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ABSTRACT
With the convergence of data warehousing, online analyti-
cal processing and the Semantic Web, analytical tasks are
no longer only designed and executed by experts. Instead,
various users expect to query keyword search engines with
analytical intentions. One efficient approach to answer these
tasks is to leverage the factual information stored in large-
scale text databases. These systems enable analysts to ac-
cess unstructured text sources from the Web with structured
query languages. The challenge of mapping keyword queries
to structured queries has been approached in various forms.
However, these systems are not able to detect the underlying
intent of a task. Thus, they cannot infer the user’s expecta-
tions towards specificity and form of the results. Moreover,
a large fraction of queries for retrieving analytical results is
rare. As a result, services for intent-aware task recognition
perform poorly or are not even triggered on these long-tail
queries. We report from a study over 102,360 query and
click patterns from a factual search engine. Our analysis
reveals six common analytical tasks: explore, relate, resolve,
list, compare and answer. To distinguish among these, we
study the effects of syntactical structures in the query, meth-
ods for interactive entity detection and query segmentation
techniques. We evaluate these features on language models
and Naive Bayes classifiers. From our evaluation we report
a combined F1 score of 90% for the prediction of task intent
from keyword queries.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation

General Terms
Human Factors, Languages, Experimentation, Design
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informational search; query intent; user goals; keywords
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1. INTRODUCTION
Data analysis tasks are an important part of the search

process, which involves multiple iterations of lookup, learn
and investigatory subtasks [29]. One efficient approach of
processing analytical tasks is to leverage the information
stored in large-scale text databases. These systems are able
to query structured data that has been extracted from text
documents in the Web [21] and return factual results as well
as text snippets and lineage information.

Please consider the following scenario (see Figure 2): The
overall objective of an enterprise analyst is to select a sup-
plier for VOIP technology. The analyst translates her possi-
bly complex information need into a sequence of search tasks
[12]: Who are suppliers for VOIP? What are the key facts
about one of these companies, e.g. Cisco Systems? Who
is the CEO? Is Cisco related to my strongest competitor?
During that search process, she gathers the results in form
of a spreadsheet table.

Each of these tasks requires the formulation of queries to
the search system. Most business users can not translate
these information demands into multiple structured queries.
Rather, they desire to express complex tasks and intentions
in a sequence of keyword queries. Current systems for key-
word queries over relational databases [2, 17, 34] are able
to parse unstructured queries and execute them against a
structured database schema. However, these systems can
neither discriminate between the required complex task in-
tentions, nor do they understand the overall query objective
of the user. We present an approach that is able to classify
six of the most common complex analytical tasks at query
time with very high F1 score. Our system maps these an-
alytical tasks to visualization operators and generates an
appropriate SQL query after the detection.

Our contribution. Our research bases on the analytical
search engine GoOLAP, which provides an interactive search
interface for exploratory queries on a text database.

1. In a long term study, we analyze a log of 102,360 key-
word queries and click behavior posed to the GoOLAP
search engine between 2008 and 2014. In this log, we
spotted that 86.4% of the queries represent analytical
tasks, such as undirected and directed informational
searches [32] on structured data. By combining re-
lated work from Web search engines [7, 11, 12, 32],
keyword queries in databases [2, 5, 17, 34] and our ob-
servations, we introduce a scheme of the most impor-
tant analytical tasks, in particular tasks that seek to
explore, relate, resolve, list, compare or answer factual
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results. To our knowledge, this is the first work that
combines these common tasks in a single taxonomy.

2. Our approach is based on high-level objectives of ana-
lytical search and focuses on the sub-tasks of the pro-
cess. This vision is highly related to text databases and
goes beyond keyword queries on structured databases.

3. During our analysis, we systematically spotted com-
mon patterns in query formulation that may help ana-
lytical search engines (e.g. OLAP systems) to predict
these common tasks. The patterns are based on fea-
tures that we derive from query syntax and schema
information. We tested these features on a scheme
of binary classifiers for the prediction of six common
classes. From our evaluation of 520 expert-labeled
queries we report an overall prediction accuracy of
96.8% and F1 score of 90.1%.

4. We implemented our results in a demonstrator1. More-
over, labeled query data sets for resolving analytical
tasks are rare in the academic community. Therefore
we publish our data set2.

The rest of the paper is organized as follows: In Section 2,
we discuss the background of related work. In Section 3, we
introduce our model which combines previous work with our
own observations. In Section 4, we describe the interactive
process of feature extraction and classification. In Section
5, we present the evaluation setup and discuss our results.
We draw a conclusion in Section 6.

2. BACKGROUND
We begin with a comprehension on related work. Then,

we describe the process of analytical search tasks and user
interaction. Finally, we introduce the implementation of this
process using our prototype system GoOLAP.

2.1 Related Work
Spotting search task intentions is an active research area

for the Web search and information retrieval community.
The top-level classification of informational, navigational
and transactional search has been published long before
search engines included factual results and is based on the
classic model of document retrieval [7, 32]. Informational
queries make up the biggest proportion of Web search tasks
with roughly 45–60% of queries [7, 30, 32, 38]. The speci-
ficity of these tasks can vary between very narrow (e.g. fact
finding) and very wide (e.g. exploratory search) [29], while
the complexity of tasks ranges from simple lookup to com-
plex transformations spanning an entire query session [3].
Several attempts have been made to further structure infor-
mational intents, such as ambiguous and multi-faceted clas-
sification [4, 11], and query representation [16, 24]. While
most of the spotted tasks can be expressed as structured
queries, detecting intent from unstructured query formula-
tion has only been approached before on high level [22, 27,
30, 38]. However, resolving search intentions to evaluate
arbitrary analytical queries is a relatively new phenomena.

Obviously, commercial search engines investigate such tech-
niques to retrieve parts of the knowledge graph [9, 36], but

1http://www.goolap.info
2https://dbl43.beuth-hochschule.de/goolap/site/publications/
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Figure 1: Hierarchy of search tasks (based on [12]).
The user’s search objective is divided into multiple
hidden tasks 1 . . . n. The user expresses the tasks as
unstructured queries. Each query is executed using
one or more structured operators on a text database.

we are not aware of results available to the public. Spe-
cialized systems are able to rewrite keyword queries into
structured SQL or SPARQL statements. DBXplorer [2] is
one of the early systems that interpret unstructured lookup
queries to relational databases. SQAK [34] is highly special-
ized on interpreting tasks that contain aggregation. STICS
[17] is a search engine for Web and news data that incorpo-
rates entity resolution to enhance document lookup on the
YAGO-NAGA ontology [23]. However, all these systems are
specialized in fixed types of result presentation, such as ta-
bles or documents. To our knowledge, our work is the first
academic result that incorporates six very common analyt-
ical tasks with different structured result types in a single
search interface.

Text databases [1, 21] enable the user to query structured
data out of text sources. The database utilizes an informa-
tion extraction system to extract facts from text, each hold-
ing a set of pointers to the sources where it is mentioned.
The user can then access these facts and their lineage using
a structured query language, such as SQL or SPARQL. Our
work on INDREX [26] extends the idea of text databases
with the ability to express information extractors directly in
SQL. Therefore, it provides a span-based data model which
is able to store the results of information extraction and nat-
ural language processing. The user can formulate extractors
with SQL using the proposed span predicate extensions.

2.2 Process of Analytical Search
We define an analytical task as the specific request for

a structured informational result. We assume a simplified
model of search that is based on recent information behav-
ior literature [12] and models an overall search objective as
consecutive sequence of immediate search tasks. Each of
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these tasks solves a specific goal that is required by the an-
alyst to satisfy her information need. We can observe these
tasks only by the methods of interaction, such as query for-
mulation (see Figure 1). Next, we summarize the principal
properties of search objective and query method that have
individually been introduced in related work [3, 11, 24, 29].

Dimensions of search objective. The intentions of the an-
alyst define a space with four dimensions. Specificity [11] de-
picts a degree of specialization of the task, such as specific,
broad or undirected. While specific tasks have a clear scope
and require an exact answer (e.g. birthplace of barack

obama), undirected or exhaustive [24] tasks have a wider
range of results which can be of various types (e.g. travels

of barack obama). Explorativeness [3] describes the clarity
of expectations that the user has on the result. For instance,
the result may be known to exist or the user may be look-
ing for suggestions. A task with no explorativeness has one
distinct answer (e.g. map of honululu); for a task with ex-
ploratory intent (e.g. summer travel locations), the user
is first unsure about the amount of information that is re-
quired to satisfy her information need. Complexity [3] de-
scribes the level of complexity that is required to answer the
task. For instance, lookup tasks (e.g. location of honul-

ulu) are of low complexity and can be answered by classic
retrieval algorithms. Learn tasks (e.g. cities in hawaii)
require multiple iterations of processing, interpretation and
aggregation. Investigatory tasks (e.g. how to stop global

warming) require the analysis and synthesis of knowledge [29]
and therefore are of high complexity. Result size describes
the number of items that the user expects from the result.
For example, some tasks expect a single answer (e.g. dec-

laration of independence date), while other tasks may
return a list of fixed size (e.g. list of U.S. presidents)
or even a near endless result (e.g. pictures of america).

Dimensions of query method. Methods are the interac-
tions of the user with the search engine. Query formulation
often is the only explicit expression that we can observe from
the interaction. Therefore, our approach focuses on the size
and content of the query as one direct indicator for task
classification. However, the complexity of scale is very low,
while the variance of query formulation is extremely high
[31]. Established measurements for syntactical query fea-
tures are number of terms, number of tokens, distribution of
query terms, detection of operator keywords (e.g. pictures)
and part-of-speech information [22]. Many of these features
can be summarized in an n-gram language model, which is
able to predict words based on probability distribution of
the previous n− 1 words in a corpus of queries [8]. User in-
teraction such as click-through information can be analyzed
to reconstruct previous user sessions from the log file of the
system. By observing the chronological order of refinement
actions, we can extract context-based features such as the
number of queries, number of reformulations and the identi-
fication of initial, expanded, contracted or repeated queries
[12]. The observation of user client-side interactions with
the result pages can lead to detailed implicit feedback of rel-
evance. An analysis method of click distribution on search
engine result pages has been proposed by [27]. The authors
of [38] achieve good results using the median amount af clicks
made during sessions associated with a single query. The au-
thors of [12] have included more fine-grained human-device
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Figure 2: Architecture of the GoOLAP search pro-
totype. The user interacts with the Web front-end
on analysis layer. The integration layer is part of
the iterative ETL process and holds the data store.
The crawler accesses the data sources layer using a
Web index.

interface events such as number of mouse moves, scrolling,
hovering, key-press events and time until first click. Addi-
tional measures based on cursor movement, such as cursor
trail length and maximum hover time are proposed by [19].

2.3 GoOLAP Fact Retrieval
We have developed GoOLAP [28], which is a prototype

that implements the process of analytical search on unstruc-
tured Web text data. The system considers the Web as large
text database [1] and executes a focused crawl to retrieve po-
tentially fact-rich English language pages. GoOLAP is based
on a scheme of typed facts (n-ary relations) and typed en-
tities, following the span model that was introduced in [26].
Currently the database holds over 5 million distinct named
entities of 39 entity types and 29 million fact instances of 84
relation types3. From 2014 on, each day between 500 and
800 users query the knowledge base with analytical tasks in
form of keyword queries and interactions.

The search process of GoOLAP is shown in Figure 2. An
analyst queries the exploratory search interface using key-
words and interactions. She expresses her objective as se-
quential search tasks. Each request is classified, accordingly

3we utilize the ontology defined by the OpenCalais Web
Service http://www.opencalais.com/documentation/calais-
web-service-api/api-metadata/entity-index-and-definitions
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Query Examples Terminology

Explore tell me all about X learn high large

Resolve learn medium small interpretation [29]

Relate learn medium large integration [29]

List show me a list of X directed learn low large directed open [32]

Compare compare X1 and X2 directed learn medium medium comparison [29]

Answer answer question X directed lookup low small

Analytical
Task

Verbal
Interpretation

Features
SEQpos

Features
SEQtype

speci-
ficity

com-
plexity

explora-
tiveness

result
size

cisco systems
VOIP

NNP
NNP

Company
Technology

undi-
rected

undirected [32]
infor. gathering [25]

tell me all about the 
specific Y called X

paris hilton model
cisco systems CEO

NNP NNP
NNP NNP

Person Position
Company Position

undi-
rected

tell me all about the 
relation of X1 and X2

cisco and siemens
angela merkel USA

NNP and NNP
NNP NNP

Company and Company
Person Country

undi-
rected

VOIP suppliers
products of apple

NNP NN+
NN+ of NNP

Technology CompanySupp+
CompanyProduct+ of Company

iOS vs android
tcp udp comparison

NNP vs NNP
NNP NNP NN

Product vs Product
Technology Technology NN

barack obama birthday
foundation of siemens

NNP NN
NN of NNP

Person PersonAttributes
Formation of Company

directed closed [32]
fact finding [25]

Table 1: Overview of informational analytical tasks with query examples and categorization in the space of
specificity, complexity, explorativeness and result size. The table shows simplified sequences of part-of-speech
(SEQpos) and schema (SEQtype) tags for each example and references to prior research terminology.

Figure 3: Interaction flow on the GoOLAP Web
front-end: (1) implicit query annotation using auto-
complete, (2) explicit correction of query classifica-
tion, (3) exploratory result visualization, (4) the lin-
eage of every fact is accessible in our text database.

translated into a structured query to the text database and
visualized on the Web front-end. Inside the iterative extract-
transform-load (ETL) process, we analyze the log file and
trigger crawling jobs. The crawler queries a Web index to
retrieve documents that contain unseen facts [6]. The system
utilizes a natural language processing pipeline to extract re-
lational facts from these documents and pre-aggregates the
results for fast answering times. The data is represented in
an interactive user interface (see Figure 3).

3. TASK AND QUERY ANALYSIS
Our study is based on a large query log that we gath-

ered in the time span between 08/2008 and 10/2014 on the
GoOLAP Web front-end. We logged query strings and re-
sult page interactions for 102,360 distinct queries with non-
empty result. From this data set, we inspected a sample of
520 queries in a systematic process (see Section 5.1). In the
expert-labeled data set we notice that 86.4% of the queries
represent analytical tasks (see Table 2). The remainder of

Data Set Q-EXP Q-ML

total queries in data set 520 102,360

queries after filtering 477 85,430

explore 58.07% 10.69%

resolve 12.37% 39.64%

relate 6.08% 14.03%

list 4.82% 6.99%

compare 0.63% 0.21%

answer 4.40% 4.05%

non-analytical 13.63% 24.39%

Table 2: Overview of two data sets derived from
102,360 queries posed to GoOLAP. The supervised
Q-EXP set is hand-labeled by experts, the Q-ML set
was machine labeled using an initial classifier.

this set consists of navigational and transactional tasks, re-
quests for unstructured and investigatory results as well as
apparently senseless requests. The result of our inspection
is the base for the following classification.

We introduce six common classes of analytical search tasks.
The fundamental categorization of directed and undirected
tasks is based on the observations of [32]. We extend this
classification by structured analysis of the query log accord-
ing to the previously introduced space of specificity, task
complexity, explorativeness and result size. Our subsequent
goal is to utilize observable properties of query formulation
and user interaction methods to predict the task intention at
query time. Table 1 gives an overview on the categorization
and the corresponding concepts in related work.

We notice that the user’s query objective is not always
clearly classifiable into one of our proposed classes. It was
also shown that search intent of a single user can vary at
different times [12]. However, for the generation of practical
search results, we are interested in providing a single clas-
sification according to the most expected representation of
user intent. We therefore follow the approach of [16] and
apply single labels.
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3.1 Classes of Analytical Tasks
During our query log analysis, we developed the follow-

ing six classes of common analytical tasks. In this paper we
focus on structured informational tasks only (e.g. tasks spe-
cific to text databases and OLAP) and classify non-analytical
search tasks (e.g. with navigational, transactional or un-
structured intentions) as other. This choice also ensures
that non-analytical and senseless tasks can be handled cor-
rectly by the implementation.

Explore. With 58.1% of all queries, this task is the most
common in the query log. The task targets exhaustive in-
formation gathering (e.g. “Tell me all about X”) and is
widely known by related work as undirected search [7] or
information gathering [25]. The parameter X is a broad
undirected search term, mostly a single known item or en-
tity (e.g. cisco systems). This term is used as a starting
point for further exploratory investigation by the user. The
user expects the most relevant tuples of a universal relation
(e.g. an overview of semi-structured facts), which is built
from a large set of relationship types.

Resolve. We discover that a large fraction of 12.4% queries
in the log target undirected search, but include disambigua-
tion terms in the query: “Tell me all about the specific Y
called X”. X is an optional parameter to specify the name
of the entity, as in explore. Y is either a broad term
(e.g. a profession in paris hilton model) or a relation that
needs to be resolved (e.g. cisco systems CEO → 〈?,CEO
of,cisco〉). resolve queries are often used to combine the
answer to a “which” question with an explore task in
one single task. This task is mostly unrecognized in re-
search, but it is very frequent in our data set and has been
mentioned before as interpretation [29]. It is supported by
Google Knowledge Graph as association queries [9].

Relate. 6.1% of the queries focus on the connection between
two or more items: “Tell me all about the relation of X1 and
X2”. The parameters Xn are named entities (e.g. cisco

systems and siemens). The user wants to investigate the
(unknown) link between these entities. The result may be a
semi-structured, explorable set of data (e.g. facts that men-
tion all entities) or a ranked list of information (e.g. the
most characteristic facts of the relation in question). This
task is supported for structured queries by NAGA as relat-
edness queries [23]. Our work is the first to interpret and
resolve relate tasks from unstructured keyword queries.

List. We notice 4.8% of queries that target the widely known
directed open search [32] task: “Show me a list of X”. Here,
X is an entity type (e.g. products) or relation with one un-
bound component (e.g. VOIP suppliers). The user aims to
obtain an open-ended list of possible answers, so the result is
always a structured list of items. This task is supported by
NAGA as discovery queries [23] and by Google Knowledge
Graph as set queries [9].

Compare. With only 0.6% of all queries, the directed task
“Compare X1 and X2” is rare, but still one of the most com-
mon analytical tasks. In contrast to relate, the parameters
Xn are single entities of the same type (e.g. products iOS

and android). Therefore, the user does not expect an in-
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Figure 4: Technical process of intent-aware search
result generation. A keyword query is interactively
annotated by the user (step 1) or automatically seg-
mented and linked (step 2). A scoring function is
applied to identify the best interpretations (step 3).
Then, features are extracted by tag sequence genera-
tion (step 4) and pattern matching (step 5). Finally,
the query is classified and visualized. The user sends
implicit and explicit feedback to the system.

tersection of the entities, but wants to obtain a feature-wise
discrimination between them. Therefore, the result is best
visualized as a table with the entities as columns and their
attributes as rows. While this specific intention has been
mentioned as comparison [29], compare queries are often
supported by special vertical search engines only.

Answer. We observe 4.4% of question answering tasks that
target a single answer X of type who, what, where and when.
X can be of various complexity from simple lookup [29] (e.g.
age of barack obama) to aggregate functions (e.g. average
age in new york). The result is mostly a single answer (e.g.
fact, quotation, coordinates, numeric or boolean value) and
may contain meta-information (e.g. source of the answer,
rating of trustworthiness or possible alternative answers).
This task is also referred to as fact finding [25] or directed
closed search [32]. It is supported by all structured search
engines such as NAGA [23] or SQAK [34] and Google An-
swers from Tables [9].

4. RESOLVING TASKS FROM KEYWORDS
In this section, we introduce a process to resolve the six

operationalized task intentions at query time. In order to
classify the task from query formulation, we have to extract
features from the keywords. This process is shown in Figure
4: while typing, the analyst is offered an auto-complete field
to select and disambiguate named entities. In case of no
explicit user annotation, we guess the most likely segmen-
tation of the query and detect the named entities that were
not annotated using a scoring algorithm. We use these seg-
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ments to build sequences of syntactical and semantic tags.
These sequences are then transformed into a feature vector
of low dimensionality. We then utilize this vector to build a
probabilistic classifier model.

4.1 Query Segmentation and Annotation
Table 1 shows some representative query examples. We

observe that 85% of all queries are 6 words or shorter, and
longer queries are long tail distributed (rare). Most queries
include one or several multi-word representations of enti-
ties or relation names while very few queries contain proper
English language sentences. For resolving tasks we must
segment the query into representations of entity names, at-
tribute names, relation names and part-of-speech (POS) tags.
According to authors of [5], segmenting queries into semanti-
cal meaningful multi-word units is a NP-hard problem. We
approximate a solution by utilizing user interaction and a
simple scoring model based on fact distribution. An exam-
ple of this process is given in Table 3.

Step 1: Interactive entity segmentation. For segmenting
query tokens into multi-word segments we provide the user
with an interactive search field. While typing, the system
matches the user input against our index of named entities
(see Section 2.3) and proposes disambiguations. For each
entity, the index contains a canonical name, alternative writ-
ings and uses fuzzy matching to tackle typing errors. The
user can select the right entities from a ranked auto-complete
list. We obtain a sequence of n user-annotated segments
q∗ = (s1, . . . , sn) that include schema information. More-
over, the annotation provided by the user has possibly fewer
segments than the literal query q.

Step 2: Fall-back entity segmentation. The user might
not resolve some segments. Therefore we present an algo-
rithm to find potential segmentations. We cleanse and tok-
enize the query into atomic single-word segments and pro-
cess them with a POS tagger and lemmatizer4. To limit
runtime complexity we restrict the maximum query length
to 100 characters and 12 words. Next, we merge all seg-
ments in q with user annotations q∗. We build n-grams of
adjacent unmatched segments with a maximum length of 4.
We insert these candidate segments ŝ together with all lit-
eral and annotated segments s into a prefix tree, indexed by
begin.end : q 7→ S = {s1.1, ŝ1.2, ŝ2.3, . . . , sn.n}. This allows
us to efficiently access all possible sequences of segments. All
segment candidates ŝ are then matched to our schema in-
dex. We use a top-1 strategy to keep only the highest ranked
matches and leave the disambiguation of rare entities to the
user. We adapt the POS tag of compound segments to rep-
resent a single proper noun (NNP). In case of plurals, we use a
heuristic to decide if the resulting segment will be annotated
as plural.

Step 3: Scoring and pruning segmented queries. We
prune all unmatched segment candidates from the tree. Sim-
ilar to [34], we apply scoring to all remaining segments in
S based on fact distribution in the text database. f(s) de-
notes a score calculated by the number of facts for the given
match. We boost candidates using 0 < w(s) ≤ 2 as weight
depending on the strength of the match (e.g. fuzzy match

4We utilize the pipeline of www.clearnlp.com

or explicit annotation). l(s) denotes the length of a segment
in words. We prefer longer matches and calculate the score
of a single segment as follows:

scoreS(s) = w(s) · f(s) · l(s)2 (1)

Next, our system builds a set of query interpretations Q that
consists of all possible ordered non-overlapping segmenta-
tions: S 7→ Q = {q̂1, . . . , q̂m}. Then we calculate the score
of a single query as mean of all token scores. For scoring,
we omit function words F (determiners, conjunctions, com-
parators, symbols) by transforming q̂ into the subsequence
r(q) = ((s1, . . . , sn)|si ∈ q ∧ si /∈ F ). We return a list of
highest-ranked query interpretations Q∗ ⊆ Q.

scoreQ(q) =
1

|r(q)|
∑
s∈r(q)

scoreS(s) (2)

Step 4: Generalizing tag sequences. For feature extrac-
tion, we must reduce the dimensionality of the highest scored
queries. Our basic idea is to transform all segmented queries
q̂ ∈ Q∗ into two types of tag sequences seqpos and seqtype .
We use pos(s) to access a generalized POS tag of a segment
by transforming the tag using simple replacement rules: re-
place conjunctions, prepositions and interrogatives by their
literals (e.g. and, of, who), replace all verb forms by the
base form VB, use + as plural modifier instead of S. We use
type(s) to get the schema type of the matched segment or
the POS tag in case of an unmatched token. We skip few
stop words W (determiners and symbols) in both sequences.

seqpos(q) =
(
(pos(s1), . . . , pos(sn))|si ∈ q ∧ si /∈W

)
(3)

seqtype(q) =
(
(type(s1), . . . , type(sn))|si ∈ q ∧ si /∈W

)
(4)

Step 5: Extract common patterns for each task. We
then use the sequences seqpos and seqtype to extract tag-
based features. A list of the most descriptive features is
given in Table 4. We use the number of segments as the
most simple feature. Additionally, we count the frequency
of 28 POS tags and 22 literals in seqpos , e.g. NNP (proper
nouns), NN+ (plural nouns), of (preposition), and (conjunc-
tion). Then, we count the frequency of 30 matched entity

step s1 s2 s3

(1) q* = CEO

(2) S = 

(3) Q* = 

(4)
SEQpos NNP NNP

SEQtype Company Position

cisco systems:company

cisco/NNP systems/NNS CEO/NNP:position

cisco systems/NNP:company CEO/NNP:position

cisco/NNP systems CEO/NNP

cisco systems CEO/NNP

cisco systems/NNP:company CEO/NNP:position

Table 3: Example of the query transformation pro-
cess for q =cisco systems CEO. The table shows user
annotated segments q∗ (step 1), possible segmenta-
tion candidates S (step 2), the highest-scored query
interpretation Q∗ (step 3) and generalized tag se-
quences SEQpos and SEQtype (step 4). Matched seg-
ments (entity and relation types) are highlighted.
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tags in SEQpos (count features) count ratio corr

NNP POS proper noun (singular) 79,025 0.37 0.44

# number of segments 85,421 0.25 0.34

NN POS common noun (singular) 31,659 0.19 0.17

NN+ POS common noun (plural) 5,346 0.44 0.14

NNP+ POS proper noun (plural) 1,269 0.35 0.08

of literal preposition 2,681 0.14 0.08

tags in SEQtype (count features) count ratio corr

Person entity type (singular) 65,821 0.14 0.27

City entity type (singular) 8,901 0.20 0.23

Position entity type (singular) 8,199 0.20 0.22

Company entity type (singular) 18,857 0.06 0.11

PersonAttributes relation type (all forms) 736 0.35 0.05

Position+ entity type (plural) 487 0.34 0.05

patterns in SEQtype (match features) count ratio corr

"Product Product"~2 proximity pattern 58 0.47 0.02

when match pattern 47 0.13 0.01

who match pattern 119 0.04 0.01

Table 4: Tag-based features derived from tag se-
quences SEQpos and SEQtype from 85,430 queries.
Count shows the number of observations with value
> 0, ratio denotes the gain ratio [14] of each feature,
corr shows Pearson correlation [14] with the class
label assigned to each query. Features are sorted by
correlation, top 5 scores are highlighted.

types (e.g. Person, Company) and 84 relation types from
the ontology (e.g. PersonCareer, CompanyCompetitor) in
seqtype . Finally, we utilize pattern matching of 15 expert-
defined patterns in seqtype . These values are concatenated
as feature vector of length 185, which is then used for train-
ing and classification.

4.2 Predicting Complex Search Tasks
We implement different classifier configurations to predict

the search task T from query formulation q. We restrict our
study to tasks of type explore, resolve, relate, list,
compare, answer, and other. Accordingly, our classifier
produces an estimate task intention T̂ from K = 7 classes
{T1, . . . , TK}. We execute two stages of classifier training
to build a supervised and a semi-supervised classifier model.
The training data sets Q-EXP (expert-labeled) and Q-ML
(machine-labeled) are taken from the query log that is de-
scribed in Section 5.1.

Baseline: Language models. Class prediction must hap-
pen at query time. Search engines utilize for this task fast
language models (LM) which are our base line. We estimate
a LM for each query in our labeled data set and keep all
models in an index5. Because our labeled data set is very
sparse, we use the seqpos sequence introduced in Section 4.1
to generate the language models. For the classification of an
unseen query, we query the index and pick the result with
the maximum likelihood according to the LM. We return
the labeled task of the resulting query as classifier output.
Since we expect multi-word queries we compare effects of
Jelinek-Mercer and Dirichlet prior smoothing methods [39].

5We use the Lucene 4.7.2 implementation.

Supervised classification. We solve this multi-class clas-
sification problem by decomposing it into K probabilistic
models and decide for the maximum a posteriori class. We
derive the feature vector x(q) = (x1, . . . , xm) from query
processing and use the Naive Bayes classifier model. This
simple approach of classification performs well and can be
implemented very efficiently. We discuss further techniques
in future work.

P (T |x(q)) =
P (T )P (x1, . . . , xm|T )

P (x1, . . . , xm)
(5)

Assuming class conditional independence between features
(x1, . . . , xm), we can decide for the class that maximizes the
estimate using the 1-against-all approach:

T̂ = arg max
k=1,...,K

P (Tk)

m∏
i=1

P (xi|Tk) (6)

We train the initial classifier C-SUP using expert-defined
class labels in data set Q-EXP, which contains analytical,
navigational and transactional queries. We apply class label
other to all tasks that are not in our target space. Us-
ing this approach, we obtain a classifier that is more robust
towards unseen queries of non-analytical tasks.

Semi-supervised classification for rare queries. We may
observe a deficit in classifying rare queries taken from the
long tail of our data set (e.g. queries with intended task
compare). The main reason for this is the small sample
size and therefore low variance of features. We therefore ex-
ecute a second stage of semi-supervised classifier training.
We use a significantly larger data set Q-ML and use the ini-
tial classifier to apply class labels to the whole data set. We
use these examples of analytical and other tasks to train a
second classifier C-SEMI.

In the next section, we evaluate the different approaches
of task classification and discuss the effects.

5. EVALUATION
We evaluate the prediction of search task from free-text

keyword queries by comparing the classification approaches
introduced in Section 4.2: A trivial baseline (always decide
explore), language models (LM), supervised Naive Bayes
(C-SUP) and semi-supervised Naive Bayes (C-SEMI).

We start with a description of our data set and define the
measurements we use for our experiments. Then, we explain
the overall evaluation of different classification approaches
and compare the prediction performance of single classes.
We investigate the most important features and discuss the
runtime performance of our implementation. Finally, we
show limitations and common errors of the approach.

5.1 Evaluation Setup

Data set. For the classifier evaluation, we process 102,360
queries from the GoOLAP query log (see Section 2.3). We
select a random sample of 520 queries with non-zero result
from non-bouncing sessions. The sample was manually seg-
mented and labeled by two experts (strong agreement using
Kappa threshold > 0.8) inside the interactive Web interface
shown in Figure 3. The queries were further processed by
the pipeline described in Section 4.1. After filtering the set
Q-EXP consists of 477 distinct expert-labeled samples. The
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Figure 6: Evaluation of F1 score per class for Lan-
guage Model, C-SUP and C-SEMI Bayes classifiers.

larger set Q-ML contains 85,430 queries which were con-
structed by applying machine labeling on the full sample
(see Table 2). Q-ML and Q-EXP are disjoint.

Measurements. We use 10-fold cross validation on the an-
alytical examples in Q-EXP to evaluate the classifiers. We
measure Precisioni, Recall i, Accuracyi, AUC i and F1 i
score for each binary classifier Ci=1...K . For the composite
multi-class classifier, we measure micro-averaged scores for
Precisionµ, Recallµ, Accuracyµ, AUCµ and F1µ score. We
define these measures according to [33]. To calculate Area
Under ROC Curve (AUC ), we use simple trapezoid calcula-
tion because our 1-against-all class decisions are discrete and
therefore produce only a single point in ROC space [10]. The
overall AUCµ is accordingly calculated as weighted average
over the per-class AUC values.

5.2 Evaluation Results

Overall classifier evaluation. Figure 5 displays combined
F1µ and AUCµ values for seven different classifier configu-
rations (n=477). First, we notice that classification of raw
POS tag sequences cannot improve the trivial baseline (base-
line 67.2% F1, Supervised Naive Bayes 66.3% F1). There-
fore, our query transformation process is crucial to achieve
better results from the long tail of analytical queries. Both
language models incorporate seqpos transformation and re-
veal a better overall score of 75.5% F1 (Dirichlet) and 84.5%
F1 (Jelinek-Mercer). The Naive Bayes classifier C-SUP with
the same feature set performs slightly better than the Jelinek-
Mercer language model with 85.4% F1 and 90.5% AUC. By
including features that base on seqtype transformation, we
can improve C-SUP to 90.1% F1. Finally, we observe that

the semi-supervised Naive Bayes classifier C-SEMI performs
equally with the supervised approach, reaching 96.8% micro-
averaged accuracy. We now discuss the differences between
the best three configurations.

Comparison of classes. We compare classification perfor-
mance for the single task classes. Figure 6 shows the quan-
titative differences between the three models. While the
results of binary classifiers for tasks explore, resolve and
answer are similar, the supervised Naive Bayes approach
performs significantly better for the tasks relate (75.4%
F1) and list (88.9% F1). We observe that the rare task
compare (only 3 occurences in Q-EXP) cannot be identi-
fied at all by the language models and supervised methods
(0.0% F1). However, using the much larger semi-supervised
sample as training data, all three examples can be correctly
classified without false positives (100.0% F1).

Discriminative features. The inspection of features with
highest class label correlation reveals a better view into the
long tail of analytical queries (see Table 4). As expected,
the task explore shows high correlation with the binary
features #(segments)≡ 1 and #(NNP)≡ 1 as well as the
occurrence of single entity types such as Person, City or
Position. Queries labeled as resolve show similar mea-
sures, but can be distinguished by the occurrence of City,
Position and Organization tags. relate shows a high ev-
idence of NN tags and can be well detected using the pattern
"Person and Person". We observe a very different set of
features for the task list: the most important patterns are
plural forms NN+, NNP+, Position+ and Product+ as well as
the occurrence of numbers (CD). Queries labeled as com-
pare proved to be hard to detect and are best matched by
conjunction tags and proximity patterns such as "Product

Product"~2. answer tasks are highly correlated with the
evidence of relation types such as PersonAttributes, Per-
sonRelation or Indictment, as well as the preposition of

and adjectives JJ. Table 5 shows discriminative patterns for
three classes of common analytical tasks.

Runtime measurements. All classification models we use
for our implementation (e.g. Naive Bayes) are very efficient.
That means, the execution time of the classification process
depends mainly on the number of index lookups during fall-
back segmentation. Our commodity test system (Intel Core
i7) classifies the median single word query in 10ms, unan-
notated queries of length 12 stay under 350ms (worst-case).
As this is still maintainable and the majority of queries is
much shorter, our system is ready for productive use.

5.3 Discussion
To conclude the evaluation, we discuss the limitations of

our approach and point out typical classification errors.

Limitations. The evaluation results show the limitations
of our approach. (1) Our dataset originates from many
queries posed to search engines that refer to GoOLAP result
pages. First, this implies that the variance of direct queries
to GoOLAP might be not as high due to the auto-complete
guidance. Second, we are able to match a large fraction of
named entities because the sample is a self-selection of suc-
cessful queries to our own text database. Our approach is
not yet tested on external data sets. (2) The raw output of
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intent seqtype seqpos freq

resolve Person Position NNP NPP 3.3%
Person City NNP NPP 2.6%
Position Person NNP NPP 2.4%
Person Person Person NNP NPP NNP 2.4%
Person Person NN NNP NPP NN 2.4%

relate Person Person NNP NPP 36.9%
Person Company NNP NPP 19.2%
Person Organization NNP NPP 5.4%
Company Person NNP NPP 4.6%
Person and Person NNP and NPP 4.0%

compare VB % to % VB NNP to NPP 3.4%
VB % and % VB NNP and NPP 2.8%
Product Product NNP NPP 2.2%
Company and Company NNP and NPP 1.7%
Company Product Product NNP NPP NNP 1.7%

Table 5: Most discriminative sequences for our novel
intent classes RESOLVE, RELATE and COMPARE.
Frequency denotes the occurrence of the sequence in
all queries classified to the given intent.

the POS tagger is error-prone due to the lack of syntacti-
cal information in keyword queries. We manage to correct
a large number of tokens by our matching strategies, but
there are drawbacks, which are now discussed.

Inspection of wrong classifications. We systematically
inspected misclassified examples, Table 6 shows some typi-
cal errors. Example 1 shows an error where a named entity
could not be resolved, yielding a wrong POS tag and there-
fore wrong classification. Example 2 is a navigational task
that is classified as relate because our ontology is not aware
of the semantic type Website and therefore detects IMDB as
Company. Example 3 shows a token mismatch for the verb
compare, which is resolved as entity from our long-tail on-
tology of entities. Example 4 shows a misclassified transac-
tional task, because our system is not aware that picture

leads to a resource. Example 5 shows the misclassification
of a query for advice as resolve which is caused by incor-
rect training of the semi-supervised classifier: NN VB is also
a frequent POS tag error for NNP (see Example 1).

Possible improvements to ontology matching. We ob-
serve a low precision in the detection of natural terms that
identify real-world concepts such as map, picture, biogra-
phy or court. Additionally, a high amount of queries include
keywords that implicitly serve as operators, such as compare,
top, download or list. Our current model considers only
prepositions (e.g. of, by) and conjunctions (e.g. and, or)
as possible operator keywords. It was also shown that users
frequently use keywords such as wikipedia for addressing
certain query types [24]. We therefore need to extend our
ontology to a broader scheme and include a larger set of
possible operators into feature extraction, scoring and clas-
sification models. Possible solutions are the integration of
noun synset dictionaries such as WordNet6 or collaborative
knowledge bases such as Wikidata [35]. The retrieval model
proposed in Biperpedia [13] addresses these issues by ex-
tending entities from Freebase with attribute classes from
the long tail of queries and integrates synonyms and com-
mon misspellings into the data set.

6http://wordnet.princeton.edu

# query seqpos labeled classified

1 brigido borges NN VB explore other
2 fiona loudon imdb NNP NNP other relate
3 compare ben bella to mao NNP NNP to NNP compare resolve
4 pictures of paris hilton NN+ of NNP other list
5 password reset facebook NN VB NNP other relate

Table 6: Representative examples of wrong classifi-
cations. SEQpos is the sequence of POS tags gener-
ated by our processing pipeline.

6. CONCLUSION AND FUTURE WORK
We present an approach to resolve analytical tasks in text

databases that leverages knowledge about the user’s search
expectations to generate the results. Our work goes beyond
the traditional translation of keyword queries into structured
query languages by inferring a normally hidden model of
search objective from the query methods of the user. We
refer to a large data set of 102,360 keyword queries and user
interaction to identify and operationalize six of the most
common analytical tasks: explore, relate, resolve, list,
compare and answer. We publish this data set to the re-
search community. We are able to classify six common tasks
from user queries at query time with very high accuracy of
96.8% and an F1 measure of 90.1%. We present the result in
form of a demonstrator that utilizes interactive entity recog-
nition, disambiguation and query segmentation methods.

In future work we will address two main issues in the query
segmentation process. First, the recognition of candidate
annotations (e.g. named entities and relation predicates)
needs to be more adaptive towards short queries and special-
ized domains. Our approach to fix incorrect POS segmenta-
tion might also be improved by replacing POS tag features
with pure character-based features. A syntax-based extrac-
tor would generate features from the token stream while the
user is typing the query, e.g. utilizing tri-grams as proposed
by [15]. We can use these features in deep neural networks
to predict annotations on the fly. Second, annotation dis-
ambiguation can be improved using semantic word hashing
and interaction mining techniques [20]. We aim to extend
the feature set with word embeddings to incorporate latent
relational dependence between annotations [18, 37]. In the
long term, these improvements might allow prediction of
high level search objectives from the hidden iterative states
of our search process model. Moreover, we aim to incorpo-
rate the client-side interaction stream [12, 19] into a subse-
quent study and evaluate the system using a representative
dataset with higher variance.
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