implementation, Pk would launch a transaction TXk with ‘‘no’’ in Execution 1. In that case, this TXk should be considered to behave exactly like

the TXk in Execution 2: taking a delay that is the maximum in {i ∶ ∀Pi ∈ Π − {Pk}} and not entering BC until after the local clock of every

Pi reads Ti +i. Executions 1 and 2 are now indistinguishable for any Pi, i ≠ k, until its clock time Ti +i. Thus, Impossibility 2 holds even in

such uncommon implementations.

5.3 Implications of synchrony violations

A closer look at the impossibility proofs reveals that asynchrony in BC or in the cluster prevents only Commit-Validity from being guaranteed, ie,

abort could be decided when all processes of Π are operative and vote yes. This is also confirmed by the correctness arguments in Section 4.5,

which show that our 2PC protocol operating with BC solves the atomic commit problem when both BC and cluster are synchronous. More

precisely, these arguments indicate that if (1) C crashes without launching TXC , (2) some Pk crashes, or (3) some Pi votes no, the other three

requirements are guaranteed to be met even when the delay-bound estimates are violated: arguments for Termination (Section 4.5.2) and

Abort-Validity (Section 4.5.4) do not refer to synchrony assumptions at all; moreover, in cases (1)-(3) above, verdict = abort is the correct outcome,

and verdict = commit cannot ever be reached. Hence, the Agreement requirement is also met. In summary, synchrony is needed only to guarantee

Commit-Validity.
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Thus, when a bound estimate b ∈ {𝛼, 𝛽, 𝛿, 𝜔} is violated, the only requirement that risks being compromised is Commit-Validity, leading to

unwarranted aborts of database transactions. Violations of b can occur due to transient surges in computational loads or network traffic or the

traffic and/or loads having increased since the bound estimates were last computed.

At any given time, let ba be the actual prevailing value for an estimate b ∈ {𝛼, 𝛽, 𝛿, 𝜔}. Synchrony is violated if b < ba for any b. This does

not necessarily mean that the two timeouts used in the protocol would be violated. (Recall that (𝛼 + 𝛽 + 𝛿) is the phase-1 timeout defined in

Section 4.3.3 for deciding whether TXC would ever appear in BC, and Δ = max{(𝛼 + 𝛽 + 𝛿), 𝜔} + (𝛼 + 𝛽 + 𝛿) is the phase-2 timeout defined in

Section 4.3.4 before launching TXV.)

For example, if only 𝛼 < 𝛼a and b > ba for every other b, we can still have 𝛼 + 𝛽 + 𝛿 ≥ 𝛼a + 𝛽a + 𝛿a and Δ ≥ max{(𝛼a + 𝛽a + 𝛿a), 𝜔a} +
(𝛼a + 𝛽a + 𝛿a). Denoting Δa = max{(𝛼a + 𝛽a + 𝛿a), 𝜔a} + (𝛼a + 𝛽a + 𝛿a), let us define

m1 = 𝛼 + 𝛽 + 𝛿

𝛼a + 𝛽a + 𝛿a
and m2 = Δ

Δa
. (1)

Only when m1 < 1 or m2 < 1 are phase-1 and phase-2 timeouts at risk of becoming ‘‘too small,’’ respectively, leading to the possibility of

a transaction being unnecessarily aborted and Commit-Validity not being upheld. As noted, (m1 ≥ 1 ∧ m2 ≥ 1) can still hold when only some

bound estimates suffer minor violations. Using our protocol implementation described next, we evaluate the likelihood of unwarranted abort

occurrences when phase-1 and phase-2 timeouts are made small by varying amounts.

6 IMPLEMENTATION AND EVALUATION

We implemented the 2PC blockchain contract from Figure 4 in Solidity 0.40.1117 and tested its operation on the Ethereum Testnet network,20

using Ethereum Wallet and Ethereum Mist.21 Four different machines are used: (a) a MacBook Pro with a 2.8-GHz Intel i5 CPU and 8-GB RAM

and (b) three desktop PCs with a 3.20-GHz Intel i7 CPU and 8-GB RAM running on Windows 10. The MacBook is the coordinator C, and the three

desktop PCs constitute the ‘‘cluster’’ hosting P1,P2, and P3. Each PC is connected to the Ethereum Testnet as a full node, thus having a full copy

of the blockchain stored within it. The PCs do not play the role of miners themselves and operate as non-mining database hosts connected to the

blockchain. They are also connected to each other and to switches by a standard switched Ethernet local area network, which connects through

a standard Transmission Control Protocol/Internet Protocol with the Ethereum Testnet. The smart contract (see Figure 4) is also registered with

the Ethereum Testnet.

6.1 Delay-bound estimation

In all our experiments, the database transaction is kept null because our main objective is to assess the cost and performance of coordination

activities within and around the blockchain. Consequently, a ‘‘get-work’’ message from C contains no work for Pi but simply initiates the latter to

execute 2PC, which votes yes or no as per the purpose of a given experiment; thus, the bound estimate 𝜔 = 0. Other bounds 𝛼, 𝛽 , and 𝛿 are

established as follows.

The awareness delay (bounded by 𝛼) is calculated by taking the difference between the confirmation time of a given transaction of interest

(such as TXC or TXi) entering a block in BC and the time of receiving this block by each Pi. The confirmation time is obtained from the Ethereum

Wallet, which shows the time that the block was added. The timestamps at the three Pi nodes give us three data points, and the maximum of

these three results is taken as one data point for estimating 𝛼. At the end of 30 experiments, in which only C launched TXC , the maximum of the

30 data points obtained is taken as 𝛼.

The block entry delay (bounded by 𝛽) is calculated as the difference between the timestamp given to TXC at the coordinator node when TXC is

sent and the confirmation time of the block that contains TXC within the blockchain. Similar to 𝛼, we take the maximum of all data points obtained

as 𝛽 .

To obtain 𝛼 and 𝛽 , each individual experiment consists of C submitting one single transaction TXC and ends once we have collected all the data

points. Each experiment takes several minutes, as we will see, and is repeated 30 times.

To measure data points for transmission delays (bounded by 𝛿), no Pi needs to interact with the blockchain. We measure these data points

by letting C send a 1 KB Ethernet packet to each processor Pi, which then sends it back to C. We take the round-trip time and halve it to get

one-way delays. The maximum of all data points collected is taken as 𝛿: we collected 30 round-trip times for each Pi; hence, 𝛿 is the maximum

over 90 one-way delay estimates.

The results for 𝛼, 𝛽 , and 𝛿 are shown in Figures 5, 6, and 7. In all three Figures, the x-axis gives the experiment number (from 1 to 30), and the

y-axis gives the point estimate of 𝛼, 𝛽 , and 𝛿 (the max of the results in the three nodes, as explained above).

In estimating 𝛼, all experiments return values within the 2-minute range. The highest observed value is for experiment 4, at 115.734 seconds.

Figure 5 shows only the maximum of the values for the three Pi values, and we note that the difference between the three obtained values in

each of the 30 experiments is minimal, less than 1 second. For information, the average and the median of the block awareness delays depicted

in Figure 5 are 30.461 and 13.455 seconds, respectively.
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FIGURE 5 Block awareness delay

FIGURE 6 Block entry delay

FIGURE 7 Transmission delay

In the experiments for𝛽 , the maximum is found in experiment 28, at a value of 118.800 seconds. Note that for some experiments, the transaction

finds its way into a block in a matter of seconds, the minimum observed delay was 2.355 seconds. The block entry delay is influenced by factors

such as the transaction's gas price, which, in turn, influences miners' decisions of which transactions to include into the blocks they work on.

Figure 7 shows the results of our experiments for estimating 𝛿. They range from 1.590 to 5.790 seconds.
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TABLE 1 Cost of executing 2PC blockchain contracts

Transaction Reason GAS Used Cost in ETH

TXc By C to request voting 232 736 0.000232736

TXi By Pi to vote 84 625 0.000084625

TXv By Pi to seek verdict 55 102 0.000055102

TABLE 2 Total cost in various voting scenarios

Scenarios GAS Used Cost in ETH

Three vote no 232 736 0.000232736

Two vote no 372 463 0.000372463

One votes no 457 088 0.000457088

All vote yes 486 611 0.000486611

6.2 Cost of 2PC coordination

As noted in Section 4.1, the initiator of a blockchain transaction that involves executing one or more functions of a smart contract ought to pay

the miner in the cryptocurrency ether that is commonly abbreviated as ETH. The payment is in proportion to the amount of ‘‘gas’’ (often written

as GAS) consumed by the executions of functions a transaction invokes.

Furthermore, a transaction initiator can quote in the transaction the gas price they are willing to pay for executing the smart contract

functions. A higher gas price quoted can act as an incentive to miners in giving preferential treatment over those that quote a lower gas price.

In our experiments, the gas price quoted was the lowest possible, for example, the coordinator quotes the gas price of 0.001 ETH/million

for executing the REQUEST function. By quoting only the lowest gas price, the cost in ETH we report here would indicate the lower

bound.

When a smart contract function involves repetitive executions conditional on Boolean statements (eg, a while loop), the gas cost can vary with

the inputs supplied at invocations. As we can see from Figure 4, the 2PC coordination code does not involve aspects that lead to input-dependent

execution cost variations, except when the last Pi ∈ Π casts its vote, the Boolean ΣV == Σ (which is checked on every invocation of VOTER())

comes true, and ‘‘Set state = COMMIT’’ is additionally executed. This additional execution of a simple ‘‘Set’’ statement does not incur any extra

gas, and it is confirmed in all our experiments.

The amount of gas that a miner uses when executing a given contract function is calculated by the Ethereum virtual machine itself and is

displayed in the Ethereum Wallet at the initiator end. Thus, it is safer to assume that the reports on the amount of gas expended for executing

a given contract function are quite reliable. Table 1 provides the cost of executing each of three smart contract functions: REQUEST(), VOTER(),

and VERDICT(). As per the prevailing exchange rates for ETH, the cost is on the order of a few US cents or British pence.

Table 2 presents the total cost for 2PC coordination in four possible voting scenarios when the number of Pi in Π is 3.

When a Pi votes no, it knows that the verdict = abort and terminates. Thus, when all three Pi values vote no, none will launch TXi or TXVi
. Hence,

only the REQUEST() function is executed and its gas price the total cost, as shown in row 1 of Table 2.

In considering the remaining rows of Table 2, let us assume that neither a process crash nor any violation of the bound estimates occurs during

2PC execution. If n′ processes, n′ = 1 or 2, vote no, (3 − n′) processes launch TXi and, at the expiry of Δ timeout, also TXVi
, of which only one will

end up invoking the VERDICT() function. Thus, the total cost incurred is as follows: the cost of row 1 + (3 − n′
) × the cost of executing VOTER()

function once + the gas cost of executing VERDICT() function once.

When all three processes vote yes, none will launch TXVi
, and the total cost is as follows: the cost of row 1 + 3 × the cost of executing VOTER()

function once. Generalizing, when y processes, 0 ≤ y ≤ |Π|, vote yes, the total gas cost for 2PC coordination is as follows: gas cost of executing

REQUEST() function once + y × the gas cost of executing VOTER() function once + c × the gas cost of executing VERDICT() function once, where

c = 0 if y = 0 ∨ y = |Π|, and c = 1 otherwise (ie, 0 < y < |Π|).

6.3 2PC execution latencies

2PC execution latency for an operative Pi can be defined as the duration that can elapse from the moment Pi receives ‘‘work’’ from coordinator

C until the moment Pi decides either to commit or abort the transaction. Let the moments of Pi receiving work and deciding be denoted as

Ti and Ti + Ei, respectively, and be observed as per Pi's local clock. Thus, Ei is the 2PC execution latency for Pi. We will discuss Ei by first

estimating the maximum value it can (theoretically) take and then reporting the actual maximum it took in our experiments, along with an

explanation for any wide discrepancy between the two. Our estimation of latency bound will assume that the delay-bound estimates used

were conservatively arrived at by assigning them to the largest data points observed (as described in Section 6.1) and, hence, are safe, ie, never

violated.
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TABLE 3 Minimum (Min), maximum (Max), and average (Avg) latency in minutes (Mn) and seconds (Ss) expressed as Mn:Ss

D1 D2 D3 E1 E2 E3 E1-D1 E2-D2 E3-D3

Min 00:09.421 00:42.872 00:20.412 00:08.332 00:42.335 00:20.203 00:07.964 00:41.904 00:20.328

Max 02:56.276 04:37.990 02:40.783 02:55.178 04:36.880 02:40.806 02:55.112 04:36.842 02:40.742

Avg 00:30.336 01:19.295 00:48.959 00:36.843 01:26.309 00:49.466 00:36.728 01:26.217 00:49.489

6.3.1 Estimated latency bound

All possible execution scenarios need to be considered before arriving at the upper bound for Ei. To start with, let us consider the simplest case

where Pi takes the transition WG → a (see Figure 3); here, Ei cannot exceed 𝜔.

Alternatively, Pi can vote yes instead of doing WG → a. In this execution scenario, two cases need to be considered: TXC does not or does enter

BC. When TXC does not enter BC due to C crashing subsequent to disseminating the ‘‘work,’’ Pi will affirm the absence of TXC at the expiry of

phase-1 timeout and decide abort; thus, Ei = phase-1 timeout = 𝛼 + 𝛽 + 𝛿. In the second case where C does not crash and TXC does enter BC, Ei

will depend on the number, y, of processes in Π that vote yes.

Let y = |Π|. Measuring time as per Pi's clock, we note that Pi would commence two parallel activities at Ti: doing the work given to it and looking

for TXC to appear in BC. The former must complete by Ti + 𝜔 and TXC in BC would be known to Pi by Ti + phase-1 timeout = Ti + 𝛿 + 𝛽 + 𝛼, at the

latest. Thus, at or before Ti + max{𝜔, (𝛼 + 𝛽 + 𝛿)}, Pi must launch its TXi, and all other Pj's must do so by Pi's clock time Ti + max{𝜔, (𝛼 + 𝛽 + 𝛿)} + 𝛿.

Thus, the verdict computed at BC would be known to Pi no later than its clock time Ti + max{𝜔, (𝛼 + 𝛽 + 𝛿)} + (𝛼 + 𝛽 + 𝛿). Therefore,

Ei ≤ max{𝜔, (𝛼 + 𝛽 + 𝛿)} + (𝛼 + 𝛽 + 𝛿). Typically, 𝜔 is very small compared to (𝛼 + 𝛽 + 𝛿), and thus, Ei ≤ 2(𝛼 + 𝛽 + 𝛿) when y = |Π|.
Let y < |Π|. (Since Pi votes yes, y > 0.) Pi would launch TXVi

at its clock time Ti + Δ and would observe BC state =ABORT no later than its clock

time Ti + Δ + 𝛽 + 𝛼. Thus, Ei ≤ Δ + 𝛼 + 𝛽 . Given that Δ = max{(𝛼 + 𝛽 + 𝛿), 𝜔} + (𝛼 + 𝛽 + 𝛿) (defined in Section 4.3.4), Ei ≤ 2(𝛼 + 𝛽 + 𝛿) + (𝛼 + 𝛽)
when 𝜔 is considered small compared to (𝛼 + 𝛽 + 𝛿).

Summarizing, Ei cannot exceed Δ + (𝛼 + 𝛽) = 2(𝛼 + 𝛽 + 𝛿) + (𝛼 + 𝛽) for an operative Pi in any possible combination of crashing and voting

scenarios. Substituting the delay-bound estimates, the (upper) bound for Ei is 2(115.734 + 118.800 + 5.790) + (115.734 + 118.800) = 715.182

seconds, ie, 11 minutes and 55.182 seconds.

Finally, let us also estimate, for the sake of comparison, the bound for Ei when 2PC is executed without BC (as described in Section 3).

If Pi suffers blocking due to the crash of C, Ei can be arbitrarily long as Pi cannot decide until C recovers. When C does not crash, it turns

out that Ei ≤ 𝜔 + 4𝛿: having received ‘‘work’’ from C at its clock time Ti, Pi can receive the broadcast cast_vote at or before Ti + 𝜔 + 𝛿; C

broadcasts the verdict after a 2𝛿 timeout expires following its broadcasting of cast_vote; Pi must decide by Ti + 𝜔 + 𝛿 + 2𝛿 + 𝛿 if it voted

yes. Thus, using BC to eliminate 2PC blocking results in a performance slowdown when C does not crash, and the slowdown is bounded by

3(𝛼 + 𝛽) − (𝜔 + 2𝛿) ≈ 3(𝛼 + 𝛽) = 703.611 seconds. Such a large slowdown should be expected, given the features of public blockchains as

discussed in Section 2.2 and in the work of Weber et al14 and the need to use safe delay-bound estimates so that both BC and the cluster remain

synchronous, ie, synchrony violations do not occur.

6.3.2 Observed latencies

We carried out 200 2PC executions using our implementation involving the Ethereum blockchain. We disallowed crashes and ensured that

the ‘‘work’’ given by C is trivial to execute and all Pi's, 1 ≤ i ≤ 3, always vote yes, ie, y = |Π|. Note that each execution must result in all

three processes deciding commit; otherwise, it would mean that phase-1 or phase-2 timeout became ‘‘too small’’ in the prevailing execution

environment and expired prematurely. In all 200 experiments, commit was indeed the decision.

In each experiment, Pi recorded the local clock times when it received the work, observed TXC in BC, and decided as Ti, Ti + Di, and Ti + Ei,

respectively. Di and (Ei − Di) represent the latency for Pi to execute only phase 1 and phase 2, respectively.

Table 3 summarizes the minimum, maximum, and average of the 200 latency values experienced by individual processes. We observe that

the largest Ei is experienced by P2 and stands at 4 minutes and 36.880 seconds. The corresponding upper-bound estimate (when y = |Π|) is 2

(𝛼 + 𝛽 + 𝛿) = 2 × 240.324 = 480.648 seconds or 8 minutes and 0.648 seconds, which is about twice the maximum observed. In addition to this

large discrepancy between the estimated and observed bounds for Ei (when y = |Π|), we also observe large differences between the maximum

and the average (or minimum) latency in each column. The explanation for this lies in the shape of graphs in Figures 5, 6, and 7: the largest data

point ends up deciding the estimate b ∈ {𝛼, 𝛽, 𝛿} and is substantially larger than most frequently occurring data points. For example, as noted

earlier, the largest awareness delay observed in Figure 5 is 115.734 seconds, which determines 𝛼; 0.2𝛼 = 23.147 is still larger than the average

awareness delay observed (13.455 seconds) and 0.4𝛼 = 46.294 > 30.461, the median. Similarly, in the experiments for 𝛽 in Figure 6, the peak

value of 118.800 seconds was observed in experiment 28 and was adopted as 𝛽 . Only in two other experiments the block entry delay came close

to 𝛽 , and in the rest, it was below 50% of 𝛽 , with the minimum observed delay being 2.355 seconds.

6.4 Impact of synchrony violations on Commit-Validity

We observed in Section 6.3.1 that Ei is the largest when C does not crash and y < |Π|: Ei = Δ + 𝛼 + 𝛽 . This is because all Pi's that vote

yes are forced to wait until Ti + Δ before they could launch TXVi
, which then causes BC to compute and display the verdict. Any attempt to
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FIGURE 8 Probability for Commit-Validity

reduce Ei in this worst case and in other cases and, thus, to speed up 2PC execution in general requires using smaller values for Δ, 𝛼, and 𝛽;

this calls for a less conservative estimation of 𝛼, 𝛽 , and 𝛿 as Δ is a function of these delay-bound estimates. Deliberately underestimating delay

bounds, however, tends to increase the scope for synchrony violations. We also noted in Section 5.3 that synchrony violations risk only the

Commit-Validity requirement not being met, leading to unwarranted aborts. We will here evaluate the probability of Commit-Validity being met as

synchrony violations are permitted to occur due to delay bounds being deliberately underestimated.

Recall that when 𝜔 is considered small compared to (𝛼 + 𝛽 + 𝛿), the phase-2 timeout Δ = max{(𝛼 + 𝛽 + 𝛿), 𝜔} + (𝛼 + 𝛽 + 𝛿) (defined in

Section 4.3.4) simply becomes 2(𝛼 + 𝛽 + 𝛿), and the phase-1 timeout (see Section 4.3.3), (𝛼 + 𝛽 + 𝛿), becomes Δ∕2.

Suppose that each bound estimate b ∈ {𝛼, 𝛽, 𝛿} is chosen not as the largest data point observed (as in conservative estimations) but as m

times the largest data point, where m is a small positive real number. When 0 < m < 1, phase-1 and phase-2 timeouts drop to mΔ∕2 and mΔ,

respectively, and execution latency is reduced; in our experiments, Commit-Validity is upheld in an execution only if Di < mΔ∕2 and Ei < mΔ for

all Pi ∈ Π. For any given X = mΔ, the probability of Commit-Validity being upheld is the fraction of 200 experiments in which Di < X∕2 and

Ei < X for all Pi ∈ Π.

Figure 8 depicts the cumulative distributive function for Commit-Validity for X = mΔ, with m ranging from 0.03 to 1.12. (Absolute values of X

are in the first row of the x-axis as Minutes:Seconds.) We observe that when X is as small as 0.25Δ, Commit-Validity is upheld with a probability

as high as 82%. What this means here is that choosing b ∈ {𝛼, 𝛽, 𝛿} to be 25% of the largest data point observed leads only to 18% of runs

suffering unwarranted aborts, whereas it can reduce 2PC execution latency by 75%. Furthermore, the Commit-Validity probability rises quickly to

98% for m as small as 0.44, and it becomes 100% for m ≥ 0.75. The latter indicates that 2PC execution latency can be reduced by 25% without

suffering any unwarranted aborts. All these observations suggest that (1) small underestimations of delay bounds may not lead to unwarranted

aborts at all and that (2) there is much room for reducing execution latency considerably at the expense of a modest increase in unwarranted

aborts.

7 CONCLUDING REMARKS

Common choices to avoid 2PC blocking are to use a decentralized protocol12,13 or the (centralized) three-phase commit. These alternatives extract

a larger message cost even in the absence of crashes and do not have the structural simplicity of 2PC. We have shown here that the message cost

and implementation difficulties of existing 2PC alternatives can be avoided if the 2PC coordinator C simply offloads coordination responsibilities

to a blockchain after disseminating database work to servers. Our proposed protocol maintains the low message overhead and the elegant

structure of 2PC: those servers that want to commit look up to the crash-free blockchain for progress (instead of crash-prone C) and launch, at

most, two blockchain transactions (instead of periodically pinging the crashed C until it recovers). The extra cost arises in two forms, namely,

miners' fees and latency sacrifice when a public blockchain is used; the former are very small in fiat currencies, but the latter can be substantial, on

the order of hundreds of seconds, as shown by our experiments involving the Ethereum blockchain. We believe that the performance slowdown

will not be so serious, if permissioned blockchains had been used, and our future work would focus on such an investigation.

Although the blockchain infrastructure maintains the abstraction of a reliable state machine with an immutable audit trail display, such features

are not sufficient to guarantee non-blocking atomic commit, unless it meets synchrony requirements. This is another important contribution of

this paper that should be borne in mind when building applications similar to atomic commit using blockchain. For example, eVoting, like atomic

commit, can be guaranteed to be correct only if the blockchain is synchronous; this aspect is not emphasized but is simply assumed in some

blockchain-based eVoting systems.22 Informally, the total number of ‘‘yes’’ votes cast is counted in both applications, and the count is displayed
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in eVoting, whereas it is used to decide between commit and abort in atomic commit. Since a dishonest participant can seek to undermine the

result of eVoting, it is important for an eVoting system to specify timing requirements to distinguish between a ‘‘timely’’ vote that gets counted

and one that arrives ‘‘too late’’ and gets ignored. This naturally leads to synchrony requirements for correctness.

We have applied the traditional ‘‘best effort, worst case’’ method to reliably estimate delay bounds. We then emulated synchrony violations

by deliberately choosing to use smaller values as bound estimates and, thereby, examined the extent of Commit-Validity violations resulting

in unwarranted aborts. We observe that the number of unwarranted aborts occurred to be small even when bound underestimations are

considerable. For example, a uniform reduction of 81% across all bound estimates still upholds Commit-Validity (ie, zero aborts) in more than

50% of runs (X = 0.19Δ in Figure 8). This is because the peak delays observed during bound estimation are much larger than the average or

median delays. Hence, the ‘‘worst case’’ bound estimation offers built-in tolerance for synchrony violations. Its downside, however, is that the

protocol takes much longer to terminate. Thus, there is a trade-off between reducing protocol latency and using smaller than ‘‘worst case’’ bound

estimates, which risks violating Commit-Validity.
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