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We investigate the query evaluation problem for fixed queries over fully dynamic databases, where tuples

can be inserted or deleted. The task is to design a dynamic algorithm that immediately reports the new result

of a fixed query after every database update.

We consider queries in first-order logic (FO) and its extension with modulo-counting quantifiers (FO+MOD)

and show that they can be efficiently evaluated under updates, provided that the dynamic database does not

exceed a certain degree bound.

In particular, we construct a data structure that allows us to answer a Boolean FO+MOD query and to

compute the size of the result of a non-Boolean query within constant time after every database update. Fur-

thermore, after every database update, we can update the data structure in constant time such that afterwards

we are able to test within constant time for a given tuple whether or not it belongs to the query result, to

enumerate all tuples in the new query result, and to enumerate the difference between the old and the new

query result with constant delay between the output tuples. The preprocessing time needed to build the data

structure is linear in the size of the database.

Our results extend earlier work on the evaluation of first-order queries on static databases of bounded

degree and rely on an effective Hanf normal form for FO+MOD recently obtained by Heimberg, Kuske, and

Schweikardt (LICS 2016).
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1 INTRODUCTION

Query evaluation is a fundamental task in databases, and a vast amount of literature is devoted to
the complexity of this problem. In this article, we study query evaluation on relational databases
in the “dynamic setting,” where the database may be updated by inserting or deleting tuples. In
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this setting, an evaluation algorithm receives a query φ and an initial database D and starts with a
preprocessing phase that computes a suitable data structure to represent the result of evaluating
φ on D. After every database update, the data structure is updated so that it represents the result
of evaluating φ on the updated database. The data structure shall be designed in such a way that
it quickly provides the query result, preferably in constant time (i.e., independent of the database
size). We focus on the following flavours of query evaluation:

• Testing: Decide whether a given tuple a is contained in φ (D).
• Counting: Compute |φ (D) | (i.e., the number of tuples that belong to φ (D)).
• Enumeration: Enumerate φ (D) with a bounded delay between the output tuples.

Here, as usual, φ (D) denotes the k-ary relation obtained by evaluating a k-ary query φ on a
relational database D. For Boolean queries, all three tasks boil down to

• Answering: Decide if φ (D) � ∅.

Compared to the dynamic descriptive complexity framework introduced by Patnaik and
Immerman [19], which focuses on the expressive power of first-order logic on dynamic databases
and has led to a rich body of literature (see Reference [21] for a survey), we are interested in
the computational complexity of query evaluation. The query language studied in this article is
FO+MOD, the extension of first-order logic FO with modulo-counting quantifiers of the form
∃i mod m x ψ , expressing that the number of witnesses x that satisfyψ is congruent to i modulo m.
FO+MOD can be viewed as a subclass of SQL that properly extends the relational algebra.

Following Reference [2], we say that a query evaluation algorithm is efficient if the update time
is either constant or at most polylogarithmic (logc n) in the size of the database. As a consequence,
efficient query evaluation in the dynamic setting is only conceivable if the static problem (i.e., the
setting without database updates) can be solved for Boolean queries in linear or pseudo-linear
(n1+ε ) time. Since this is not always possible, we provide a short overview on known results about
first-order query evaluation on static databases and then proceed by discussing our results in the
dynamic setting.

First-order Query Evaluation on Static Databases. The problem of deciding whether a given data-
base D satisfies an FO-sentence φ is AW[∗]-complete (parameterised by ||φ ||), and it is therefore
generally believed that the evaluation problem cannot be solved in time f ( ||φ ||) ||D ||c for any com-
putable f and constant c (here, ||φ || and ||D || denote the size of the query and the database, respec-
tively). For this reason, a long line of research focused on increasing classes of sparse instances
ranging from databases of bounded degree [22] (where every domain element occurs only in a
constant number of tuples in the database) to classes that are nowhere dense [10]. In particular,
Boolean first-order queries can be evaluated on classes of databases of bounded degree in lin-
ear time f ( ||φ ||) ||D ||, where the constant factor f ( ||φ ||) is threefold exponential in ||φ || [8, 22]; and
Frick and Grohe [8] showed that the threefold exponential blow-up in terms of the query size is
unavoidable assuming FPT � AW[∗].

Durand and Grandjean [6] and Kazana and Segoufin [13] considered the task of enumerating the
result of a k-ary first-order query on bounded degree databases and showed that after a linear time
preprocessing phase the query result can be enumerated with constant delay. This result was later
extended to classes of databases of bounded expansion [14]. Kazana and Segoufin [14] also showed
that counting the number of result tuples of a k-ary first-order query on databases of bounded
expansion (and hence also on databases of bounded degree) can be done in time f ( ||φ ||) ||D ||.
Segoufin and Vigny [23] proved an analogous result for classes of locally bounded expansion and
pseudo-linear time f ( ||φ ||) ||D ||1+ε , and they also presented an algorithm for enumerating the query
result with constant delay after pseudo-linear time preprocessing. These results were recently
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generalised to all nowhere dense classes of databases by Grohe and Schweikardt [11] and
Schweikardt, Segoufin, and Vigny [20]. Durand, Schweikardt, and Segoufin [7] obtained analo-

gous results for classes of databases of low degree (i.e., degree at most ||D ||o (1)).

Our Contribution. We extend the known linear time algorithms for first-order logic on classes
of databases of bounded degree to the more expressive query language FO+MOD. Moreover, and
more importantly, we lift the tractability to the dynamic setting and show that the result of FO

and FO+MOD-queries can be maintained with constant update time. In particular, we obtain the
following results. Let φ be a k-ary FO+MOD-query and d a degree bound on the databases under
consideration.1 Given an initial database D, we construct in linear time f ( ||φ ||,d ) ||D || a data struc-
ture that can be updated in constant time f ( ||φ ||,d ) when a tuple is inserted into or deleted from a
relation of D. After each update the data structure allows to

• immediately answer φ on D if φ is a Boolean query (Theorem 4.1),
• test for a given tuple a = (a1, . . . ,ak ) whether a ∈ φ (D) in time O (k2) (Theorem 6.1),
• immediately output the number of result tuples |φ (D) | in time O (1) (Theorem 8.1),
• enumerate all tuples (a1, . . . ,ak ) ∈ φ (D) with O (k2) delay (Theorem 9.2), and
• enumerate all tuples (a1, . . . ,ak ) in φ (Dnew ) \ φ (Dold ) and all tuples in φ (Dold ) \ φ (Dnew )

with O (k2) delay (Theorem 11.1), where Dold and Dnew denote the database before and after
performing the update operation, respectively.

For fixed d , the parameter function f ( ||φ ||,d ) is threefold exponential in terms of the query size,
which is (by Frick and Grohe [8]) optimal assuming FPT � AW[∗]. We stress that while all these
different types of evaluation turn out to be tractable on bounded degree databases, they are in
general not equivalent. To the contrary, it has been shown in References [2, 4] that on unrestricted
databases there are queries where the different tasks lead to different complexities.

Outline. Our dynamic query evaluation algorithm crucially relies on the locality of FO+MOD

and in particular on an effective Hanf normal form for FO+MOD on databases of bounded de-
gree recently obtained by Heimberg, Kuske, and Schweikardt [12]. After some basic definitions in
Section 2, we briefly state their result in Section 3 and obtain a dynamic algorithm for Boolean
FO+MOD-queries in Section 4. After some preparations for non-Boolean queries in Section 5, we
present the algorithm for testing in Section 6. In Section 7, we reduce the task of counting and
enumerating FO+MOD-queries in the dynamic setting to the problem of counting and enumer-
ating independent sets in graphs of bounded degree. We use this reduction to provide efficient
dynamic counting and enumeration algorithms in Sections 8 and 9, respectively. In Section 10, we
generalise this to be able to efficiently enumerate particular subsets of the query result, and we use
this in Section 11 to obtain an efficient dynamic algorithm for enumerating the difference between
the old and the new query result. We conclude in Section 12.

2 PRELIMINARIES

We write N for the set of non-negative integers and let N�1 := N \ {0} and [n] := {1, . . . ,n} for all
n ∈ N�1. By 2M we denote the power set of a set M . For a partial function f , we write dom( f ) and
codom( f ) for the domain and the codomain of f , respectively.

Databases. We fix a countably infinite set dom, the domain of potential database entries. Ele-
ments in dom are called constants. A schema is a finite set σ of relation symbols, where each R ∈ σ
is equipped with a fixed arity ar(R) ∈ N�1. Let us fix a schema σ = {R1, . . . ,R |σ | }. A database D of

1Both φ and d are assumed to be fixed, i.e., in contrast to the database they do not change. Moreover, although we make

the dependence on ‖φ ‖ and d very explicit, we treat them as constants when elaborating on asymptotic complexity.
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schema σ (σ -db, for short) is of the form D = (RD
1 , . . . ,R

D
|σ | ), where each RD

i is a finite subset of

domar(Ri ) . The active domain adom(D) of D is the smallest subset A of dom such that RD
i ⊆ Aar (Ri )

for each Ri in σ .
The Gaifman graph of a σ -db D is the undirected simple graph GD = (V ,E) with vertex set

V := adom(D), where there is an edge between vertices u and v whenever u � v and there are
R ∈ σ and (a1, . . . ,aar(R ) ) ∈ RD such that u,v ∈ {a1, . . . ,aar(R ) }. A σ -db D is called connected if its

Gaifman graph GD is connected; the connected components of D are the connected components of
GD . The degree of a database D is the degree of its Gaifman graph GD , i.e., the maximum number
of neighbours of a node of GD .

Throughout this article, we fix a number d ∈ N and restrict attention to d-bounded databases,
i.e., to databases of degree at most d .

Updates. We allow update of a given database of schema σ by inserting or deleting tuples as
follows (note that both types of commands may change the database’s active domain and the
database’s degree). A deletion command is of the form delete R (a1, . . . ,ar ) for R ∈ σ , r = ar(R),
and a1, . . . ,ar ∈ dom. When applied to a σ -db D, it results in the updated σ -db D ′ with RD′ =

RD \ {(a1, . . . ,ar )} and SD′ = SD for all S ∈ σ \ {R}.
An insertion command is of the form insert R (a1, . . . ,ar ) for R ∈ σ , r = ar(R), and a1, . . . ,ar ∈

dom. When applied to a σ -db D in the unrestricted setting, it results in the updated σ -db D ′ with

RD′ = RD ∪ {(a1, . . . ,ar )} and SD′ = SD for all S ∈ σ \ {R}. In this article, we restrict attention to
databases of degree at most d . Therefore, when applying an insertion command to a σ -db D of
degree � d , the command is carried out only if the resulting database D ′ still has degree � d ;
otherwise, D remains unchanged and instead of carrying out the insertion command, an error
message is returned.

Queries. We fix a countably infinite set var of variables. We consider the extension FO+MOD of
first-order logic FO with modulo-counting quantifiers. For a fixed schema σ , the set FO+MOD[σ ]
is built from atomic formulas of the form x1 = x2 and R (x1, . . . ,xar(R ) ), for R ∈ σ and variables
x1,x2, . . . ,xar(R ) ∈ var, and is closed under Boolean connectives ¬, ∧, existential first-order quan-

tifiers ∃x , and modulo-counting quantifiers ∃i mod m x , for a variable x ∈ var and integers i,m ∈ N
with m � 2 and i < m. The intuitive meaning of a formula of the form ∃i mod m x ψ is that the
number of witnesses x that satisfy ψ is congruent i modulo m. Note that FO+MOD is strictly
more expressive than first-order logic without counting quantifiers, since it can express that the
number of elements in a unary relation is even, which is not possible to express in FO (cf., e.g.,
Reference [16]). As usual, ∀x , ∨,→,↔ will be used as abbreviations when constructing formulas.
It will be convenient to add the quantifiers ∃�mx , for m ∈ N�1; a formula of the form ∃�mx ψ
expresses that the number of witnesses x that satisfy ψ is � m. Though these quantifiers allow
more succinct definitions, we will treat them as syntactic sugar, since they do not increase the
expressive power of FO+MOD.

The quantifier rank qr(φ) of a FO+MOD-formula φ is the maximum nesting depth of quantifiers
that occur in φ. By free(φ), we denote the set of all free variables of φ, i.e., all variables x that have
at least one occurrence in φ that is not within a quantifier of the form ∃x , ∃�mx , or ∃i mod m x . A
sentence is a formula φ with free(φ) = ∅.

An assignment for φ is a partial mapping α from var to dom, where free(φ) ⊆ dom(α ). We write
(D,α ) |= φ to indicate that φ is satisfied when evaluated in D with respect to active domain seman-

tics while interpreting every free occurrence of a variable x with the constant α (x ). Recall from [1]
that “active domain semantics” means that quantifiers are evaluated with respect to the database’s
active domain. In particular, (D,α ) |= ∃x ψ iff there exists an a ∈ adom(D) such that (D,α a

x
) |= ψ ,
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where α a
x

is the assignment α ′ with α ′(x ) = a and α ′(y) = α (y) for all y ∈ dom(α ) \ {x }. Ac-

cordingly, (D,α ) |= ∃�mx ψ iff |{ a ∈ adom(D) : (D,α a
x

) |= ψ }| � m, and (D,α ) |= ∃i mod m x ψ
iff |{ a ∈ adom(D) : (D,α a

x
) |= ψ }| ≡ i modm.

A k-ary FO+MOD query of schema σ is of the form φ (x1, . . . ,xk ), where k ∈ N, φ ∈
FO+MOD[σ ], and free(φ) ⊆ {x1, . . . ,xk }. We will often assume that the tuple (x1, . . . ,xk ) is clear
from the context and simply write φ instead of φ (x1, . . . ,xk ) and (D, (a1, . . . ,ak )) |= φ instead of
(D, a1, ...,ak

x1, ...,xk
) |= φ, where a1, ...,ak

x1, ...,xk
denotes the assignment α with α (xi ) = ai for all i ∈ [k]. When

evaluated in a σ -db D, the k-ary query φ (x1, . . . ,xk ) yields the k-ary relation

φ (D) :=
{

(a1, . . . ,ak ) ∈ adom(D)k :
(
D, a1, ...,ak

x1, ...,xk

)
|= φ

}
.

Boolean queries are k-ary queries with k = 0. As usual, for Boolean queries we will write φ (D) =
no instead of φ (D) = ∅, and φ (D) = yes instead of φ (D) � ∅; and we write D |= φ to indicate that
(D,α ) |= φ for any assignment α .

Sizes and Cardinalities. The size ||σ || of a schema σ is the sum of the arities of its relation symbols.
The size ||φ || of an FO+MOD query φ of schema σ is the length of φ when viewed as a word over
the alphabet σ ∪ var ∪ N ∪ { =,∧,¬,∃,mod,�, (, ) } ∪ {, }. For a k-ary query φ (x1, . . . ,xk ) and a σ -
db D, the cardinality of the query result is the number |φ (D) | of tuples in φ (D). The cardinality

|D | of a σ -db D is defined as the number of tuples stored in D, i.e., |D | := ∑R∈σ |RD |. The size ||D ||
of D is defined as ||σ || + |adom(D) | +∑R∈σ ar(R)·|RD | and corresponds to the size of a reasonable
encoding of D. Throughout the article, we let f (φ,d ) stand for a function of the form

f (φ,d ) = 2d2O ( ||φ ||)
. (1)

Dynamic Algorithms for Query Evaluation. We adopt the framework for dynamic algorithms for
query evaluation of [2]; the next paragraphs are taken almost verbatim from [2]. Following [5],
we use Random Access Machines (RAMs) with O (logn) word-size and a uniform cost measure to
analyse our algorithms. We will assume that the RAM’s memory is initialised to 0. In particular,
if an algorithm uses an array, we will assume that all array entries are initialised to 0, and this
initialisation comes at no cost (in real-world computers this can be achieved by using the lazy

array initialisation technique, cf., e.g., Reference [18]). A further assumption is that for every fixed
dimension k ∈ N�1 we have available an unbounded number of k-ary arrays A such that for given

(n1, . . . ,nk ) ∈ Nk the entry A[n1, . . . ,nk ] at position (n1, . . . ,nk ) can be accessed in constant time.2

For our purposes, it will be convenient to assume that dom = N�1.
Our algorithms will take as input a k-ary FO+MOD-query φ (x1, . . . ,xk ), a parameter d , and an

initial σ -db D0 of degree � d . For all query evaluation problems considered in this article, we aim
at routines preprocess and update that achieve the following.

On input of φ (x1, . . . ,xk ) and D0, preprocess builds a data structure D that represents D0 (and
that is designed in such a way that it supports the evaluation of φ on D0). On input of a command
update R (a1, . . . ,ar ) (with update ∈ {insert, delete}), calling update modifies the data structure D
such that it represents the updated database D. The preprocessing time tpreprocess is the time used
for performing preprocess; the update time tupdate is the time used for performing an update. In
this article, tupdate will be independent of the size of the current database D. By init, we denote the
particular case of the routine preprocess on input of a query φ (x1, . . . ,xk ) and the empty database
D∅, where RD∅ = ∅ for all R ∈ σ . The initialisation time tinit is the time used for performing init. In
all dynamic algorithms presented in this article, the preprocess routine for input of φ (x1, . . . ,xk )

2While this can be accomplished easily in the RAM-model, for an implementation on real-world computers one would

probably have to resort to replacing our use of arrays by using suitably designed hash functions.
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and D0 will carry out the init routine for φ (x1, . . . ,xk ) and then perform a sequence of |D0 | update
operations to insert all the tuples of D0 into the data structure. Consequently, tpreprocess = tinit +

|D0 | · tupdate.
In the following, D will always denote the database that is currently represented by the data

structure D.
To solve the enumeration problem under updates, apart from the routines preprocess and update,

we aim at a routine enumerate such that calling enumerate invokes an enumeration of all tuples
(without repetition) that belong to the query result φ (D). The delay tdelay is the maximum time
used during a call of enumerate

• until the output of the first tuple (or the end-of-enumeration message EOE, if φ (D) = ∅),
• between the output of two consecutive tuples, and
• between the output of the last tuple and the end-of-enumeration message EOE.

To test if a given tuple belongs to the query result, instead of enumerate we aim at a routine test

which on input of a tuple a ∈ domk checks whether a ∈ φ (D). The testing time ttest is the time used
for performing a test. To solve the counting problem under updates, instead of enumerate or test

we aim at a routine count that outputs the cardinality |φ (D) | of the query result. The counting time

tcount is the time used for performing a count. To answer a Boolean query under updates, instead of
enumerate, test, or count we aim at a routine answer that produces the answer yes or no ofφ onD.
The answer time tanswer is the time used for performing answer. Whenever speaking of a dynamic

algorithm, we mean an algorithm that has routines preprocess and update and, depending on the
problem at hand, at least one of the routines answer, test, count, and enumerate.

Throughout the article, we often adopt the view of data complexity and suppress factors that
may depend on the query φ or the degree bound d but not on the database D. For example, “linear
preprocessing time” means tpreprocess � д(φ,d ) · ||D || and “constant update time” means tupdate �
д(φ,d ), for a function д with codomain N. When writing poly (n) we mean nO (1) .

3 HANF NORMAL FORM FOR FO+MOD

Our algorithms for evaluating FO+MOD queries rely on a decomposition of FO+MOD queries
into Hanf normal form. To describe this normal form, we need some more notation.

Two formulas φ and ψ of schema σ are called d-equivalent (in symbols: φ ≡d ψ ) if for all σ -dbs
D of degree � d and all assignments α for φ andψ in D we have (D,α ) |= φ ⇐⇒ (D,α ) |= ψ .

For a σ -db D and a set A ⊆ adom(D), we write D[A] to denote the restriction of D to the
domain A, i.e., RD[A] = {a ∈ RD : a ∈ Aar(R ) }, for all R ∈ σ . For two σ -dbs D and D ′, an iso-

morphism π : D → D ′ is a bijection from adom(D) to adom(D ′) with (b1, . . . ,br ) ∈ RD ⇐⇒
(π (b1), . . . ,π (br )) ∈ RD′ for all R ∈ σ , for r := ar(R), and for all b1, . . . ,br ∈ adom(D). For two
k-tuples a = (a1, . . . ,ak ) and a′ = (a′1, . . . ,a

′
k ) of elements in adom(D) and adom(D ′), respec-

tively, we write (D,a) � (D ′,a′) to indicate that there is an isomorphism π from D to D ′ that
maps ai to a′i for all i ∈ [k].

The distance distD (a,b) between two elements a,b ∈ adom(D) is the minimal length (i.e., the
number of edges) of a path from a to b in D’s Gaifman graph GD (if no such path exists, we let

distD (a,b) = ∞; note that distD (a,a) = 0). For r � 0 and a ∈ adom(D), the r -ball around a in D is
the set

ND
r (a) := {b ∈ adom(D) : distD (a,b) � r }.

For a σ -db D and a tuple a = (a1, . . . ,ak ), we let ND
r (a) :=

⋃
i ∈[k] N

D
r (ai ). The r -neighbourhood

around a in D is defined as the σ -db ND
r (a) := D[ND

r (a)]. For r � 0 and k � 1, a type τ (over

σ ) with k centres and radius r (for short: r -type with k centres) is of the form (T , t ), where T is a
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σ -db, t ∈ adom(T )k , and adom(T ) = NT
r (t ). The elements in t are called the centres of τ . For a tuple

a ∈ adom(D)k , the r -type of a in D is defined as the r -type with k centres (ND
r (a),a).

For a given r -type withk centres τ = (T , t ) it is straightforward to construct a first-order formula
sphτ (x ) (depending on r and τ ) with k free variables x = (x1, . . . ,xk ) that expresses that the r -type

of x is isomorphic to τ , i.e., for every σ -db D and all a = (a1, . . . ,ak ) ∈ adom(D)k we have

(D,a) |= sphτ (x ) ⇐⇒
(
ND

r (a),a
)
� (T , t ).

The formula sphτ (x ) is called a sphere-formula (over σ and x ); the numbers r and k are called
locality radius and arity, respectively, of the sphere-formula.

A Hanf-sentence (over σ ) is a sentence of the form ∃�mx sphτ (x ) or ∃i mod m x sphτ (x ), where
τ is an r -type (over σ ) with 1 centre, for some r � 0. The number r is called locality radius of the
Hanf-sentence. A formula in Hanf normal form (over σ ) is a Boolean combination3 of sphere-
formulas and Hanf-sentences (over σ ). The locality radius of a formula ψ in Hanf normal form is
the maximum of the locality radii of the Hanf-sentences and the sphere-formulas that occur inψ .
The formula is d-bounded if all types τ that occur in sphere-formulas or Hanf-sentences ofψ are d-
bounded, i.e.,T is of degree � d , where τ = (T , t ). Our query evaluation algorithms for FO+MOD

rely on the following result by Heimberg, Kuske, and Schweikardt [12].

Theorem 3.1 ([12]). There is an algorithm that receives as input a degree bound d ∈ N and an

FO+MOD[σ ]-formula φ and constructs a d-equivalent formulaψ in Hanf normal form (over σ ) with

the same free variables as φ. For any d � 2, the formula ψ is d-bounded and has locality radius

� 4qr(φ ) , and the algorithm’s runtime is 2d2O ( ||φ ||+||σ ||)
.

The first step of all our query evaluation algorithms is to use Theorem 3.1 to transform a given
query φ (x ) into a d-equivalent queryψ (x ) in Hanf normal form. The following lemma summarises
standard facts that we will apply at several places throughout the article to evaluate the sphere-
formulas that occur inψ .

Lemma 3.1. Let d � 2 and let D be a σ -db of degree � d . Let r � 0, k � 1, and a = (a1, . . . ,ak ) ∈
adom(D)k .

(a) |ND
r (a) | � k

∑r
i=0 d

i � kdr+1.

(b) Given D and a, the r -neighbourhood ND
r (a) can be computed in time (kdr+1)O ( ||σ ||) .

(c) ND
r (a1,a2) is connected if and only if distD (a1,a2) � 2r+1.

(d) If ND
r (a) is connected, then ND

r (a) ⊆ ND
r+(k−1)(2r+1)

(ai ), for all i ∈ [k].

(e) Let D ′ be a σ -db of degree � d and let b = (b1, . . . ,bk ) ∈ adom(D ′)k . It can be tested in time

(kdr+1)O ( ||σ ||+kdr+1 ) � 2O ( ||σ ||k2d2r+2 ) whether (ND
r (a),a) � (ND′

r (b),b).

Proof. Parts (a)–(d) are straightforward. Concerning Part (e), a brute-force approach is to loop

through all mappings from ND
r (a) to ND′

r (b) that map ai to bi for every i ∈ [k] and check whether

this mapping is an isomorphism. Each such check can be accomplished in time nO ( ||σ ||) for n :=
kdr+1, and the number of mappings that have to be checked is � nn . Thus, the isomorphism test

is accomplished in time nO (n+ ||σ ||) = (kdr+1)O ( ||σ ||+kdr+1 ) . �

The time bound stated in part (e) of Lemma 3.1 is obtained by a brute-force approach. When
using Luks’ polynomial time isomorphism test for bounded degree graphs [17], the time bound

of Lemma 3.1(e) can be improved to (kdr+1)poly (d ||σ ||) . However, the asymptotic overall runtime of

3Throughout this article, whenever we speak of Boolean combinations we mean finite Boolean combinations.
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7:8 C. Berkholz et al.

our algorithms for evaluating FO+MOD-queries will not improve when using Luks’s algorithm
instead of the brute-force isomorphism test of Lemma 3.1(e).

4 ANSWERING BOOLEAN FO+MOD QUERIES UNDER UPDATES

In Reference [8], Frick and Grohe showed that in the static setting (i.e., without database updates),
Boolean FO-queries φ can be answered on databases D of degree � d in time f (φ,d )·||D ||. Our first
main theorem extends their result to FO+MOD-queries and the dynamic setting.

Theorem 4.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a Boolean FO+MOD[σ ]-query φ, and a σ -db D0 of degree � d and computes within tpreprocess =

f (φ,d ) · ||D0 || preprocessing time a data structure that can be updated in time tupdate = f (φ,d ) and

allows to return the query result φ (D) with answer time tanswer = O (1).
If φ is a d-bounded Hanf-sentence of locality radius r , then f (φ,d ) improves to f (φ,d ) =

2O ( ||σ ||d2r+2 ) , and the initialisation time is tinit = O ( ||φ ||).

The proof will be an easy consequence of Theorem 3.1 and the following lemma.

Lemma 4.1. There is a dynamic algorithm that receives a schema σ , a number s ∈ N�1, a list

(r j )j ∈[s] of non-negative integers, a list (ρ j )j ∈[s] where each ρ j is an r j -type with 1 centre (over σ ), a

degree bound d � 2, and a σ -db D of degree � d . The algorithm computes within tinit = O (s ) initiali-

sation time a data structure that can be updated in time tupdate =
∑s

j=1 (dr j+1)O ( ||σ ||+drj+1 ) . On input of

a number j ∈ [s] the algorithm returns within time O (1) the number |{a ∈ adom(D) : (ND
r j

(a),a) �
ρ j }|.

In particular, the update time tupdate is at most s ·2O ( ||σ || ·d2r+2 ) , for r := maxj ∈[s] r j .

Proof. For each j ∈ [s] our data structure will store the number A[j] of all elements a ∈
adom(D) whose r j -type is isomorphic to ρ j , i.e., (ND

r j
(a),a) � ρ j . The initialisation for the empty

database D∅ lets A[j] = 0 for all j ∈ [s].
To update our data structure on a command updateR (a1, . . . ,ak ), for k = ar(R) and update ∈

{insert, delete}, we proceed as follows. The idea is to remove from the data structure the infor-
mation on all the database elements whose r j -neighbourhood (for some j ∈ [s]) is affected by the
update and then to recompute the information concerning all these elements on the updated data-
base.

Let Dold be the database before the update is received and let Dnew be the database after the
update has been performed. We consider each j ∈ [s]. All elements whose r j -neighbourhood

might have changed belong to the set Uj := ND′
r j

(a), where D ′ := Dnew if the update command

is insert R (a), and D ′ := Dold if the update command is delete R (a).
To remove the old information from A[j], we compute for each a ∈ Uj the neighbourhoodTa :=

NDold
r j

(a), check whether (Ta ,a) � ρ j , and, if so, decrement the value A[j].
To recompute the new information for A[j], we compute for all a ∈ Uj the neighbourhoodT ′a :=

NDnew
r j

(a), check whether (T ′a ,a) � ρ j , and, if so, increment the value A[j].

Using Lemma 3.1, we obtain for each j ∈ [s] that |Uj | � kdr j+1. For each a ∈ Uj , the neighbour-

hoodsTa andT ′a can be computed in time (dr j+1)O ( ||σ ||) , and testing for isomorphism with ρ j can

be done in time (dr j+1)O ( ||σ ||+drj+1 ) . Thus, the update of A[j] is done in time k ·(dr j+1)O ( ||σ ||+drj+1 ) .

Recall that k = ar(R) � ||σ ||. Hence, the entire update time is tupdate =
∑s

j=1 (dr j+1)O ( ||σ ||+drj+1 ) . Fi-

nally, note that

(dr+1)O ( ||σ ||+dr+1 ) � 2dr+1 ·O ( ||σ ||+dr+1 ) � 2O ( ||σ || ·d2r+2 ) .

This completes the proof of Lemma 4.1. �
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Proof of Theorem 4.1. W.l.o.g. we assume that all the symbols of σ occur in φ (otherwise,
we remove from σ all symbols that do not occur in φ). In the preprocessing routine, we first use
Theorem 3.1 to transform φ into a d-equivalent sentence ψ in Hanf normal form; this takes time
f (φ,d ). The sentenceψ is a Boolean combination of d-bounded Hanf-sentences (over σ ) of locality

radius at most r := 4qr(φ ) . Let ρ1, . . . , ρs be the list of all types that occur in ψ . Thus, every Hanf-
sentence inψ is of the form ∃�kx sphρ j

(x ) or ∃i mod m x sphρ j
(x ) for some j ∈ [s] and k, i,m ∈ N

with k � 1,m � 2, and i < m. For each j ∈ [s] let r j be the radius of sphρ j
(x ). Thus, ρ j is an r j -type

with 1 centre (over σ ).
We use the dynamic data structure provided by Lemma 4.1, and in addition, we also store a

Boolean value Ans, where Ans = φ (D) is the answer of the Boolean queryφ on the current database
D. This way, the query can be answered in time O (1) by simply outputting Ans.

The initialisation for the empty database D∅ computes Ans as follows. Every Hanf-sentence of
the form ∃�kx sphρ j

(x ) inψ is replaced by the Boolean constant false. Every Hanf-sentence of the

form ∃i mod m x sphρ j
(x ) is replaced by true if i = 0 and by false otherwise. The resulting formula,

a Boolean combination of the Boolean constants true and false, then is evaluated, and we let Ans

be the obtained result. The entire initialisation takes time at most tinit = ||ψ || = f (φ,d ) = 2d2O ( ||φ ||)
.

To update our data structure on a command updateR (a1, . . . ,ak ), we first perform the up-
date routine of the data structure provided by Lemma 4.1. Afterwards, we recompute the query
answer Ans as follows. Every Hanf-sentence of the form ∃�kx sphρ j

(x ) in ψ is replaced by

the Boolean constant true if |{a ∈ adom(D) : (ND
r j

(a),a) � ρ j }| � k , and by the Boolean con-

stant false otherwise. Every Hanf-sentence of the form ∃i mod m x sphρ j
(x ) is replaced by true if

|{a ∈ adom(D) : (ND
r j

(a),a) � ρ j }| ≡ i mod m, and by false otherwise. The resulting formula, a

Boolean combination of the Boolean constants true and false, then is evaluated, and we let Ans be
the obtained result. Thus, recomputing Ans takes time poly ( ||ψ ||).

Noting that r j � 4qr(φ ) � 2O ( ||φ ||)) and s � ||ψ ||, we obtain that the entire update time is

tupdate �
s∑

j=1

(dr j+1)O ( ||σ ||+drj+1 ) + poly ( ||ψ ||) � 2d2O ( ||φ ||)
= f (φ,d ).

This completes the proof of Theorem 4.1. �

In Reference [8], Frick and Grohe obtained a matching lower bound for answering Boolean FO-
queries of schema σ = {E} on databases of degree at most d := 3 in the static setting. They used
the (reasonable) complexity theoretic assumption FPT � AW[∗] and showed that if this assump-
tion is correct, then there is no algorithm that answers Boolean FO-queries φ on σ -dbs D of degree

� 3 in time 222o ( ||φ ||)
· poly ( ||D ||) in the static setting (see Theorem 2 in Reference [8]). As a conse-

quence, the same lower bound holds in the dynamic setting and shows that in Theorem 4.1, the
threefold exponential dependency on the query size ||φ || cannot be substantially lowered (unless
FPT = AW[∗]):

Corollary 4.2. Let σ := {E} and let d := 3. If FPT � AW[∗], then there is no dynamic algo-

rithm that receives a Boolean FO[σ ]-query φ and a σ -db D0 and computes within tpreprocess �
f (φ)· poly ( ||D0 ||) preprocessing time a data structure that can be updated in time tupdate � f (φ)
and allows to return the query result φ (D) with answer time tanswer � f (φ), for a function f with

f (φ) = 222o ( ||φ ||)
.
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5 TECHNICAL LEMMAS ON TYPES AND SPHERES USEFUL FOR HANDLING

NON-BOOLEAN QUERIES

For our algorithms for evaluating non-Boolean queries it will be convenient to work with a fixed
list of representatives of d-bounded r -types, provided by the following lemma.

Lemma 5.1. There is an algorithm that on input of a schema σ , a degree bound d � 2, a radius

r � 0, and a number k � 1 computes a list Lσ ,d
r (k ) = τ1, . . . ,τ� (for a suitable � � 1) of d-bounded

r -types with k centres (over σ ), such that for every d-bounded r -type τ with k centres (over σ ) there

is exactly one i ∈ [�] such that τ � τi . The algorithm’s runtime is 2(kdr+1 )O ( ||σ ||)
. Furthermore, on input

of a d-bounded r -type τ with k centres (over σ ), the particular i ∈ [�] with τ � τi can be computed in

time 2(kdr+1 )O ( ||σ ||)
.

Taking into account the statements of Lemma 3.1 (in particular, the time bound provided by
Lemma 3.1(e)), the proof of Lemma 5.1 is straightforward. Throughout the remainder of this article,

Lσ ,d
r (k ) will always denote the list provided by Lemma 5.1. The following lemma will be useful

for evaluating Boolean combinations of sphere-formulas.

Lemma 5.2. Let σ be a schema, let r � 0, k � 1, d � 2, and let Lσ ,d
r (k ) = τ1, . . . ,τ� .

Let x = (x1, . . . ,xk ) be a list of k pairwise distinct variables. For every Boolean combination ψ (x )
of d-bounded sphere-formulas of radius at most r (over σ ), there is an I ⊆ [�] such that ψ (x ) ≡d∨

i ∈I sphτi
(x ).

Furthermore, givenψ (x ), the set I can be computed in time poly ( ||ψ ||) · 2(kdr+1 )O ( ||σ ||)
.

Proof. As a first step, we consider each sphere-formula ζ that occurs in ψ and replace it by

a d-equivalent disjunction of sphere-formulas sphτj
(x ) with τj in Lσ ,d

r (k ): If ζ has arity k ′ � k

and radius r ′ � r and is of the form sphρ (x ′) with x ′ = (xν1 , . . . ,xνk′ ) for 1 � ν1 < · · · < νk ′ �
k and ρ = (S, s ) with s = (s1, . . . , sk ′ ), then we replace ζ by the formula ζ ′ :=

∨
j ∈J sphτj

(x ),

where J consists of all those j ∈ [�], where for (T , t ) = τj with t = (t1, . . . , tk ) and for t
′

:=

(tν1 , . . . , tνk′ ) we have (S, s ) � (T [NT
r ′ (t

′
)], t

′
). It is straightforward to see that ζ ′ and ζ are d

-equivalent.
Letψ1 be the formula obtained fromψ by replacing each ζ by ζ ′. By the Lemmas 5.1 and 3.1,ψ1

can be constructed in time O ( ||ψ || · 2(kdr+1 )O ( ||σ ||)
). Note thatψ1 is a Boolean combination of formulas

sphτj
(x ) for j ∈ [�].

In the second step, we repeatedly use de Morgan’s law to push all ¬-symbols in ψ1 directly in
front of sphere-formulas. Afterwards, we replace every subformula of the form ¬ sphτj

(x ) by the

d-equivalent formula
∨

i ∈[�]\{j } sphτi
(x ). Letψ2 be the formula obtained fromψ1 by these transfor-

mations. Constructingψ2 fromψ1 takes time at most O ( ||ψ1 ||) · 2(kdr+1 )O ( ||σ ||)
= O ( ||ψ || · 2(kdr+1 )O ( ||σ ||)

).
In the third step, we eliminate all the ∧-symbols inψ2. By the definition of the sphere-formulas

τ1, . . . ,τ� , we have

sphτi
(x ) ∧ sphτi′

(x ) ≡d

{
sphτi

(x ), if i = i ′

⊥, if i � i ′
, (2)

where ⊥ is an unsatisfiable formula. Thus, by the distributive law, we obtain for allm � 1 and all
I1, . . . , Im ⊆ [�] that

∧
j ∈[m]

��
�
∨
i ∈Ij

sphτi
(x )��	 ≡d

∨
i1∈I1

· · ·
∨

im ∈Im

(
sphτi1

(x ) ∧ · · · ∧ sphτim
(x )
)
≡d

∨
i ∈I

sphτi
(x )
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for I := I1 ∩ · · · ∩ Im . We repeatedly use this equivalence during a bottom-up traversal of the
syntax-tree ofψ2 to eliminate all the ∧-symbols inψ2. The resulting formulaψ3 is obtained in time
polynomial in the size of ψ2. Furthermore, ψ3 is of the desired form

∨
i ∈I sphτi

(x ) for an I ⊆ [�].

The overall time for constructing ψ3 and I is poly ( ||ψ ||) · 2(kdr+1 )O ( ||σ ||)
. This completes the proof of

Lemma 5.2. �

For evaluating a Boolean combination ψ (x ) of sphere-formulas and Hanf-sentences on a given
σ -db D, an obvious approach is to first consider every Hanf-sentence χ that occurs inψ , to check
if D |= χ and to replace every occurrence of χ in ψ with true (respectively, false) if D |= χ (re-
spectively, D � χ ). The resulting formula ψ ′(x ) is then transformed into a disjunction ψ ′′(x ) :=∨

i ∈I sphτi
(x ) by Lemma 5.2, and the query result ψ (D) = ψ ′′(D) is obtained as the union of the

query results sphτi
(D) for all i ∈ I .

While this works well in the static setting (i.e., without database updates), in the dynamic setting
we have to take care of the fact that database updates might change the status of a Hanf-sentence
χ in ψ , i.e., an update operation might turn a database D with D |= χ into a database D ′ with
D ′ � χ (and vice versa). Consequently, the formula ψ ′′(x ) that is equivalent to ψ (x ) on D might
be inequivalent toψ (x ) on D ′.

To handle the dynamic setting correctly, at the end of each update step we will use the following
lemma, which is an extension of Lemma 5.2 and is proved in a similar way.

Lemma 5.3. Let σ be a schema. Let s � 0 and let χ1, . . . , χs be arbitrary formulas of schema σ .

Let r � 0, k � 1, d � 2, and let Lσ ,d
r (k ) = τ1, . . . ,τ� . Let x = (x1, . . . ,xk ) be a list of k pairwise

distinct variables. For every Boolean combination ψ (x ) of the formulas χ1, . . . , χs and of d-bounded

sphere-formulas of radius at most r (over σ ), and for every J ⊆ [s] there is a set I ⊆ [�] such that

ψ J (x ) ≡d

∨
i ∈I

sphτi
(x ),

where ψ J is the formula obtained from ψ by replacing every occurrence of a formula χj with true if

j ∈ J and with false if j � J (for every j ∈ [s]).

Givenψ and J , the set I can be computed in time poly ( ||ψ ||) · 2(kdr+1 )O ( ||σ ||)
.

To evaluate a single sphere-formula sphτ (x ) for a given r -type τ with k centres (over σ ), it
will be useful to decompose τ into its connected components as follows. Let τ = (T , t ) with t =
(t1, . . . , tk ). Consider the Gaifman graph GT of T and let C1, . . . ,Cc be the vertex sets of the c
connected components of GT . For each connected component Cj of GT , let t j be the subsequence

of t consisting of all elements of t that belong to Cj , and let kj be the length of t j . Since (T , t ) is

an r -type with k centres, we have T = NT
r (t ), and thus c � k and kj � 1 for all j ∈ [c]. To avoid

ambiguity, we make sure that the listC1, . . . ,Cc is sorted in such a way that for all j < j ′ we have
i < i ′ for the smallest i with ti ∈ Cj and the smallest i ′ with ti′ ∈ Cj′ .

For each Cj consider the r -type with kj centres ρ j = (T [Cj ], t j ). Let νj be the unique integer

such that ρ j is isomorphic to the νj th element in the list Lσ ,d
r (kj ), and let τj,νj

be the νj th element
in this list.

It is straightforward to see that the formula sphτ (x ) is d-equivalent to the formula

conn-sphτ (x ) :=
∧
j ∈[c]

sphτj,νj
(x j ) ∧

∧
j�j′
¬ dist

kj ,kj′

�2r+1
(x j ,x j′ ), (3)

where x j is the subsequence of x obtained from x in the same way as t j is obtained from t ,

and dist
kj ,kj′

�2r+1
(x j ,x j′ ) is a formula of schema σ that expresses that for some variable y in x j and
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some variable y ′ in x j′ the distance between y and y ′ is � 2r+1. I.e., for a = (a1, . . . ,akj
) and

b = (b1, . . . ,bkj′ ) we have (a,b) ∈ dist
kj ,kj′

�2r+1
(D) ⇐⇒ distD (a;b) � 2r+1, where

distD (a;b) � 2r+1 means that distD (ai ,bi′ ) � 2r+1 for some i ∈ [kj ] and i ′ ∈ [kj′]. (4)

Using the Lemmas 3.1 and 5.1, the following lemma is straightforward.

Lemma 5.4. There is an algorithm that on input of a schema σ , numbers r � 0, k � 1, and d � 2,

and an r -type τ with k centres (over σ ) computes the formula conn-sphτ (x ), along with the corre-

sponding parameters c and kj , νj , x j , τj,νj
for all j ∈ [c].

The algorithm’s runtime is 2(kdr+1 )O ( ||σ ||)
.

We define the signature of τ w.r.t. r to be the tuple sgnr (τ ) built from the parameters c and

(kj ,νj , {μ ∈ [k] : xμ belongs to x j })j ∈[c] obtained from the above lemma. The signature sgnD
r (a)

of a tuple a in a database D w.r.t. radius r is defined as sgnr (ρ) for ρ := (ND
r (a),a). Note that

a ∈ sphτ (D) ⇐⇒ sgnD
r (a) = sgnr (τ ).

6 TESTING NON-BOOLEAN FO+MOD QUERIES UNDER UPDATES

This section is devoted to the proof of the following theorem.

Theorem 6.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a k-ary FO+MOD[σ ]-query φ (x ) (for some k ∈ N), and a σ -db D0 of degree � d and computes

within tpreprocess = f (φ,d ) · ||D0 || preprocessing time a data structure that can be updated in time

tupdate = f (φ,d ) and allows to test for any input tuple a ∈ domk whether a ∈ φ (D) within testing

time ttest = O (k2).

For the proof, we use the lemmas provided in Section 5 and the following lemma.

Lemma 6.1. There is a dynamic algorithm that receives a schema σ , a degree boundd � 2, numbers

r � 0 and k � 1, an r -type τ with k centres (over σ ), and a σ -db D0 of degree � d and computes

within tpreprocess = 2(kdr+1 )O ( ||σ ||) · ||D0 || preprocessing time a data structure that can be updated in time

tupdate = 2(kdr+1 )O ( ||σ ||)
and allows to test for any input tuple a ∈ domk whether a ∈ sphτ (D) within

testing time ttest = O (k2).

Proof. The preprocessing routine starts by using Lemma 5.4 to compute the formula
conn-sphτ (x ), along with the according parameters c and kj , νj , x j , τj,νj

for each j ∈ [c]. This is

done in time 2(kdr+1 )O ( ||σ ||)
. We let sgnr (τ ) be the signature of τ (defined directly after Lemma 5.4).

Recall that conn-sphτ (x ) ≡d sphτ (x ), and recall from Equation (3) the precise definition of the
formula conn-sphτ (x ). Our data structure will store the following information on the database D:

• the set Γ of all tuples b ∈ adom(D)k ′ , where k ′ � k and ND
r (b) is connected, and

• for every j ∈ [c] and every tuple b ∈ Γ of arity kj , the unique number ν
b

such that ρ
b

:=

(ND
r (b),b) is isomorphic to the ν

b
th element in the list Lσ ,d

r (kj ).

We want to store this information in such a way that for any given tuple b ∈ domk ′ it can be

checked in time O (k ) whether b ∈ Γ. To ensure this, we use a k ′-ary array Γk ′
4 that is initialised

to 0 and where during update operations the entry Γk ′[b] is set to 1 for all b ∈ Γ of arity k ′. In a

similar way we can ensure that for any given j ∈ [c] and any b ∈ Γ of arity kj , the number ν
b

can
be looked up in time O (k ).

4This array requires nonlinear but polynomial space
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The test routine on input of a tuple a = (a1, . . . ,ak ) proceeds as follows.
First, we partition a into a1, . . . ,ac ′ (for c ′ � k) such that Cj := ND

r (aj ) for j ∈ [c ′] are the con-

nected components of ND
r (a). As in the definition of the formula conn-sphτ (x ), we make sure

that this list is sorted in such a way that for all j < j ′ we have i < i ′ for the smallest i with ai ∈ Cj

and the smallest i ′ with ai′ ∈ Cj′ . All of this can be done in time O (k2) by first constructing the
graphH with vertex set [k] and where there is an edge between vertices i and j iff the tuple (ai ,aj )
belongs to Γ (i.e., ND

r (ai ,aj ) is connected) and then computing the connected components of H .

Afterwards, for each j ∈ [c ′], we use time O (k ) to look up the number νa j
. We then let sgnD

r (a)
be the tuple built from c ′ and ( |aj |,νa j

, {μ ∈ [k] : aμ belongs to aj })j ∈[c ′]. It is straightforward

to see that a ∈ conn-sphτ (D) iff sgnD
r (a) = sgnr (τ ). Therefore, the test routine checks whether

sgnD
r (a) = sgnr (τ ) and outputs “yes” if this is the case and “no” otherwise. The entire time used

by the test routine is ttest = O (k2).
To finish the proof of Lemma 6.1, we have to give further details on the preprocess routine and

the update routine. The preprocess routine initialises Γ as the empty set ∅ and then performs |D0 |
update operations to insert all the tuples ofD0 into the data structure. The update routine proceeds
as follows.

Let Dold be the database before the update is received and let Dnew be the database after the
update has been performed. Let the update command be of the form updateR (a1, . . . ,aar(R ) ). We
let r ′ := r + (ar(R)−1) (2r+1). All elements whose r ′-neighbourhood might have changed belong

to the set U := ND′

r ′ (a), where D ′ := Dnew if the update command is insertR (a), and D ′ := Dold if
the update command is deleteR (a).

According to Lemma 3.1(d), all tuples b that have to be inserted into or deleted from Γ are built
from elements in U . To update the information stored in our data structure, we loop through all
tuples of arity � k that are built from elements in U .

Using Lemma 3.1(a), we obtain that |U | � ar(R)·dr ′+1. The number of candidate tuples b built

from elements in U is at most (ar(R)·dr ′+1)k+1. Using the Lemmas 3.1 and 5.1, it is not difficult to

see that the entire update time is at most tupdate = 2(kdr+1 )O ( ||σ ||)
. The initialisation time tinit is of the

same form, and hence the preprocessing time is as claimed in the lemma. This completes the proof
of Lemma 6.1. �

Using Lemma 6.1 and Lemma 5.3, we can show the following.

Lemma 6.2. Let σ be a schema and let d � 2 be a degree bound. Let s � 0 and let χ1, . . . , χs be

arbitrary sentences of schema σ , and assume we have available for each j ∈ [s] a dynamic algorithm

with initialisation time t ′init and update time t ′update that allows to check within answer time t ′answer

whether or not D |= χj for d-bounded σ -dbs D.

Then, there is a dynamic algorithm for d-bounded σ -dbs that receives as input numbers r � 0
and k � 1, a tuple x = (x1, . . . ,xk ) of pairwise distinct variables, and a Boolean combination ψ (x )
of the sentences χ1, . . . , χs and of d-bounded sphere-formulas of radius at most r (over σ ). Within

initialisation time

tinit = s (t ′init + t
′
answer) + poly ( ||ψ ||)2(kdr+1 )O ( ||σ ||)

(5)

the algorithm builds a data structure that can be updated within time

tupdate = s (t ′update + t
′
answer) + poly ( ||ψ ||)2(kdr+1 )O ( ||σ ||) (6)

and allows us to test for any input tuple a ∈ adom(D)k whether a ∈ ψ (D) within testing time

ttest = O (k2). (7)

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 7. Publication date: August 2018.



7:14 C. Berkholz et al.

Proof. We use Lemma 5.1 to compute the list Lσ ,d
r (k ) = τ1, . . . ,τ� . For each i ∈ [�], we use the

dynamic algorithm provided by Lemma 6.1 for τ := τi . Furthermore, for each j ∈ [s], we use the
dynamic algorithm provided by the lemma’s assumption for checking whether or not D |= χj . In
addition to the components used by these dynamic algorithms, our data structure also stores

• the set J := {j ∈ [s] : D |= χj },
• the particular set I ⊆ [�] provided by Lemma 5.3 forψ (x ) and J , and
• the set K = {sgnr (τi ) : i ∈ I }, where for each type τ , sgnr (τ ) is the signature of τ defined

directly after Lemma 5.4.

The test routine on input of a tuple a = (a1, . . . ,ak ) proceeds in the same way as in the proof
of Lemma 6.1 to compute in time O (k2) the signature sgnD

r (a) of the tuple a. For every i ∈ [�], we

have a ∈ sphτi
(D) ⇐⇒ sgnD

r (a) = sgnr (τi ). Thus, a ∈ φ (D) ⇐⇒ sgnD
r (a) ∈ K . Therefore, the

test routine checks whether sgnD
r (a) ∈ K and outputs “yes” if this is the case and “no” otherwise.

To ensure that this test can be done in time O (k2), we use an array construction for storing K
(similar to the one for storing Γ in the proof of Lemma 6.1).

The update routine runs the update routines for all the used dynamic data structures. After-
wards, it recomputes J by calling the answer routine for χj for all j ∈ [s]. Then, it uses Lemma 5.3
to recompute I . The set K is then recomputed by applying Lemma 5.4 for τ := τi for all i ∈ I . It is
straightforward to verify that the initialisation time tinit, the update time tupdate, and the testing
time ttest are as claimed by the lemma. �

Theorem 6.1 is now obtained by combining Theorem 3.1, Lemma 6.2, and Theorem 4.1.

Proof of Theorem 6.1. For k = 0, the theorem immediately follows from Theorem 4.1. Con-
sider the case where k � 1. As in the proof of Theorem 4.1, we assume w.l.o.g. that all the symbols
of σ occur in φ. We start the preprocessing routine by using Theorem 3.1 to transform φ (x ) into a

d-equivalent queryψ (x ) in Hanf normal form; this takes time 2d2O ( ||φ ||)
. The formulaψ is a Boolean

combination of d-bounded Hanf-sentences and sphere-formulas (over σ ) of locality radius at most

r := 4qr(φ ) , and each sphere-formula is of arity at most k . Let χ1, . . . , χs be the list of all Hanf-
sentences that occur inψ .

From Theorem 4.1 we have available for each j ∈ [s] a dynamic algorithm with initialisation

time t ′init = O (maxj ∈[s] ||χj ||) and update time t ′
update

= 2O ( ||σ ||d2r+2 ) that allows us to check within

answer time t ′answer = O (1) whether D |= χj for d-bounded σ -dbs D. The proof of Theorem 6.1
therefore immediately follows from Lemma 6.2. �

7 REPRESENTING DATABASES BY COLOURED GRAPHS

To obtain dynamic algorithms for counting and enumerating query results, it will be convenient
to work with a representation of databases by coloured graphs that is similar to the representation
used in Reference [7]. The main advantage of this representation is that it unveils the combina-
torial core of evaluating non-Boolean queries. In Theorem 7.1, we provide a general reduction
from evaluating FO+MOD[σ ]-queries to finding coloured independent sets in coloured graphs,
which allows us to focus on this combinatorial graph problem when presenting our algorithms for
counting (Section 8) and enumeration (Section 9).

For defining this representation, let us consider a fixedd-bounded r -type τ with k centres (over a
schema σ ). Use Lemma 5.4 to compute the formula conn-sphτ (x ) (for x = (x1, . . . ,xk )) and the ac-
cording parameters c and kj ,νj ,x j ,τj,νj

, and let sgnr (τ ) be the signature of τ . To keep the notation
simple, we assume w.l.o.g. that x1 = x1, . . . ,xk1

, x2 = xk1+1, . . . ,xk1+k2
, and so on.
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Recall that sphτ (x ) is d-equivalent to the formula

conn-sphτ (x ) :=
∧
j ∈[c]

sphτj,νj
(x j ) ∧

∧
j�j′
¬ dist

kj ,kj′

�2r+1
(x j ,x j′ ).

To count or enumerate the results of the formula sphτ (x ), we represent the database D by a c-

coloured graph GD . Here, a c-coloured graph G is a database of the particular schema

σc := {E,C1, . . . ,Cc },

where E is a binary relation symbol and C1, . . . ,Cc are unary relation symbols. We define GD

in such a way that the task of counting or enumerating the results of the query sphτ (x ) on the
database D can be reduced to counting or enumerating the results of the query

φc (z1, . . . , zc ) :=
∧
j ∈[c]

Cj (zj ) ∧
∧
j�j′
¬E (zj , zj′ ) (8)

on the c-coloured graph GD . The vertices of GD correspond to kj -tuples over adom(D) (for some
kj ∈ {k1, . . . ,kc } ⊆ [k]) whose r -neighbourhood is connected; a vertex has colour Cj if its associ-

ated tuple a is in sphτj,νj
(D); and an edge between two vertices indicates that distD (a;b) � 2r+1

for their associated tuples a and b. The following theorem allows us to translate a dynamic algo-
rithm for counting or enumerating the results of the query φc (z1, . . . , zc ) on c-coloured graphs
into a dynamic algorithm for counting or enumerating the result of an FO+MOD-query φ (x ) on
D.

Theorem 7.1. Suppose that for any d ′, c ∈ N the counting problem (the enumeration problem) for

φc (z) on σc -dbs of degree at most d ′ can be solved by a dynamic algorithm with initialisation time

tinit (c,d
′), update time tupdate (c,d ′), and counting time tcount (c,d

′) (delay tdelay (c,d ′)). Then for every

schema σ and every d � 2 the following holds. The counting problem (the enumeration problem) for

k-ary FO+MOD[σ ]-queries φ (x ) on σ -dbs of degree at most d can be solved with counting time O (1)
(delay O (̂tdelay + k )), initialisation time t̂init · f (φ,d ), and update time

• (̂tupdate + t̂count) · f (φ,d ) for the counting problem, and

• t̂update · f (φ,d ) for the enumeration problem,

where t̂x = maxk
c=1 tx (c,d2O ( ||φ ||)

) for tx ∈ {tinit, tupdate, tcount, tdelay}.

The proof will be obtained as an easy consequence of Theorem 3.1, Theorem 4.1, and the fol-
lowing lemma.

Lemma 7.1. Suppose that the counting problem (the enumeration problem) for φc (z) on σc -dbs of

degree at most d ′ can be solved by a dynamic algorithm with initialisation time tinit (c,d
′), update

time tupdate (c,d ′), and counting time tcount (c,d
′) (delay tdelay (c,d ′)).

Then for every schema σ and every d � 2 the following holds. Let r � 0, k � 1, and fix d ′ :=

d2k2 (2r+1) and t̃x := maxk
c=1 tx (c,d ′) for tx ∈ {tinit, tupdate, tcount, tdelay}.

(1) Let τ be a d-bounded r -type with k centres. The counting problem (the enumeration prob-

lem) for sphτ (x ) on σ -dbs of degree at most d can be solved by a dynamic algorithm with

counting time t̃count (delay O (̃tdelay + k )), initialisation time t̃init, and update time at most

t̃updated
O (k2r+k ||σ ||) + 2O ( ||σ ||k2d2r+2 ) .

(2) Let s � 0 and let χ1, . . . , χs be arbitrary sentences of schemaσ , and assume we have available

for each j ∈ [s] a dynamic algorithm with initialisation time t ′init and update time t ′
update

that

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 7. Publication date: August 2018.



7:16 C. Berkholz et al.

allows to check within answer time t ′answer whether or not D |= χj for d-bounded σ -dbs D.

Let x = (x1, . . . ,xk ) be a tuple of pairwise distinct variables, and let ψ (x ) be a Boolean

combination of the sentences χ1, . . . , χs and of d-bounded sphere-formulas of radius at most

r (over σ ).

Then, the counting problem (the enumeration problem) for ψ (x ) on σ -dbs D of degree at

most d can be solved by a dynamic algorithm with counting time O (1) (delay O (̃tdelay + k )),

initialisation time s (t ′init + t
′
answer) + 2(kdr+1 )O ( ||σ ||)

(poly ( ||ψ ||) + t̃init), and update time at most

• s (t ′
update

+ t ′answer) + 2(k2d2r+2 )O ( ||σ ||)
(poly ( ||ψ ||) + t̃count + t̃updated

O (k2r+k ||σ ||) ) for the count-

ing problem, and

• s (t ′
update

+ t ′answer) + 2(k2d2r+2 )O ( ||σ ||)
(poly ( ||ψ ||) + tupdated

O (k2r+k ||σ ||) ) for the enumeration

problem.

Proof. We prove part (1) by a reduction from conn-sphτ (x ) to φc . We use the notation intro-
duced at the beginning of Section 7, and we let τj := τj,νj

for every j ∈ [c]. For a σ -db D of degree
at most d we let GD be the σc -db with

CGD

j := {va : a ∈ adom(D)kj with
(
ND

r (a),a
)
� τj }, for all j ∈ [c], and

EGD := { (va ,vb
) ∈ V 2 : distD (a;b) � 2r+1 },

where V :=
⋃

j ∈[c]C
GD

j . We will shortly write E and Cj instead of EGD and CGD

j .

Using Lemma 3.1 and the fact that τj is connected we obtain that (va ,vb
) ∈ E iff ND

r (a,b) is

connected. If ND
r (a,b) is connected, then by Lemma 3.1(d) b ∈ (ND

r+( |a |+ |b |−1)(2r+1)
(a1)) |b | . It fol-

lows that the degree of GD is bounded by d2k2 (2r+1) . Furthermore, by the definition of GD and φc ,
we get that (a1, . . . ,ac ) ∈ sphτ (D) ⇐⇒ (va1

, . . . ,vac
) ∈ φc (GD ), for all tuples a1, . . . ,ac where

aj has arity kj for each j ∈ [c]. As a consequence, | sphτ (D) | = |φc (GD ) |, and we can therefore
use the count routine for φc on GD to count the number of tuples in sphτ (D). Furthermore, by
annotating every vertex va with its tuple a, we can translate every tuple (va1

, . . . ,vac
) ∈ φc (GD )

to (a1, . . . ,ac ) in time O (k ). Therefore, given an enumerate routine for φc (GD ) with delay tdelay

we can produce an enumeration of sphτ (D) with delay O (tdelay + k ).
It remains to show how to construct and maintain GD when the database D is updated. As

initialisation for the empty database D∅, we just perform the init routine of the dynamic algorithm
for φc (z) on σc -dbs of degree at most d ′. The update routine of the dynamic algorithm for sphτ (x )
on σ -dbs of degree at most d is provided by the following claim.

Claim 7.2. If Dnew is obtained from Dold by one update step, then GDnew can be obtained from GDold

by dO (k2r+k ||σ ||) update steps and additional computing time 2O ( ||σ ||k2d2r+2 ) . �

Proof. Let the update command be of the form updateR (a1, . . . ,aar(R ) ) with a = (a1, . . . ,
aar(R ) ). Let D ′ ∈ {Dold ,Dnew } be the database whose relation R contains the tuple a (either before
deletion or after insertion). Let r ′ := r + (k−1) (2r+1) and note that all elements in the active do-
main whose r ′-neighbourhood in the database might have changed belong to the setU := ND′

r ′ (a).

For every j ∈ [c] and every tuple b of arity at most k of elements in U , we check whether the

r -type (NDnew
r (b),b) of b is isomorphic to τj . Depending on the outcome of this test, we include

or exclude v
b

from the relation Cj . Note that it indeed suffices to consider the tuples b built from

elements inU : The r -type of some tuple b is changed by the update command only if ND′
r (b) con-

tains some element froma. Furthermore, we only have to consider tuplesb whose r -neighbourhood

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 7. Publication date: August 2018.



Answering FO+MOD Queries under Updates on Bounded Degree Databases 7:17

ND′
r (b) is connected. Using Lemma 3.1(d), we therefore obtain that each component of b belongs

to ND′

r ′ (a) = U .

Afterwards, we update the coloured graph’s edge relation E. There is an edge (v
b
,v

b
′ ) ∈ EDnew ,

if and only if, there are j, j ′ ∈ [c] such thatv
b
∈ Cj ,vb

′ ∈ Cj′ and distDnew (b;b
′
) � 2r+1. Note that if

distDnew (b;b
′
) � 2r+1, then there is some componentbi inb and some componentb ′i′ inb

′
such that

distDnew (bi ,b
′
i′ ) � 2r+1; and in case thatv

b
′ ∈ Cj′ , we know thatNDnew

r (b
′
) is connected, and hence

every component of the tuple b
′

belongs to NDnew

r+(k−1)(2r+1)
(b ′i′ ) ⊆ NDnew

r+k (2r+1)
(bi ) ⊆ NDnew

r+k (2r+1)
(b).

Moreover, for correctly updating the edge relation E, it suffices to consider only those pairs of

tuples b and b
′

where for at least one of the two tuples, at least one component belongs to ND′
r (a),

and hence all components belong to ND′

r ′ (a), since these are the tuples where the r -neighbourhood

or the condition distD (b;b
′
) � 2r+1 might be affected by the database update. Overall, the algo-

rithm proceeds as follows: We compute for all tuples b of arity at most k in ND′

r ′ (a), all tuples

b
′

of arity at most k in ND′

r+k (2r+1)
(b) (later, we will call these tuples candidate tuples) and check

whether (1) there is a j ∈ [c] such that v
b
∈ Cj , (2) there is a j ′ ∈ [c] such that v

b
′ ∈ Cj′ , and (3)

distDnew (b;b
′
) � 2r+1. If all three checks return the result “yes,” then we insert the tuple (v

b
,v

b
′ )

into E; otherwise, we remove it from E.
It remains to analyse the runtime of the described update procedure. By Lemma 3.1, |U | �

ar(R)dr ′+1 � ||σ ||dr+(k−1)(2r+1)+1 � dO (kr+lg ||σ ||) � dO (kr+ ||σ ||) . Furthermore,U can be computed in

time (ar(R)dr ′+1)O ( ||σ ||) � dO (kr ||σ ||+ ||σ ||2) . The number of tuples b that we have to consider is at

most
∑k

i=1 |U |i � |U |k+1 � dO (k2r+k ||σ ||) .

For each such b we use Lemma 3.1(e) to check in time 2O ( ||σ ||k2d2r+2 ) whether the r -type of b
in Dnew is isomorphic to τj , for some j ∈ [c]. In summary, for updating the sets C1, . . . ,Cc we use

at most c |U |k+1 � dO (k2r+k ||σ ||) calls of the update routine of the dynamic algorithm on coloured

graphs, and in addition to that we use computation time at most 2O ( ||σ ||k2d2r+2 ) .

To update the edge relation, we compute for each of the dO (k2r+k ||σ ||) tuples b a list of all

its candidate tuples b
′
; using Lemma 3.1 this can be done in time (ar(R)dr+k (2r+1)+1)O ( ||σ ||) �

dO (kr ||σ ||+ ||σ ||2) . By Lemma 3.1, the number of candidate tuples is � dO (k2r+k ||σ ||) . By Lemma 3.1(e),

it takes time 2O ( ||σ ||k2d2r+2 ) to check if (NDnew
r (b),b) is isomorphic to τj and (NDnew

r (b
′
),b
′
) is iso-

morphic to τj′ , for some j, j ′ ∈ [c]. We can use and maintain an additional array that allows us to

check, for any ai and bj , in constant time whether distD (ai ,bj ) � 2r+1. Overall, we obtain that

also the edge relation E can be updated by at most dO (k2r+k ||σ ||) calls of the update routine of the

dynamic algorithm on coloured graphs and additional computation time at most 2O ( ||σ ||k2d2r+2 ) .
This completes the proof of Claim 7.2. �

Finally, the preprocess routine of the dynamic algorithm for sphτ (x ) proceeds in the obvious
way by first calling the init routine for D∅ and then performing |D0 | update steps to insert all the
tuples of D0 into the data structure. This completes the proof of part (1) of Lemma 7.1.

We now turn to the proof of part (2) of Lemma 7.1. We use Lemma 5.1 to compute the list

Lσ ,d
r (k ) = τ1, . . . ,τ� within time 2(kdr+1 )O ( ||σ ||)

. For each i ∈ [�], we use the dynamic algorithm for
sphτi

(x ) provided from the lemma’s part (1). Furthermore, for each j ∈ [s], we use the dynamic al-
gorithm for answering whether or notD |= χj , provided by the assumption of part (2) of Lemma 7.1.
In addition to the components used by these dynamic algorithms, our data structure also stores

• the set J := {j ∈ [s] : D |= χj } and
• the particular set I ⊆ [�] provided by Lemma 5.3 forψ (x ) and J .
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For the case where we want to solve the counting problem, our data structure also stores

• the cardinality n = |φ (D) | of the query result.

The count routine simply outputs the value n in time O (1).
The enumerate routine runs the enumerate routine on sphτi

(D) for every i ∈ I . Note that this
enumerates, without repetition, all tuples in φ (D), because by Lemma 5.3, φ (D) is the union of the
sets sphτi

(D) for all i ∈ I , and this is a union of pairwise disjoint sets.
The update routine runs the update routines for all used dynamic data structures. Afterwards,

it recomputes J by calling the answer routine for χj for all j ∈ [s]. Then, it uses Lemma 5.3 to
recompute I . For the case where we want to solve the counting problem, we afterwards recompute
the number n by letting n =

∑
i ∈I ni , where ni is the result of the count routine for τi .

By using the statement of part (1) and the assumptions of part (2) of the lemma, it is straightfor-
ward to verify that the initialisation time, the update time, and the counting time (the delay) are
as claimed by the lemma. �

Theorem 7.1 is now obtained by combining Theorem 3.1, part (2) of Lemma 7.1, and Theorem 4.1.

Proof of Theorem 7.1. For k = 0, the result follows immediately from Theorem 4.1. Consider
the case wherek � 1. W.l.o.g. we assume that all the symbols ofσ occur inφ (otherwise, we remove
from σ all symbols that do not occur inφ). We start the preprocessing routine by using Theorem 3.1

to transform φ (x ) into a d-equivalent query ψ (x ) in Hanf normal form; this takes time 2d2O ( ||φ ||)
.

The formulaψ is a Boolean combination of d-bounded Hanf-sentences and sphere-formulas (over

σ ) of locality radius at most r := 4qr(φ ) , and each sphere-formula is of arity at most k . Note that for

d ′ := d2k2 (2r+1) as used in the lemma’s part (1), it holds that d ′ = d2O ( ||φ ||)
. Let χ1, . . . , χs be the list

of all Hanf-sentences that occur inψ , and note that s � 2d2O ( ||φ ||)
.

From Theorem 4.1 we have available for each j ∈ [s] a dynamic algorithm with initialisation time

t ′init = O (maxj ∈[s] ||χj ||) and update time t ′
update

= 2O ( ||σ ||d2r+2 ) that allows to check within answer

time t ′answer = O (1) whether D |= χj for d-bounded σ -dbs D.
Applying part (2) of Lemma 7.1, we obtain a dynamic algorithm that solves the counting problem

(the enumeration problem) for φ (x ) on σ -dbs of degree at most d with counting time O (1) (delay
O (̃tdelay + k ) = O (̂tdelay + k )), initialisation time

s (t ′init + t
′
answer) + 2(kdr+1 )O ( ||σ ||)

(poly ( ||ψ ||) + t̃init) � t̂init · 2d2O ( ||φ ||)

and update time at most

s (t ′update + t
′
answer) + 2(k2d2r+2 )O ( ||σ ||)

(poly ( ||ψ ||) + t̃count + t̃updated
O (k2r+k ||σ ||) )

�
(̂
tupdate + t̂count

)
· 2d2O ( ||φ ||)

when dealing with the counting problem, and update time at most

s (t ′update + t
′
answer) + 2(k2d2r+2 )O ( ||σ ||)

(poly ( ||ψ ||) + t̃updated
O (k2r+k ||σ ||) ) � t̂update · 2d2O ( ||φ ||)

when dealing with the enumeration problem. �

8 COUNTING RESULTS OF FO+MOD QUERIES UNDER UPDATES

This section is devoted to the proof of the following theorem.

Theorem 8.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a k-ary FO+MOD[σ ]-query φ (x ) (for some k ∈ N), and a σ -db D0 of degree � d and computes
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within tpreprocess = f (φ,d ) · ||D0 || preprocessing time a data structure that can be updated in time

tupdate = f (φ,d ) and allows to return the cardinality |φ (D) | of the query result within time O (1).

The theorem follows immediately from Theorem 7.1 and the following dynamic counting algo-
rithm for the query φc (z).

Lemma 8.1. There is a dynamic algorithm that receives a number c � 1, a degree bound d � 2,

and a σc -db G0 of degree � d and computes |φc (G) | with dO (c2 ) initialisation time, O (1) counting

time, and dO (c2 ) update time.

Proof. Recall from Equation (8) that φc (z1, . . . , zc ) =
∧

i ∈[c]Ci (zi ) ∧ ∧j�j′ ¬E (zj , zj′ ). For all
j, j ′ ∈ [c] with j � j ′ consider the formula θ j, j′ (z1, . . . , zc ) := E (zj , zj′ ) ∧

∧
i ∈[c]Ci (zi ). Further-

more, let α (z1, . . . , zc ) :=
∧

i ∈[c]Ci (zi ). Clearly, for every σc -db G we have

α (G) = CG1 × · · · ×C
G
c ,

φc (G) = α (G) \ ��
�
⋃
j�j′

θ j, j′ (G)��	 , and, hence, |φc (G) | = |α (G) | −
�������
⋃
j�j′

θ j, j′ (G)

�������
.

By the inclusion-exclusion principle, we obtain for J := {(j, j ′) : j, j ′ ∈ [c], j � j ′} that�������
⋃
j�j′

θ j, j′ (G)

�������
=

∑
∅�K ⊆ J

(−1) |K |−1

�������
⋂

(j, j′)∈K

θ j, j′ (G)

�������
=

∑
∅�K ⊆ J

(−1) |K |−1 |φK (G) |

for the formula φK (z1, . . . , zc ) :=
∧

i ∈[c]Ci (zi ) ∧ ∧(j, j′)∈K E (zj , zj′ ).
Our data structure stores the following values:

• |CGi |, for each i ∈ [c], and n1 := |α (G) | = ∏i ∈[c] |CGi |,
• |φK (G) |, for each K ⊆ J with K � ∅, and
• n2 :=

∑
∅�K ⊆ J (−1) |K |−1 |φK (G) | and n3 := n1 − n2.

Note that n3 = |φc (G) | is the desired size of the query result. Therefore, the count routine can
answer in time O (1) by just outputting the number n3.

It remains to show how these values can be initialised and updated during updates of G. The
initialisation for the empty graph initialises all the values to 0. In the update routine, the values

for |CGi | and n1 can be updated in a straightforward way (using time O (c )). For each K ⊆ J , the

update of |φK (G) | is provided within time dO (c2 ) by the following Claim 8.2.

Claim 8.2. For every K ⊆ J , the cardinality |φK (G) | of a σc -db G of degree at most d can be

updated within time dO (c2 ) after dO (c2 ) · |G0 | preprocessing time. �

Proof. Consider the directed graph H := (V ,K ) with vertex set V := [c] and edge set K . De-
compose the Gaifman graph of H into its connected components. Let V1, . . . ,Vs be the connected
components (for a suitable s � c). For each i ∈ [s] let Hi := H [Vi ] be the induced subgraph of
H on Vi . We write Ki to denote the set of edges of Hi . For every i ∈ [s] let �i = |Vi |, and let
t (i, 1) < t (i, 2) < · · · < t (i, �i ) be the ordered list of the vertices in Vi . Consider the query

φKi
(zt (i,1), . . . , zt (i, �i ) ) :=

∧
j ∈Vi

Cj (zj ) ∧
∧

(j, j′)∈Ki

E (zj , zj′ ). (9)

Note thatφK is the conjunction of the formulasφKi
for all i ∈ [s]. Since the variables of the formulas

φKi
for i ∈ [s] are pairwise disjoint, we have φK (G) = φK1 (G) × · · · × φKs

(G) (modulo permuta-
tions of the tuples), and thus |φK (G) | =∏i ∈[s] |φKi

(G) |.
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For each i ∈ [s], the value |φKi
(G) | can be computed as follows. For every v ∈ adom(G) we

consider the set Sv
i := {(wt (i,1), . . . ,wt (i, �i ) ) ∈ φKi

(G) : wt (i,1) = v}. Since the Gaifman graph of
Hi is connected and has �i nodes, it follows that each component of every tuple in Sv

i is contained

in the (�i − 1)-neighbourhood of v in G, and this neighbourhood contains at most d�i elements.

Therefore, |Sv
i | � d (�i )2

, and using breadth-first search starting fromv , the set Sv
i can be computed

in time dO (c2 ) . Note that φKi
(G) is the disjoint union of the sets Sv

i for allv ∈ adom(G). Therefore,
|φKi

(G) | = ∑v ∈adom(G) |Sv
i |.

In our data structure, we store for every i ∈ [s] and every v ∈ adom(G) the number μi,v = |Sv
i |.

Moreover, for every i ∈ [s] we store the sum μi =
∑

v ∈adom(G) μi,v = |φKi
(G) |.

The initialisation for the empty σc -db G0 sets all these values to 0. Whenever the colour of a
vertex ofG is updated or an edge is inserted or deleted, we update all affected numbers accordingly.
Note that a number μi,v changes only ifv is in the (c − 1)-neighbourhood around the updated edge
or vertex in the graph G. Hence, for at most 2dc vertices v , the numbers μi,v are affected by an

update, and each of them can be updated in time dO (c2 ) . Moreover, for each i ∈ [s], the sum μi can
be updated in time O (dc ) by subtracting the old value of μi,v and adding the new value of μi,v

for each of the at most 2dc relevant vertices v . Finally, it takes time O (c ) to compute the updated

value |φK (G) | =∏i ∈[s] μi . The overall time used to produce the update is dO (c2 ) . �

Once we have available the updated numbers |φK (G) | for allK ⊆ J , the valuen2 can be computed

in time O ( |2J |) � 2O (c2 ) . And n3 is then obtained in time O (1). Altogether, performing the update

routine takes time at most dO (c2 ) . The preprocess routine initialises all values for the empty graph
and then uses |G0 | update steps to insert all the tuples of G0 into the data structure. This completes
the proof of Lemma 8.1. �

9 ENUMERATING RESULTS OF FO+MOD QUERIES UNDER UPDATES

In this section, we prove—and afterwards improve—the following theorem.

Theorem 9.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a k-ary FO+MOD[σ ]-query φ (x ) (for some k ∈ N), and a σ -db D0 of degree � d and computes

within tpreprocess = f (φ,d ) · ||D0 || preprocessing time a data structure that can be updated in time

tupdate = f (φ,d ) and allows to enumerate φ (D) with d2O ( ||φ ||)
delay.

The theorem follows immediately from Theorem 7.1 and the following dynamic enumeration
algorithm for the query φc (z).

Lemma 9.1. There is a dynamic algorithm that receives a number c � 1, a degree bound d � 2, and

a σc -db G0 of degree � d and computes within tpreprocess = d
poly (c ) · |G0 | preprocessing time a data

structure that can be updated in time dpoly (c ) and allows us to enumerate the query result φc (G) with

O (c3d ) delay.

Proof. For a σc -db G and a vertex v ∈ adom(G), we let N G (v ) be the set of all neighbours of
v in G, i.e., N G (v ) is the set of all w ∈ adom(G) such that (v,w ) or (w,v ) belongs to EG .

The underlying idea of the enumeration procedure is the following greedy strategy. We cy-

cle through all vertices u1 ∈ CG1 , u2 ∈ CG2 \ N G (u1), u3 ∈ CG3 \ (N G (u1) ∪ N G (u2)), . . . ,uc ∈ CGc \⋃
i�c−1 N

G (ui ) and output (u1, . . . ,uc ). This strategy does not yet lead to a constant delay enu-
meration, as there might be vertex tuples (u1, . . . ,ui ) (for i < c) that do extend to an output tuple
(u1, . . . ,uc ), but where many possible extensions are checked before this output tuple is encoun-
tered. We now show how to overcome this problem and describe an enumeration procedure with

O (c3d ) delay and update time dpoly (c ) .
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Note that for every J ⊆ [c] we have |⋃j ∈J N
G (uj ) | � cd . Hence, if a set CGi contains more

than cd elements, then we know that every considered tuple has an extension ui ∈ CGi that is not a

neighbour of any vertex in the tuple. Let I := {i ∈ [c] : |CGi | � cd } be the set of small colour classes
in G and to simplify the presentation we assume without loss of generality that I = {1, . . . , s}. In
our data structure, we store the current index set I and the set

S :=
{

(u1, . . . ,us ) ∈ CG1 × · · · ×C
G
s : (uj ,uj′ ) � EG, for all j � j ′

}
(10)

of tuples on the small colours. Note that a tuple (u1, . . . ,us ) ∈ CG1 × · · · ×C
G
s extends to an output

tuple (u1, . . . ,uc ) ∈ φc (G) if and only if it is contained inS. We store the current sizes of all colours
and this enables us to keep the set I of small colours updated. Moreover, as |S| � (cd )c , we can

update the set S in time dpoly (c ) after every update by a brute-force approach. The enumeration
procedure is given in Algorithm 1.

ALGORITHM 1: Enumeration procedure with delay O (c3d )

1: for all (u1, . . . ,us ) ∈ S do Enum(u1, . . . ,us ).

2: Output the end-of-enumeration message EOE .
3:

4: function Enum(u1, . . . ,ui )
5: if i = c then output the tuple (u1, . . . ,uc ).
6: else

7: for all ui+1 ∈ CGi+1 do

8: if ui+1 �
⋃i

j=1 N
G (uj ) then Enum(u1, . . . ,ui ,ui+1).

It is straightforward to see that this procedure enumeratesφc (G). Let us analyse the delay. Since

for all i > s we have |CGi | > cd , it follows that every call of Enum(u1, . . . ,ui ) leads to at least one
recursive call of Enum(u1, . . . ,ui ,ui+1). Furthermore, there are at most cd iterations of the loop
in line 7 that do not lead to a recursive call. As every test in line 8 can be done in time O (c ), it
follows that the time spans until the first recursive call, between the calls, and after the last call
are bounded by O (c2d ). As the recursion depth is c , the overall delay between two output tuples
is bounded by O (c3d ). �

By using similar techniques as in Reference [7], we obtain the following improved version of
Lemma 9.1, where the delay is independent of the degree bound d .

Lemma 9.2. There is a dynamic algorithm that receives a number c � 1, a degree bound d � 2, and

a σc -db G0 of degree � d and computes within tpreprocess = d
poly (c ) · |G0 | preprocessing time a data

structure that can be updated in time dpoly (c ) and allows us to enumerate the query result φc (G) with

O (c2) delay.

Before proving Lemma 9.2, let us first point out that Lemma 9.2 in combination with Theo-

rem 7.1 directly improves the delay in Theorem 9.1 from d2O ( ||φ ||)
to O (k2), immediately leading to

the following theorem.

Theorem 9.2. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a k-ary FO+MOD[σ ]-query φ (x ) (for some k ∈ N), and a σ -db D0 of degree � d and computes

within tpreprocess = f (φ,d ) · ||D0 || preprocessing time a data structure that can be updated in time

tupdate = f (φ,d ) and allows to enumerate φ (D) with O (k2) delay.

The rest of the section is devoted to the proof of Lemma 9.2.
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Proof of Lemma 9. Consider Algorithm 1, which enumerates φc (G) with O (c3d ) delay. To
enumerate the tuples with only O (c2) delay, we replace the loop in lines 7–8 by a precomputed

“skip” function that allows to iterate through all elements in CGi+1 \
⋃i

j=1 N
G (uj ) with O (c ) delay.

For every i ∈ [c] we store all elements of CGi in a doubly linked list and let void be an auxiliary
element that appears at the end of the list. We let firsti be the first element in the list and succi (u)

the successor of u ∈ CGi . We denote by �i the linear order induced by this list. We let ẼG be the

symmetric closure of EG , i.e., ẼG = EG ∪ {(v,u) : (u,v ) ∈ EG}. For every i ∈ [c], we define the
function

skipi (y,V ) := min
{
z ∈ CGi ∪ {void} : y �i z and for all v ∈ V , (v, z) � ẼG

}
,

which assigns to every V ⊆ adom(G) with |V | � c−1 and every y ∈ CGi the next node in CGi that
is not adjacent to any vertex in V .

Using these functions, our improved enumeration algorithm is given in Algorithm 2. Below, we
show that we can access the values skipi (y,V ) in time O (c ). By the same analysis as given in the
proof of Lemma 9.1 it then follows that Algorithm 2 enumerates φc (G) with O (c2) delay.

ALGORITHM 2: Enumeration procedure with delay O (c2)

1: for all (u1, . . . ,us ) ∈ S do

2: Enum(u1, . . . ,us ).

3: Output the end-of-enumeration message EOE.
4:

5: function Enum(u1, . . . ,ui )
6: if i = c then

7: output the tuple (u1, . . . ,uc ).
8: else

9: y ← skipi+1 (firsti+1, {u1, . . . ,ui })
10: while y � void do

11: Enum(u1, . . . ,ui ,y).
12: y ← skipi+1 (succi+1 (y), {u1, . . . ,ui }).

What remains to show is that we can access the values skipi (y,V ) for all i,y,V in time O (c ) and

maintain them with dpoly (c ) update time. At first sight, this is not clear at all, because the domain
of skipi has size Ω( |adom(G) |c ). In what follows, we show that for every y, the number of distinct

values that skipi (y,V ) can take is bounded by dpoly (c ) and that we can store them in a look-up table

with update time dpoly (c ) .
To illustrate the main idea, let us start with a simple example. We want to enumerate φ4 on a

coloured graphH with four vertex colours, blue, red, yellow, and green (in this order), and analyse
the call of Enum(b, r ,y), which is supposed to enumerate all green nodes дi that are not adjacent
to any of the nodes b, r , and y. The relevant part ofH is depicted in Figure 1.

The enumeration procedure starts by considering the first elementд1 in the list of green vertices,
but the first element in the actual output is д5 = skip4 (д1, {b, r ,y}). Therefore, we have to skip the
irrelevant vertices д1, . . . ,д4.

To do this, we want to know the neighbours of the vertices that we skip (b and r in our example)
when looking at д1. For this purpose, we define inductively new sorts of edges E1

4 ⊆ E2
4 ⊆ · · · that

connect green vertices д ∈ {д1, . . . ,д6} with Ẽ-neighbours of skipped vertices. In our example, we
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Fig. 1. Illustration of the relevant part of graphH .

Fig. 2. Ẽ-edges and E1
4-edges in our example.

Fig. 3. Ẽ-edges, E1
4-edges and E2

4-edges in our example.

Fig. 4. Introducing an E2
4-edge between д1 and r .

first have to skip д1, because it is Ẽ-connected to b, and to be able to handle this, we let E1
4 be the

set of tuples (дi ,v ) ∈ ẼH (see Figure 2).
After realising that even more vertices (д2 and д3) are excluded by b, the next try would be д4.

However, this vertex is excluded by its Ẽ-neighbour r , so we have to take r into account when
computing the skip value for д1 and indicate this by the E2

4-edge (д1, r ) (see Figure 3). This imme-

diately leads to an inductive definition: E2
4 contains all pairs of vertices that are already in E1

4 or
connected by a path as shown in Figure 4.
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The idea outlined above can be formalised as follows. For i, j ∈ [c], we define inductively the

auxiliary edge sets E j
i :

E1
i := { (y,u) : y ∈ CGi and (y,u) ∈ ẼG } and

E j+1
i := E j

i ∪
{

(y,u) : there are v, z with (y,v ) ∈ E j
i , (v, z) ∈ ẼG, (succi (z),u) ∈ ẼG

}
.

Now we define for every y ∈ CGi the set

S
y
i := {u : (y,u) ∈ Ec

i } .

Note that |Sy
i | = O (d2c ). The following claim states that the elements of S

y
i are the only ones we

need to take into account when computing skipi (y,V ).

Claim 9.3. For all i � c , y ∈ CGi ∪ {void}, and V ⊆ adom(G) with |V | � c−1, it holds that

skipi (y,V ) = skipi (y,V ∩ Sy
i ). (11)

Proof. The proof is identical to the proof of Claim 1 in Reference [7]. For the reader’s con-
venience, we include a proof here. If c = 1 or y = void, then the claim is trivial. Hence assume
that c � 2,y � void, and let z := skipi (y,V ∩ Sy

i ). By definition, we havey �i z �i skipi (y,V ), and

therefore we have to show z �i skipi (y,V ), which holds if and only if (u, z) � ẼG for allu ∈ V \ Sy
i .

If z = y, then the claim clearly holds as all ẼG-neighbours of y are contained in S
y
i . Hence we have

z >i y and let z ′ �i y be the predecessor of z, i.e., z = succi (z ′). Now assume for contradiction that

there is an u ∈ V \ Sy
i such that (∗) (u, z) ∈ ẼG . Note that since z ′ <i z = skipi (y,V ∩ Sy

i ), there is

a v ∈ V ∩ Sy
i such that (∗∗) (v, z ′) ∈ ẼG . In the following, we show that (∗∗∗) (y,v ) ∈ Ec−1

i . Note
that this finishes the proof of the claim, as by the definition of Ec

i , the statements (∗), (∗∗), and (∗∗∗)
imply that u ∈ Sy

i , contradicting the assumption that u ∈ V \ Sy
i .

To show that (y,v ) ∈ Ec−1
i , let

Vj := {v ′ ∈ V : (y,v ′) ∈ E j
i } (12)

for all j ∈ [c]. Note that Vc = V ∩ Sy
i . Furthermore, if there is a j < c with Vj = Vj+1, then we have

Vj = Vj+1 = · · · = Vc = V ∩ Sy
i . (13)

Since |V | � c−1 andu ∈ V \ Sy
i , we have |V ∩ Sy

i | � c − 2. In particular, it holds thatVc−1 = V ∩ Sy
i .

Since v ∈ V ∩ Sy
i , it holds that v ∈ Vc−1 and thus (y,v ) ∈ Ec−1

i . �

In our dynamic algorithm, we maintain an array that allows random access to the values

skipi (y, S ′) for all y ∈ CGi and all S ′ ⊆ S
y
i of size at most c−1. By Claim 9.3, we can then com-

pute skipi (y,V ) by first computing S ′ = V ∩ Sy
i and then looking up skipi (y, S ′). This can be done

in time O (c ). The next claim states that we can efficiently maintain the sets S
y
i .

Claim 9.4. There is a data structure that

(1) stores the elements from the sets S
y
i and all subsets S ′ ⊆ S

y
i of cardinality at most c−1,

(2) allows to test membership in these sets in time O (1), and

(3) can be updated in time dpoly (c ) after every update of the form insert Ci (v ), delete Ci (v ),
insert E (u,v ), and delete E (u,v ).

Proof. Note thatu ∈ Sy
i ⇐⇒ (y,u) ∈ Ec

i . We store the edge sets E j
i for all i, j ∈ [c] in adjacency

lists and additionally maintain arrays to allow constant-time access to all list entries. This allows
us to store a list of elements from S

y
i and access the elements in S

y
i in constant time. Moreover, as
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the size of S
y
i is bounded by O (d2c ), the number of subsets S ′ ⊆ S

y
i of cardinality at most c−1 is

bounded by O (d2c2
). Consequently, we can provide constant-time access to all these subsets S ′.

On every insertion or deletion of an edge in EG , as well as every insertion or deletion of a

vertex in CGi , at most O (d ) pairs in the relation E1
i change, and the relation can be updated in

time O (d ). Afterwards, we update the edge sets E j
i according to their inductive definition. To do

this efficiently, we use a breadth-first search starting from u and v , for every tuple (u,v ) that
has changed in relation E1

i , up to depth 3c to identify the relevant nodes that are affected by the

change. By using the adjacency lists, this can be done in time dpoly (c ) as the degree of the edge sets

is bounded by dpoly (c ) . We leave the details to the reader. �

In our data structure we store the values skipi (y, S ′) for every i ∈ [c], y ∈ CGi and for all sets

S ′ ⊆ S
y
i of cardinality at most c−1. On every insertion or deletion of an edge, we update the sets S

y
i

and their subsets S ′ of cardinality at most c−1 and update affected values of skipi (y, S ′). According

to Claim 9.4 this can be done in time dpoly (c ) .
We do the same on updates of the form insert Ci (v ) and delete Ci (v ) but have to do some ad-

ditional work, as v might occur in the image of skip-functions. On insert Ci (v ), we insert v at the
beginning of the listCi . This ensures that existing skip values will not be affected. Afterwards, we
compute the set Sv

i and the values skipi (v, S ′) for all S ′ ⊆ Sv
i of cardinality at most c−1. Again,

this can be done in time dpoly (c ) .
If we receive the update delete Ci (v ), then we have to recompute all skip values skipi (y, S ′)

that point to v . Note that (since G has degree � d) this is only the case for nodes y �i v whose
distance from v w.r.t. succi is at most (c−1)d . Hence, it suffices to recompute skipi (y, S ′) for at

most (c−1)d vertices y and all S ′ ⊆ S
y
i of cardinality at most c−1. This can be done in time dpoly (c ) .

By Claim 9.3, all this suffices to access the value for skipi (y,V ) in time O (c ). This concludes the
proof of Lemma 9.2. �

10 REFINING THE ENUMERATION ROUTINE

In the previous section, we have presented a dynamic algorithm that allows to enumerate with
delay O (k2) the result φ (D) of a k-ary FO+MOD-query φ (x1, . . . ,xk ) on a database D of degree at
most d (see Theorem 9.2). In this section, we generalise this to provide the following functionality.

On input of a tuple a = (a1, . . . ,a� ) ∈ dom� for some � ∈ [k], we would like to be able to enumerate

all tuples b = (b1, . . . ,bk ) in φ (D) whose first � components coincide with a. In fact, since we

already know that the first � components of b coincide with a, we only output the remaining

components (b�+1, . . . ,bk ) of b.
On input of the tuple a, our algorithm spends some preparation time tpreparation, after which it

outputs all the desired result tuples with delay tdelay.
For formulating this section’s main result, the following notation will be convenient. Given

k � 1 and � ∈ [k], we letm := k−�. For a tuple x = (x1, . . . ,xk ) of k pairwise distinct variables, we
let z = (z1, . . . , z� ) := (x1, . . . ,x� ) and y = (y1, . . . ,ym ) := (x�+1, . . . ,xk ).

For a k-ary FO+MOD[σ ]-query φ (x ) = φ (z,y) and a tuple a = (a1, . . . ,a� ) ∈ dom� , we let
φ (a,y) be them-ary query that, when evaluated on a σ -db D, returns the result set

{ (b1, . . . ,bm ) : (a1, . . . ,a�,b1, . . . ,bm ) ∈ φ (D) } .
This section is devoted to the proof of the following theorem.

Theorem 10.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2,

a k-ary FO+MOD[σ ]-query φ (x ) (for some k ∈ N�1), a number � ∈ [k] and a σ -db D0 of degree

� d , and computes within tpreprocess = f (φ,d ) · ||D0 || preprocessing time a data structure that can be
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updated in time tupdate = f (φ,d ) and provides the following functionality: On input of an arbitrary

tuple a = (a1, . . . ,a� ) ∈ dom� , after tpreparation = f (φ,d ) preparation time it enumerates with delay

O (k2) all result tuples of φ (a,y) on D.

For proving Theorem 10.1, we will use the following variant of Lemma 9.2, which deals with the
queries

φ J (zj1 , . . . , zjc
) :=

∧
j ∈J

Cj (zj ) ∧
∧

j, j′ ∈J , j�j′
¬E (zj , zj ) (14)

for all sets J = {j1, . . . , jc } ⊆ [2c] of cardinality |J | = c .

Lemma 10.1. There is a dynamic algorithm that receives a number c � 1, a degree bound d � 2,

and a σ2c -db G0 of degree � d and computes within tpreprocess = d
poly (c ) · |G0 | preprocessing time a

data structure that can be updated in time dpoly (c ) and provides the following functionality: On input

of an arbitrary set J ⊆ [2c] of size c , after dpoly (c ) preparation time it enumerates φ J (G) with delay

O (c2).

Proof. We use the dynamic algorithm provided by the proof of Lemma 9.2 for input 2c instead
of c . When receiving an update command, we apply this algorithm’s update routine.

Recall that the dynamic data structure constructed in the proof of Lemma 9.2 (for 2c instead of

c) stores the set I ⊆ [2c] of small colour classes in G, i.e., i ∈ I iff |CGi | � 2cd .
On input of a set J we proceed as follows. Compute the set I ′ := I ∩ J of all small colour classes

that are relevant for the query φ J . For simplicity, let us assume that I ′ = {1, . . . , s} for some s � c ,
and J \ I ′ = {s+1, . . . , c} (otherwise, we rename the colours accordingly). Within preparation time

dpoly (c ) we can compute the set

S :=
{

(u1, . . . ,us ) ∈ CG1 × · · · ×C
G
s : (uj ,uj′ ) � EG, for all j, j ′ ∈ [s] with j � j ′

}
.

To enumerate the query resultφ J (G), we then use Algorithm 2 for this setS (without any changes;
in particular, in lines 6 and 7 we do not replace c by 2c but keep the value c).

Revisiting the proof of Lemma 9.2, it is straightforward to verify that the resulting dynamic data
structure provides the desired functionality within the claimed preparation time and delay. �

Based on the above lemma, we can prove the following variant of Lemma 7.1.

Lemma 10.2. For d ′, c ∈ N let tinit (c,d
′) := (d ′)poly (c ) , tupdate (c,d ′) := (d ′)poly (c ) , and tdelay (c,d ′) :

= O (c2).

For every schema σ and every d � 2 the following holds. Let r � 0, k � 1, and fix d ′ := d2k2 (2r+1) and

t̃x := maxk
c=1 tx (c,d ′) for tx ∈ {tinit, tupdate, tcount, tdelay}.

(1) Let τ be a d-bounded r -type with k centres and let � ∈ [k]. There is a dynamic algorithm

that within initialisation time t̃init builds a data structure that can be updated in time at

most t̃updated
O (k2r+k ||σ ||) + 2O ( ||σ ||k2d2r+2 ) and provides the following functionality for σ -dbs

of degree at mostd : On input of an arbitrary tuplea ∈ dom� , after t̃update2O ( ||σ ||k2d2r+2 ) prepa-

ration time it enumerates with delay O (̃tdelay + k ) all result tuples of sphτ (a,y) on D.

(2) Let s � 0 and let χ1, . . . , χs be arbitrary sentences of schemaσ , and assume we have available

for each j ∈ [s] a dynamic algorithm with initialisation time t ′init and update time t ′
update

that

allows us to check within answer time t ′answer whether or not D |= χj for d-bounded σ -dbs D.

Let x = (x1, . . . ,xk ) be a tuple of pairwise distinct variables, and let ψ (x ) be a Boolean

combination of the sentences χ1, . . . , χs and of d-bounded sphere-formulas of radius at most

r (over σ ).
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There is a dynamic algorithm that within initialisation time s (t ′init + t
′
answer) +

2(kdr+1 )O ( ||σ ||)
(poly ( ||ψ ||) + t̃init) builds a data structure that can be updated in time s (t ′

update
+

t ′answer) + 2(k2d2r+2 )O ( ||σ ||)
(poly ( ||ψ ||) + t̃updated

O (k2r+k ||σ ||) ) and provides the following func-

tionality: On input of a tuple a ∈ dom� , after 2(k2d2r+2 )O ( ||σ ||) · t̃update preparation time it enu-

merates with delay O (̃tdelay + k ) all result tuples ofψ (a,y) on D.

Proof. For the proof of part (1) we proceed in a similar way as in the proof of Lemma 7.1(1),
and utilise the dynamic algorithm provided by Lemma 10.1.

On input of a tuple a = (a1, . . . ,a� ) ∈ dom� , we want to enumerate all tuples b ∈ domm such

that D |= sphτ (a,b). We use the same notation as in the proof of Lemma 7.1(1). In particular, recall
that we consider the formula

conn-sphτ (x ) :=
∧
j ∈[c]

sphτj,νj
(x j ) ∧

∧
j�j′
¬ dist

kj ,kj′

�2r+1
(x j ,x j′ )

and the coloured graph GD of degree at most d ′ with

CGD

j := {v
b

: b ∈ adom(D)kj with
(
ND

r (b),b
)
� τj }, for all j ∈ [c], and

EGD := { (v
b
,v

b
′ ) ∈ V 2 : distD (b;b

′
) � 2r+1 },

where V :=
⋃

j ∈[c]C
GD

j , and recall that τj := τj,νj
is a connected r -type for each j ∈ [c].

Recall that the input tuple a will be assigned to the variables (x1, . . . ,x� ) = (z1, . . . , z� ) = z.
W.l.o.g. we assume that there is a number κ ∈ {1, . . . , c} such that the following is true. For each
j ∈ [κ], the tuple x j contains at least one of the variables in z, and for each j ∈ [k] \ [κ], the tu-
ple x j contains none of the variables in z, i.e., it only consists of variables in y = (y1, . . . ,ym ) =
(x�+1, . . . ,xk ).

For an input tuple a, we extend GD by c further colours Cc+1, . . . ,C2c to obtain the following
σ2c -db GD,a . The edge relation E and the colours C1, . . . ,Cc of GD,a are the same as those of GD .
For each j ∈ {1, . . . ,κ}, we let

C
GD,a

c+j :=

{
v

b
∈ CGD

j :
for every position ν in x j which consists of a variable zi

in z, the entry of b at position ν is ai

}
,

and for each j ∈ {κ+1, . . . , c}, we let C
GD,a

c+j := ∅.
To enumerate the result tuples of sphτ (a,y), we use the enumerate routine provided by

Lemma 10.1 on input

J := {c+1, . . . , c+κ} ∪ {κ+1, . . . , c}

to enumerate the set φ J (GD,a ). Note that according to the definition of the sets C
GD,a

c+j , the set

φ J (GD,a ) contains exactly those tuples in (v
b1
, . . . ,v

bc
) ∈ φ J (GD ), where for every position ν in

some x j that consists of a variable zi in z, the entry of b j at position ν is ai . Therefore, after

suitably re-ordering the components of the tuples (b1, . . . ,bc ) and dropping the components that
correspond to a, we obtain the desired result tuples for sphτ (a,y) on D.

It remains to show how to construct and maintain GD,a when the database is updated or when
a new tuple a is given as input.

The update routine proceeds in exactly the same way as in the proof of Lemma 7.1(1) and uses
the update routine provided by Lemma 10.1 but does not bother to update the coloursCc+1, . . . ,C2c .
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On input of a tuple a, we use the preparation time to first delete all elements from the colours

Cc+1, . . . ,C2c , and then insert all the elements that belong to the setsC
GD,a

c+1 , . . . ,C
GD,a

c+κ . The details
can be carried out as follows.

Note that according to the definition of C
GD,a

c+j , the following is true for each j ∈ [κ]: For every

elementv
b

inC
GD,a

c+j , some component of the tuple b is equal to a component ai of the tuple a. Since

(ND
r (b),b) � τj and τj is a connected r -type, every component of the tuple b belongs to ND

r ′ (ai )

for r ′ := r + (k−1) (2r+1). In particular, from Lemma 3.1, we obtain that |CGD,a

c+j | � |ND
r ′ (ai ) |k �

dk2 (2r+1) . Thus, the first step of deleting all elements that are still present in Cc+j (as an artifact of

a previous enumeration request) can be accomplished in time dO (k2r ) t̃update.

Afterwards, we proceed as follows to insert into Cc+j all elements that do belong to C
GD,a

c+j .

We compute the set U := ND
r ′ (ai ) and test for every tuple b ∈ U |x j | whether the following two

conditions hold:

(1) The r ′-type (ND
r ′ (b),b) is isomorphic to τj , and

(2) for every position ν in x j that consists of a variable zμ in z, the entry of b at position ν is
aμ .

If both conditions are met, then we insert the vertex v
b

into Cc+j by using the update routine

provided by Lemma 10.1. Note that this constructs the correct set C
GD,a

c+j .

To analyse the time needed for this construction, note that by Lemma 3.1, |U | � dr ′+1 �
dk (2r+1) � dO (kr ) . Furthermore, U can be computed in time (dr ′+1)O ( ||σ ||) � dO (kr ||σ ||) . The num-

ber of tuples b that we consider is at most |U |k � dO (k2r ) . To check if the first condition for b is

met, then we use Lemma 3.1(e) to check in time 2O ( ||σ ||k2d2r+2 ) whether the r -type ofb is isomorphic

to τj . The second condition can be checked in time O (k ). In summary, we compute the setsC
GD,a

c+j

for all j ∈ [κ] in time dO (k2r ||σ ||) · 2O ( ||σ ||k2d2r+2 ) · t̃update � 2O ( ||σ ||k2d2r+2 ) · t̃update.
This completes the proof of part (1).

Let us now turn to the proof of part (2). The proof can be taken verbatim from the proof of
Lemma 7.1(2), with the following changes: Instead of using the dynamic algorithms for sphτi

(x )
provided from Lemma 7.1(1), we now use the dynamic algorithms for sphτi

(z,y) provided by

Lemma 10.2(1). On input of a tuple a ∈ dom� , we run the preparation phase of the dynamic al-
gorithms for sphτi

(a,y) for all i ∈ I , and afterwards, we loop through all i ∈ I and enumerate the
result tuples of sphτi

(a,y) on D. This completes the proof of Lemma 10.2. �

By using Lemma 10.2(2) instead of Lemma 7.1(2), we obtain the following analogue to
Theorem 7.1.

Lemma 10.3. For d ′, c ∈ N let tinit (c,d
′) = (d ′)poly (c ) , tupdate (c,d ′) = (d ′)poly (c ) , and tdelay (c,d ′) =

O (c2). There is a dynamic algorithm that receives a schema σ , a degree bound d � 2, a k-ary

FO+MOD[σ ]-query φ (x ) (for some k ∈ N�1), and a number � ∈ [k]. Within initialisation time

t̂init·f (φ,d ), this algorithm builds a data structure that can be updated in time t̂update·f (φ,d ) and

provides the following functionality for σ -dbs of degree at most d : On input of an arbitrary tuple

a ∈ dom� , after t̂update·f (φ,d ) preparation time it enumerates with delay O (̂tdelay + k ) all result tu-

ples of φ (a,y) on D , where t̂x = maxk
c=1 tx (c,d2O ( ||φ ||)

) for tx ∈ {tinit, tupdate, tdelay}.
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Proof. The proof can be taken verbatim from the proof of Theorem 7.1, with the following
change: Instead of applying part (2) of Lemma 7.1, we now use the dynamic algorithm provided
by part (2) of Lemma 10.2. �

Proof of Theorem 10.1. The result is an immediate consequence of Lemma 10.3. �

11 ENUMERATING THE DIFFERENCE

In this section, we introduce a new update routine called update_and_report_diff that, immedi-
ately after performing the database update, reports the difference between the new query result
and the old query result, i.e., it first enumerates all tuples in φ (Dnew ) \ φ (Dold ) (terminated by the
end-of-enumeration message EOE) and then all tuples in φ (Dold ) \ φ (Dnew ) (again, terminated by
the message EOE), where Dold and Dnew denote the database before and after performing the given
update command. This section’s main result reads as follows.

Theorem 11.1. There is a dynamic algorithm that receives a schema σ , a degree bound d � 2, a

k-ary FO+MOD[σ ]-query φ (y) (for some k ∈ N), and a σ -db D0 of degree � d and computes within

tpreprocess = f (φ,d )·||D0 || preprocessing time a data structure providing an update_and_report_diff

routine that, on input of a command updateR (a) for update ∈ {insert, delete}, R ∈ σ , and a ∈
domar(R ) , updates the data structure within time tupdate = f (φ,d ) and then enumerates the differ-

ence between the new and the old query result with delay O (k2).

Proof. We use Theorem 10.1 for the following queries. For each update ∈ {insert, delete} and
each R ∈ σ we let � := ar(R) and fix a tuple z = (z1, . . . , z� ) of pairwise distinct variables that do
not occur in φ (x ). We construct (�+k )-ary FO+MOD[σ ]-queries

φ+update R (z,x ) and φ−update R (z,x )

such that the following is true for all σ -dbs D and all a ∈ dom� : If Dnew is the σ -db obtained from
Dold � Dnew by performing the update operation updateR (a), then

• the set of result tuples of φ+
update R

(a,x ) on Dnew is exactly the set φ (Dnew ) \ φ (Dold ), and

• the set of result tuples of φ−
update R

(a,x ) on Dnew is exactly the set φ (Dold ) \ φ (Dnew ).

Before constructing these queries let us explain how they can be used to finish the proof of
Theorem 11.1. Let Ψ be the set consisting of the queries φ+

update R
and φ−

update R
for update ∈

{insert, delete} and R ∈ σ . We use in parallel for each ψ in Ψ the dynamic algorithm provided by
Theorem 10.1. On input of an update operation updateR (a), the update_and_report_diff routine
proceeds as follows. Let D = Dold be the database before executing the update command.

In the case where the given update command does not change the database (i.e., the operation
intends to delete a tuple that does not belong to the database relation RD , or it intends to insert a
tuple that already belongs to RD , or it intends to insert a tuple that would result in a database that
exceeds the given degree bound d), then all the data structures remain unchanged and the routine
just outputs “EOE EOE.”

Otherwise, we proceed as follows. First, consider each query ψ in Ψ and perform the update

routine on input “updateR (a)” of the dynamic algorithm provided by Theorem 10.1 for the query
ψ . Let Dnew be the updated database. We then use the functionality provided by Theorem 10.1 to
perform in parallel the preparation phase for the queries φ+

update R
(z,x ) and φ−

update R
(z,x ) on input

of the tuple a. Afterwards, we first enumerate the result tuples of φ+
update R

(a,x ) on Dnew and then

enumerate the result tuples of φ−
update R

(a,x ) on Dnew .
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All that remains to be done to finish the proof of Theorem 11.1 is to construct the queries
φ+

update R
(z,x ) and φ−

update R
(z,x ). The idea is straightforward: We let

φ+update R (z,x ) := φ (x ) ∧ ¬φold
update R (z,x ) and

φ−update R (z,x ) := φold
update R (z,x ) ∧ ¬φ (x ) ,

where φold
update R

(z,x ) is a formula for which the following is true: If Dnew � Dold is obtained from

Dold by performing the update command updateR (a), then evaluating φold
update R

(a,x ) on Dnew sim-

ulates the evaluation of φ (x ) on Dold . A somewhat annoying technical detail in the construction of
these formulas is that the semantics of quantifiers takes into account the database’s active domain,
and the database’s active domain might be changed by the update command.

Let us first consider the (easier) case that update = insert. We let

α (z,y) := ∃y1 · · · ∃y� �
�

�∨
i=1

y=yi ∧ R (y1, . . . ,y� ) ∧ ¬
�∧

i=1

yi=zi
�
	

∨
∨

S ∈σ \{R }
∃y1 · · · ∃yar(S )

��
�

ar(S )∨
i=1

y=yi ∧ S (y1, . . . ,yar(S ) )
��
	 .

IfDnew � Dold is obtained fromDold by performing the update command insertR (a), then the result
set of α (a,y) onDnew is exactly the active domain ofDold . Therefore, we can chooseφold

insert R
(z,x ) to

be the query obtained from the input queryφ (x ) by replacing every atomic subformula of the form

R (u1, . . . ,u� ) with the formula (R (u1, . . . ,u� ) ∧ ¬∧�
i=1 ui=zi ) and by relativising every quantifi-

cation to a variable y to those y that satisfy α (z,y), i.e., we replace every subformula of the form
∃y ϑ (or ∃i mod my ϑ ) with the formula ∃y (α (z,y) ∧ ϑ ) (or ∃i mod my (α (z,y) ∧ ϑ )). It is straight-
forward to verify that the resulting formula φold

insert R
(z,x ) expresses the desired property.

Let us now turn to the case where update = delete. The problem here is that adom(Dold ) contains
all the elements in a = (a1, . . . ,a� ), while some (or, all) of these elements might be missing in
adom(Dnew ), and due to the active domain semantics of FO+MOD, there is no explicit means of
enabling quantifiers to range over elements that do not belong to the active domain. To overcome
this, let J ⊆ [�] be a set of indices such that |J | = |{a1, . . . ,a� }| and {a1, . . . ,a� } = {aj : j ∈ J }. By
induction on the construction of formulas we define for every FO+MOD[σ ]-query ϑ (y) that does

not contain any of the variables in z = (z1, . . . , z� ) an FO+MOD[σ ]-query ϑ̂ J (z,y) such that the

set of result tuples of ϑ̂ J (a,y) on Dnew is exactly the set ϑ (Dold ). To achieve this, we proceed as
follows:

• if ϑ is of the form R (y1, . . . ,y� ), then ϑ̂ J := (R (y1, . . . ,y� ) ∨ ∧�
i=1 yi=zi )

• if ϑ is of the form y1=y2 or of the form S (y1, . . . ,yar(S ) ) with S ∈ σ \ {R}, then ϑ̂ J := ϑ

• if ϑ is of the form ¬θ , then ϑ̂ J := ¬θ̂ J

• if ϑ is of the form (θ ′ ∨ θ ′′), then ϑ̂ J := (θ̂ ′ J ∨ θ̂ ′′ J )

• if ϑ is of the form ∃y θ , then ϑ̂ J := (ϑ ∨ ∨j ∈J θ̂ J
zj

y
), where θ̂ J

zj

y
is the formula obtained

from θ̂ J by replacing every free occurrence of the variable y by the variable zj

• if ϑ is of the form ∃i mod my θ , then ϑ̂ J :=
∨

(i1,i2 )∈I ξ (i1,i2 ) , where I is the set of all (i1, i2) ∈
{0, . . . ,m−1}2 with i1 + i2 ≡ i modm, and

ξ (i1,i2 ) := ∃i1 mod my ��
�θ̂ J ∧

∧
j ∈J

¬y=zj
��
	 ∧

∨
J ′⊆ J
| J ′ |=i2

��
�
∧
j ∈J ′

θ̂ J
zj

y
∧
∧

j ∈J \J ′
¬θ̂ J

zj

y
��
	 .
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It is straightforward to verify that the query ϑ̂ J (z,y) indeed has the desired meaning. Thus, we
can choose

φold
delete R (z,x ) :=

∨
J ⊆[�]

���
�
φ̂ J ∧

∧
i, j∈J
i�j

¬zi=zj ∧
∧

i ∈[�]\J

∨
j ∈J

zi=zj

���
	
.

This completes the proof of Theorem 11.1. �

12 CONCLUSION

Our main results show that in the dynamic setting (i.e., allowing database updates), the results of
k-ary FO+MOD-queries on bounded degree databases can be tested and counted in constant time
and enumerated with constant delay, after linear time preprocessing and with constant update
time. Here, “constant time” refers to data complexity and is of size poly (k ) concerning the delay
and the time for testing and counting. The time for performing a database update is threefold
exponential in the size of the query and the degree bound and is worst-case optimal.

The starting point of our algorithms is to decompose the given query into a query in Hanf
normal form, using a recent result of Ref. [12]. This normal form is only available for the setting
with a fixed maximum degree bound d , i.e., the setting considered in this article.

Recently, Kuske and Schweikardt [15] introduced a new kind of Hanf normal form for a variant
of first-order logic with counting that contains and extends Libkin’s logic FO(Cnt) [16] and Grohe’s
logic FO+C [9]. As an application it is shown in Reference [15] that the present article’s techniques
can be lifted from FO+MOD to first-order logic with counting terms and numerical predicates
FOC(P).

An obvious future task is to investigate to which extent further query evaluation results that are
known for the static setting can be lifted to the dynamic setting. More specifically: Are there effi-
cient dynamic algorithms for evaluating (i.e., answering, testing, counting, or enumerating) results
of first-order queries on other sparse classes of databases (e.g. planar, bounded treewidth, bounded
expansion, nowhere dense) or databases of low degree, lifting the “static” results accumulated in
[7, 10, 14, 23] to the dynamic setting?
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