
J Supercomput (2017) 73:4444–4465
DOI 10.1007/s11227-017-2027-5

A partitioning framework for Cassandra NoSQL
database using Rendezvous hashing

Sally M. Elghamrawy1,3 · Aboul Ella Hassanien2,3

Published online: 6 April 2017
© Springer Science+Business Media New York 2017

Abstract Due to the gradual expansion in data volume used in social networks and
cloud computing, the term “Big data” has appeared with its challenges to store the
immense datasets. Many tools and algorithms appeared to handle the challenges of
storing big data. NoSQL databases, such as Cassandra and MongoDB, are designed
with a novel data management system that can handle and process huge volumes
of data. Partitioning data in NoSQL databases is considered one of the critical chal-
lenges in database design. In this paper, a MapReduce Rendezvous Hashing-Based
Virtual Hierarchies (MR-RHVH) framework is proposed for scalable partitioning of
Cassandra NoSQL database. The MapReduce framework is used to implement MR-
RHVH on Cassandra to enhance its performance in highly distributed environments.
MR-RHVH distributes the nodes to rendezvous regions based on a proposed Adopted
Virtual Hierarchies strategy. Each region is responsible for a set of nodes. In addition,
a proposed bloom filter evaluator is used to ensure the accurate allocation of keys to
nodes in each region. Moreover, a number of experiments were performed to evaluate
the performance of MR-RHVH framework, using YCSB for database benchmark-
ing. The results show high scalability rate and less time consuming for MR-RHVH
framework over different recent systems.

B Sally M. Elghamrawy
sally_elghamrawy@ieee.org; sally@mans.edu.eg
http://www.egyptscience.net

Aboul Ella Hassanien
aboitcairo@gmail.com
http://www.egyptscience.net

1 MISR Higher Institute for Engineering and Technology, Mansoura, Egypt

2 Faculty of Computers and Information, Cairo University, Giza, Egypt

3 Scientific Research Group in Egypt (SRGE), Giza, Egypt

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2027-5&domain=pdf
http://orcid.org/0000-0002-5430-390X

A partitioning framework for Cassandra NoSQL database… 4445

Keywords Cassandra · Rendezvous hashing · Consistent hashing · MapReduce ·
NoSQL databases · Partitioning

1 Introduction

The rapid evolution and speedy success of internet technology and social networks led
to the appearance of Big data [1] term. Facebook is a global service of immense scale;
2.4 billion content items are shared on Facebook among friends every day [2]. There
were serious limitations in using relational database management systems RDBMS,
with ACID properties [3], for indexing these big data. One of the main reasons is
that RDBMS depend on nonflexible modeling schemes. These limitations have been
the driving force behind the emergence of NoSQL [4] (meaning ‘not only SQL’)
databases. NoSQL databases are used for storing big data due to its ability to expand
easily according to the data scale. The data in NoSQL are huge and growing rapidly.
It has high availability, high scalability, and high fault-tolerance, especially in social
network applications. To manage these data, the data in NoSQL databases must be
partitioned through distributed nodes.

Data partitioning techniques are one of the critical success factors in databases
design. Sharding is the horizontal partitioning of data; it means the ability to shard the
database and then distribute data stored in each shard. Range, random and hashing par-
titioning techniques are presented for NoSQL databases to partition data on different
nodes. Some NoSQL databases like Apache HBase [5], MongoDB [6] use range par-
titioning, while other NoSQL databases like Google BigTable [7], Amazon Dynamo
[8], Cassandra [9] used by Facebook use hashing partitioning, consistent hashing [10],
as their partitioning strategies. The basic consistent hashing used in Cassandra NoSQL
databases presents a scalability and load balancing limitations. Because it ignores the
nature of nodes being assigned the data to them, it only depends on blind hashing.
When using old Cassandra’s default practitioner BYTEORDER, the distribution of
load is extremely not uniform. For example, when a node is down its load will be
distributed to the closest node regardless of the capabilities of neighboring nodes.
This leads to a non-uniform distribution. As a result, the latest version of Cassandra
tries to solve this by using the concept of virtual nodes VN to balance load in a more
efficient way. But using VN will cause some challenges that must be handled like: (a)
implementation complexity, (b) update and upgrade difficulties, (c) cost factors. All
these challenges affect the overall performance of Cassandra. There have been many
researchers [11–14] attempt to enhance in partitioning NoSQL databases. Most of the
existing data partitioning strategies have great limitations such as low performance,
load balancing problem, low scalability, and hotspots. Great efforts had been done to
adopt in consistent hashing to solve load balancing problem. Unlike consistent hash-
ing, Rendezvous hashing (HRW) uniformly distributes records of database over nodes
using spooky hash function.

In this paper, a MapReduce Rendezvous hashing-based Virtual Hierarchical (MR-
RHVH) framework is proposed for partitioning Cassandra NoSQL database. Its main
goal is to enhance Cassandra’s partitioning performance by using Rendezvous hashing
that uniformlydistributes records of the database over nodes, unlike consistent hashing.

123

4446 S. M. Elghamrawy, A. E. Hassanien

The basic idea of Rendezvous hashing based on the Highest Random Weight (HRW)
algorithm, first proposed by [15], is giving each node a weight for each key and assign
the key to the highest weight. This method shows some imbalance in the load due
to the heterogeneity of node’s load and capability. Using the skeleton hierarchical
by traditional HRW leads to lack of performance due to the bottlenecks appeared
when choosing and requesting the upper level’s nodes. The implementation of the
MR-RHVH is based on the proposed Adopted Virtual Hierarchies (AVH) structure
using the proposed Improved Highest RandomWeight (IHRW) algorithm. In contrast,
using the AVH structure and the IHRW algorithm in MR-RHVH enhances Cassandra
performance by allowing the system to take the benefits of hierarchies without causing
any bottlenecks in the upper level, due to its ability to divide the system into rendezvous
regions to ensure the locality advantage. The “spooky” hash function is used in MR-
RHVH instead of the “Murmur” hash, used by Cassandra, as it is proved that to be
twice the speed of Murmur hash.

In addition, a Load Balancing algorithm-based Rendezvous hashing LBRH is pro-
posed to manage the balancing between nodes in the partitioning process. MR-RHVH
enhances the timing of hashing by using a bloom filter evaluator in every node of the
rendezvous hash range. In addition, using a spooky hash function enhances timing of
hashing. The rest of the paper is organized as follows. Section 2 shows recent NoSQL
systems discussing different strategies in partitioning NoSQL databases. Section 3
presents and demonstrates the proposed MapReduce Rendezvous hashing-based Vir-
tual Hierarchical MR-RHVH Partitioning framework with its associated algorithms.
The performance of Cassandra is evaluated in Sect. 4 showing the effect of imple-
mentingMR-RHVH on Cassandra, and the results are compared against recent work’s
results using the Yahoo Cloud Serving Benchmark [16].

2 Related work

There are enormous interests of researchers in investigating the partitioning strategies
of NoSQL databases due to its impact on the performance of systems. Hash, range
and hybrids between hash and range partitioning are the most common strategies
used by NoSQL systems. A number of researchers have developed different methods
to enhance Cassandra performance and in partitioning strategies of different NoSQL
databases: Ata Turk et al. [12] proposed data partitioning method based on hypergraph
that is constructed to correctly model multi-user operations. This method utilizes the
temporal information in prior workloads to try to enhance the Cassandra NoSQL.
Abramova et al. [17] analyzed the scalability of Cassandra by testing the replication
and data partitioning strategies used. Lakshminarayanan [18] proposed an adaptive
partitioning scheme for consistent hashing that effect in the heterogeneity of the sys-
tems. Huang et al. [13] proposed a dynamic programming algorithm in the consistent
hashing ring based on imbalance coefficient for Cassandra cluster to calculate the posi-
tion of the new coming node.Wang and Loguinov [19] proposed a greedy algorithm to
position the new node in the largest range of the space by splitting the range into two
pieces. Ramakrishnan et al. [20] proposed a processing pipeline, using the Random
Partitioner of Cassandra, to allow any non-Java executable makes use of the NoSQL

123

A partitioning framework for Cassandra NoSQL database… 4447

and allowing offline processing for Cassandra. Kuhlenkamp et al. [21] benchmarked
the scalability and elasticity of Cassandra and HBase. Zhikun et al. [11] proposed a
Hybrid Range Consistency Hash (HRCH) partition strategy for NoSQL database to
improve the degree of processing and the data loading speed.

Most of these approaches either consider a scalability test of theNoSQL database or
enhancing in consistent hashing of Cassandra. Cassandra had three basic partitioning
strategies: RandomPartitioning using theMD5 hash of each row key, ByteOrdered and
Murmur3 partitioning. To the best of our knowledge, it is the first attempt to replace
the whole partitioning module of Cassandra with the rendezvous hashing technique
and test their scalability, load balancing, and timing of partitioning process.

Braam et al. [22] proposed a Lustre as a storage architecture based on hash parti-
tioning. But in Lustre the files located in the same directory are distributed to different
locations, causing the locality principle of namespace to be lost. Furthermore, the pro-
cessing timing is increased due to the huge amount of data that changes its locations.

3 The proposed MapReduce Rendezvous hashing-based virtual
hierarchical (MR-RHVH) framework

In this section, the proposed MapReduce Rendezvous hashing-based Virtual Hierar-
chical (MR-RHVH) framework is presented. Its main goal is to enhance Cassandra’s
partitioning performance by usingRendezvous hashing, instead of the consistent hash-
ing. The traditional HRW [15] method shows some imbalance in the load could be due
to heterogeneity of the nodes. In addition, using the skeleton hierarchical, described
in [23], leads to a lack in performance due to the bottlenecks appeared when choosing
and requesting the upper levels nodes. In contrast, the proposed MR-RHVH enhances
Cassandra performance by: (a) Using the Adopted Virtual Hierarchies strategy based
on the proposed Improved Highest RandomWeight (IHRW) algorithm allows the sys-
tem to take the benefits of hierarchies without causing any bottlenecks in the upper
level, because IHRW divides each hierarchical into a rendezvous regions that allow
the nodes to be more flexible in selecting the master nodes, depends on region’s
loads and requirements. (b) Proposing a Load Balancing algorithm-based Rendezvous
hashing LBRH to manage the balancing between nodes in the partitioning process.
Enhance the timing of hashing by using bloom filter method in every node of the
rendezvous hash range. (c) Using spooky hash function enhances timing of hashing.
(d) Monitoring the load in the system by analyzing the workload in each node and
caches them. MR-RHVH framework applies the distributed structure of nodes using
MapReduce, that equally partition data among Cassandra nodes using mapper and
reducer functions. The MR-RHVH framework consists of four main layers, as shown
in Fig. 1, Cassandra/Hadoop Cluster,MR-RHVH, Cassandra/HadoopData Center and
Hadoop/MapReduce applier.

3.1 Cassandra/Hadoop data center

Cassandra clients’ nodes are distributed in this data center. TaskTracker andDataNode
services run on eachCassandra node/client in the data center. The Task Tracker accepts

123

4448 S. M. Elghamrawy, A. E. Hassanien

Name Node

Job Tracker

Task Tracker

Task Tracker

Task Tracker

HDFSReducer
Functions

Mapper Functions

Load Manager

Load Balancer

Modified Rendezvous
Hashing Applier

Node/Key Assigner

Bloom Filter Evaluator

Spooky Hash
Function

MR-RHVH

Data Node

Data Node

Data Node

Cassandra/Hadoop
Cluster

Cassandra/Hadoop
Data Center

Converter
Name Node

CNN

Hashing Coordinator

Fig. 1 The MapReduce Rendezvous hashing framework based virtual hierarchical (MR-RHVH) frame-
work

tasks from job tracker and then recall data needed from data node. The Data Node
used to provide task trackers with the required data, using HDFS in MapReduce layer.

3.2 Cassandra/Hadoop cluster

The Cassandra master node is located in this layer. In Cassandra/Hadoop Cluster, the
Job Tracker service, running on the master nodes, is used to coordinate job requests
sent to and from the Task Trackers in client’s node using MapReduce. The name node
in the Cassandra master node is used to save a list of all the files in the data center,
and search for the node that keep the file or have the capability to save a file. Name
node considered as a single point of failure (SPOF) in Hadoop/MapReduce, as when
the name node failed, the whole system goes down. A converter name node (CNN)
module is proposed to solve SPOF in the next layer.

3.3 Hadoop/MapReduce applier

Hadoop/MapReduce service runs on each Cassandra node. It consists of: A converter
name node (CNN), Hadoop Distributed File System (HDFS), used for data storage,
mapper and reducer functions used by MR-RHVH.

A converter name node (CNN) module is used as a secondary name node that is
mapped to the storage structure of Cassandra NoSQL database. It is used to separate

123

A partitioning framework for Cassandra NoSQL database… 4449

Send input

Job request

Send MR Job to data center request

Store
data

Send MR input

Broadcast MR
Job request

Send Results

Task
Tracker TT

MapReduce Applier
MR

Cassandra Data
Center Job Tracker JT Cassandra

client Node

Fig. 2 Sequence diagram of MR-RHVH layers workflow

the requests, sent from the data nodes to name node, from the data itself. In MR-
RHVH, firstly all requests are submitted via MapReduce functions to the CNN and
then the CNN updates the data stored on the name node located in the master node.

A sequence diagram of MR-RHVM workflow is shown in Fig. 2. Any Cassandra
Node (CN) sends an input request to the Job Tracker (JT) of Cassandra master node
through the MapReduce applier MR. Then the JT sends a job request to MR, that
broadcast the request to the Task Trackers (TT) of nodes in the data center. The data
are stored to Cassandra datacenter, and results of requests are sent back to the CN,
that firstly send the request.

3.4 MR-RHVH layer

This layer implementation is distributed across the nodes using MapReduce applier
layer, and it consists of three main modules:

• Load Manager It monitors the load on the system by analyzing the workload in
each node and caches them. In addition, the load requests and the most frequently
appeared node in a specific Cassandra cluster are managed, based on Heuristic 1.

Heuristic 1 Suppose that there is a key with name K and a set of nodes N =
{n1.n2.n3. . . . ni }. The load here is theCassandra data that needs to be partitioned to the
nodes, and it can be defined in terms of = <hashesH,Keys �,Queries Q,TuplesT>.
Each node n ∈ N is defined in terms of = <CAPACITY(n), ACTIVE DEGREE (n),
DEPENDENCY (n)>, where capacity(n) indicates the ability of the node to accept a
number of keys and queries by checking the current load on that node. Active degree(n)
indicates the activity degree of the node (e.g., the number of finished queries). It stores
the number of assigned keys and queries that the node performed. Dependency(n) is
concerned with the Cooperation Degree of the node with respect to other nodes in the
system, i.e., how many times the node asks the help of another node.

123

4450 S. M. Elghamrawy, A. E. Hassanien

• The LoadBalancer As we have mentioned before, the basic consistent hashing
algorithm used in Cassandra affects the overall performance of Cassandra DB
due to load balancing problem. The load balancer sub-module main responsibil-
ity is to manage the balancing in the partitioning process without affecting the
performance. Its main goal is to implement the proposed Load Balancing-based
Rendezvous Hashing algorithm LBRH, shown in Fig. 3. It also resolves all con-
flicts that may occur.
The LBRH algorithm, shown in Fig. 3, proceeds as follows: the set of the partic-
ipating nodes in the cell Cj are supervised to calculate the current load for each
node (ni). Then the calculated load is compared with two threshold values as a
high-value threshold T HLD and low-value threshold T LLD. If the current load
of a node is bigger than the T HLD, then the node is categorized as “intense load”
node. And its load must be splitted and partitioned to the participating nodes in
the cell based on their loads. In contrast, if the current load of a node is lower than
the T LLD, then this node is categorized as “low-key load” node and will bid for
load more loads based on the Bid-Bonus algorithm. There are two scenarios for
balancing the load when using the rendezvous (HRW) hashing:

Scenario 1 To uniformly balance the load when a new key request needed to be
allocated to a specific node based on balancing algorithm.

Scenario 2Whenanode is down, its loadmust be uniformlydistributed across the other
nodes participated in the system. The process of balancing the load when partitioning
the database must deal with all the attributes for node and keys. Heuristic 2 illustrates
some terms used in the LBRH algorithm.

Heuristic 2 Suppose that there is a set of nodes N = {n1.n2.n3. . . . ni} in each cell
of the HRW hierarchic. The capacity (n) in Heuristic 1 is calculated in terms of
< LDCur

i (n),LDMaX
i (n)>. Where ni is the node number i in the cell and LDCur

i is the
current load that the node holds right now and the LDMaX

i is the maximum load that
the node i can hold calculated based on each node feature. There are two main phases
for the process:

First Phase Let (ni ∈ N) be the set of the participating nodes in the cell C j in HRW
structure. And CCji be the set of cell coordinator for each cell responsible of a number

of node i. Each CCji has a load denoted by CC
ji
LD, and the cell coordinator’s main goal

is to manage the load between the nodes in this cell based on each node’s LDCur
i and

LDMaX
i , to categorize the nodes to intense load, moderate load, and low-key load, as

shown in the LBRHalgorithm. By using two threshold values as a high-value threshold
THLD and low-value threshold TLLD.

To allocate the key, it must have a popularity factor (•). While the load is assigned
to a specific node, the Load Balancing algorithm will be activated to ensure that the
load is balanced by giving ϕ the minimum value, shown in Eq. (1).

ϕ =
j=1,m∑

i=1,n

CCji
LD −

∑m
j=1 CC

ji
LD∑n

i=1 LD
MaX
i

(1)

123

A partitioning framework for Cassandra NoSQL database… 4451

LBRH. Load Balancing based Rendezvous Hashing
Input: Node Tuples’s ID

(and node
neighbors’ in same zone according to HRW

Output: A List of the distributed load assigned to which node (

1. Supervise
2. For Each n in
3. Calculate)
4. Check load
5. IF > IS OVERLOAD THEN INTENSE-LOAD ()
6. INTENSE-LOAD ()

{
7. aa : Register Pending_Relaod_List()
8. =fragment ()
9. If <
10. Choose specific (n(i))
11. Split (n(i))
12. Partition (n(i))
13. Bid_Bonus ()
14. Else Go to aa
15. Combine (n)
16. Create
17. }
18. End if
19. If < is overload then LOW_KEY-LOAD()
20. Low_KEY-LOAD()
21. {
22. = –
23. For each in
24. Bid_Bonus(, ,)
25. Minimize (
26. End For
27. Create
28. }
29. End if
30. EndFor

Fig. 3 The LBRH algorithm ()

Second Phase Each node in the cell has neighbor node, and the main goal of the
LBRH algorithm is to predict the neighbor node performance in allocating the load
by using a bid-bonus algorithm proposed in Fig. 4.
Hashing coordinator It is the core module of MR-RHVH. It is responsible for the
partitioning process, based on rendezvous hashing, using the spooky hash function. It
consists of four main submodules: Modified Rendezvous (HRW) Hashing applier: In
this sub-module, the proposed Adopted Virtual Hierarchies (AVH) strategy, shown
in Fig. 5, is implemented using the proposed Improved Highest Random Weight
IHRW hashing algorithm, based on virtual hierarchies’ skeleton on HRW is imple-
mented.

123

4452 S. M. Elghamrawy, A. E. Hassanien

The Bid bonus algorithm used by LBRH
1. Bid_Bonus()
2. {
3. For Each (Cap) in do
4. CreatBID(
5. If (Cap)=trustybids then
6. If Expct{ (Cap)} > Higest(Cap) then
7.
8.
9. Recieved { (Cap)} > Higest(Cap) then
10.
11. End If
12. For each (Cap)in
13. if (Cap)=trustybids then
14. Sort ((Cap))
15. sendnew ((Cap))
16. End If
17. Next
18. For each (Cap) in
19. Get HigestPairBids ((Cap))
20. If > < then
21. For first (Cap, AD, Dep) in
22. Get ((AD))
23. If -ActDgree ((AD)> -ActDgree (AD)
24. (AD))
25. If -ActDgree((AD)< -ActDgree((AD)
26. (AD)
27. Else
28. Get(-Dependency ((Dep))
29. If -Dependency ((Dep)< -Dependency ((Dep) then
30. (Dep))
31. If -Dependency ((Dep)> -Dependency ((Dep) then
32. (Dep))
33. Else
34. RandomPair((Cap, AD, Dep))
35. End If
36. Next
37. End If
38. Next
39. Next

Fig. 4 The Bid-bonus algorithm used by LBRH

Each zone is constructed as a virtual hierarchy that is geographic specific. Each
zone has a predefined number of nodes and a coordinator C(i)1

11 to these nodes. The
coordinator is assigned based on the proposed IHRW hashing algorithm, as illustrated
in Heuristic 3.

Heuristic 3 The adaptive HRW protocol proposed in Fig. 6 is implemented at each
level of the virtual hierarchical. Suppose the system contains nod nodes that will
be divided into a number of Rendezvous Geographic Zones (RGZ) based on their
geographic area. Each zone will have a number of nodes nod ranges from maxi celi to

123

A partitioning framework for Cassandra NoSQL database… 4453

Fig. 5 The hierarchal structure of nodes organized

mini flo depend on their area load. This will achieve O(log(AVG [maxi celi,mini flo])
running time.

These zones are categorized as follows:

RGZ1 = {
nod1.nod2.....nodflo→celi

}
,

RGZ2 = {nodflo+1→celi+1.nodflo+2→celi+2nod2flo→2celi
}, . . . and so on. Then, instead of

hashing all the nodes in the system, we start hashing each node in a specific zone
by using the spooky hash function illustrated in the next subsection; then based on
the hashes obtained, the nodes are organized in levels (level 1–3 based on number of
nodes) and the node with the highest weighted hash in the upper level will be assigned
as coordinator of this levelC(j)nm.x, where n is the zone number,m is the level the coor-
dinator in and x is the coordinator ID. Then the coordinators’ nodes are hashed and
the highest weighted hash in them will be assigned as Senior Coordinator SC(k)nm.x
(ex. SC(k)2

3.2) for this zone, as shown in Fig. 5.
The IHRW algorithm, shown in Fig. 6, partitions keys of the Cassandra database

using rendezvous hashing (instead of the original consistent hashing) on the nodes
distributed in a sufficient way to guarantee balanced partitioning. The nodes in a
Cassandra cluster are divided into a number of Rendezvous Geographic Zones (RGZ)

[24], and the data are distributed according to the virtual hierarchical design in each
zone, as depicted in Fig. 6.

Spooky hash function The default hash function used by the original partitioning
module in Cassandra is the Murmur Hash [25] as it is used in the 32-bit. The main

123

4454 S. M. Elghamrawy, A. E. Hassanien

IHRW: The Improved HRW algorithm

Input: The Nodes in a Cassandra cluster with their corresponding IP
showing their geographic Areas .

Output: A List of the categorized nodes in hierarchical structure

1. For Each in
2. { ParseArea.Identifier IP()
3. LISTS OF (,
4. }
5. Connect (ListS[,])
6. REGISTER LIST ()
7. Assign (to
8. Xx :
9. For Each in
10. { Arrange () in
11. For (i= to)
12. { Assign (Zone#(n), Level#(m), Node#(x))
13. Hash = SH ()
14. TableHash[] += Hash
15. }
16. }
17. IF (i > AND)
18. { DUPLICATE
19. go to xx
20. }
21. SELECT
22. ASSIGN MAX Coordinator (
23. For (j= to)
24. { Assign [Zone#(n), Level#(m), Node#(x)]
25. Hash = SH ())
26. TableHash[] += Hash
27. }
28. SELECT
29. ASSIGN MAX SeniorCoordinator (

Fig. 6 The adaptive HRW protocol proposed

goal is to implement the non-cryptographic SpookyHash [26] function on the required
nodes and keys in Cassandra, based on Heuristic 4.

Heuristic 4 The spooky hash function calculates the weight of each node when

assigning key K to it WK
i = {wK

1 .wK
2 wK

n } where WK
i = ˙́SḢ(ni .K) where

ni is the node identified in Heuristic 1. Rendezvous algorithm or HRW main char-
acteristic is to assign the Key to node nk yielding the highest weight, that is, such

that WK
x = MAX(wK

1 . wK
2 wK

n). Since ˙́SḢ and the nodes IP are predefined,
the rendezvous algorithm will independently automatically compute identical K/node
assignments.

One of the main reasons for using the spooky hash instead of Murmur hash is that
later proved to be half the speed of spooky hash on x86-64. In addition, using spooky

123

A partitioning framework for Cassandra NoSQL database… 4455

hash speed in the hashing process due to its ability to hash any keys with bytes’ array
form, as it can produce many different independent hashes for the same key [26].
Node/key assigner The spooky hash function outputs a list of the hashed nodes, and
the hashed key needs to be allocated; the main responsibility of the node/key assigner
is to implement the process of assigning the hashed key to the node yielding the highest
weight.

Bloom filter evaluator Bloom filters [27] are widely accepted in the database [28,29]
applications for membership queries because it dramatically decreases the represen-
tation size of the set of elements; however, they generate false positives. The bloom
filter evaluator is used in every node of the rendezvous hash range for two main goals:
(1) To ensure the accurate allocation of keys to nodes and checking the load balancing
while allocating. (2) To reduce the time taken for the load distribution in the load
balancer module.

In this module, the bloom filter is used as follows: Suppose the nodes in Cas-
sandra system is categorized based on IHRW algorithm into rendezvous geographic
zones each of which consists of n node. RGZ1 = {

nod1.nod2.....nodn
}
, these nodes are

organized in an array of n bits β�[n], as shown in Fig. 7.
All bits in the filter are initialized to ‘0’, as depicted in Fig. 7, β�[n] = 0.Then

bloom filter uses k spooky Hash functions ˙́SḢk to calculate the hash value and then

store these hashes in the m-bit array β�[˙́SḢk(m)]. Each ˙́SḢk map nodn and put the
hashes results in the m array with any order. Then the information is that the key(19)
is assigned to the RGZ1 in the node SC(k)23.2. So, the key(19) and SC(k)23.2 is then

hashed. The query now is key(54) ∈ RGZ1 ? so check if all ˙́SḢk(key(19) set to 1. If not,
key(19) is not a member of RGZ1. That means that the key is not correctly assigned to
the appropriate zone. The membership query introduces a false positive by checking
the presence of element key(54) in set RGZ1 = {

nod1.nod2.....nodn
}
.

In addition, the load balancer module uses the bloom filter evaluator in creat-
ing a list of the distributed load assigned to which node (LDDSj .n) by determining
whether the load belongs to this node in this zone or not based on the Adap-
tive HRW protocol. Without using bloom filter, this load membership test needs
O(log(AVG n[maxi celi,mini flo] running time depends on the number of nodes in
each geographic zone while using bloom filter will shorten this time. Since the bloom
filter requires a single scan of the data, its construction is less time consuming for
storing elements of a set.

4 Performance evaluation

A number of experiments are conducted to evaluate the influence of the proposed
MR-RHVH partitioning module in Cassandra NoSQL database.

4.1 Environments and benchmark

The Apache Cassandra version 3.4 is modified by embedding the MR-RHVH in it.
The standard Yahoo! Cloud Serving Benchmark (YCSB) is installed YCSB 0.1.4 on

123

4456 S. M. Elghamrawy, A. E. Hassanien

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
1
0
1
1
0
0
1
0
0
1
0
0 Bloom Filter

Hashing
function

is wrongly assigned to

which in and will be re-

assigned.

Check { }

Starting filter

Fig. 7 Bloom filter evaluator example

Table 1 YCSB workloads

Workload name Job

Workload A update heavy 50% read and 50% write

Workload B (read heavy) 95% read and 5% write

Workload C (read only) 100% read

Workload D (read latest) Reads latest workloads

Workload E (short ranges) Scans short ranges of records

Workload F (read–modify–write) Clients read, modify and finally writes back

a client node to test the performance. YCSB, designed by Yahoo Labs, is a popular
open-source benchmark for comparing the performance of NoSQL databases [16].
Currently, YCSB do not support Cassandra 3.X yet; YCSB is upgraded to support
Cassandra 3.4 version by using the DataStax Java Driver, illustrated in [30], for Cas-
sandra. There are six types of workloads in YCSB, which is used to compare the
performance of Cassandra, as shown in Table 1.

In our experiments, two clusters of 8 nodes/cluster are used (Node0 to Node7). The
specification of Cassandra cluster nodes, Hadoop and Cassandra configurations are
shown in Table 2. The nodes are created by using the VMware vSphere system [31]
(VMware Inc., Palo Alto, CA, USA). The specification of Cassandra cluster nodes,
Hadoop and Cassandra configurations is shown in Table 2.

123

A partitioning framework for Cassandra NoSQL database… 4457

Ta
bl

e
2

C
as
sa
nd
ra

cl
us
te
r
no
de
s
sp
ec
ifi
ca
tio

ns

N
um

be
r
of

C
as
sa
nd
ra

cl
us
te
rs

2
A
ll
th
e
no
de
s
ha
ve

a
20
0
G
B
di
sk

sp
ac
e

N
um

be
r
of

no
de
s
pe
r
cl
us
te
r

8
R
un

at
U
bu
nt
10

sy
st
em

N
od

e
sp
ec
ifi
ca
tio

n
D
ua
l-
co
re

In
te
lC

or
e

i5
-4
20

0U
at
2.
6
G
H
z,
8
G

of
R
A
M
,2

00
G
B
di
sk
s
an
d

gi
ga
bi
tE

th
er
ne
t,
ru
n

E
ve
ry

N
oS

Q
L
da
ta
ba
se

co
ns
is
te
d
of

8
m
ill
io
n
re
co
rd
s

T
he

m
ac
hi
ne

am
ou
nt

of
ev
er
y
cl
us
te
r

{5
cl
ie
nt
s,
1
se
rv
er
}

H
ad
oo

p
ve
rs
io
n
2.
6.
4
in
st
al
le
d
on

ea
ch

no
de

“H
ad
oo

p
C
on

fig
ur
at
io
n”

C
as
sa
nd

ra
3.
4
ve
rs
io
n
co
nfi

gu
ra
tio

ns

ha
do

op
.h
df
s.
co
nfi

gu
ra
tio

n.
ve
rs
io
n

1
R
ow

ca
ch
e
pr
ov
id
er

Se
ri
al
iz
in
gC

ac
he
Pr
ov
id
er

df
s.
re
pl
ic
at
io
n.
m
ax

51
2

R
ep
lic
at
io
n
fa
ct
or

1

df
s.
na
m
en
od
e.
re
pl
ic
at
io
n.
m
in

1
H
ea
p
si
ze

1
G
B

df
s.
bl
oc
ks
iz
e

12
8
M
B

R
PC

tim
eo
ut

in
M
S

10
,0
00

R
H
P
R
ep
lic
at
ed

hy
pe
rg
ra
ph

pa
rt
iti
on
in
g
m
od
el
;R

P
ra
nd

om
pa
rt
iti
on

in
g;

M
U
R
m
ur
m
ur

Pa
rt
iti
on

in
g

123

4458 S. M. Elghamrawy, A. E. Hassanien

Fig. 8 The comparison of write throughput of workload A of MR-RHVH with recent systems

4.2 Experiments and evaluation

The experiments have been divided into four main parts for the evaluations, as follows:

• Evaluates the scalability in terms of throughput of the system after using the IHRW
algorithm in MR-RHVH.

• Evaluates the latency of the system after using the IHRW algorithm.
• Evaluates the performance of the Load Balancing-based Rendezvous (HRW)
Hashing algorithm LBRH implemented in the load balancer sub-module.

• Cassandra’s response time, after implementing the MR-RHVH, is tested under
different environments.

4.2.1 Throughput experiment

The scalability of the system is tested with increasing the number of nodes used and
test the throughput by executing workload A and workload C over 8M records. The
number of nodes is increased from 4 to 16 nodes to verify the variation of MR-RHVH
throughput according to number of nodes in the cluster. Figure 8 shows theMR-RHVH
throughput in workload A compared to recent systems RHP, RP, MUR [12,13,20].

Figure 9 shows the MR-RHVH throughput in workload C compared to recent
systems RHP, RP, MUR [12,13,20].

4.2.2 Latency experiment

The latency of read and write operations for MR-RHVH, when varying number of
nodes, is compared in the same environment of testing RHP, RH andMUR [12,13,20].
The results for workload A and C are shown in Figs. 10 and 11, respectively.

From the last two experiments, it is obvious that among comparative systems,
CassandrawithMR-RHVHachieves the best latency and throughput values, compared

123

A partitioning framework for Cassandra NoSQL database… 4459

Fig. 9 The comparison of read throughput of workload C of MR-RHVH with recent systems

0 5 10 15 20 25 30 35

Workload A "Write Latency"

MR-RHVH MUR RP RHP

16

12

8

4

N
um

be
r o

f N
od

es

ms/Query

Fig. 10 The comparison of the write latency of workload C of MR-RHVH with recent systems

to recent practitioner’s vales, in both experiments. In addition, it is observed that the
latencies of write are 10 times less than read latencies, due to the facts that write
queries need less tasks than read queries.

4.2.3 Load balancing experiment

The performance of the load balancer sub-module embedded in the framework MR-
RHVH is evaluated in this experiment and compared against two partitioners used
in original Cassandra [17,20]. Workload C of YCSB is used in load mode to upload
the data to one cluster of 8 nodes. Figure 12 shows the performance of Cassandra
with ByteOrder partitioner; the load is condensed in one or two nodes which result in
uneven distribution of data. Figure 13 demonstrates that using Murmur (the current
default Partitioners) in Cassandra the load is almost distributed on the 8 nodes but not
uniformly.

123

4460 S. M. Elghamrawy, A. E. Hassanien

0 20 40 60 80 100 120 140

Workload C "Read Latency"

MR-RHVH MUR RP RHP

16

12

8

4

N
um

be
r o

f N
od

es

ms/Query

Fig. 11 The comparison of the read latency of workload C of MR-RHVH with recent systems

Fig. 12 The performance of Cassandra with ByteOrder partitioner

0

1

2

1 2 4 6 8

Murmur Load Blancing Node 0

Node1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7Total number of records (millions) in the cluster

N
um

be
r

of
 R

ec
or

ds
 (M

ill
io

ns
) /

N
od

e

Fig. 13 The performance of Cassandra with Murmur partitioner

123

A partitioning framework for Cassandra NoSQL database… 4461

0

0.5

1

1.5

2

1 2 4 6 8

MR-RHVH Load Balancer Node 0

Node1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Total number of records (millions) in the cluster N
um

be
r

of
 R

ec
or

ds
 (M

ill
io

ns
) /

N
od

e

Fig. 14 The performance of Cassandra with MR-RHVH load balancer

0

100

200

300

400
Timing of MR-RHVH Load Balancer

RP BOP MUR MR-RHVH Number of Records(million)

Pr
oc

es
si

ng
 �

m
e

m
se

co
nd

 2 4 6 8

Fig. 15 The comparison of execution time of different partitioners with workload C in balancing load with
recent systems

However, Fig. 14 demonstrates a uniformly balanced performance of Cassandra
between the 8 nodes when using the MR-RHVH. This comparison validated the Load
Balancing-based Rendezvous Hashing algorithm LBRH.

Moreover, the execution time of assigning the records to the nodes in MR-RHVH
is compared with standard Cassandra Byte Ordered, Random, and Murmur3 [17,20]
partitioningwhenusingREADworkloadC inYCSB.Figure 15 shows thatMR-RHVH
is the fastest when varying number of loaded records.

4.2.4 Execution time experiment

The different attempts to develop in partitioning techniques of Cassandra affect its
performance, especially when the number of parallel queries increased. MR-RHVH
implemented on Cassandra uses the highly parallel MapReduce programming model
to support parallel queries in the system. In this experiment, MR-RHVH is tested t
[24] o calculate the executing times spent on read and write queries for each of the 4,

123

4462 S. M. Elghamrawy, A. E. Hassanien

0

20

40

60

80

100

Read Exec�on �me MR-RHVH RP NM2H

 4 16 64

Number of records (millions) in the cluster

Ex
ec

u�
on

 T
im

e
(s

ec
on

ds
)

Fig. 16 The comparison of the execution time of MR-RHVH in read workload C with recent systems

0

10

20

30

40

50

Write Exec�on �me MR-RHVH RP NM2H

 4 16 64

Number of records (millions) in the cluster

Fig. 17 The comparison of the execution time of MR-RHVH in write workload A with recent systems

16 and 64 million runs. Figures 16 and 17 show the execution time of read and write
queries, respectively, of MR-RHVH compared to RP [20] and NM2H [32].

MR-RHVH proved to have less execution time compared to other systems, because
each client node in the cluster uses the MapReduce layer to process each data split in
its own using the region it is located in. Unlike other partitioners, it needs enormous
data movement in Cassandra cluster, which leads to use more execution time. Each
node has a local access to the nodes in the same region using the supervisor coordinator
node assigned by the proposed AVH structure.

4.2.5 Discussion and result analysis

The comparative results showed that MR-RHVH is scalable to the huge number of
nodes, and it is highly efficient in terms of throughput and latency, compared to recent

123

A partitioning framework for Cassandra NoSQL database… 4463

systems. Also, it is more flexible in selecting which nodes can become coordinator
node that store and broadcast the keys, based on loads and capabilities of nodes within
the region. The MR-RHVH load is balanced more uniformly than the two default
partitioners of standard Cassandra. And the MR-RHVH timing for distributing the
load is faster than different partitioners of standard Cassandra. In addition, the results
proved that MR-RHVH is the fastest in executing read and write queries compared
to others systems, because each node in the cluster process its data split in its own,
because it has a local access to all nodes in the same region using the supervisor
coordinator node assigned by the proposed AVH structure. Unlike other partitioners,
it needs enormous data movement in Cassandra cluster, which leads to use more
execution time.

5 Conclusions and future work

A MapReduce Rendezvous Hashing-based Virtual Hierarchical (MR-RHVH) frame-
work is proposed in this paper for partitioning Cassandra NoSQL database by using
rendezvous hashing. The MR-RHVH framework divides system into Rendezvous
Regions, that allows the nodes to be more flexible in selecting the master nodes,
while maintaining the locality advantage in dealing with nodes in the same region. In
addition, a LBRH algorithm is proposed to guarantee the load balancing with hetero-
geneous nodes. The timing of hashing is enhanced by using the bloom filter evaluator
in each node of the rendezvous hash range.

The results showed that MR-RHVH framework is highly efficient in terms of
throughput and latency when compared to the recent systems. In addition, the MR-
RHVH load is balanced more uniformly than the two default partitioners of standard
Cassandra. And the MR-RHVH timing for distributing the load is faster than different
partitioners of standard Cassandra. Our future work intends to reduce the overhead of
MR-RHVHand to test its scalabilitywhen increasing the number of nodes. In addition,
the jump consistent hash will be implemented as a hashing technique in MR-RHVH
and replace the Hadoop with the Spark.

References

1. Anagnostopoulos I, Zeadally S, Exposito E (2016) Handling big data: research challenges and future
directions. J Supercomput 72(4):1494–1516

2. 10 − K Annual Report. SEC Filings. Facebook. 28 Jan 2016. Retrieved 26 Mar 2016
3. Agrawal R, Ailamaki A, Bernstein PA, Brewer EA, CareyMJ, Chaudhuri S et al (2008) The Claremont

report on database research. SIGMOD Rec 37(3):9–19
4. Cruz F, Maia F, Matos M, Oliveira R, Paulo Ja, Pereira J, Vilaça R (2013) MeT: Workload aware

elasticity for NoSQL. In: Proceeding EuroSys ’13 Proceedings of the 8th ACM European Conference
on Computer Systems, New York, NY, USA, pp 183–196

5. HBase Development Team (2013) HBase: BigTable-like structured storage for Hadoop HDFS
[EB/OL]. http://wiki.apache.org/hadoop/Hbase/. Accessed 20 Mar 2013

6. Chodorow K, Dirolf M (2010) MongoDB: the definitive guide, 1st edn, O’Reilly Media, p 216,
ISBN 978-1-4493-8156-1

7. Chang F, Dean J, Ghemawat S, Hsieh WC et al (2008) BigTable: a distributed storage system for
structured data. ACM Trans Comput Syst (TOCS) J 26(2):205–218

123

http://wiki.apache.org/hadoop/Hbase/

4464 S. M. Elghamrawy, A. E. Hassanien

8. DeCandia G, Hastorun D, Jampani M et al (2007) Dynamo: Amazon’s highly available key-value
storeC. In: Proceedings of the 21st ACM Symposium on Operating Systems Principles, SOSP 2007,
205–220, Stevenson, Washington, USA, October 14–17

9. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev
44(2):35–40

10. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing and
random trees: distributed caching protocols for relieving hot spots on the world-wide web. In: Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing, ’97, ACM, New York, NY,
USA, pp 654–663

11. Chen Z, Yang S, Tan S, Zhang G, Yang H (2013) Hybrid range consistent hash partitioning strategy—a
new data partition strategy for NoSQL database. In: 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), 2013, IEEE, pp 1161–1169

12. Turk A, Selvitopi RO, Ferhatosmanoglu H, Aykanat C (2014) Temporal workload-aware replicated
partitioning for social networks. IEEE Trans Knowl Data Eng 26(11):2832–2845

13. Huang X, Wang J, Zhong Y, Song S, Yu PS (2015) Optimizing data partition for scaling out NoSQL
cluster. Concur Comput: Pract Exp 27(18):5793–5809

14. Schall D, Härder T (2015) Dynamic physiological partitioning on a shared-nothing database Cluster.
In: IEEE 31st International Conference on Data Engineering (ICDE), 2015, IEEE, pp 1095–1106

15. Yao Z, Ravishankar CV, Tripathi S (2001) Hash-based virtual hierarchies for caching in hybrid content-
delivery networks. The University of California, Riverside, Department of Computer Science and
Engineering, California

16. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving
systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud computing, ACM, pp
143–154

17. Abramova V, Bernardino J, Furtado P (2014) Testing cloud benchmark scalability with cassandra. In:
IEEE World Congress on Services (SERVICES), 2014, IEEE, pp 434–441

18. Srinivasan L, Varma V (2015) Adaptive load-balancing for consistent hashing in heterogeneous clus-
ters. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2015, IEEE, pp 1135–1138

19. Wang X, Loguinov D (2007) Load-balancing performance of consistent hashing: asymptotic analysis
of random node join. IEEE/ACM Trans Netw 15(4):892–905

20. Dede E, Sendir B, Kuzlu P,Weachock J, GovindarajuM, Ramakrishnan L (2016) Processing Cassandra
datasets with Hadoop-streaming based approaches. IEEE Trans Serv Comput 9(1):46–58

21. Kuhlenkamp J,KlemsM,RössO (2014)Benchmarking scalability and elasticity of distributed database
systems. Proc VLDB Endow 7(12):1219–1230

22. Braam PJ et al (2004) The Lustre storage architecture. ftp://ftp.uniduisburg.de/pub/linux/filesys/
Lustre/lustre.pdf, 2004

23. Thaler DG, Ravishankar CV (1998) Using name-based mappings to increase hit rates. IEEE/ACM
Trans Netw (TON) 6(1):1–14

24. Seada K, Helmy A (2004) Rendezvous regions: a scalable architecture for service location and data-
centric storage in large-scale wireless networks. In: Proceedings of the 18th International on Parallel
and Distributed Processing Symposium, 2004, IEEE, p 218

25. Kurihara Yuki (2015) Digest::MurmurHash. GitHub.com. Retrieved 18 Mar 2015
26. Jenkins B (2012) SpookyHash: a 128-bit noncryptographic hash
27. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors. Commun ACM

13(7):422–426
28. Li Zhe, Ross Kenneth A (1995) Perf join: an alternative to two-way semijoin and bloomjoin. In: CIKM

’95: Proceedings of the 4th International Conference on Information and Knowledge Management, pp
137–144, 1995

29. Bringer J, Morel C, Rathgeb C (2015) Security analysis of bloom filter-based iris biometric template
protection. In: International Conference on Biometrics (ICB), 2015, IEEE, pp 527–534

30. DataStaX (2016) -https://datastax.github.io/python-driver/api/cassandra/policies.html-retrieved.
Accessed Jan 4 2016

31. VMwareVSpher (2016). Server Virtualizationwith VMware vSphere | VMware India”. www.vmware.
com. Retrieved 08 Mar 2016

123

ftp://ftp.uniduisburg.de/pub/linux/filesys/Lustre/lustre.pdf
ftp://ftp.uniduisburg.de/pub/linux/filesys/Lustre/lustre.pdf
https://datastax.github.io/python-driver/api/cassandra/policies.html-retrieved
www.vmware.com
www.vmware.com

A partitioning framework for Cassandra NoSQL database… 4465

32. Xue R, Guan Z, Gao S, Ao L (2014) NM2H: Design and implementation of NoSQL extension for
HDFS metadata management. In: IEEE 17th International Conference on Computational Science and
Engineering (CSE), 2014, IEEE, pp 1282–1289

33. Gudivada VN, RaoD, Raghavan VV (2014) NoSQL systems for big data management. In: IEEEWorld
Congress on Services (SERVICES), 2014, IEEE, pp 190–197

123

	A partitioning framework for Cassandra NoSQL database using Rendezvous hashing
	Abstract
	1 Introduction
	2 Related work
	3 The proposed MapReduce Rendezvous hashing-based virtual hierarchical (MR-RHVH) framework
	3.1 Cassandra/Hadoop data center
	3.2 Cassandra/Hadoop cluster
	3.3 Hadoop/MapReduce applier
	3.4 MR-RHVH layer

	4 Performance evaluation
	4.1 Environments and benchmark
	4.2 Experiments and evaluation
	4.2.1 Throughput experiment
	4.2.2 Latency experiment
	4.2.3 Load balancing experiment
	4.2.4 Execution time experiment
	4.2.5 Discussion and result analysis

	5 Conclusions and future work
	References

