
J. Parallel Distrib. Comput. 122 (2018) 95–108

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

FluteDB: An efficient and scalable in-memory time series database for
sensor-cloud
Chen Li a,b,c, Bo Li a,b,∗, Md Zakirul Alam Bhuiyan d, Lihong Wang c, Jinghui Si a,b,
Guanyu Wei a,b, Jianxin Li a,b
a Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
b SKLSDE Lab, Beihang University, Beijing, China
c National Internet Emergency Center, Beijing, China
d Department of Computer and Information Sciences, Fordham University, Bronx, NY, USA

h i g h l i g h t s

• FluteDB is an efficient and scalable time series database for sensor-cloud.
• The index in FluteDB equips flexible storage tricks for time series data.
• FluteDB improves efficiency by adjusting disk accesses according to data temperature.
• FluteDB optimizes its data encapsulation and fault tolerant strategies.

a r t i c l e i n f o

Article history:
Received 21 March 2018
Received in revised form 22 May 2018
Accepted 27 July 2018
Available online 10 August 2018

Keywords:
Time series
Sensor-cloud
In-memory database
Scalability
Disaster tolerant

a b s t r a c t

Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and
requires to be processed. However, those traditional databases show their limitations on storage when
handling such a large streamdata in cloud, and even their actual reliability and availability are also difficult
to be guaranteed. To deal with the problem, this paper proposes FluteDB, an efficient and scalable in-
memory time series database for sensor-cloud. We adequately analyze the unique characteristics of time
series data and its relevant operations to strike the right balance among efficiency, scalability, resources
consumption, reliability and availability. Specifically, on basis of the aggregate analysis of root cause for
ongoing time series problems, FluteDB targeted optimizes the strategies for key operations inmemory and
physical storage, at the expense of partial acceptable data precision and consistency. FluteDB’s enhanced
strategies are primarily comprised of Triggered Time SeriesMerge Tree (TTSMTree), time series enhanced
cache management and corresponding compression algorithms for different data types. The validations
of all sub-modules have demonstrated that our improved strategies outperform existing methods in real
time series environment significantly. Global experimental results also show that the integrated FluteDB
reduces query latency by 17x, improves write rate by 98x and saves about 47% storage resources. The
average available service time and recovery rate and degree of FluteDB are competitive with the state-of-
the-art reliability and availability strategy in real and simulated faults, which demonstrates FluteDB can
provide highly stable large-scale data cloud services.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the appearance and popularization of Internet of Things
(IoT), Wireless Sensor Network (WSN), Smart City (SC) and other
Internet hot spots, massive time series data is generated contin-
uously and waits for further processing [15,18,21,22]. Among

∗ Corresponding author at: SKLSDE Lab, Beihang University, Beijing, China.
E-mail addresses: lichen@act.buaa.edu.cn (C. Li), libo@act.buaa.edu.cn (B. Li),

mbhuiyan3@fordham.edu (M.Z.A. Bhuiyan), wlh@isc.org.cn (L. Wang),
sijh@act.buaa.edu.cn (J. Si), weigy@act.buaa.edu.cn (G. Wei), lijx@act.buaa.edu.cn
(J. Li).

them, many mature mining algorithms have achieved satisfac-
tory applied results in many practical fields by analyzing and
extracting specific features frommassive time series data, e.g. Real-
Time Vehicle Traffic (RTVT), Smart Grid (SG). As the basis of such
downstream algorithms, how to store and query time series data
efficiently and stably has aroused wide attentions especially in
cloud service [6,13,23].

Due to the increasing demand for source data and real-time
compute in cloud services, multimedia data sampling devices are
widely available, and their sampling intervals have been shortened
immensely nowadays, which lead to a vast growth of the scale
of time series data directly. Besides, in order to provide highly

https://doi.org/10.1016/j.jpdc.2018.07.021
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.07.021
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.07.021&domain=pdf
mailto:lichen@act.buaa.edu.cn
mailto:libo@act.buaa.edu.cn
mailto:mbhuiyan3@fordham.edu
mailto:wlh@isc.org.cn
mailto:sijh@act.buaa.edu.cn
mailto:weigy@act.buaa.edu.cn
mailto:lijx@act.buaa.edu.cn
https://doi.org/10.1016/j.jpdc.2018.07.021


96 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

reliable and available time series services certainly, the necessary
preparations for fault tolerant and data recovery for cloud services
are indispensable. Some existing works, which are time series spe-
cialized, collectively referred to as Time Series Databases (TSDBs),
have achieved satisfactory applied effect in real cloud environment
[11,15,18,21,22]. Among them, some improved versions arise from
the modifications of classic databases, and the rest are targeted
designed for time series. To further meet the demands of time
series and promote the efficiency, reliability and availability of all
sub-modules and entire system, we next specify several detailed
and strict constraints.

Write dominate. The most primary requirement for TSDB is that
to keep the services stable at an ultra-high write rate [15]. In the
real cloud applications, time series services always tend to cope
with millions of write requests per second. The existing databases
generally optimize their indexing strategy, data persistence, and
accumulate cluster performance to satisfy the demand. To further
enhance the write performance, it is necessary to optimize the
above strategies and explore more efficient ways.

Query management. Because most of the downstream service
objects of query operations are periodical monitoring or man-
agement systems, the query rate is usually a couple orders of
magnitude lower than write rate [5,21]. However, it is still very
difficult to achieve efficient query within such large-scale time
series data. Existing methods attempt to solve this problem by
distinguishing different storage media and indexing structures for
storing cold/hot data, which will bring a lot of common side effects
(e.g. data redundancy in memory, too long latency for the worst
query).

Resource control. Though the hardware prices are generally de-
clining, the usage efficiency of resources in cloud environment
(including memory and disk) are also an important indicator for
the evaluation of storage services [2,4,16]. The scale of time series
data becomes much larger. Take Facebook as an example, it daily
produces about 10T of logs, texts and other streaming data. Storing
such massive data directly is bound to consume a lot of storage
resources. If taking into account the version control, single-writer,
append-only and redundancy strategy, the resource utilization of
entire systemwill becomemuch lower. It will reduce the retention
time of persistent historical data (cyclic writer), as well as the scale
of cached data in memory directly. Therefore, a set of specific data
compression algorithms are essential, though at the expense of
partially acceptable loss of data precision.

Highly reliability and availability. Reliability and availability are
indicators which describe respectively the ability for providing
cloud services normally and fault tolerant [15,22]. Existing cluster
management approaches canmeet the demand to provide services
in the face of partial node failure continuously, but how to recover
from disaster or fault quickly and provide services again is the key
to ensuring the reliability of time-series cloud services.

This paper proposes FluteDB (as an extension of [1]), a novel
time series database for sensor-cloud (as shown in Fig. 1), which
aimed to satisfy mentioned constraints and provide efficient, scal-
able and stable cloud services. It enhances all of the sub-modules
in database based on the aggregate analysis of time series data and
its relevant operations. FluteDB also re-adjusts the communication
and data exchange modes among memory, hard drives and other
resources to keep database running more efficient. All the consid-
erations and designs in FluteDB take fully into account the linearly
scalable to ensure it can scale up as needed. Specifically, it has the
following novel methods to improve the present situation.

Since time series services aremainly composed of vast majority
of write operations and a few point queries and region queries,

a novel insight behind FulteDB is that to make the overall archi-
tecture more inclined to the optimization of write operation, that
is, to exchange for higher write performance at the expense of
part performance of query operation or acceptable data precision
[18,21]. In order to achieve this goal, FluteDB re-organizes the
structure of indexing, and further optimizes the configuration and
use of different types of resources. To be specific, combined with
the temporal characteristics of time series, FluteDB proposes a
new TTSM tree algorithm based on Log-StructureMerge Tree (LSM
Tree) [7,12,14]. The TTSM tree divides indexing into two parts
based on the distribution of data values. The hot data (newly
inserted) is stored in special tree structure in memory, while the
cold one is stored on a specific B* tree structure on physical disks.
Periodically, partial indexing in memory will be persisted to disk.
Since time series data is in a strict ordered sequence, FluteDB
designs a more flexible triggering mechanism to determine when
to perform the above operations considering the complexity of
tree structure merging. Moreover, FluteDB also enhances the cor-
responding efficient storage structures for different storage media
to meet different operational requirements.

Although query operations account for a small percentage, the
relevant data service efficiency for upstream tasks also need to be
guaranteed. Therefore, as long as the write rate is not affected, the
actual query demands are able to be meet indirectly by optimiz-
ing the hit rate of both cache and in-memory indexing. FluteDB
updates the original cache replacement algorithms and its imple-
mentation to guarantee high-value data stay in memory as much
as possible based on time series characteristics. Then, vastmajority
of query operations can be handled in memory, the overall query
efficiency will be improved significantly.

FluteDB also presents specific compression algorithms for dif-
ferent data types (Integer, Float, Double, String and etc.) to reduce
the resource consumption. In order to maximize the compression
ratio of compression algorithms on the basis of acceptable com-
pression and decompression complexity, we adopt a more flexible
compression concept and coded format, and only sacrifice partial
data coding precision. Besides, FluteDB integrates a complete set
of reliability strategies for all sub-modules and entire system,
enabling it to recover and continue to provide services in the face
of power outage, network outage or other faults and disasters.

As a time series database used in real cloud environments,
FluteDB encapsulates data connection management, data manip-
ulation as functional layer on the top of above functions. This layer
is designed to conform to the classic structure of traditional dis-
tributed database,which provides a scalable guarantee for FluteDB.

By evaluating FluteDB in large-scale cloud storage environ-
ment, its writing efficiency, query latency and storage resource
consumption significantly outperforms existing methods. And the
system’s stable running time and disaster recovery effect can be
also guaranteed.

The rest of paper is structured as follows. Section 2 introduces
the existing databases and the optimization methods for time-
series data. Section 3 presents FluteDB’s architecture, and fur-
ther analyzes its design principle and implementation in detail.
In Section 4, extensive experiments show that FluteDB obtain
better performances than existing systems. Finally, conclusion is
summarized in Section 5.

2. Related work

Since a large number of famous researches focus on analyzing
the time series characteristics, continuous interests in manage-
ment of time series data have been followed closely in field of
database for decades [11,15,18,21,22]. At present, people have
begun to paymore andmore attention to explore how to efficiently



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 97

Fig. 1. The role of FluteDB in practical application environment.

and steadily store and query time series data because of its im-
mense growth and valuable implicit information.

In general, the previous TSDBs can be divided into modified
versions and re-design versions. By adding plug-ins or updating
existing classic databases, the modified versions hijack or apply
original data services to complete relevant operations with time
series characteristics [11,19–21]. The other methods re-design
complete bottom-up TSDB systems, including physical storage and
upper components [15,22]. These two versions of TSDB are widely
used in real sensor-cloud environment and have gained satisfac-
tory practical application effect.

As a scalable and efficient TSDB, OpenTSDB is based on HBase,
and serves massive amounts of time series data without losing
granularity [11]. Its main design idea is running enough Time
Series Daemons (TSDs) to achieve data interaction considering
users’ data load. Each TSD is independent, and uses the open
source database HBase or hosted Google Bigtable service to store
and retrieve time series data. Hence, the bottom physical storage
strategy is transparent to users. OpenTSDB also has a richer data
model for identifying time series, on the basis of which aggregate
data quickly to achieve storage resource reduction. In addition, in
order to persistent raw data forever, OpenTSDB uses acceptable
loss of data accuracy in exchange for cheaper long-term queries
and storage consumption.

InfluxDB is a stand-alone open source TSDB with even richer
data model than OpenTSDB [18]. Its meta data model is able to not
only make data management more convenient, but also effectively
improve the efficiency of data query. Meanwhile, InfluxDB also
presents a time-structured merge tree as indexing of its storage
engine considering time series characteristics, and proposes the
concept of shard to manage time series data sectionally. In order
to reduce the storage resource used by time series data, InfluxDB
presents several various compression strategies. In real time series
environment, InfluxDB has achieved great success and has become
the most widely used TSDB. However, because of the unsatisfied
query performance of disk, the simple strategy for merging index-
ing, the unoptimized compression algorithms and other obvious
drawbacks, InfluxDB also need to be upgraded to improve its
service quality.

As a TSDB used by FaceBook to manage its massive time series
data, Gorilla is fast, scalable and stable [22]. Unlike other common
TSDBs, Gorilla is a scheme for managing and storing time series
data in memory. In order to meet the users’ requirements, Gorilla
stores high value data in memory, and proposes a large number
optimizationmethods for indexing and storage. In Gorilla, the final
write rate, query latency and system throughput have increased
substantially based on mentioned improvements. In addition, Go-
rilla proposes a detailed approach to deal with the fault which is
used to ensure the reliability of data stored in memory. For long-
term data, Gorilla stores it in HBase and tries to add flash storage
between memory and HBase to further blur the boundaries of hot
and cold data.

Recently, a relational TSDB named LittleTable is proposed [15].
In order to promote the query efficient, it clusters tables in two
dimensions (timestamps and hierarchically-delineated key) to op-
timize the indexing structure. LittleTable further optimizes for
time series services by capitalizing on the reduced consistency and
durability. Likewise to other systems, LittleTable designs appro-
priate fault tolerant strategy to ensure dependability of data ser-
vices combining its applied environment. In Cisco Meraki, Several
hundred LittleTable servers are certified to be able to efficiently
manage hundreds of TB time series data.

There are numerous studies and applications for storing, query-
ing and managing time series data. Almost all of these works treat
time series characteristics as optimized object, and have similar
optimized ideas and implementations. To ensure the stability of
system, these works formulate their own reliability strategies,
which are different from each other because of their different
application environment. According to our survey, the storage,
query and reliability assurance of time series data still have enough
room to be optimized.

3. FluteDB architecture

In this section, we define the time series data, and analyze its
numerical and operating characteristics. On this basis, we present
FluteDB’s basic architecture, enhanced sub-modules’ design con-
cept and their realization.



98 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Fig. 2. The overall architecture of FluteDB.

3.1. Definition and characteristics of time series data

Time-series data has extensive sources and is valuable for fur-
ther analyzing and extractingmeaningful statistical characteristics
from it [21,22]. As a series of data points with fixed meaning in
chronological order, time-series data can be represented as C =

(t1, v1), (t2, v2), . . . , (tn, vn), where ti denotes the sampling time
and vi is the corresponding observation values. As illustrated in
Table 1, time series data is different from general stream data,
which is mainly embodied in three aspects. Specifically, since the
shorter sampling interval and increasing number of devices, the
scale of time series data becomes much larger. The sample values
between continuous sampling timestamps are similar and contin-
uous, which means that there are lots of redundant segments in
time-series data. By observing the operation logs of database, we
find that the composition of time-series data operations includes
97% write operations, and as well as point query or range query.

3.2. Overall architecture

The proposed FluteDB is a standard in-memory databasewhose
architecture, strategy, etc. are designed to meet the specific re-
quirements of time series data. In general, FluteDB functions as a
write through cache, which involves roughly two major parts to
support its use: the upper data services and time series storage
engine.

As illustrated in Fig. 2, the upper data services mainly manage
the connections of all external applications, and provide corre-
sponding functions. The components (e.g. operation parse, content
based implementation optimization for input operation) in this
layer are not different from traditional database. In order to im-
prove the mobility of services, FluteDB also supported some SQL
operations.

Meanwhile, the time series storage engine allows us to write,
query and manage time series data expediently, and its applied
effect will determine the service performance of entire FluteDB
most directly. In FluteDB, we re-design the function architecture

and related algorithms in memory to meet the constraints men-
tioned in Section 1. Corresponding, we also adjust the coordination
pattern for physical storage and memory to further optimize the
resource utilization and system performance. As shown in Fig. 2,
time series storage engine consists of four parts: time series in-
dexing, extra cache, data processing and reliability and availability
strategy, which are enhanced correspondingly based on time se-
ries requirements. Thus, FluteDB not only has an efficient applied
effect, but also can provide more reliable and available services.

In FluteDB, all of the storage structures and considers are linear,
and its nodes do not share any resources or structures. Hence,
FluteDB has good horizontal scalability, which means that we can
adjust the scale of FluteDB cluster according the real cloud environ-
ment by simply increasing or deleting nodes. Of course, in order to
achieve efficient entire cluster performance, an appropriate cluster
strategy is necessary.

3.3. Time series data insertion and indexing

As a kind of data with strict ordered of time, the application and
analysis value of time series data (the probability of being queried)
are inversely proportional to the length of its generated time in
most cases [22]. Based on this assumption, existingworks label the
cold or hot data according to its generated time, and use different
storage strategies to deal with the corresponding time series data.

In previous TSDBs, the LSM tree has achieved desired perfor-
mance since its high write rate and flexible data structure [7,12,
14]. In a nutshell, the LSM tree is a B+ tree’s variant and consists
of an append-only part and a smaller update-in-place tree, which
are stored in disk and memory respectively. The in-memory in-
dexing is used to manage new data quickly, and the full B+ tree
in disk stores all previous data persistently. On a regular basis,
the database merges the two partial indexings and updates them
on disk for persistent storage in batches. In this way, based on
the assumption of cold/hot data, the vast majority of the insert
and query operations have been done in memory, and the I/O
operations of disk can be reduced directly. The original randomly



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 99

Table 1
Several real examples for time series data.
Data source Time stamp ti Observation values vi
Temperature sensor 1401335396.997

1401335397.998
1401335399.002

+46.5 ◦C
+46.4 ◦C
+46.3 ◦C

Smart grid 1363894780
1363894781
1363894782

220.15 V, 50 Hz, 2.768 × 10−6 Kw/h
219.95 V, 50 Hz, 2.883 × 10−6 Kw/h
220.85 V, 50 Hz, 2.425 × 10−6 Kw/h

Road monitor 2016-09-11T17:20:48.134Z
2016-09-11T17:20:49.635Z
2016-09-11T17:20:51.011Z

09204821c7c2.jpg
092049dc62ad.jpg
09205135e380.jpg

write strategy for data persistence is replaced by batched form,
which greatly reduces the movements of disk arm and raises the
write efficiency by several orders of magnitude.

However, despite the probability of cold data access operation
is small, it leads to a large number of I/O operations on disk, which
will significantly reduce the query performance of entire database.
Simultaneously, since LSM tree achieves the update, delete opera-
tions in physical media by utilizing version control, a large number
of additional storage resources are wasted for storing multiple
versions of the similar data. Besides, there are a lot of designs in
LSM tree that cannot match the characteristics of time series data
well [18,21,22].

In view of the characteristics and known defects of time series
data, we now propose a novel TTSM tree, a LSM tree variant in time
series applied environment.

3.3.1. Basic structure of TTSM tree and its time series optimization
TTSM tree is similar to LSM tree which is generally comprised

of two or more data storage structures. If differentiated by the
type of storage media, the TTSM can be divided into two major
components, one component is resident in memory and the other
one is resident in disk (as shown in Fig. 3).

In order to match the time series characteristics, TTSM tree has
been targeted optimized as follow:

1. Efficient tree structure: For data storage and query, a suit-
able data structure can effectively improve the operational
efficiency. The storage structures of different components
in TTSM have been confirmed based on the numerical char-
acteristic of input time series data, which facilitate the tree
operations in TTSM tree, e.g. treemerge, tree segment. To be
specific, due to the input time series data are ordered,mono-
tone increasing and non-redundant, the chain structure of
tree’s leaf node and the splitting characteristics of non-leaf
nodes are inherently suitable for the operation of time series
data. Therefore, we use B* tree as the storage structures for
both in-memory and disk data. The fundamental difference
between B* tree and B+ tree is that the pointer between
brother nodes, which are non-leaf node and non-root node,
is added. This setting is able to match our data insertion
strategy. Of course, the B* tree we selected here is able to
support some special operations.

2. Simplified insertion The B* tree is generally implemented
in code by using the chain structure. Considering the charac-
teristics of time series (e.g. ordered and monotone increas-
ing), all newly inserted data only appears in the rightmost
leaf node. If still using original insertion strategy (main-
taining the balance on both sides while split), the B* tree
structure is not a full tree (as shown in Fig. 4(a)), which
brings about a lower structural efficiency and a waste of
storage resources. Additionally, the non-leaf nodes in B* tree
splits continuously, resulting in the lower overall efficiency
of indexing. FluteDB changes the B* tree construction of
time series to batched append-onlymode,whichmeans new

data will be inserted to the end of chain batched instead of
searching insert location, and then, the essential pointers are
filled. The non-leaf node layer also can be updated directly
in a similar way. The B* tree built in FluteDB is a full tree, and
its computational complexity is also lower than traditional
methods. As shown in Fig. 4(b), the data insertion inmemory
can be greatly simplified in the case of known B+ tree order.

3. Multi-component balance Because of the cold/hot data
assumption, the time series data will be stored in memory
and disk respectively. Furthermore, the TTSM tree also splits
the original large B+ tree structure into a forest composed of
several small B+ trees based on the difference of data ‘‘tem-
perature’’ (defined in 3.3.2). As shown in Fig. 3, the amount
of data stored in each small B* tree in forest is dynamically
adjusted according to the degree of data to achieve optimal
performance of the entire system. In the forest based on this
strategy, the colder the data is, the deeper the depth of its
storage structure is, which conforms to the status of data
usage. Specifically, we define the temperature of time series
datamore precisely and reduce the number of I/Odisk access
by storing warm data in a shallower B* tree. The depth of
each B* tree will be determined by the specific needs, and
its storage space will also be allocated in the first use.

4. Triggered split andmerge:As illustrated in Fig. 3, themerg-
ing operation in traditional LSM tree is embodied in the
merging of in-memory tree and in-disk tree. However, the
design of multi-component in TTSM tree increases the tree
objects needed to be merged. Since the time series data is
inherently ordered and monotone increasing, the changes
caused by data insertion always appear at the rightmost leaf
node and its corresponding non-leaf nodes. In particular, the
two trees to be merged also retain this characteristics, that
is, the chain of leaf nodes in merged tree can be formed by
ordered connecting the leaf node chains of input trees end to
end directly. Thus, the merge operation does not require to
reinsert data or rotate structure as in the original B* tree, and
can be done more efficient at the premise of preserving ex-
isting tree structure. In the traditional LSM tree, themerging
operation of two trees is periodic, or the data accommodated
by tree structure is more than its performance load limit.
Such a simple merging strategy cannot achieve satisfactory
merging efficiency in time series applied environment, so
wepropose a special trigger strategy and an enhancedmerg-
ing strategy to improve the merging effect and efficiency in
TTSM tree. We bind the trigger opportunity, new tree’s data
storage amount and its query latency together, whichmeans
that the merge and split operation will be triggered if the
depth in new tree exceed its acceptable query latency (the
query latency is directly proportional to the depth of B* tree)
and the rightmost old tree node which is as same depth as
the root node in new tree is not full. Additionally, merging
two trees by one time will cause a lot of data to be locked,
and the entire in-memory indexing will also be emptied,



100 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Fig. 3. Data structures in FluteDB and its distribution.

Fig. 4. A comparison example for B* tree with different data insert strategies, where (a) uses original method, (b) inserts in a batched append-only way (two B* trees’ order
in Fig. 3 are four).

which results in a large number of disk access operations in
a short period of time. As shown in Fig. 5, the fundamental
idea of themerge strategy in TTSM tree is to embed (split and
reconstruct) the appropriate largest leftmost sub-structure
of new tree to old tree, and remains the structure of the
old tree and the rest of new tree unchanged, which en-
sures that only partial colder data in the new tree is locked,
thereby increases the availability of data in FluteDB. Once
the merge operation occurs on the disk, FluteDB appends
the new data in the reserved position to ensure its physical
continuous.

3.3.2. Cost analysis
In order to evaluate and compare the performance of TTSM tree

and analyze the performance of different methods in dealing with
cold/hot data, we theoretically analyze the cost of B + tree, LSM tree
and TTSM tree.

For the sake of convenience, we predefine some hard disk and
memory related symbols. costn and costl respectively denote the

space cost for non-leaf and leaf node storage (costn < costl).
costr and costm respectively denote the I/O cost required to read
or write a page for random access and continuously access to the
disk (costr ≫ costm). costD and costM are the storage cost of 1M
bytes in disk and memory (costD < costM ). We also define the data
temperature as the number of access times of 1M bytes data per
unit time.

As shown in Table 2, our cost analysis is mainly from two
aspects: space cost and time cost. Among them, we use a n-order
tree as an example in space cost analysis: the LSM tree’s version
control number is m, and the total number of time series data is
N. The B+ tree and LSM tree are split automatically at the time
of insertion and the tree structure is not full but balance, so we
define the depth is d. The TTSM’s tree structure is mainly full and
its depth is D =

⌈
logn

N
n

⌉
+ 1(D ≤ d − 1). Obviously, The space

cost of LSM tree is the highest because of its version control and
strict sequential write operations. When the data inserted into
B+ tree sequentially, the leaf nodes and non-leaf nodes will not
be full due to its balance strategy. Then, B+ tree’s space cost is



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 101

Fig. 5. An example of a merge and split operation. The red portion is the added portion in the merge operation, and the blue portion is the removed portion in the split
operation.

Fig. 6. The consumption of three indexing structures in different data temperature.

larger than TTSM tree’s (because the description is more complex,
the TTSM tree mentioned here is not multi-component version. In
fact, themulti-component version takes up less space than current
version).

To compare the I/O costs, we assume there are total n data
waiting for insertion, and the original disk total contains m pages
which include m1 pages non-leaf nodes (still m pages in disk after
inserting). Since the insert operation in B+ tree needs to repeat
some same sub-operations (e.g. search insert location), its I/O
cost is the highest (assuming that only one I/O disk operation in
each insert location search, and ignoring the node split and other
operational consumption). The I/O cost of LSM tree is significantly
cheaper than B+ tree because LSM tree batched inserts mass data
and updates all pages at a new physical address continuously.
TTSM tree reserves the location for new data at each layer, then
it just links the new leaf node chain and appends the upper non-
leaf nodes to the appropriate location when new data needs to be
inserted.

On the basis of the definition of data temperature, we analyze
the theoretical consumption of three algorithms to further com-
pare the performance among them. We assume that there are C
M bytes data need to be stored per second, which will be access
R different times. Then, the temperature of data can be described
as R/C . As shown in Fig. 6, the B+ tree is less effective in handling
cold/hot data, regardless ofwhether the disk utilization ormemory
utilization is the lowest. The resource utilization of LSM tree and
TTSM tree are both higher, but the overall performance of TTSM
tree is better.

Specifically, B+ tree stores data on disk directly and reloads the
data intomemorywhen the disk data is accessed. By definition, the
storage cost of B+ tree on the disk is C∗costD, and the storage cost
of the data in memory is C∗costM when all the data is loaded into
memory. Besides, the access operations in B+ tree are random disk
I/O operation, so the cost of single access operation is 2∗costr (as
known fromTable 2).With the increase of storeddata and the accu-
mulation of external queries, the value of R becomes larger, which
leads to the increase of the cost of overall data access. Furthermore,
the cost of data access in B+ tree takes two big turnings due to the
different data temperatures (as shown in Fig. 6). The first turning
occurs when the cost of random access is equal to the cost of the
disk storage cost (R/C = costD/2∗costr ), whichmeans that the data
at this temperature can be stored inmemory partially. The another
turning occurs when the cost of random access is equal to the cost
of the memory storage cost (R/C = costM/2∗costr ), which means
that the data at this temperature should be all stored in memory.

Similarly, we can get the turning points of LSM tree and TTSM
tree in the same conditions, which as shown in Table 3. From
Table 2, the I/O cost of B+ tree is the largest, the LSM tree’s cost
followed, and the TTSM tree’s is the smallest. Thus, by observing
Fig. 6, the positions of turning points of LSM tree is later than B+
tree’s, and the TTSM tree’s is the latest, which means that both
the disk utilization and memory utilization of TTSM tree are the
highest among these tree structures.



102 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Table 2
Comparison of the three tree structures costs.

Space cost I/O cost

B+ Tree N∗
[costl + (

∑d
i=2

2
ni−1 )∗costn] 2n∗costr

LSM Tree m∗N∗
[costl + (

∑d
i=2

2
ni−1 )∗costn] (2m − 2)∗costm + 2∗costr

TTSM Tree N∗
[costl + (

∑D
i=2

1
ni−1 )∗costn] (2m − 2m1 − 1)∗costm + 2∗costr

Table 3
The position of the turning points of the three tree structures.

Cold to warm Warm to hot

B+ Tree R/C = costD/2∗costr R/C = costM/2∗costr

LSM Tree R/C =
cost∗Dn

(2m − 2)∗costm + 2∗costr
R/C =

cost∗Mn
(2m − 2)∗costm + 2∗costr

TTSM Tree R/C =
cost∗Dn

(2m − 2m1 − 1)∗costm + 2∗costr
R/C =

cost∗Mn
(2m − 2m1 − 1)∗costm + 2∗costr

3.3.3. Fault tolerant

In database, particularly in cloud environment, indexing is
much more important than other components. The fault tolerant
strategy for indexing in TTSM tree needs to be adjusted because it
is involved in memory and disk at the same time and even related
in load correlation and lock state [15]. To be specific, during normal
operation, the new data is inserted into B* tree in batches, but the
handled data is still cached in memory temporarily. Only when
the data in caches are written to disk are the above operations
considered to be finished. However, if system broke down, partial
data in memory (e.g. split or merge two B* trees) will be lost. In
order to avoid this phenomenon, we record a special Write Ahead
Log (WAL) for TTSM tree. Because of the particularity of time series
data, TTSM tree’s WAL mainly constitutes of insert operations.
TheseWALs are periodically written to disk and form a checkpoint,
which can be used to recover the TTSM tree at that time.

To form a checkpoint, the following conditions or operations
have to be required [3]. Firstly, all current split and merge opera-
tions have been completed, and the newly insert operation, split or
merge operation are postponed until the checkpoint has been set
successfully. Secondly, the B* tree inmemory need to be written in
a known location on the disk (the insert operation can start again,
but the split or merge operation still needs to wait), and all the
cached changes from previous operations also need to be written
in disk. Then, a setup checkpoint can be added intoWAL. As shown
in Fig. 7, checkpoint in WAL contains the Log Serial Number (LSN),
the physical addresses of the roots of all the associated indexing in
disk and the merge cursors. The normal split or merge operation
can restart when the checkpoint has been set.

When the system is experiencing a failure at runtime, it can
be recovered as follows based on the checkpoint [3]. The recovery
operation locates an appropriate checkpoint in WAL and reloads
the previous data into memory firstly. Then, it loads all of the
data behind checkpoint in WAL into memory in turn and inserts
that data in batches. Besides, by reading the split or merge cursors
of indexing component stored in checkpoint, the corresponding
split or merge operations can be restarted. After all operations
mentioned above have been done, the recovery task of TTSM tree
is officially over. Since all of the storage space of TTSM tree has
been allocated as a full tree, the physical addresses of leaf nodes
are fixed regardless of whether they aremerged or inserted, which
means the partial original pointers still can be used. The strategy
of the TTSM tree is more concise than the original LSM tree fault
tolerant strategy, and the recovery is more rapid (at the expense of
an acceptable partial space cost).

3.4. Time series data query

Data query is one of themain service formsprovidedbydatabase,
and query latency is one of the main indicators to measure the
performance of database and cloud service [15,22]. In the time
series applied environment, due to the query operations only hold
a small portion of all operations, FluteDB greatly improves its write
rate at the price of sacrificing partial query efficiency. In fact, some
targeted optimizations have been applied in FluteDB based on the
characteristics of time series queries, such as timeliness, continuity
and cyclical. Specifically, the timeliness means that the probability
of the time series data being queried is inversely proportional to
the time duration from data insertion to current. Continuity is
similar to the continuous access hypothesis in computer system,
that is, the probability of data around the accessed data is higher.
Meanwhile, cyclical means that part of the cold data in disk will
be periodically queried, mainly from a large number of upstream
applications periodic query needs. Obviously, time series data
query is different from ordinary query. By utilizing time series
characteristics, FluteDB is reasonable to optimize the data schedul-
ing and cache strategy to improve the hit rate in memory, reduce
the disk I/O operations and improve the overall query performance.
Additionally, several specific additional acceleration components
can also avoid some unnecessary high cost operations.

3.4.1. Extra cache
Data caching is one of the important measures to enhance

the performance of the database query [17]. Particularly in the
application environment of time series, a suited cache mechanism
can optimize the efficiency of data retrieval and write operation
by reducing the number of times of operating disk. To be specific,
FluteDBdesigns a special cachemanage strategy based on the three
characteristics in time series query. Firstly, in order to reduce the
time consuming disk I/O operations, FluteDB dynamically adjusts
the stored data in memory based on the changes in data tem-
perature at the appropriate time (such as when the memory tree
mergeswith the disk tree).Meanwhile, FluteDB continuously loads
the data blocks around target data block into cache to prepare
for possible queries. In addition, FluteDB is also equipped with an
improved cache replacement strategy (as shown in Algorithm 1,
which can retain the higher temperature data effectively andmain-
tains the cache running stably. This means that we no longer load
a single block into cache, but rather a number of consecutive data
blocks in a single query. And FluteDB replaces the corresponding
number of blocks (not necessary continuous) each time the data is
not hit in cache.



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 103

Fig. 7. The checkpoint composition in WAL.

Fig. 8. The checkpoint composition in WAL.

3.4.2. Accelerated components
In addition to the extra cache, FluteDB still has several accelerat-

ing components that can reduce the number of high consumption
operations.

Bloom Filter Traditional LSM tree have to query on the disk when
the query operations is not hit in memory [12]. Because the disk
I/O operation is too costly, the TTSM tree still causes a lot of costs
though the TTSM tree splits the indexing in disk. If TTSM tree can
quickly determinewhether the data exists, and further confirm the
detailed location of data, the entire query performance in disk will
be greatly enhanced. To avoid a large number of reset, FluteDB
set the size of Bloom Filter based on the smallest split unit [8].
As shown in Fig. 8, FluteDB constructs the Bloom Filters for each
subtree in TTSM tree. The advantage of this component is that it
is possible to immediately determine whether the data is present
with little I/O operation and calculation consumption.

Continuous Replacement In the ordinary cache strategy, the new
loading data block will replace the old one whenever a cache miss
encountered [17]. However, in time series environment, the data
stored in different media has discrepant caching value because of
its source and composition. The main reason for this is that cycli-
cal operations from requirements such as certain monitoring will
cause the data to show periodic requirements. Hence, the replace

operation in FluteDB has been given an execution probability by
considering above reasons.

Because our improved replacement strategy can load contin-
uous hot data into cache at once, the hit rate, efficiency of read
andwrite operations are significantly enhanced, despite the overall
number of read and write operations do not change. In order to
verify our design, we modify a number of existing replacement
algorithms by using the same improvement. The experimental re-
sults (in Section 5) show that ourmethod can significantly improve
the hit rate and the overall efficiency, and the time-series enhanced
Clock outperforms best among the several algorithms. Meanwhile,
to guarantee the basic dependability of cache, we partially follow
the original fault tolerance mechanism, which mainly includes the
mentioned log mechanism and persistent operations. In fact, we
found that time-series data hasmore advantages than normal data
on storage dependability when we investigated it. Because most
sensors have their own cache for responding the IDC’s requests.

3.5. Time series data processing

Data processing is the component which directly connects the
storage engine and physical storage media [4,9]. An efficient and
stable data processingmodule can greatly reduce the consumption
of disk I/O operation and storage space. Additionally, it can also



104 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Table 4
The position of the turning points of the three tree structures.
Time stamp (µs) Delta of delta (µs) SDD code

1452202444 009 003 – –
1452202444 010 028 25 0011 1001
1452202444 011 031 3 1011

make the complexity of some data operations, such as data migra-
tion, backup and indexing, to be greatly reduced.

3.5.1. Time series compression
The main purpose of data compression is to reduce the re-

source cost, which is especially obvious in the cloud environment
[18,21,22]. Compared with the traditional data compression task,
time series data, on the one hand, has some special additional
constraints for time series compression owing to its special char-
acteristics, but on the other, it is properly relaxed in other common
constraints as well. To obtain the best compression efficiency,
FluteDB respectively adopts the suited compression strategies to
the corresponding object based on its numeric characteristics.

Time-Series Compression The time stamp t1, t2 . . . , tn is a mono-
tonically increasing sequence. And the delta between ti−1, ti is
roughly fixed since the intervals of most sampling sources are
fixed (Though the interval of data sampling is not specified, it
will be limited in a fixed range according its own streaming and
large-scale characteristics.). Hence, rather than storing the whole
time stamp, only storing a delta of deltas is able to save a lot of
resources and does not significantly increase the compression and
decompression time. Specifically, we encode the time stamp into
blocks by utilizing an improved variable length encoding algorithm
named Sliced Delta of Deltas (SDD).

As described in Table 4, we pre-establish the delta between two
continuous sampling points as 1000 µs, and the delta of deltas
is much smaller than original delta obviously. In order to further
minimize the compression rate, we store the true form of delta of
deltas in fixed-size slices (The size of slice is determined by the
average size of delta of the deltas.), which is able to reduce the use
of the flag bits (if the slice is the last slice of a value, its first bit is
set to bit ‘1’, otherwise the first bit is set to bit ‘0’). As shown in
Table 4, we select four bits as the length of single slice. So we can
directly encode the binary code of 25 as 011001 (the first bit is sign
bit), and further divide it into two slices, 0011 and 1001.

The theoretical compression ratio as shown in Eq. (1), where
length(·) denotes the number of bits of the corresponding numeric,
f (·) is the function of SDD, size_of (·) is the length of ti (e.g. int, float
and so on).

compression_ratioSDD =
size_of (filecompressed)

size_of (file)

=
length(t0) + length(δt) +

∑n
i=1 f (δδti, ti, ti−1, lb)∑n

i=0 size_of (ti)

(1)

Observationvalues compression: In addition to the time stamp
compression, we also compress the observation values. Appar-
ently, as real data collected by sensors or other devices, observation
values are still continuous like time stamp [18,22]. However, the
delta between two continuous sampling points is not stable, which
means the variance of delta become much larger. Therefore, we
present a novel algorithmAXOR by considering the data character-
istics and calculation complexity to achieve efficient compression.
Likewise, we still use variable length encoding to compress the
observation values. Due to the type of observation values are
mostly double, we felicitously and efficiently compress the XOR
values between continuous observation values.

As a real instance in Table 5, we will introduce AXOR step by
step. In the compression process, we encode the input value into

double representation, approximately set the trailing bits of its
double representation to 0 (the number of variation bits is shown
in Eq. (2) and ensure its approximate error to be limited at 1 ×

10−(n+2),

nomitted_bits = ldecimals − ⌊log2 observation_values⌋ −
⌈
log2 10

n+2⌉
(2)

where n denotes the precision of the initial input value, ldecimals is
the length of decimal part in double representation (default value
is 52). Then, we calculate a simple XOR between the current and
previous values, and break the XOR’s value into three parts, which
include the meaningful code’s start position, length and specific
content (meaningful part denotes the code between first ‘1’ and
last ‘1’ in XOR binary value). Of course, there are three control bits
to explain the following codes. The first bit indicates whether the
XOR’d value is 0, the second bit denotes whether the meaningful
bits start at the same position as previous bits, and the final bit
means whether the length of the meaningful bits is same as the
previous ones.

In addition, in order to deal with other types of data, we se-
lected some more diverse compress algorithms. Among them, the
Boolean observation value can be expressed with one bit which
do not need to be compressed, the Float observation value can
also be compressed by utilizing AXOR algorithm, and the String
observation value can be compressed by using LZ4 or snappy
algorithm [5].

Both of SDD(lossless) and AXOR(approximate lossless) are com-
pressed in an unit of database blocks, and the compressed infor-
mation is stored in the block header of the data file. In addition, in
order to ensure the dependability, consistency and completeness
of the compressed data, we add the check code behind the tail of
each block. Independent experimental results in Tables 6 and 7
show that SDD and AXOR can efficiently compress the time-series
data. Besides, our compressed result can be easily converted into
other compressed formats (e.g. PAA, APCA) for downstream tasks.

3.5.2. Data encapsulation
The data file stored on the disk is the final form of persistent

data, and how to save that data in an optimal way is also the
content has to be considered [2,16]. As illustrated in Fig. 9, FluteDB
stores the compressed data in data file by column, which makes it
easy to retrieve and query data quickly. In particular, to ensure data
consistency and security, we design a check code strategy for the
data file. Because the time series data is compressed by variable
length methods, the final data file is also variable length. Besides,
the file header of each individual data file contains partial index
information, which is utilized to manage the data easily.

4. Evaluation

In this section, we analyze the performance of FluteDB via
benchmarks and present measurements of our production deploy-
ment.

4.1. Experimental setup

We run our services on amachine with Intel Xeon CPU E5-2650
8-core processors, 256 G of 1600MHz DDR3 RAM, and a software



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 105

Table 5
The position of the turning points of the three tree structures.
Original data Approximate double representation XOR with previous Control bits Start point Length Meaningful code

40.687612 0 × 40445803AB800000 – – – – –
40.673564 0 × 4044563758400000 0 × 00000E34F3C00000 111 10101 010110 1110001101001111001111
40.723569 0 × 40445C9DE8A00000 0 × 00000AAAB0E00000 101 – 010111 10101010101010110000111
40.583876 0 × 40444ABC72E00000 0 × 000016219A400000 100 – – 10110001000011001101001
0.000000 – - 000 – – –
40.892842 0 × 40447248A5800000 0 × 000038F4D7600000 101 – 011001 1110001111010011010111011

Table 6
Comparison of different compression methods for compressing 100,000 time stamps.
Compression method Compression ratio Compression time Decompression time

RLE [9]
LZ77 [5]
Delta
Original DD [18]
SDD

95.63%
61.46%
35.06%
18.74%
11.01%

0.6635 ms
1.7367 ms
0.4391 ms
0.5433 ms
0.6468 ms

0.9754 ms
2.9964 ms
1.1078 ms
1.2127 ms
1.2931 ms

Table 7
Comparison of different compression methods for compressing 100,000 observation values.
Compression method Compression ratio Compression time Decompression time

RLE [9]
LZ77 [5]
Delta
XOR [22]
AXOR

98.84%
68.43%
77.54%
48.48%
43.98%

0.7362 ms
1.8453 ms
0.5884 ms
0.8582 ms
0.7964 ms

0.9535 ms
3.4363 ms
1.0435 ms
1.5324 ms
1.3624 ms

Fig. 9. The composition of persistent data file.

RAID 0 array of one SATAWestern DigitalWD2000FYYZ 2TB, 7,200
RPMhard drivewith 64MB of cache. Themachine run Linux kernel
version 3.2.0 using the default file system readahead of 128 KB
unless otherwise noted.

Before we start our data services, we clear Linux’s disk cache
and the drive’s internal cache, and write and read 64MB data
to a random location on disk. All services are single-threaded.
To guarantee the reliability of experimental results, we run each
test 10 times, and we plot the average of the metric with a 95%
confidence interval, computed using the t test.

4.2. Pressure test

We evaluate the performance of FluteDB with a stand-alone
system by inserting 20 GB data into a table. And then we evaluate
the read throughput of FluteDB through executing 100,000 query
operations.

4.2.1. Write rate
In our experiments, we use fixed variables, e.g. row size, batch

size, to evaluate the throughput of FluteDB by experimenting with
a combination of TTSM tree order and split depth. The results
are shown in Fig. 10(a) and (b), as the increasing of threshold of
TTSM tree, the write rate increases at first and eventually flattens.
In particular, due to the use of the TTSM tree, merge events are
shown as impulses with the increasing of data size as illustrated in
Fig. 10(c).

4.2.2. Query efficiency
Because the query operations of time series data only include

time point query and range query, its efficiency is independent of
numbers of readers and other parameters of table. In contrast, the
query efficiency of FluteDB is sensitive to the data temperature
due to the difference in data storage location and the cost of



106 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Fig. 10. The experimental results of write rate.

disk arm movement. As illustrated in Fig. 11, the fluctuations on
query efficient curve mainly come from the access of the hard
disk.

4.3. Horizontal comparison

Since most of the key sub-modules in FluteDB are targeted
to enhanced based on the time series characteristics, its per-
formance for data processing is also greatly improved. In order
to evaluate and further compare the performances of different
sub-modules, we select some general state-of-the-art algorithms
as contrast to demonstrate the advancement and efficiency of
FluteDB.

4.3.1. Insert and query efficiency
As an important indicator of database, we analyze the theoret-

ical consumption of different data indexing algorithms in detail in
Section 3.3. To verify our analysis and obtain the efficiency indi-
cator of TTSM tree in real environment, we generate the indexing
for inserting data based on B+ tree, LSM tree and TTSM tree. We
only perform the insert operations (ignore the query operations)

Fig. 11. The experimental results of query efficiency.

Fig. 12. The comparison of insert consumption.

to facilitate the control of the variate. The experimental dataset
in this paper is the upload data stream of taxi sensors in New
York [10]. This dataset contains 2.1 million valid data insertion
operations, which includes 12 items, such as timestamps (primary
keys), direction, speed and etc.

Experimental results as illustrated in Fig. 12, the insert time
consumption of TTSM tree keeps a linear relation with the amount
of data in indexing haply, however, the B+ tree and LSM tree are
not that (step or curve). The reason for that phenomenon is that
the TTSM tree still retain itself as a stable append-only state, and
the complexity of insertion is Θ(1). Certainly, the resulting fluctu-
ations on curve of TTSM tree mainly come from the cyclical tree
split and merge operations. This means that the insert complexity
of them will be increased with an increase in the amount of data.
Experimental results show that TTSM tree significantly reduce the
time required for insertion due to the characteristics of time series,
which is better than the B+ tree and LSM tree.

4.3.2. Data size
In addition, we also compare the memory and disk resources

occupied by three indexing structures. The experimental results
are shown in Fig. 13, we can obviously find that the disk consump-
tion of TTSM tree is step-by-step randomly because it applies the
continuous storage space for full tree when creating a new subtree
structure for response trigger of split. The B+ tree is completely
stored in disk, so its disk consumption is linearly related to the
amount of input data. The LSM tree imports its data in memory
into disk in batches, so its disk consumption also grows in a ladder
fashion. However, since its additional version control and append-
only strategy, the disk consumption of LSM are much larger than
others.

On the whole, the indexing based on the TTSM tree has a better
performance both in time and space consumptionwhenwrite data.



C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108 107

Fig. 13. The comparison of storage consumption.

5. Conclusion

FluteDB is a novel memory TSDB for sensor-cloud which effi-
ciently manages time series data by rationally processing memory
data and interacts data in disk in batch. To fully adapt to the
real time series data application environment, FluteDB has opti-
mized its corresponding indexing structure, query components,
data compression and data encapsulation by considering the char-
acteristics of time series. Furthermore, FluteDB is equipped with a
complete fault tolerant and recovery strategy in order to provide a
more reliable and available data service. In particular, FluteDB can
adjust its data storage medium and data structure, adaptive data
query probability and balance the resource consumption and ser-
vice performance according to the data temperature characteristic
defined by itself. By analyzing the working status of FluteDB in a
real cloud environment, we can find that the ultimate throughput
of FluteDB can meet the vast majority of data needs. On this basis,
FluteDB obtains the competitive effect on the average writing rate,
the average query latency and so on through the comparison with
the existing advanced methods. Meanwhile, FluteDB is equipped
with a highly efficient compressor packaging strategy, so its use
of disk and memory resources is significantly reduced. In addition,
FluteDB can quickly recover from errors and failures in real and
simulated errors and re-provide services.

In order to further enhance the performance of FluteDB, wewill
be suitable for the future of a reasonable cluster strategy to fully
use the cluster concurrency. At the same time, according to some
of the more unique features of timing data, some scalable poli-
cies and plug-ins can also make data service performance in this
upgrade.

Acknowledgments

Thiswork is supported byChina 973 Fundamental R&DProgram
(No. 2014CB340300), NSFC program (Nos. 61472022, 61421003,
61772151 61502017), SKLSDE-2016ZX-11, and partly by the Bei-
jing Advanced Innovation Center for BigData andBrain Computing.
We thank the anonymous reviewers for their careful reading of our
manuscript and their many insightful comments and suggestions.

References

[1] L. Chen, L. jianxin, S. Jinghui, Z. Yangyang, FluteDB: An Efficient and De-
pendable Time-Series Database Storage Engine, SpaCCS Workshops, 2017,
pp. 446–456.

[2] J. Christopher M., O. Edward, Y. Wai Gen, The partitioned exponential file for
database storage management, VLDB J. 16 (4) (2007) 417–437.

[3] L. Gregory, X. Liudong, B. Hanoch, D. Yuanshun, Reliability of series-parallel
systems with random failure propagation time, IEEE Trans. Reliab. 62 (3)
(2013) 637–647.

[4] Z. Jacob, L. Abraham, A universal algorithm for sequential data compression,
IEEE Trans. Inform. Theory 23 (3) (1977) 337–343.

[5] C. Kaushik, K. Eamonn J., M. Sharad, P. Michael, Locally adaptive dimension-
ality reduction for indexing large time series databases, ACM Trans. Database
Syst. 27 (2) (2002) 188–228.

[6] G.Mario, E. Hugo J., O. Fernando, T. Eric S., Time series forecastingwith genetic
programming, Nat. Comput. 16 (1) (2017) 165–174.

[7] R. Mendel, O. John K., The design and implementation of a log-structured file
system, ACM Trans. Comput. Syst. 10 (1) (1992) 26–52.

[8] M. Michael, Compressed bloom filters, IEEE/ACM Trans. Netw. 10 (5) (2002)
604–612.

[9] B. Mostafa A., Data compression in scientific and statistical databases, IEEE
Trans. Softw. Eng. 11 (10) (1985) 1047–1058.

[10] NewYork City Taxi Trip Duration, 2017, https://www.kaggle.com/c/nyc-taxi-
trip-duration/data. (Accessed 17 December 2017).

[11] OpenTSDB - A Distributed, Scalable Monitoring System, 2017, http://
opentsdb.net/. (Accessed 17 December 2017).

[12] O. Patrick E., C. Edward, G. Dieter, O. Elizabeth J., The log-structured merge-
tree (LSM-Tree), Acta Inf. 33 (4) (1996) 351–385.

[13] G. Robson E.D., B. Azzedine, A. Raed, Time series-oriented load prediction
model and migration policies for distributed simulation systems, IEEE Trans.
Parallel Distrib. Syst. 28 (1) (2017) 215–229.

[14] S. Russell, R. Raghu, bLSM: a general purpose log structured merge tree, in:
Proceedings of the 2012 ACM International Conference on Management of
Data, SIGMOD 2012, pp. 217–228.

[15] R. Sean,W. Eric,W. Edmund, A. Ethan, S. Nat, LittletableA time-series database
and its uses, in: Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD, 2017, pp. 125–138.

[16] P. Stavros, D. Kushal, M. Samuel, G. M. Timothy, The tiledb array data stor-
age manager, Publ. Very Large Database Endowment (PVLDB) 10 (4) (2016)
349–360.

[17] P. Stefan, B. László, A survey of web cache replacement strategies, ACM
Comput. Surv. 35 (4) (2003) 374–398.

[18] Storage Engine of InfluxData, 2017. https://docs.influxdata.com/influxdb/v1.
2/concepts/storage_engine/. (Accessed 17 December 2017).

[19] The world’s most advanced open source database, 2017, https://www.
postgresql.org/. (Accessed 17 2017).

[20] The world’s most popular open source database, 2017. https://www.mysql.
com/. (Accessed 17 December 2017).

[21] TimescaleDB: SQL made scalable for time-series data, 2017. http://www.
timescale.com/papers/timescaledb.pdf. (Accessed 17 December 2017).

[22] P. Tuomas, F. Scott, P. Cavallaro, Q. Huang, M. Justin, T. Justin, V. Kaushik,
Gorilla: a fast, scalable, in-memory time series database, Publ. Very Large
Database Endowment (PVLDB) 8 (12) (2015) 1816–1827.

[23] C. Yongjie, T. Hanghang, F. Wei, J. Ping, H. Qing, Facets: Fast comprehensive
mining of coevolving high-order time series, in: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2015, pp. 79–88.

Chen Li is currently a Ph.D. student at the School of Com-
puter Science and Engineering, Beihang University. His
research interests include knowledge graph, Information
retrieval and data analysis and processing.

Bo Li is an assistant professor at the School of Computer
Science and Engineering, Beihang University. He received
the Ph.D. degree in Jan. 2012. He was a visiting scholar in
computer science department of University of Edinburgh
in 2014. His current research interests include virtualiza-
tion, system reliability and data mining etc.

Md Zakirul Alam Bhuiyan is currently an assistant pro-
fessor in the Department of Computer and Information
Sciences at FordhamUniversity. Previously, he worked as
an assistant professor at Temple University. His research
focuses on dependable cyber physical systems, WSN ap-
plications, big data, and cyber security.

http://refhub.elsevier.com/S0743-7315(18)30542-2/b2
http://refhub.elsevier.com/S0743-7315(18)30542-2/b2
http://refhub.elsevier.com/S0743-7315(18)30542-2/b2
http://refhub.elsevier.com/S0743-7315(18)30542-2/b3
http://refhub.elsevier.com/S0743-7315(18)30542-2/b3
http://refhub.elsevier.com/S0743-7315(18)30542-2/b3
http://refhub.elsevier.com/S0743-7315(18)30542-2/b3
http://refhub.elsevier.com/S0743-7315(18)30542-2/b3
http://refhub.elsevier.com/S0743-7315(18)30542-2/b4
http://refhub.elsevier.com/S0743-7315(18)30542-2/b4
http://refhub.elsevier.com/S0743-7315(18)30542-2/b4
http://refhub.elsevier.com/S0743-7315(18)30542-2/b5
http://refhub.elsevier.com/S0743-7315(18)30542-2/b5
http://refhub.elsevier.com/S0743-7315(18)30542-2/b5
http://refhub.elsevier.com/S0743-7315(18)30542-2/b5
http://refhub.elsevier.com/S0743-7315(18)30542-2/b5
http://refhub.elsevier.com/S0743-7315(18)30542-2/b6
http://refhub.elsevier.com/S0743-7315(18)30542-2/b6
http://refhub.elsevier.com/S0743-7315(18)30542-2/b6
http://refhub.elsevier.com/S0743-7315(18)30542-2/b7
http://refhub.elsevier.com/S0743-7315(18)30542-2/b7
http://refhub.elsevier.com/S0743-7315(18)30542-2/b7
http://refhub.elsevier.com/S0743-7315(18)30542-2/b8
http://refhub.elsevier.com/S0743-7315(18)30542-2/b8
http://refhub.elsevier.com/S0743-7315(18)30542-2/b8
http://refhub.elsevier.com/S0743-7315(18)30542-2/b9
http://refhub.elsevier.com/S0743-7315(18)30542-2/b9
http://refhub.elsevier.com/S0743-7315(18)30542-2/b9
https://www.kaggle.com/c/nyc-taxi-trip-duration/data
https://www.kaggle.com/c/nyc-taxi-trip-duration/data
https://www.kaggle.com/c/nyc-taxi-trip-duration/data
http://opentsdb.net/
http://opentsdb.net/
http://opentsdb.net/
http://refhub.elsevier.com/S0743-7315(18)30542-2/b12
http://refhub.elsevier.com/S0743-7315(18)30542-2/b12
http://refhub.elsevier.com/S0743-7315(18)30542-2/b12
http://refhub.elsevier.com/S0743-7315(18)30542-2/b13
http://refhub.elsevier.com/S0743-7315(18)30542-2/b13
http://refhub.elsevier.com/S0743-7315(18)30542-2/b13
http://refhub.elsevier.com/S0743-7315(18)30542-2/b13
http://refhub.elsevier.com/S0743-7315(18)30542-2/b13
http://refhub.elsevier.com/S0743-7315(18)30542-2/b16
http://refhub.elsevier.com/S0743-7315(18)30542-2/b16
http://refhub.elsevier.com/S0743-7315(18)30542-2/b16
http://refhub.elsevier.com/S0743-7315(18)30542-2/b16
http://refhub.elsevier.com/S0743-7315(18)30542-2/b16
http://refhub.elsevier.com/S0743-7315(18)30542-2/b17
http://refhub.elsevier.com/S0743-7315(18)30542-2/b17
http://refhub.elsevier.com/S0743-7315(18)30542-2/b17
https://docs.influxdata.com/influxdb/v1.2/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.2/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.2/concepts/storage_engine/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
http://www.timescale.com/papers/timescaledb.pdf
http://www.timescale.com/papers/timescaledb.pdf
http://www.timescale.com/papers/timescaledb.pdf
http://refhub.elsevier.com/S0743-7315(18)30542-2/b22
http://refhub.elsevier.com/S0743-7315(18)30542-2/b22
http://refhub.elsevier.com/S0743-7315(18)30542-2/b22
http://refhub.elsevier.com/S0743-7315(18)30542-2/b22
http://refhub.elsevier.com/S0743-7315(18)30542-2/b22


108 C. Li et al. / J. Parallel Distrib. Comput. 122 (2018) 95–108

Lihong Wang is a professor in National Computer Net-
work Emergency Response Technical Team/Coordination
Center of China. Her current research interests include
information security, cloud computing, big data mining
and analysis, Information retrieval and data mining.

Jinghui Si is currently an undergraduate student at the
School of Computer Science and Engineering, Beihang
University. His research interests includedatamining and
natural language processing.

Guanyu Wei is currently an undergraduate student at
the School of Computer Science and Engineering, Beihang
University. His research interests include system reliabil-
ity and distributed systems.

Jianxin Li is a professor at the School of Computer Science
and Engineering, Beihang University, and a member of
IEEE and ACM. He received the Ph.D. degree in Jan. 2008.
Hewas a visiting scholar atmachine learning department
of CMU in 2015, and a visiting researchers of MSRA in
2011.His current research interests include virtualization
and cloud computing, data analysis and processing.


	FluteDB: An efficient and scalable in-memory time series database for sensor-cloud
	Introduction
	Related work 
	FluteDB architecture 
	Definition and Characteristics of Time Series Data
	Overall Architecture
	Time Series Data Insertion and Indexing
	Basic structure of TTSM tree and its time series optimization
	Cost Analysis
	Fault Tolerant

	Time Series Data Query
	Extra Cache
	Accelerated Components

	Time Series Data Processing
	Time Series Compression
	Data Encapsulation


	Evaluation
	Experimental Setup
	Pressure Test
	Write Rate
	Query Efficiency

	Horizontal Comparison
	Insert and Query Efficiency
	Data Size


	Conclusion
	Acknowledgments
	References


