
20

EmptyHeaded: A Relational Engine for Graph Processing

CHRISTOPHER R. ABERGER, ANDREW LAMB, SUSAN TU, ANDRES NÖTZLI,
KUNLE OLUKOTUN, and CHRISTOPHER RÉ, Stanford University

There are two types of high-performance graph processing engines: low- and high-level engines. Low-level

engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require

users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level

engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to

use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-

level engine that supports a rich datalog-like query language and achieves performance comparable to that of

low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong

theoretical guarantees, but have thus far not achieved performance comparable to that of specialized graph

processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture,

including a novel query optimizer and execution engine that leverage single-instruction multiple data (SIMD)

parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders

of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order

of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-

of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse

performance on SSSP. Finally, we show that the EmptyHeaded design can easily be extended to accommodate

a standard resource description framework (RDF) workload, the LUBM benchmark. On the LUBM benchmark,

we show that EmptyHeaded can compete with and sometimes outperform two high-level, but specialized

RDF baselines (TripleBit and RDF-3X), while outperforming MonetDB by up to three orders of magnitude

and LogicBlox by up to two orders of magnitude.

CCS Concepts: • Information systems → DBMS engine architectures; Query planning; Join

algorithms;

Additional Key Words and Phrases: Worst-case optimal join, generalized hypertree decomposition, GHD,

graph processing, single-instruction multiple data, SIMD

We gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) XDATA Program

under No. FA8750-12-2-0335 and DEFT Program under No. FA8750-13-2-0039, DARPA’s MEMEX program and SIMPLEX

program, the National Science Foundation (NSF) CAREER Award under No. IIS-1353606, the Office of Naval Research (ONR)

under awards No. N000141210041 and No. N000141310129, the National Institutes of Health Grant U54EB020405 awarded

by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) through funds provided by the trans-NIH

Big Data to Knowledge (BD2K, http://www.bd2k.nih.gov) initiative, the Sloan Research Fellowship, the Moore Foundation,

American Family Insurance, Google, and Toshiba. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of DARPA, AFRL, NSF, ONR, NIH, or the

U.S. government.

Authors’ addresses: C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré, Gates Computer Science, 353 Serra

Mall, Stanford, CA, 94043, USA; emails: {caberger, lamb, sctu, noetzli, kunle, chrismre}@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 0362-5915/2017/10-ART20 $15.00

https://doi.org/10.1145/3129246

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

mailto:permissions@acm.org
https://doi.org/10.1145/3129246

20:2 C. R. Aberger et al.

ACM Reference format:

Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017.

EmptyHeaded: A Relational Engine for Graph Processing. ACM Trans. Database Syst. 42, 4, Article 20 (October

2017), 44 pages.

https://doi.org/10.1145/3129246

1 INTRODUCTION

The massive growth in the volume of graph data from social and biological networks has created a
need for efficient graph processing engines. As a result, there has been a flurry of activity around
designing specialized graph analytics engines [20, 25, 40, 52, 62]. These specialized engines offer
new programming models that are either (1) low-level, requiring users to write code imperatively
or (2) high-level, incurring large performance gaps relative to the low-level approaches. In this
work, we explore whether we can meet the performance of low-level engines while supporting a
high-level relational (SQL-like) programming interface.

Low-level graph engines outperform traditional relational data processing engines on common
benchmarks due to (1) asymptotically faster algorithms [50, 59] and (2) optimized data layouts that
provide large constant factor runtime improvements [25]. We describe each point in detail:

(1) Low-level graph engines [20, 25, 40, 52, 62] provide iterators and domain-specific primi-
tives, with which users can write asymptotically faster algorithms than what traditional
databases or high-level approaches can provide. However, it is the burden of the user to
write the query properly, which may require system-specific optimizations. Therefore,
optimal algorithmic runtimes can only be achieved through the user in these low-level
engines.

(2) Low-level graph engines use optimized data layouts to efficiently manage the sparse rela-
tionships common in graph data. For example, optimized sparse matrix layouts are often
used to represent the edgelist relation [25]. High-level graph engines also use sparse lay-
outs like tail-nested tables [61] to cope with sparsity.

Extending the relational interface to match these guarantees is challenging. While some have
argued that traditional engines can be modified in straightforward ways to accommodate graph
workloads [7, 19], order of magnitude performance gaps remain between this approach and low-
level engines [40, 52, 61]. Theoretically, traditional join engines face a losing battle, as all pairwise
join engines are provably suboptimal on many common graph queries [50]. For example, low-level
specialized engines execute the “triangle listing” query, which is common in graph workloads [45,
49], in timeO (N 3/2) where N is the number of edges in the graph. Any pairwise relational algebra
plan takes at least Ω(N 2), which is asymptotically worse than the specialized engines by a factor

of
√
N . This asymptotic suboptimality is often inherited by high-level graph engines, as there has

not been a general way to compile these queries that obtains the correct asymptotic bound [19,
61]. Recently, new multiway join algorithms were discovered that obtain the correct asymptotic
bound for any graph pattern or join [50].

These new multiway join algorithms are by themselves not enough to close the gap. Log-
icBlox [7] uses multiway join algorithms and has demonstrated that they can support a rich set
of applications. However, LogicBlox’s current engine can be orders of magnitude slower than the
specialized engines on graph benchmarks (see Section 5). This leaves open the question of whether
these multiway joins are destined to be slower than specialized approaches.

We argue that an engine based on multiway join algorithms can close this gap, but it requires
a novel architecture (Figure 1). In this article, we present the EmptyHeaded engine, which is a

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

https://doi.org/10.1145/3129246

EmptyHeaded: A Relational Engine for Graph Processing 20:3

Fig. 1. The EmptyHeaded engine works in three phases: (1) the query compiler translates a high-level
datalog-like query into a logical query plan represented as a GHD (a hypertree with a single node here),
replacing the traditional role of relational algebra; (2) code is generated for the execution engine by trans-
lating the GHD into a series of set intersections and loops; and (3) the execution engine performs automatic
algorithmic and layout decisions based upon skew in the data.

new multiway join engine. The EmptyHeaded architecture includes a novel query compiler based
on generalized hypertree decompositions (GHDs) [14, 22] and an execution engine designed to
exploit the low-level layouts necessary to increase single-instruction multiple data (SIMD) par-
allelism. We argue that these techniques demonstrate that multiway join engines can compete
with low-level graph engines, as our prototype is faster than all tested engines on graph pat-
tern queries (in some cases by orders of magnitude) and competitive on other common graph
benchmarks.

We design EmptyHeaded around tight theoretical guarantees and data layouts optimized for
SIMD parallelism.

GHDs as Query Plans. The classical approach to query planning uses relational algebra, which
facilitates optimizations such as early aggregation, pushing down selections, and pushing down
projections. In EmptyHeaded, we need a similar framework that supports multiway (instead of
pairwise) joins. To accomplish this, based off of an initial prototype developed in our group [66],
we use GHDs [22] for logical query plans in EmptyHeaded. GHDs allow one to apply the above
classical optimizations to multiway joins. GHDs also have additional bookkeeping information
that allows us to bound the size of intermediate results (optimally in the worst case). These bounds
allow us to provide asymptotically stronger runtime guarantees than previous worst-case optimal
join algorithms that do not use GHDs (including LogicBlox).1 As these bounds depend on the data
and the query it is difficult to expect users to write these algorithms in a low-level framework. Our
contribution is the design of a novel query optimizer and code generator, based on GHDs, that is
able to achieve the above results via a high-level query language.

Exploiting SIMD: The Battle With Skew. Optimizing relational databases for the SIMD hardware
trend has become an increasingly hot research topic [41, 56, 73], as the available SIMD parallelism
has been doubling consistently in each processor generation.2 Inspired by this, we exploit the
link between SIMD parallelism and worst-case optimal joins for the first time in EmptyHeaded.
Our initial prototype revealed that during query execution, unoptimized set intersections often
account for 95% of the overall runtime in the generic worst-case optimal join algorithm. Thus, it is
critically important to optimize set intersections and the associated data layout to be well suited for

1LogicBlox has described a (non-public) prototype with an optimizer similar but distinct from GHDs. With these modifica-

tions, LogicBlox’s relative performance improves similarly to our own. It, however, remains at least an order of magnitude

slower than EmptyHeaded.
2The Intel Ivy Bridge architecture, which we use in this article, has a SIMD register width of 256 bits. The next generation,

the Intel Skylake architecture, has 512-bit registers and a larger number of such registers.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:4 C. R. Aberger et al.

SIMD parallelism. This is a challenging task as graph data is highly skewed, causing the runtime
characteristics of set intersections to be highly varied. We explore several sophisticated (and not so
sophisticated) layouts and algorithms to opportunistically increase the amount of available SIMD
parallelism in the set intersection operation. Our contribution here is an automated optimizer that,
all told, increases performance by up to three orders of magnitude by selecting amongst multiple
data layouts and set intersection algorithms that use skew to increase the amount of available
SIMD parallelism.

We choose to evaluate EmptyHeaded on graph pattern matching queries since pattern queries
are naturally (and classically) expressed as join queries. We also evaluate EmptyHeaded on other
common graph workloads including PageRank and Single-Source Shortest Paths (SSSP). We show
that EmptyHeaded consistently outperforms the standard baselines [19] by 2–4× on PageRank and
is at most 3× slower than the highly tuned implementation of Galois [52] on SSSP. However, in
our high-level language these queries are expressed in 1–2 lines, while they are over 150 lines of
code in Galois. For reference, a hand-coded C implementation with similar performance to Galois
is 1,000 lines.

Contribution Summary. This article introduces the EmptyHeaded engine and demonstrates that
a novel architecture can enable multiway join engines to compete with specialized low-level graph
processing engines. We demonstrate that EmptyHeaded outperforms specialized engines on graph
pattern queries while remaining competitive on other workloads. To validate our claims, we pro-
vide comparisons on standard graph benchmark queries that the specialized engines are designed
to process efficiently.

A summary of our contributions and an outline is as follows:

—We describe the first worst-case optimal join processing engine to use GHDs for logical
query plans. We describe how GHDs enable us to provide a tighter theoretical guarantee
than previous worst-case optimal join engines (Section 3). Next, we validate that the opti-
mizations GHDs enable can provide more than a three orders of magnitude performance
advantage over previous worst-case optimal query plans (Section 5).

—We describe the architecture of the first worst-case optimal execution engine that optimizes
for skew at several levels of granularity within the data. We present a series of automatic
optimizers to select intersection algorithms and set layouts based on data characteristics
at runtime (Section 4). We demonstrate that our automatic optimizers can result in up to
a three orders of magnitude performance improvement on common graph pattern queries
(Section 5).

—We validate that our general-purpose engine can compete with specialized engines on stan-
dard benchmarks in the graph domain (Section 5). We demonstrate that on cyclic graph
pattern queries our approach outperforms graph engines by 2–60× and LogicBlox by three
orders of magnitude. We demonstrate on PageRank and Single-Source Shortest Paths that
our approach remains competitive, at most 3× off the highly tuned Galois engine (Section 5).

—We describe how EmptyHeaded can easily accommodate popular resource description
framework (RDF) workloads and perform the first study of worst-case optimal join al-
gorithms in the RDF domain (Section 6). In this study, we validate that EmptyHeaded
achieves (or outperforms substantially) other popular high-level approaches on a standard
RDF benchmark, the LUBM benchmark (Section 6). More precisely, we show that Empty-
Headed can be two orders of magnitude better than MonetDB, an order of magnitude better
than LogicBlox, and always within an order of magnitude of TripleBit and RDF-3X on the
LUBM benchmark.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:5

2 PRELIMINARIES

We briefly review the worst-case optimal join algorithm, trie data structure, and query language
at the core of the EmptyHeaded design. The worst-case optimal join algorithm, trie data structure,
and query language presented here serve as building blocks for the remainder of the article.

2.1 Worst-Case Optimal Join Algorithms

We briefly review worst-case optimal join algorithms, which are used in EmptyHeaded. We present
these results informally and refer the reader to Ngo et al. [51] for a complete survey. The main idea
is that one can place (tight) bounds on the maximum possible number of tuples returned by a query
and then develop algorithms whose runtime guarantees match these worst-case bounds. For the
moment, we consider only join queries (no projection or aggregation), returning to these richer
queries in Section 3.

A hypergraph is a pair H = (V ,E), consisting of a nonempty set V of vertices, and a set E of
subsets ofV , the hyperedges ofH . Natural join queries and graph pattern queries can be expressed
as hypergraphs [22]. In particular, there is a direct correspondence between a query and its hyper-
graph: there is a vertex for each attribute of the query and a hyperedge for each relation. We will
go freely back and forth between the query and the hypergraph that represents it.

A recent result of Atserias, Grohe, and Marx [9] (AGM) showed how to tightly bound the worst-
case size of a join query using a notion called a fractional cover. Fix a hypergraph H = (V ,E). Let
x ∈ R |E | be a vector indexed by edges, i.e., with one component for each edge, such that x ≥ 0; x
is a feasible cover (or simply feasible) for H if

for each v ∈ V we have
∑

e ∈E :e �v
xe ≥ 1.

A feasible cover x is also called a fractional hypergraph cover in the literature. AGM showed that
if x is feasible, then it forms an upper bound of the query result size |out| as follows:

|out| ≤
∏

e ∈E

|Re |xe . (1)

For a query Q , we denote AGM(Q) as the smallest such right-hand side.3

Example 2.1. For simplicity, let |Re | = N for e ∈ E. Consider the triangle query, R (x ,y) ��
S (y, z) �� T (x , z); a feasible cover is xR = xS = 1 and xT = 0. Via Equation (1), we know that
|out| ≤ N 2. That is, with N tuples in each relation we cannot produce a set of output tuples that

3One can find the best bound, AGM(Q), in polynomial time: take the log of Equation (1) and solve the linear program.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:6 C. R. Aberger et al.

contains more than N 2. However, a tighter bound can be obtained using a different fractional cover
x = (1

2 ,
1
2 ,

1
2). Equation (1) yields the upper bound N 3/2. Remarkably, this bound is tight if one con-

siders the complete graph on
√
N vertexes. For this graph, this query produces Ω(N 3/2) tuples,

which shows that the optimal solution can be tight up to constant factors.

The first algorithm to have a running time matching these worst-case size bounds is the NPRR
algorithm [50]. An important property for the set intersections in the NPRR algorithm is what
we call the min property: the running time of the intersection algorithm is upper bounded by the
length of the smaller of the two input sets. When the min property holds, a worst-case optimal
running time for any join query is guaranteed. In fact, for any join query, its execution time can be
upper bounded by AGM(Q). A simplified high-level description of the algorithm is presented in
Algorithm 1. It was also shown that any pairwise join plan must be slower by asymptotic factors.
However, we show in Section 3.1 that these optimality guarantees can be improved for non-worst-
case data or more complex queries.

2.2 Input Data

EmptyHeaded stores all relations (input and output) in tries, which are multilevel data structures
common in column stores and graph engines [25, 64]. Although EmptyHeaded is currently opti-
mized for purely static data, other researchers [35] have shown that tries can provide high perfor-
mance on transactional workloads. Extending EmptyHeaded in this direction is part of our future
research.

Trie Annotations. The sets of values in the trie can optionally be associated with data values
(1-1 mapping) that are used in aggregations. We call these associated values annotations [23]. For
example, a two-level trie annotated with a float value represents a sparse matrix or graph with
edge properties. We show in Section 5 that the trie data structure works well on a wide variety of
graph workloads.

Dictionary Encoding. The tries in EmptyHeaded currently support sets containing 32-bit values.
As is standard [20, 56], we use the popular database technique of dictionary encoding to build an
EmptyHeaded trie from input tables of arbitrary types. Dictionary encoding maps original data
values to keys of another type—in our case 32-bit unsigned integers. The order of dictionary ID
assignment affects the density of the sets in the trie, and as others have shown, this can have a
dramatic impact on overall performance on certain queries. Like others, we find that node ordering
is powerful when coupled with pruning half the edges in an undirected graph [59]. This creates up
to 3× performance difference on symmetric pattern queries like the triangle query. Unfortunately,
this optimization is brittle, as the necessary symmetrical properties break with even a simple se-
lection. On more general queries we find that node ordering typically has less than a 10% overall
performance impact. We explore the effect of various node orderings in Section 4.5.

Column (Index) Order. After dictionary encoding, our 32-bit value relations are next grouped
into sets of distinct values based on their parent attribute (or column). We are free to select which
level corresponds to each attribute (or column) of an input relation. As with most graph engines,
we simply store both orders for each edge relation. In general, we choose the order of the attributes
for the trie based on a global attribute order, which is analogous to selecting a single index over
the relation. The trie construction process produces tries where the sets of data values can be
extremely dense, extremely sparse, or anywhere in between. Optimizing the layout of these sets
based upon their data characteristics is the focus of Section 4. The complete transformation process
from a standard relational table to the trie representation in EmptyHeaded is detailed in Figure 2.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:7

Fig. 2. EmptyHeaded transformations from a table to trie representation using attribute order (man-

agerID,employerID) and employerID attribute annotated with employeeRating.

Table 1. Example Graph Queries in EmptyHeaded

2.3 Query Language

Our query language is inspired by datalog and supports conjunctive queries with aggregations and
simple recursion (similar to LogicBlox and SociaLite). In this section, we describe the core syntax
for our queries, which is sufficient to express the standard benchmarks we run in Sections 5 and 6.
Table 1 shows the example queries used in Section 5. Above the first horizontal line are conjunctive
queries that express joins, projections, and selections in the standard way [67]. Our language has
two non-standard extensions: aggregations and a limited form of recursion. We overview both
extensions next and provide an example.

Conjunctive Queries: Joins, Projections, Selections. Equality joins are expressed in EmptyHeaded
as simple conjunctive queries. We show EmptyHeaded ’s’ syntax for two cyclic join queries in
Table 1: the 3-clique query (also known as triangle or K3), and the Barbell query (two 3-cliques

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:8 C. R. Aberger et al.

connected by a path of length 1). EmptyHeaded easily enables selections and projections in its
query language as well. We enable projections through the user directly annotating which at-
tributes appear in the head. We enable selections by directly annotating predicates on attribute
values in the body (e.g., “node” for the 4-Clique-Selection query in Table 1).

Aggregation. Following Green et al. [23], tuples can be annotated in EmptyHeaded, and these
annotations support aggregations from any semiring (a generalization of natural numbers
equipped with a notion of addition and multiplication). This enables EmptyHeaded to support
classic aggregations such as SUM, MIN, or COUNT, but also more sophisticated operations such as
matrix multiplication. To specify the annotation, one uses a semicolon in the head of the rule, e.g.,
q(x,y;z:int) specifies that each x,y pair will be associated with an integer value with alias
z similar to a GROUP BY in SQL. In addition, the user expresses the aggregation operation in the
body of the rule. The user can specify an initialization value as any expression over the tuples’
values and constants, while common aggregates have default values. Directly below the first line
in Table 1, a typical triangle counting query is shown.

Recursion. EmptyHeaded supports a simplified form of recursion similar to Kleene-star or tran-
sitive closure. Given an intensional or extensional relation R, one can write a Kleene-star rule like

R*(x̄) :- q(x̄ , ȳ).

The rule R∗ iteratively applies q to the current instantiation of R to generate new tuples which are
added to R. It performs this iteration until (a) the relation does not change (a fixpoint semantic) or
(b) a user-defined convergence criterion is satisfied (e.g., a number of iterations, i=5). Examples
that capture familiar PageRank and SSSPs are below the second horizontal line in Table 1.

We illustrate how our query language works by an example for the PageRank query:

Example 2.2. Table 1 shows an example of the syntax used to express the PageRank query in
EmptyHeaded . The first line specifies that we aggregate over all the edges in the graph and count
the number of source nodes assuming our Edдe relation is a two-attribute relation filled with
(src,dst) pairs. For an undirected graph this simply counts the number of nodes in the graph and
assigns it to the relation N which is really just a scalar integer. By definition the COUNT aggregation
and by default the SUM use an initialization value of 1 if the relation is not annotated. The second
line of the query defines the base case for recursion. Here we simply project away the z attributes
and assign an annotation value of 1/N (whereN is our scalar relation holding the number of nodes).
Finally, the third line defines the recursive rule which joins the Edдe and InvDeдree relations inside
the database with the new PaдeRank relation. We SUM over the z attribute in all of these relations.
When aggregated attributes are joined with each other their annotation values are multiplied by
default [28]. Therefore, we are performing a matrix-vector multiplication. After the aggregation,
the corresponding expression for the annotation y is applied to each aggregated value. This is run
for a fixed number (five) iterations as specified in the head.

3 QUERY COMPILER

We now present an overview of the query compiler in EmptyHeaded, which is the first worst-case
optimal query compiler to enable early aggregation through its use of GHDs for logical query
plans. We first discuss GHDs and their theoretical advantages. Next, we describe how we develop
a simple optimizer to select a GHD (and therefore a query plan). After this, we describe how we
implement the classic query optimization of pushing down selections using our GHD-based query
plans. Next, we show how EmptyHeaded translates a GHD into a series of loops, aggregations,
and set intersections using the generic worst-case optimal join algorithm [50]. Finally, we describe
how EmptyHeaded eliminates redundant work via a simple common subexpression elimination

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:9

Fig. 3. We show the Barbell query hypergraph and two possible GHDs for the query. A node v in a GHD
captures which relations should be joined with λ(v) and which attributes should be retained with projection
with χ (v).

algorithm in our GHD-based query compiler. Our contribution here is the design of a novel query
compiler that provides tighter runtime guarantees than existing approaches.

3.1 Query Plans using GHDs

As in a classical database, EmptyHeaded needs an analog of relational algebra to represent log-
ical query plans. In contrast to traditional relational algebra, EmptyHeaded has multiway join
operators. A natural approach would be simply to extend relational algebra with a multiway join
algorithm. Instead, we advocate replacing relational algebra with GHDs, which allow us to make
non-trivial estimates on the cardinality of intermediate results. This enables optimizations, like
early aggregation in EmptyHeaded, that can be asymptotically faster than existing worst-case op-
timal engines. We first describe the motivation for using GHDs while formally describing their
advantages next.

3.1.1 Motivation. A GHD is a tree similar to the abstract syntax tree of a relational algebra
expression: nodes represent a join and projection operation, and edges indicate data dependencies.
A nodev in a GHD captures which attributes should be retained (projection with χ (v)) and which
relations should be joined (with λ(v)). We consider all possible query plans (and therefore all valid
GHDs), selecting the one where the sum of each node’s runtime is the lowest. Given a query,
there are many valid GHDs that capture the query. Finding the lowest-cost GHD is one goal of our
optimizer.

Before giving the formal definition, we illustrate GHDs and their advantages by example:

Example 3.1. Figure 3(a) shows a hypergraph of the Barbell query introduced in Table 1. This
query finds all pairs of triangles connected by a path of length one. Let |out| be the size of the
output data. From our definition in Section 2.1, one can check that the Barbell query has a feasible
cover of (1

2 ,
1
2 ,

1
2 , 0,

1
2 ,

1
2 ,

1
2) with cost 6 × 1

2 = 3 and so runs in time O (N 3). In fact, this bound is

worst-case optimal because there are instances that return Ω(N 3) tuples. However, the size of the
output |out| could be much smaller.

There are multiple GHDs for the Barbell query. The simplest GHD for this query (and in fact
for all queries) is a GHD with a single node containing all relations; the single node GHD for
the Barbell query is shown in Figure 3(b). One can view all of LogicBlox’s current query plans
as a single node GHD. The single node GHD always represents a query plan which uses only the
generic worst-case optimal join algorithm and no GHD optimizations. For the Barbell query, |out|
is N 3 in the worst case for the single node GHD.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:10 C. R. Aberger et al.

Consider the alternative GHD shown in Figure 3(c). This GHD corresponds to the following
alternate strategy to the above plan: first list each triangle independently using the generic worst-
case optimal algorithm, say on the vertices (x ,y, z), and then (x ′,y ′, z ′). There are at mostO (N 3/2)
triangles in each of these sets and so it takes only this time. Now, for each (x ,x ′) ∈ U we output
all the triangles that contain x or x ′ in the appropriate position. This approach is able to run in
timeO (N 3/2 + |out|) and essentially performs early aggregation if possible. This approach can be
substantially faster when |out| is smaller than N 3. For example, in an aggregation query |out| is
just a single scalar, and so the difference in runtime between the two GHDs can be N 3/2 where N
is the size of the database. We describe how we execute this query plan in Section 3.4. This type
of optimization is currently not available in the LogicBlox engine.

In general, GHDs allow us to capture this early aggregation, which can lead to dramatic runtime
improvements.

3.1.2 Formal Description. We describe GHDs and their advantages formally next.

Definition 3.2. Let H be a hypergraph. A GHD of H is a triple D = (T , χ , λ), where

—T (V (T),E (T)) is a tree;
— χ : V (T) → 2V (H) is a function associating a set of vertices χ (v) ⊆ V (H) to each node v of
T ;

—λ : V (T) → 2E (H) is a function associating a set of hyperedges to each vertex v of T ;

such that the following properties hold:

1. For each e ∈ E (H), there is a node v ∈ V (T) such that e ⊆ χ (v) and e ∈ λ(v).
2. For each t ∈ V (H), the set {v ∈ V (T) |t ∈ χ (v)} is connected in T .
3. For every v ∈ V (T), χ (v) ⊆ ∪λ(v).

A GHD can be thought of as a labeled (hyper)tree, as illustrated in Figure 3. Each node of the tree
v is labeled; χ (v) describes which attributes are “returned” by the node v—this exactly captures
projection in traditional relational algebra. The label λ(v) captures the set of relations that are
present in a (multiway) join at this particular node. The first property says that every edge is
mapped to some node, and the second property is the famous “running intersection property” [5]
that says any attribute must form a connected subtree. The third property is redundant for us, as
any GHD violating this condition is not considered (has infinite width which we describe next).

Using GHDs, we can define a non-trivial cardinality estimate based on the sizes of the relations.
For a node v , define Qv as the query formed by joining the relations in λ(v). The (fractional)

width of a GHD is AGM(Qv), which is an upper bound on the number of tuples returned by Qv .
The fractional hypertree width (fhw) of a hypergraph H is the minimum width of all GHDs of
H . Given a GHD with widthw , there is a simple algorithm to run in timeO (Nw + |out|). First, run
any worst-case optimal algorithm on Qv for each node v of the GHD; each join takes timeO (Nw)
and produces at mostO (Nw) tuples. Then, one is left with an acyclic query over the output of Qv ,
namely, the tree itself. We then perform Yannakakis’ classical algorithm [70], which for acyclic
queries enables EmptyHeaded to compute the output in time linear in the input size (O (Nw)) plus
the output size (|out|).

3.2 Choosing Logical Query Plans

We describe how EmptyHeaded chooses GHDs, explain how we leverage previous work to enable
aggregations over GHDs, and describe how GHDs are used to select a global attribute ordering

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:11

in EmptyHeaded . In Section 3.3, we provide details on how the classic database optimizations of
pushing down selections can be captured using GHDs.

GHD Optimizer. The EmptyHeaded query compiler selects an optimal GHD to ensure tighter
theoretical runtime guarantees. It is key that the EmptyHeaded optimizer selects a GHD with the
smallest width w to ensure an optimal GHD. Similar to how a traditional database pushes down
projections to minimize the output size, EmptyHeaded minimizes the output size by finding the
GHD with the smallest width. In contrast to pushing down projections, finding the minimum
width GHD is NP-hard in the number of relations and attributes. As the number of relations and
attributes is typically small (three for triangle counting), we simply brute force search GHDs of all
possible widths. The algorithm EmptyHeaded uses for performing this brute force search is shown
in Algorithm 2. The algorithm computes a list of GHDs by recursively computing the GHDs for
all subsets of the edge set. In Section 3.3, we describe three simple rules that can be added to this
process to enable pushing down selections.

Aggregations over GHDs. Previous work has investigated aggregations over hypertree decom-
positions [22, 54]. EmptyHeaded adopts this previous work in a straightforward way. To do this,
we add a single attribute with “semiring annotations” following Green et al. [23]. EmptyHeaded
simply manipulates this value as it is projected away. This general notion of aggregations over
annotations enables EmptyHeaded to support traditional notions of queries with aggregations as
well as a wide range of workloads outside traditional data processing, like message passing in
graphical models.

Global Attribute Ordering. Once a GHD is selected, EmptyHeaded selects a global attribute or-
dering. The global attribute ordering determines the order in which EmptyHeaded code generates
the generic worst-case optimal algorithm (Algorithm 1) and the index structure of our tries (Sec-
tion 2.2). Therefore, selecting a global attribute ordering is analogous to selecting a join and index
order in a traditional pairwise relational engine. The attribute order depends on the query. For the
purposes of this article, we assume both trie orderings are present, and we are therefore free to
select any attribute order. For graphs (two-attributes), most in-memory graph engines maintain
both the matrix and its transpose in the compressed sparse row format [25, 52]. We are the first to
consider selecting an attribute ordering based on a GHD and as a result we explore simple heuris-
tics based on structural properties of the GHD. To assign an attribute order for all queries in this
article, EmptyHeaded simply performs a pre-order traversal over the GHD, adding the attributes
from each visited GHD node into a queue.

3.3 Pushing Down Selections

A classic database optimization is to force high selectivity operations to be processed as early as
possible in a query plan [27]. In EmptyHeaded we can do this at two different granularities in our
query plans: within GHD nodes and across GHD nodes.4

3.3.1 Within a Node. In EmptyHeaded pushing down selections within a GHD node corre-
sponds to rearranging the attribute order for the generic worst-case optimal join algorithm that
we described in Section 2.1. Recall, the attribute order determines both the order that attributes
are processed in Algorithm 1 and the order in which the attributes will appear in the trie.

4Recall EmptyHeaded executes a GHD query plan in two phases: (1) the generic worst-case optimal join algorithm runs

inside of each node in the GHD and (2) the final result is computed by passing intermediate results across nodes. The

phases directly correspond to the two granularities at which we push down selections.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:12 C. R. Aberger et al.

Example 3.3. Consider a query where the relation R has one selected attribute and another (x)
to be materialized in the output:

OUT(x) :- R(‘node’,x).

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:13

Fig. 4. We show two possible GHDs for the 4-clique selection query.

For this trivial query we produce a single node GHD containing attributes (‘node’,x). An
attribute ordering of [x,‘node’] in this node means that ‘x’ is the first level of the trie and
‘node’ is the second level of the trie. Thus, the worst-case optimal join algorithm would probe
the second level of the trie for each ‘node’ attribute to determine if there was a corresponding
value of ‘node’. This is much less efficient than selecting the attribute ordering of [‘node’,x],
where EmptyHeaded can simply perform a lookup in the first level of the trie (to find if a value of
‘node’ exists) and, if successful, return the corresponding second level as the result.

3.3.2 Across Nodes. Pushing down selections across nodes in EmptyHeaded’s query plans cor-
responds to changing the criteria for choosing a GHD described in Section 3.2. Our goal is to have
high-selectivity or low-cardinality nodes be pushed down as far as possible in the GHD so that
they are executed earlier in our bottom-up pass. We accomplish this by adding three additional
steps to our GHD optimizer:

(1) Find optimal GHDs T with respect to fhw, changing V in the AGM constraint to be only
the attributes without selections.

(2) LetRs be some relations with selections and letRt be the relations that we plan to place in a
subtree. If for each e ∈ Rs , there exists e ′ ∈ Rt such that e ′ covers e’s unselected attributes,
include Rs in the subtree for Rt . This means that we may duplicate some members of Rs

to include them in multiple subtrees.
(3) Of the GHDs T , choose a T ∈ T with maximal selection depth, where selection depth is

the sum of the distances from selections to the root of the GHD.

In Figure 4, we show two possible GHDs for the 4-clique selection query: one produced without
these additional rules to push down selections (Figure 4(a)) and one produced with these additional
rules to push down selections (Figure 4(b)). The GHD shown in Figure 4(b) can result in up to four
orders of magnitude faster overall query runtime than (see Section 5) the GHD shown in Figure 4(a)
on real datasets. Additionally, these simple rules to push down selections can speed up RDF queries
by up to 234× (see Section 6).

3.4 Code Generation

EmptyHeaded’s code generator converts the selected GHD for each query into optimized C++
code that uses the operators in Table 2. We choose to implement code generation in EmptyHeaded

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:14 C. R. Aberger et al.

Table 2. Execution Engine Operations

Operation Description

Trie (R)
R[t]

Returns the set
matching tuple t ∈ R.

R ← R ∪ t × xs Appends elements in set xs
to tuple t ∈ R.

Set (xs)
for x in xs

Iterates through the
elements x of a set xs .

xs ∩ ys Returns the intersection
of sets xs and ys .

as it is has been shown to be an efficient technique to translate high-level query plans into code
optimized for modern hardware [47].

3.4.1 Code Generation API. We first describe the storage-engine operations which serve as the
basic high-level application programming interface (API) for our generated code. Our trie data
structure offers a standard, simple API for traversals and set intersections that is sufficient to ex-
press the worst-case optimal join algorithm detailed in Algorithm 1. The key operation over the
trie is to return a set of values that match a specified tuple predicate (see Table 2). This operation
is typically performed while traversing the trie, so EmptyHeaded provides an optimized iterator
interface. The set of values retrieved from the trie can be intersected with other sets or iterated
over using the operations in Table 2.

3.4.2 GHD Translation. The goal of code generation is to translate a GHD to the operations
in Table 2. Each GHD node v ∈ V (T) is associated with a trie described by the attribute ordering
in χ (v). Unlike previous worst-case optimal join engines, there are two phases to our algorithm:
(1) within nodes of V (T) and (2) between nodes V (T).

Within a Node. For each v ∈ V (T), we run the generic worst-case optimal algorithm shown in
Algorithm 1. Suppose Qv is the triangle query.

Example 3.4. Consider the triangle query. The hypergraph isV = {X ,Y ,Z } and E = {R, S,T }. In
the first call, the loop body generates a loop with body Generic-Join({Y ,Z },E, tX). In turn, with
two more calls this generates

Across Nodes. Recall Yannakakis’ seminal algorithm [70]: we first perform a “bottom-up” pass,
which is a reverse level-order traversal of T . For each v ∈ V (T), the algorithm computes Qv and
passes its results to the parent node. Between nodes (v0,v1) we pass the relations projected onto
the shared attributes χ (v0) ∩ χ (v1). Then, the result is constructed by walking the tree “top-down”
and collecting each result.

Recursion. EmptyHeaded supports both naive and semi-naive evaluation to handle recursion.
For naive recursion, EmptyHeaded’s optimizer produces a (potentially infinite) linear chain GHD
with the output of one GHD node serving as the input to its parent GHD node. We run naive
recursion for PageRank in Table 1. This boils down to a simple unrolling of the join algorithm.
Naive recursion is not an acceptable solution in applications such as SSSP where work is contin-
ually being eliminated. To detect when EmptyHeaded should run semi-naive recursion, we check

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:15

if the aggregation is monotonically increasing or decreasing with a MIN or MAX operator. We use
semi-naive recursion for SSSP.

Example 3.5. For the Barbell query (see Figure 3(c)), we first run Algorithm 1 on nodesv1 andv2;
then we project their results on x and x ′ and pass them to nodev0. This is part of the “bottom-up”
pass. We then execute Algorithm 1 on node v0 which now contains the results (triangles) of its
children. Algorithm 1 executes here by simply checking for pairs of (x ,x ′) from its children that
are in U . To perform the “top-down” pass, for each matching pair, we append (y, z) from v1 and
(y ′, z ′) from v2.

3.5 Eliminating Redundant Work

An artifact of our GHD-based query compiler is that it is possible to produce a GHD query plan
with two identical nodes and therefore a query plan with redundant work. To address this we
add a simple form of common subexpression elimination to our query compiler. This enables the
elimination of redundant work across GHD nodes and across phases of code generation.

Our query compiler performs a simple analysis to determine if two GHD nodes are identical
and therefore if redundant work can be eliminated. For each GHD node in the “bottom-up” pass of
Yannakakis’ algorithm, we scan a list of the previously computed GHD nodes to determine if the
result of the current node has already been computed. We use the conditions below to determine if
two GHD nodes are equivalent in the Barbell query. Recognizing this provides a 2× performance
increase on the Barbell query.

We say that two GHD nodes produce equivalent results in the “bottom-up pass” if

(1) the two nodes contain identical join patterns on the same input relations;
(2) the two nodes contain identical aggregations, selections, and projections;
(3) the results from each of their subtrees are identical.

We can also eliminate the “top-down” pass of Yannakakis’ algorithm if all the attributes appear-
ing in the result also appear in the root node. This determines if the final query result is present
after the “bottom-up” phase of Yannakakis’ algorithm. For example, if we perform a COUNT query
on all attributes, the “top-down” pass in general is unnecessary. We found eliminating the top-
down pass provided a 10% performance improvement on the Barbell query.

4 EXECUTION ENGINE

The EmptyHeaded execution engine runs code generated from the query compiler. The goal of
the engine is to fully utilize SIMD parallelism, which is challenging because graph data is often
skewed in several distinct ways. The density of data values is almost never constant: some parts of
the relation are dense while others are sparse. We call this density skew.5 Further, the cardinality
of the data values in graph neighborhoods is highly varied. We call this cardinality skew. Table 3
shows the graph datasets used in this article along with their cardinality and density skew. A
novel aspect of EmptyHeaded is that it automatically copes with both density and cardinality
skew through optimizers that select among different data layouts and intersection algorithms to
maximize SIMD parallelism.

Making these layout and algorithm choices is challenging, as the optimal choice depends both
on characteristics of the data, such as density and cardinality, and characteristics of the query.
In this section, we describe how EmptyHeaded makes such decisions while providing validation

5We measure density skew using the Pearson’s first coefficient of skew defined as 3σ−1 (mean −mode) where σ is the

standard deviation.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:16 C. R. Aberger et al.

Table 3. Graph Datasets that are Used in the Experiments

Dir. Undir.
Nodes Edges Edges Density Card.

Dataset [M] [M] [M] Skew Skew Description
Google+ [38] 0.11 13.7 12.2 1.17 1.17 User network
Higgs [38] 0.4 14.9 12.5 0.23 0.46 Tweets about

Higgs Boson
LiveJournal [39] 4.8 68.5 43.4 0.09 0.97 User network
Orkut [46] 3.1 117.2 117.2 0.08 1.46 User network
Patents [1] 3.8 16.5 16.5 0.09 2.22 Citation net-

work
Twitter [34] 41.7 1,468.4 757.8 0.12 0.07 Follower net-

work

for our decisions. We begin in Sections 4.1 and 4.2 by describing the set layouts (Section 4.1)
and intersection algorithms (Section 4.2) that were tested in EmptyHeaded. This serves as
necessary background for the tradeoff studies and optimizers we present in Sections 4.3 and 4.4. In
Section 4.3, we explore how to use different set intersection algorithms to cope with cardinality
skew in the data. Based on this exploration, we present the simple optimizer EmptyHeaded uses
to select among set intersect algorithms. In Section 4.4, we explore the proper granularity at
which to make layout decisions to cope with density skew. Again, based on this exploration,
we present the simple layout optimizer that EmptyHeaded uses to select among set layouts and
show that it is close to an unachievable optimal. Finally, in Section 4.5, we discuss how different
node orderings can change the density skew (and potentially the cardinality skew6) of the graph.
Although this is well known, we go on to validate that, with the optimizations presented in
this section, EmptyHeaded is able to mitigate the effects of these orderings by achieving robust
performance regardless of the ordering.

4.1 Layouts

We describe the set layouts that were tested in the EmptyHeaded engine and how their associated
values are stored. These layouts are necessary to understand the SIMD set intersection algorithms
presented in Section 4.2 and are at the core of our study in Section 4.4, where we use these layouts
to exploit SIMD parallelism in the presence of density skew. In Section 4.4, we show that a combi-
nation of a simple 32-bit unsigned integer (uint) layout and a simple bit vector layout (bitset)
yields the highest performance in our experiments. For dense data, the bitset layout makes it
trivial to take advantage of SIMD parallelism but causes a quadratic blowup in memory usage for
sparse data. The uint layout represents sparse data efficiently but makes extracting SIMD paral-
lelism challenging.

In the following, we describe in detail the bitset layout in EmptyHeaded and three addi-
tional set layouts that we tested: pshort, varint, and bitpacked. The pshort layout groups
values with a common upper 16-bit prefix together and stores each prefix only once. The varint
and bitpacked layouts use difference encoding7 for compression and have been shown to both

6The cardinality skew can change on symmetric queries, such as the triangle query, where node neighborhoods can be

pruned to avoid duplicate results.
7Difference encoding encodes the difference between successive values in a sorted list of values (x1, δ2 = x2 − x1, δ3 =

x3 − x2, . . .) instead of the original values (x1, x2, x3, . . .). The original array can be reconstructed by computing prefix

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:17

compress better and be up to an order of magnitude faster than compression tools such as LZO,
Google Snappy, FastLZ, LZ4, or gzip [37]. As such, all layouts in this section (potentially) enable
compression of the data, which is of interest as data compression has been shown to sometimes in-
crease overall query performance by decreasing the memory bandwidth in graph applications [63].
Although interesting, we are not concerned with reducing memory usage—main memory sizes are
consistently increasing and persistent storage is plentiful. Most importantly, some of these lay-
outs (namely, bitset and pshort) are well suited for SIMD parallelism, enabling EmptyHeaded
to potentially achieve higher computational performance in the generic worst -case optimal join
algorithm. Note that we omit a description of the uint layout as it is just an array of sorted 32-bit
unsigned integers. Finally, we conclude with a brief discussion of how associated data values are
added to these set layouts.

bitset. The bitset layout stores a set of pairs (offset, bit vector). Each offset stores the index
of the smallest value in the corresponding bit vector. Thus, the layout is a compromise between
sparse and dense layouts. We refer to the number of bits in the bit vector as the block size. Emp-
tyHeaded supports block sizes that are powers of two with a default of 256.8 As shown, we pack
the offsets contiguously, which allows us to regard the offsets as a uint layout; in turn, this allows
EmptyHeaded to use the same algorithm to intersect the offsets as it does for the uint layout. An
example of the bitset layout that contains n blocks and a sequence of offsets (o1–on) and blocks
(b1–bn) is shown below. The offsets store the start offset for values in the bit vector.

n o1 . . . on b1 . . . bn

pshort. The Prefix Short (pshort) layout exploits the fact that values that are close to each
other share a common prefix. The layout consists of partitions of values with a common 16-bit
prefix. For each partition, the layout stores the common prefix and the number of values in the
partition. Below we show an example of the pshort layout with a single partition:

S = {65536, 65636, 65736}

0 15 16 31 32 47 48 63 64 79

v1[31..16] length v1[15..0] v2[15..0] v3[15..0]

1 3 0 100 200

varint. The varint layout uses variable byte encoding, which is a popular technique first
proposed by Thiel and Heaps in 1972 [36]. The varint layout encodes the differences between
data values into units of bytes where the lower 7 bits store the data and the 8th-bit indicates
whether the data extends to another byte or not. The decoding procedure reads bytes sequentially.
If the 8th bit is 0 it outputs the data value and if the 8th bit is 1 the decoder appends the data
from this byte to the output data value and moves on to the next byte. This layout is simple to
implement and reasonably efficient [36]. Below we show an example of the varint layout:

S = {0, 2, 4} Di f f = {0, 2, 2}

0 31 32 38 39 40 46 47 48 54 55
|S | δ1[6..0] c δ2[6..0] c δ3[6..0] c
3 0 0 2 0 2 0

sums (xi = x1 +
∑

i

n=2 xn). The benefit of this approach is that the differences are always smaller than the original values,

allowing for more aggressive compression.
8The width of an AVX register.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:18 C. R. Aberger et al.

bitpacked. The bitpacked layout partitions a set into blocks and compresses them individu-
ally. First, the layout determines the maximum bits of entropy of the values in each block b and
then encodes each value of the block using b bits. Previous work in the literature [37] showed that
this technique can be adapted to encode and decode values efficiently by packing and unpacking
values at the granularity of SIMD registers rather than each value individually. Although Lemire
et al. propose several variations of the layout, we chose to implement the bitpacked with the
fastest encoding and decoding algorithms at the cost of a worse compression ratio. Thus, instead
of computing and packing the deltas sequentially, the bitpacked layout computes deltas at the
granularity of a SIMD register:

(δ5,δ6,δ7,δ8) = (x5,x6,x7,x8) − (x1,x2,x3,x4).

Next, each delta is packed to the minimum bit width of its block SIMD register at a time, rather
than sequentially. In EmptyHeaded, we use one partition for the whole set. The deltas for each
neighborhood are computed by starting our difference encoding from the first element in the set.
For the tail of the neighborhood that does not fit in a SIMD register we use the varint encoding
scheme. An example of the bitpacked layout is below.

S = {0, 2, 8}, Di f f = {0, 2, 6}

0 31 32 39 40 42 43 45 46 48
|S | bits/elem δ1[2..0] δ2[2..0] δ3[2..0]
3 3 0 2 6

Associated Values. Our sets need to be able to store associated values such as pointers to the
next level of the trie or annotations of arbitrary types. In EmptyHeaded, the associated values for
each set also use different underlying data layouts based on the type of the underlying set. For
the bitset layout we store the associated values as a dense vector (where associated values are
accessed based upon the data value in the set). For all the remaining layouts, we store the associated
values as a sparse vector where the associated values are accessed based upon the index of the value
in the set.

4.2 Intersections

We present an overview of the intersection algorithms EmptyHeaded uses for each layout. This
serves as the background for our cardinality skew study and set intersection algorithm optimizer
in Section 4.3. We remind the reader that the min property presented in Section 2.1 must hold for
set intersections so that a worst-case optimal runtime can be guaranteed in EmptyHeaded.

uint ∩ uint. For the uint layout, we implemented and tested five state-of-the-art SIMD set
intersections:

—SIMDShuffling iterates through both sets block-wise and compares blocks of values using
SIMD shuffles and comparisons [29].

—V1 iterates through the smaller set one-by-one and checks each value against a block of
values in the larger set using SIMD comparisons [37].

—V3 is similar to V1 but performs a binary search on four blocks of data in the larger set
(each the size of a SIMD register) to identify potential matches [37].

—SIMDGalloping is similar to V1 but performs a scalar binary search in the larger set to
find a block of data with a potential match and then uses SIMD comparisons [37].

—BMiss uses SIMD instructions to compare parts of blocks of values and filter potential
matches, then uses scalar comparisons to check the full values of the partial matches [26].

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:19

For uint intersections, we found that the size of two sets being intersected may be drastically
different. This is cardinality skew. So-called galloping algorithms [68] allow one to run in time
proportional to the size of the smaller set, which copes with cardinality skew. However, for sets
that are of similar size, galloping algorithms may have additional overhead. We empirically show
this in Section 4.3.

bitset ∩ bitset. Our bitset is conceptually a two-layer structure of offsets and blocks. Off-
sets are stored using uint sets. Each offset determines the start of the corresponding block. To
compute the intersection, we first find the common blocks between the bitsets by intersecting
the offsets using a uint intersection followed by SIMD AND instructions to intersect matching
blocks. In the best case, i.e., when all bits in the register are 1, a single hardware instruction com-
putes the intersection of 256 values.

uint ∩ bitset. To compute the intersection between a uint and a bitset, we first intersect
the uint values with the offsets in the bitset. We do this to check if it is possible that some value
in a bitset block matches a uint value. As bitset block sizes are powers of two in EmptyHeaded
, this can be accomplished by masking out the lower bits of each uint value in the comparison.
This check may result in false positives, so, for each matching uint and bitset block we check
whether the corresponding bitset blocks contain the uint value by probing the block. We store
the result in a uint layout as the intersection of two sets can be at most as dense as the sparser set.9

Notice that this algorithm satisfies the min property with a constant determined by the block size.

pshort ∩ pshort. The pshort intersection uses a set intersection algorithm previously pro-
posed in the literature [60]. This algorithm depends on the range of the data and therefore does not
preserve the min property, but can process more elements per cycle than the SIMDShuffling algo-
rithm. The pshort intersection uses the ×86 STNII (String and Text processing New Instruction)
comparison instruction allowing for a full comparison of 8 shorts, with a common 16-bit prefix, in
one cycle. The pshort representation also enables jumps over chunks that do not share a common
16-bit prefix.

uint ∩ pshort. For the uint and pshort set intersection, we again take advantage of the
STNII SIMD instruction. We compare the upper 16-bit prefixes of the values and shuffle the uint
representation if there is a match. Next, we compare the lower 16 bits of each set, eight elements
at a time using the STNII instruction.
varint and bitpacked. Developing set intersections for the varint and bitpacked types is

challenging because of the complex decoding and the irregular access pattern of the set intersec-
tion. As a consequence, EmptyHeaded decodes the neighborhood into an array of integers and
then uses the uint intersection algorithms when operating on a neighborhood represented in the
varint or bitpacked representations.

4.3 Cardinality Skew

The skew in the degree distribution of graph data causes set intersections to operate on sets with
different cardinalities. The most interesting tradeoff space for cardinality skew is exploring the
performance of various uint intersection algorithms on sets of different sizes. Therefore, in this
section we compare the five different SIMD algorithms for uint set intersections from Section 4.2
and present a simple optimizer to select among them based on our results.

9Estimating data characteristics like output cardinality a priori is a hard problem [13] and we found it is too costly to

reinspect the data after each operation.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:20 C. R. Aberger et al.

Fig. 5. Intersection time of uint intersection al-
gorithms for different ratios of set cardinalities.

Fig. 6. Intersection time of uint intersection al-
gorithms for different densities.

4.3.1 Tradeoffs. To test cardinality skew we set the range of the sets to 1M and set the cardi-
nality of one set to 64 while changing the cardinality of the other set. Confirming the findings of
others [26, 29, 37, 60], we find that SIMDGalloping and V3 algorithms outperform other intersec-
tion algorithms by more than 5×with a crossover point at a cardinality ratio of 1:32. Figure 5 shows
that the SIMDGalloping and V3 algorithm outperform all other algorithms when the cardinality
difference between the two sets becomes large. In contrast to the other algorithms, SIMDGallop-
ing runs in time proportional to the size of the smaller set. Thus, SIMDGalloping is more efficient
when the cardinalities of the sets are different.

We also vary the range of numbers that we place in a set from 10K to 1.2M while fixing the
cardinality at 2,048. Figure 6 shows the execution time for sets of a fixed cardinality with varying
ranges of numbers. BMiss is up to 5× slower when the sets have a small range and a high output
cardinality. When the range of values is large and the output cardinality is small, the algorithm
outperforms all other algorithms by up to 20%. Figure 6 shows that the V1 and SIMDShuflling
algorithms outperform all other algorithms, by more than 2×, when the sets have a low density.

4.3.2 uint ∩ uint Algorithm Optimizer. We find that no one algorithm dominates the others,
so EmptyHeaded switches dynamically between uint algorithms. Based on these results, we select
the SIMDShuflling algorithm by default but when the ratio between the cardinality of the two sets
became over 1:32, like others [26, 37], we select the SIMDGalloping algorithm. Because the sets in
graph data are typically sparse, we found the impact of selecting SIMDGalloping on graph datasets
to be minimal, often under a 5% total performance impact. Still we use this simple optimizer to
select among these two uint intersection algorithms in EmptyHeaded.

4.4 Density Skew

In this section, we present our study that serves as the foundation for the layout optimizer in Emp-
tyHeaded. To perform this study we considered all set intersection algorithm and layout combi-
nations from Sections 4.1 and 4.2. We first show in Section 4.4.1 that using layouts and associated
algorithm combinations other than those on the uint and bitset layouts resulted in no signif-
icant performance advantage. Next, in Section 4.4.2, we present our tradeoff study for making
layout choices between the uint and bitset representations at three different granularities: the
relation level, the set level, and the block level. We evaluate this tradeoff space and show that the

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:21

Fig. 7. Best performing layouts for set intersections with relative performance over uint.

set level is the best choice. We finish in Section 4.4.4 by presenting the simple set layout optimizer
that EmptyHeaded uses to cope with density skew.

4.4.1 Eliminating Complexity. Figure 7 displays the best performing layout combinations and
their relative performance increase compared to the best performing uint algorithm while chang-
ing the density of the input sets in a fixed range of 1M. Unsurprisingly, the varint and bitpacked
representations never achieve the best performance. In fact, on real data, we found the varint and
bitpacked types typically perform the triangle counting query 2× slower due to the decoding step
not outweighing the slight memory bandwidth decrease.10 Finally, our experiments on synthetic
data show only moderate performance gains from using the pshort layout and on real data we
found that it is rarely a good choice for a set in combination with other representations. Even
worse, these layouts are all expensive to build when compared with the simple uint layout (see
Table 4). Based on these results, we focus on only exploiting the tradeoffs for the uint and bitset
intersections and layouts for the remainder of this section.

10The most we were able to compress real (randomly ordered) graphs with the varint and bitpacked layouts was close to

3×, therefore using 11.54 bits per edge (32 bits per edge is default with the uint layout). Still, on average these layouts use

19.75 bits per edge and could be as high as 28.50 bits per edge. Even worse, compressing real graphs provides no guarantee

on the reduction in conflict cache misses due to random memory accesses (the way to decrease memory bandwidth) for

complex join queries such as the triangle query.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:22 C. R. Aberger et al.

Table 4. Construction Times in Seconds

Layout Patents LiveJournal Higgs Orkut Google+
uint 0.93 1.71 0.36 3.16 0.30
pshort 0.99 1.89 0.37 3.65 0.30
bitpacked 1.81 2.90 0.52 4.46 0.36
varint 2.15 4.86 1.25 11.76 1.12

Fig. 8. Intersection time of uint and bitset
layouts for different densities.

Fig. 9. Intersection time of layouts for sets with
different densities in a region.

4.4.2 Tradeoffs. We study the tradeoff space of optimizing for density skew by comparing the
performance of set representation decisions between the uint and bitset layouts in our trie data
structure at three levels: the relation level, the set level, and the block level.

Relation Level. Set layout decisions at the relation level force the data in all relations to be stored
using the same layout and therefore do not address density skew. The simplest layout in memory
is to store all sets in every trie using the uint layout. Unfortunately, it is difficult to fully exploit
SIMD parallelism using this layout, as only four elements fit in a single SIMD register.11 In contrast,
the bitset layout can store up to 256 elements in a single SIMD register. However, the bitset
layout is inefficient on sparse data and can result in a quadratic blowup of memory usage. There-
fore, one would expect uint to be well suited for sparse sets and bitset for dense sets. Figure 8
illustrates this trend. Because of the sparsity in real-world data, we found that uint provides the
best performance at the relation level.

Set Level. Real-world data often has a large amount of density skew, so both the uint and bitset
layouts are useful. At the set level we simply decide on a per-set level if the entire set should be
represented using a uint or a bitset layout. Furthermore, we found that our uint and bitset
intersection can provide up to a 6× performance increase over the best homogeneous uint inter-
section and a 132× increase over a homogeneous bitset intersection. We show in Sections 5.3
and 4.4.3 that the impact of mixing layouts at the set level on real data can increase overall query
performance by over an order of magnitude.

11In the Intel Ivy Bridge architecture only SSE instructions contain integer comparison mechanisms; therefore, we are

forced to restrict ourselves to a 128-bit register width.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:23

Table 5. Relative Time of the Level Optimizers on Triangle
Counting Compared to the Oracle

Dataset Relation Level Set Level Block Level
Google+ 7.3× 1.1× 3.2×
Higgs 1.6× 1.4× 2.4×
LiveJournal 1.3× 1.4× 2.0×
Orkut 1.4× 1.4× 2.0×
Patents 1.2× 1.6× 1.9×

Block Level. Selecting a layout at the set level might be too coarse if there is internal skew. For
example, set level layout decisions are too coarse-grained to optimally exploit a set with a large
sparse region followed by a dense region. Ideally, we would like to treat dense regions separately
from sparse ones. To deal with skew at a finer granularity, we propose a composite set layout
that regards the domain as a series of fixed-sized blocks; we represent sparse blocks using the
uint layout in a single uint region and dense blocks using the bitset layout in a single bitset
region. Conceptually this is similar to our bitset layout, but now when encoding a set using
the composite set, the system checks the density of each block (again with a default size of 256)
and decides in which region to store it. To benchmark the performance of our composite type,
we generate sets with internal skew by having two regions: (1) a region with a fixed range of
5M; we change the density of this region by varying the cardinality from 16 to 131K; and (2)
a dense region with 500K consecutive values. We show in Figure 9 that our composite layout
outperforms the bitset by up to 2× when the sparse region is sparse. As the sparse region gets
denser, the performance gap between the bitset and composite layouts increases. The uint type
is not competitive in the range of data we present because the dense region is best represented
using the bitset representation.

4.4.3 Evaluation. We introduce the concept of an oracle optimizer to properly evaluate our
representation decisions by providing a lower bound for our overall query runtime. We use a
comparison to the oracle optimizer and a study of the overheads associated with making decisions
at the set and block level to validate that EmptyHeaded should make decisions between the uint
and bitset layouts at the set level. We finish by presenting our set level optimizer which is used
for all the experiments in Sections 5 and 6.

Oracle Optimizer. The oracle optimizer provides a lower bound baseline to evaluate our system’s
performance at different granularities. The performance of the oracle is not achievable in practice
because the oracle is allowed to choose any representation and intersection combination while
assuming perfect knowledge of the cost of each intersection. We implement the oracle optimizer by
sweeping the space of all representation and algorithm combinations that EmptyHeaded considers
while only counting the cost of the fastest combination for each intersection.

To determine if our system should make representation decisions at a graph, set, or block level
we compare each approach on the triangle counting query to the time of the oracle optimizer.
We found that on real graph data choosing representations at a set level provided the best overall
performance. Table 5 demonstrates that choosing at the set level is at most 1.6× off the optimal
performance. Choosing at the graph and block levels can be up to 7.3× and 3.2× slower than the
oracle, respectively. Representation decisions at the graph level do not optimize at all for density
skew and therefore are the least robust across graph datasets. Representation decisions at the block
level are fine-grained and compensate for density skew but are too fine-grained on the graph
datasets we consider and do not outweigh their increased overhead. Real graph data often has

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:24 C. R. Aberger et al.

Table 6. Set Level and Block Level Optimizer Overheads
on Triangle Counting

Dataset Set Optimizer Block Optimizer
Google+ 4% 5%
Higgs 1% 6%
LiveJournal 4% 12%
Orkut 3% 8%
Patents 10% 24%

a high density skew across sets making the middle level set optimizer perform the most robust
across the graph datasets we consider.

Optimizer Overhead. Overhead is unavoidable when making fine-grained representation deci-
sions at the set level or block level. At the set level we must incur an extra conditional check on the
type of the set before performing any operation over the set. At the block level we must call four
set intersection functions (the cross product of types in our composite type) and merge the final
uint outputs into a single array to maintain the property that this is a sorted set representation.
A natural question to ask is: are these overheads substantial on real graph data and real queries?

To evaluate the overhead of optimizers at the block and set levels, we modify both optimizers to
always pick the uint representation and compare the execution time for these optimizers to graph
level selection of a uint (no overhead). Table 6 shows the relative overhead of both optimizers
across different datasets on the triangle counting query. The overhead ranges from 1% to 10% of
the total runtime for our set level optimizer and from 5% to 25% for our block level optimizer. The
amount of overhead we pay for each dataset is linked to its size and density skew as these are
the two factors that can amortize this overhead. For example, the small Patents dataset with a low
density skew of 0.09 consistently has the highest overhead at each level. The block level optimizer
overhead is more pronounced on graph data due to the fact that the majority of sets in a graph
are extremely sparse or extremely dense. Thus, the sets do not contain a high enough level of
internal skew to outweigh the cost making such fine-grained decisions when compared to the set
level optimizer. Thus, set level representations come at a lower cost than block level decisions and
enable larger performance gains than both the relation level and block level decisions.

4.4.4 Set Layout Optimizer. Based on the results of our tradeoff study, we present the simple
optimizer used in the EmptyHeaded engine to automatically select between the bitset and uint
at the set level. The set optimizer in EmptyHeaded selects the layout for a set in isolation based
on its cardinality and range. It selects the bitset layout when each value in the set consumes
at most as much space as a SIMD (AVX) register and the uint layout otherwise. The optimizer
uses the bitset layout with a block size equal to the range of the data in the set. We find this
to be more effective than a fixed block size since it lacks the overhead of storing multiple offsets
which is not necessary when the entire set is stored as a bitset. Our simple optimizer is shown
in Algorithm 3.

4.5 The Impact of Node Ordering

As is standard, EmptyHeaded encodes the nodes of a graph as unique unsigned integers using the
dictionary encoding technique presented in Section 2.2. Interestingly, a side effect of this technique
is that the order in which nodes are encoded can affect both the cardinality skew and density
skew of the processed data. Therefore, it is important to consider the node ordering used during

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:25

dictionary encoding, as this can change the heuristics used by the optimizers in Sections 4.3 and
4.4. We provide an overview of dictionary encoding and node ordering in Section 4.5.1, and an
evaluation of its impact in Section 4.5.2.

4.5.1 Overview. Dictionary encoding is a common technique used in online analytical process-
ing (OLAP) and graph engines to compress the columns of a relation. Graph analytic engines use
the same technique on edge relations and refer to the assignment of entries in the dictionary as
node ordering. Formally, there is a mapping π (v) that assigns each nodev a unique integer, which
implicitly orders the nodes. The choice of π (v) affects the internal skew of the sets in a graph.
Node ordering may impact the performance of a class of symmetrical queries like triangle without
selections [15, 59]. The key idea of this method is that given an undirected graph, one creates a
new directed graph that preserves the number of triangles by defining a unique orientation of the

edges. This new directed graph has the property that no node has a degree more than
√
N where

N is the number of edges in the original graph. Node ordering in combination with this symmetry
technique affects the density and cardinality skew of the data. Because EmptyHeaded maps each
node to an integer value, it is natural to consider the performance implications of these mappings.

4.5.2 Evaluation. We explore the impact of node ordering on query performance using triangle
counting query on synthetically generated power-law graphs with different power-law exponents.
We generate the data using the Snap Random Power-Law graph generator [40] and vary the Power-
Law degree exponents from 1 to 3. We find that the best ordering can achieve over an order of
magnitude better performance than the worst ordering on symmetrical queries such as triangle
counting.

We consider the following orderings:

—Random: random ordering of vertices. We use this as a baseline to measure the impact of
the different orderings.

—BFS: labels the nodes in breadth-first order.
—Strong-Runs first sorts the node by degree and then starting from the highest degree node,

the algorithm assigns continuous numbers to the neighbors of each node. This ordering can
be seen as an approximation of breadth-first search (BFS).

—Degree: this ordering is a simple ordering by descending degree which is widely used in
existing graph systems.

—Rev-Degree labels the nodes by ascending degree.
—Shingle: an ordering scheme based on the similarity of neighborhoods [16].

In addition to these orderings, we propose a hybrid ordering algorithm hybrid that first labels
nodes using BFS followed by sorting by descending degree. Nodes with equal degree retain their
BFS ordering with respect to each other. The hybrid ordering is inspired by our findings that
ordering by degree and BFS provided the highest performance on symmetrical queries. Figure 10

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:26 C. R. Aberger et al.

Fig. 10. Effect of data ordering on triangle counting with synthetic data.

Table 7. Node Ordering Times in Seconds on
Two Popular Graph Datasets

Ordering Higgs LiveJournal
Shingles 1.67 9.14
hybrid 3.77 24.41
BFS 2.42 15.80
Degree 1.43 9.93
Reverse Degree 1.40 8.47
Strong Run 2.69 21.67

shows that graphs with a low power-law coefficient achieve the best performance through order-
ing by degree and that a BFS ordering works best on graphs with a high power-law coefficient.
Figure 10 shows the performance of hybrid ordering and how it tracks the performance of BFS or
degree where each is optimal. We find this ordering to be the most robust ordering for symmetrical
queries.

Each ordering incurs the cost of performing the actual ordering of the data. Table 7 shows
examples of node ordering times in EmptyHeaded . The execution time of the BFS ordering grows
linearly with the number of edges, while sorting by degree and reverse degree depend on the
number of nodes. The cost of the hybrid ordering is the sum of the costs of the BFS ordering and
ordering by degree.

In total, we found that, although considering node orderings is an interesting problem, the op-
timizers to select among intersections and layouts presented in this section often mitigated the
effects of node ordering. For example, Table 8 shows that a random ordering in EmptyHeaded of-
ten outperforms a compressed sparse row (CSR) layout that is sorted by degree. As such, we found
that considering node orderings is not as crucial of a problem in EmptyHeaded as it is in other
graph engines which do not implement our optimizations.

5 EXPERIMENTS

We compare EmptyHeaded against state-of-the-art high- and low-level specialized graph engines
on standard graph benchmarks. Additionally, we compare EmptyHeaded to several state-of-the-art

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:27

Table 8. Slow Down of a Random Ordering to a CSR Layout Sorted by
Degree for the Triangle Counting Query

Default Symmetry Breaking
Dataset uint EmptyHeaded uint EmptyHeaded
Google+ 1.8× 0.9× 1.0× 0.5×
Higgs 3.0× 2.0× 0.9× 0.6×
LiveJournal 1.7× 1.8× 1.2× 1.2×
Orkut 1.4× 1.5× 1.1× 1.1×
Patents 1.9× 1.8× 1.2× 1.3×

relational database engines which use a pairwise join algorithm on a standard graph benchmark.
We show that by using our optimizations from Section 3 and Section 4, EmptyHeaded is able to
compete with specialized graph engines while outperforming pairwise relational database engines
on standard graph benchmarks.

5.1 Experiment Setup

We describe the datasets, comparison engines, metrics, and experiment setting used to validate
that EmptyHeaded competes with specialized engines in Sections 5.2, 5.3, and 5.5.

5.1.1 Datasets. Table 3 provides a list of the six popular datasets that we use in our comparison
to other graph analytics engines. LiveJournal, Orkut, and Patents are graphs with a low amount
of density skew, and Patents is a much smaller graph in comparison to the others. Twitter is one
of the largest publicly available datasets and is a standard benchmarking dataset that contains a
modest amount of density skew. Higgs is a medium-sized graph with a modest amount of density
skew. Google+ is a graph with a large amount of density skew.

5.1.2 Comparison Engines. We compare EmptyHeaded against popular high- and low-level
engines in the graph domain. We also compare to the high-level LogicBlox engine on each query,
as it is the first commercial database with a worst-case optimal join optimizer. Finally, we also
compare EmptyHeaded to several popular, general-purpose, and high-level relational pairwise
join databases.

Low-Level Engines. We benchmark several graph analytic engines and compare their perfor-
mance. The engines that we compare to are PowerGraph v2.2 [20], the latest release of commercial
graph tool (CGT-X), and Snap-R [40]. Each system provides highly optimized shared-memory im-
plementations of the triangle counting query. Other shared-memory graph engines such as Ligra
[62] and Galois [52] do not provide optimized implementations of the triangle query and requires
one to write queries by hand. We do provide a comparison to Galois v2.2.1 on PageRank and SSSP.
Galois has been shown to achieve performance similar to that of Intel’s hand-coded implementa-
tions [58] on these queries.

High-Level Engines. We compare to LogicBlox v4.3.4 on all queries since LogicBlox is the first
general-purpose commercial engine to provide similar worst-case optimal join guarantees. Log-
icBlox also provides a relational model that makes complex queries easy and succinct to express. It
is important to note that LogicBlox is a full-featured commercial system (supports transactions, up-
dates, etc.) and therefore incurs inefficiencies that EmptyHeaded does not. Regardless, we demon-
strate that using GHDs as the intermediate representation in EmptyHeaded’s query compiler not
only provides tighter theoretical guarantees, but provides more than a three orders of magnitude
performance improvement over LogicBlox. We further demonstrate that our set layouts account

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:28 C. R. Aberger et al.

for over an order of magnitude performance advantage over the LogicBlox design. We also com-
pare to SociaLite [61] on each query as it also provides high-level language optimizers, making
the queries as succinct and easy to express as in EmptyHeaded. Unlike LogicBlox, SociaLite does
not use a worst-case optimal join optimizer and therefore suffers large performance gaps on graph
pattern queries. Our experimental setup of the LogicBlox and SociaLite engines was verified by an
engineer from each system and our results are in line with previous findings [53, 58, 61].

Pairwise Join Engines. We compare to HyPer v0.5.0 [30] as HyPer is a state-of-the-art in-memory
relational database management system (RDBMS). HyPeR is a high-performance engine that out-
performs most other popular database engines on commodity hardware, like that which is used in
this article. We also compare to version 9.3.5 of PostgreSQL and MonetDB (Jul2015-SP1 release).
We configured the sizes of PostgreSQL and MonetDB’s buffers to be more than an order of magni-
tude larger than the input size in uncompressed text form. Before running the queries, we created
indices and used ANALYZE to collect statistics (both excluded from the running time). We stored the
edge relation on a RAM disk using tablespaces for PostgreSQL and tmpfs for MonetDB. These
relational engines are full-featured commercial strength systems (support transactions, etc.) and
therefore incur inefficiencies that EmptyHeaded does not.

Omitted Comparisons. We compared EmptyHeaded to GraphX [21] which is a graph engine de-
signed for scale-out performance and Neo4j which is a commercial graph database engine. Both
GraphX and Neo4j were consistently several orders of magnitude slower than EmptyHeaded’s per-
formance in a shared-memory setting. We also compared to a commercial column store database
engine but they were consistently over three orders of magnitude off of EmptyHeaded’s perfor-
mance. We exclude a comparison to the Grail method [19] as this approach in a SQL Server has been
shown to be comparable to or sometimes worse than PowerGraph [20] when the entire dataset
can easily fit in-memory (like we consider in this article). It should be noted that the Grail ap-
proach in a persistent database has been shown to be more robust than in-memory engines, such
as EmptyHeaded and PowerGraph, when the entire dataset does not fit easily in-memory [19].

5.1.3 Metrics. We measure the performance of EmptyHeaded and other engines. For end-to-
end performance, we measure the wall-clock time for each system to complete each query. This
measurement excludes the time used for data loading, outputting the result, data statistics collec-
tion, and index creation for all engines. We repeat each measurement seven times, eliminate the
lowest and the highest value, and report the average. Between each measurement of the low-level
engines we wipe the caches and re-load the data to avoid intermediate results that each engine
might store. For the high-level engines we perform runs back-to-back, eliminating the first run
which can be an order of magnitude worse than the remaining runs. We do not include com-
pilation times in our measurements. Low-level graph engines run as a stand-alone program (no
compilation time) and we discard the compilation time for high-level engines (by excluding their
first run, which includes compilation time). Nevertheless, our unoptimized compilation process
(under two seconds for all queries in this article) is often faster than other high-level engines’
(Socialite or LogicBlox).

5.1.4 Experiment Setting. EmptyHeaded is an in-memory engine that runs and is evaluated on
a single node server. As such, we ran all experiments on a single machine with a total of 48 cores on
four Intel Xeon E5-4657L v2 CPUs and 1TB of RAM. We compiled the C++ engines (EmptyHeaded,
Snap-R, PowerGraph, TripleBit) with g++ 4.9.3 (-O3) and ran the Java-based engines (CGT-X, Log-
icBlox, SociaLite) on OpenJDK 7u65 on Ubuntu 12.04 LTS. For all engines, we chose buffer and
heap sizes that were at least an order of magnitude larger than the dataset itself to avoid garbage
collection.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:29

Table 9. Triangle Counting Runtime (in Seconds) for EmptyHeaded and Relative Slowdown for Other
Engines Including PowerGraph, a Commercial Graph Tool (CGT-X), Snap-Ringo, SociaLite, and LogicBlox

Low-Level High-Level
Dataset EmptyHeaded PowerGraph CGT-X Snap-Ringo SociaLite LogicBlox
Google+ 0.31 8.40× 62.19× 4.18× 1390.75× 83.74×
Higgs 0.15 3.25× 57.96× 5.84× 387.41× 29.13×
LiveJournal 0.48 5.17× 3.85× 10.72× 225.97× 23.53×
Orkut 2.36 2.94× - 4.09× 191.84× 19.24×
Patents 0.14 10.20× 7.45× 22.14× 49.12× 27.82×
Twitter 56.81 4.40× - 2.22× t/o 30.60×
48 threads used for all engines. “-” indicates the engine does not process over 70 million edges. “t/o” indicates the engine

ran for over 30 minutes.

5.2 Experimental Results

We provide a comparison to specialized graph analytics engines on several standard workloads.
We demonstrate that EmptyHeaded outperforms the graph analytics engines by 2 to 60× on graph
pattern queries while remaining competitive on PageRank and SSSP.

5.2.1 Graph Pattern Queries. We first focus on the triangle counting query as it is a standard
graph pattern benchmark with hand-tuned implementations provided in both high- and low-level
engines. Furthermore, the triangle counting query is widely used in graph processing applications
and is a common subgraph query pattern [45, 49]. To be fair to the low-level frameworks, we com-
pare the triangle query only to frameworks that provide a hand-tuned implementation. Although
we have a high-level optimizer, we outperform the graph analytics engines by 2 to 60× on the
triangle counting query.

As is the standard, we run each engine on pruned versions of these datasets, where each undi-
rected edge is pruned such that srcid > dstid and id’s are assigned based upon the degree of the
node. This process (describe more in Section 4.5) is standard as it limits the size of the intersected
sets and has been shown to empirically work well [59]. Nearly every graph engine implements
pruning in this fashion for the triangle query.

Takeaways. The results from this experiment are in Table 9. On very sparse datasets with low
density skew (such as the Patents dataset) our performance gains are modest as it is best to repre-
sent all sets in the graph using the uint layout, which is what many competitor engines already
do. As expected, on datasets with a larger degree of density skew, our performance gains become
much more pronounced. For example, on the Google+ dataset, with a high density skew, our set
level optimizer selects 41% of the neighborhood sets to be bitsets and achieves over an order
of magnitude performance gain over representing all sets as uints. LogicBlox performs well in
comparison to CGT-X on the Higgs dataset, which has a large amount of cardinality skew, as they
use a Leapfrog Triejoin algorithm [68] that optimizes for cardinality skew by obeying the min
property of set intersection. EmptyHeaded similarly obeys the min property by selecting amongst
set intersection algorithms based on cardinality skew. In Section 5.3, we demonstrate that over a
two orders of magnitude performance gain comes from our set layout and intersection algorithm
choices.

Omitted Comparison. We do not compare to Galois on the triangle counting query, as Galois
does not provide an implementation and implementing it ourselves would require us to write a
custom set intersection in Galois (where >95% of the runtime goes). We describe how to implement

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:30 C. R. Aberger et al.

Table 10. Runtime for Five Iterations of PageRank (in Seconds) Using 48 Threads for All Engines

Low-Level High-Level
Dataset EmptyHeaded Galois PowerGraph CGT-X Snap-Ringo SociaLite LogicBlox
Google+ 0.10 0.021 0.24 1.65 0.24 1.25 7.03
Higgs 0.08 0.049 0.5 2.24 0.32 1.78 7.72
LiveJournal 0.58 0.51 4.32 - 1.37 5.09 25.03
Orkut 0.65 0.59 4.48 - 1.15 17.52 75.11
Patents 0.41 0.78 3.12 4.45 1.06 10.42 17.86
Twitter 15.41 17.98 57.00 - 27.92 367.32 442.85

“-” indicates the engine does not process over 70 million edges. The other engines include Galois, PowerGraph, a Com-

mercial Graph Tool (CGT-X), Snap-Ringo, SociaLite, and LogicBlox.

Table 11. SSSP Runtime (in Seconds) Using 48 Threads for All Engines

Low-Level High-Level
Dataset EmptyHeaded Galois PowerGraph CGT-X SociaLite LogicBlox
Google+ 0.024 0.008 0.22 0.51 0.27 41.81
Higgs 0.035 0.017 0.34 0.91 0.85 58.68
LiveJournal 0.19 0.062 1.80 - 3.40 102.83
Orkut 0.24 0.079 2.30 - 7.33 215.25
Patents 0.15 0.054 1.40 4.70 3.97 159.12
Twitter 7.87 2.52 36.90 - x 379.16

“-” indicates the engine does not process over 70 million edges. The other engines include Galois, PowerGraph, a com-

mercial graph tool (CGT-X), SociaLite, and LogicBlox. “x” indicates the engine did not compute the query properly.

high-performance set intersections in depth in Section 4, and EmptyHeaded’s triangle counting
numbers are comparable to Intel’s hand-coded numbers, which are slightly (10%–20%) faster than
the Galois implementation [58]. We provide a comparison to Galois on SSSP and PageRank in
Section 5.2.2.

5.2.2 Graph Analytics Queries. Although EmptyHeaded is capable of expressing a variety of
different workloads, we benchmark PageRank and SSSP as they are common graph benchmarks.
In addition, these benchmarks illustrate the capability of EmptyHeaded to process broader work-
loads that relational engines typically do not process efficiently: (1) linear algebra operations (in
PageRank) and (2) transitive closure (in SSSP). We run each query on undirected versions of the
graph datasets and demonstrate competitive performance compared to specialized graph engines.
Our results suggest that our approach is competitive outside of classic join workloads.

PageRank. As shown in Table 10, we are consistently 2–4× faster than standard low-level base-
lines and more than an order of magnitude faster than the high-level baselines on the PageR-
ank query. We observe competitive performance with Galois (271 lines of code), a highly tuned
shared-memory graph engine, as seen in Table 10, while expressing the query in three lines of code
(Table 1). There is room for improvement on this query in EmptyHeaded since double buffering
and the elimination of redundant joins would enable EmptyHeaded to achieve performance closer
to the bare metal performance, which is necessary to outperform Galois.

Single-Source Shortest Paths. We compare EmptyHeaded’s performance to LogicBlox and spe-
cialized engines in Table 11 for SSSP while omitting a comparison to Snap-R. Snap-R does not
implement a parallel version of the algorithm and is over three orders of magnitude slower than

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:31

EmptyHeaded on this query. For our comparison, we selected the highest degree node in the undi-
rected version of the graph as the start node. EmptyHeaded consistently outperforms PowerGraph
(low-level) and SociaLite (high-level) by an order of magnitude and LogicBlox by three orders of
magnitude on this query. More sophisticated implementations of SSSP than what EmptyHeaded
generates exist [11]. For example, Galois, which implements such an algorithm, observes a 2–30×
performance improvement over EmptyHeaded on this application (Table 11). Still, EmptyHeaded
is competitive with Galois (172 lines of code) compared to the other approaches while expressing
the query in two lines of code (Table 1).

5.3 Micro-Benchmarking Results

We detail the effect of our contributions on query performance. We introduce two new queries
and revisit the Barbell query (introduced in Section 3) in this section: (1) K4 is a 4-clique query
representing a more complex graph pattern, (2) L3,1 is the Lollipop query that finds all 3-cliques
(triangles) with a path of length one off of one vertex, and (3) B3,1 the Barbell query that finds all
3-cliques (triangles) connected by a path of length one. We demonstrate how using GHDs in the
query compiler and the set layouts in the execution engine can have a three orders of magnitude
performance impact on the K4, L3,1, and B3,1 queries.

Experimental Setup. These queries represent pattern queries that would require significant effort
to implement in low-level graph analytics engines. For example, the simpler triangle counting
implementation is 138 lines of code in Snap-R and 402 lines of code in PowerGraph. In contrast,
each query is one line of code in EmptyHeaded. As such, we do not benchmark the low-level
engines on these complex pattern queries. We run COUNT(*) aggregate queries in this section to
test the full effect of GHDs on queries with the potential for early aggregation. The K4 query is
symmetric and therefore runs on the same pruned datasets as those used in the triangle counting
query in Section 5.2.1. The B3,1 and L3,1 queries run on the undirected versions of these datasets.

5.3.1 Query Compiler Optimizations. GHDs enable complex queries to run efficiently in Emp-
tyHeaded . Table 12 demonstrates that when the GHD optimizations are disabled (“-GHD”), mean-
ing a single node GHD query plan is run, we observe up to an 8× slowdown on the L3,1 query
and over a three orders of magnitude performance improvement on the B3,1 query. Interestingly,
density skew matters again here, and for the dataset with the largest amount of density skew,
Google+, EmptyHeaded observes the largest performance gain. GHDs enable early aggregation
here and thus eliminate a large amount of computation on the datasets with large output cardi-
nalities (high density skew). LogicBlox, which currently uses only the generic worst-case optimal
join algorithm (no GHD optimizations) in their query compiler, is unable to complete the Lollipop
or Barbell queries across the datasets that we tested. GHD optimizations do not matter on the K4

query as the optimal query plan is a single node GHD.

5.3.2 Execution Engine Optimizations. Table 12 shows the relative time to complete graph
queries with features of our engine disabled. The “-R” column represents EmptyHeaded without
SIMD set layout optimizations and therefore density skew optimizations. This most closely resem-
bles the implementation of the low-level engines in Table 9, who do not consider mixing SIMD
friendly layouts. Table 12 shows that our set layout optimizations consistently have a two orders
of magnitude performance impact on advanced graph queries. The “-RA” column shows Empty-
Headed without density skew (SIMD layout choices) and cardinality skew (SIMD set intersection
algorithm choices). Our layout and algorithm optimizations provide the largest performance ad-
vantage (>20×) on extremely dense (bitset) and extremely sparse (uint) set intersections , which
is what happens on the datasets with low density skew here. Our contribution here is the mixing

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:32 C. R. Aberger et al.

Table 12. 4-Clique (K4), Lollipop (L3,1), and Barbell (B3,1) runtime in seconds for EmptyHeaded (EH)
and relative runtime for SociaLite, LogicBlox, and EmptyHeaded while disabling features. “t/o”

indicates the engine ran for over 30 minutes. “-R” is EmptyHeaded without layout representation
optimizations. “-RA” is EmptyHeaded without both layout representation (density skew) and

intersection algorithm (cardinality skew) optimizations. “-GHD” is EmptyHeaded without GHD
optimizations (single-node GHD).

EHw/o Optimizations Other Engines
Dataset Query EH -R -RA -GHD SociaLite LogicBlox

Google+
K4 4.12 10.01× 10.01× - t/o t/o
L3,1 3.11 1.05× 1.10× 8.93× t/o t/o
B3,1 3.17 1.05× 1.14× t/o t/o t/o

Higgs
K4 0.66 3.10× 10.69× - 666× 50.88×
L3,1 0.93 1.97× 7.78× 1.28× t/o t/o
B3,1 0.95 2.53× 11.79× t/o t/o t/o

LiveJournal
K4 2.40 36.94× 183.15× - t/o 141.13×
L3,1 1.64 45.30× 176.14× 1.26× t/o t/o
B3,1 1.67 88.03× 344.90× t/o t/o t/o

Orkut
K4 7.65 8.09× 162.13× - t/o 49.76×
L3,1 8.79 2.52× 24.67× 1.09× t/o t/o
B3,1 8.87 3.99× 47.81× t/o t/o t/o

Patents
K4 0.25 328.77× 1021.77× - 20.05× 21.77×
L3,1 0.46 104.42× 575.83× 0.99× 318× 62.23×
B3,1 0.48 200.72× 1105.73× t/o t/o t/o

Table 13. Relative Time When Disabling Features on the
Triangle Counting Query

Dataset -SIMD -Representation -SIMD & Representation
Google+ 1.0× 3.0× 7.5×
Higgs 1.5× 3.9× 4.8×
LiveJournal 1.6× 1.0× 1.6×
Orkut 1.8× 1.1× 2.0×
Patents 1.3× 0.9× 1.1×

“-SIMD” is EmptyHeaded without SIMD. “-Representation” is EmptyHeaded using uint at

the graph level.

of data representations (“-R”) and set intersection algorithms (“-RA”), both of which are deeply in-
tertwined with SIMD parallelism. In total, Table 12 and our discussion validate that the set layout
and algorithmic features have merit and enable EmptyHeaded to compete with graph engines.

Table 13 shows the relative time to complete the triangle query features of our system disabled
on unpruned data. The “-SR” column is the one that most closely resembles the implementation
of the graph analytics competitors we compare to in Table 9. Our use of SIMD instructions can
enable up to a 1.8× performance increase and our use of representations can enable up to a 3.9×
performance increase. The amount of SIMD parallelism leveraged is highly intertwined with our
representation decisions. Therefore, we notice this 3.9× performance decrease on datasets with
high density skew when we solely use a uint representation (“-R”) because the amount of avail-
able SIMD parallelism is decreased significantly. Finally, we also tested removing the decision be-
tween SIMD galloping and the SIMDShuffling algorithm for the uint intersections but found this

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:33

Table 14. Triangle Counting Runtime (in Seconds) for EmptyHeaded and Relative Slowdown for
Other Engines Including LogicBlox, HyPer, MonetDB, and PostgreSQL

Dataset
Engine Google+ Higgs LiveJournal Orkut Patents Twitter
EmptyHeaded 0.31 0.15 0.48 2.36 0.14 56.81

LogicBlox 83.74× 29.13× 23.53× 19.24× 27.82× 30.60×
HyPer 129.93× 12.61× 8.21× 8.67× 7.60× 13.56×
MonetDB 253.98× 154.67× 71.88× 49.58× 47.86× t/o
PostgreSQL t/o 8144× t/o t/o 2027× t/o

48 threads used for all engines. “t/o” indicates the engine ran for over 30 minutes.

feature had only a 10% performance impact on overall query runtime. In total, Table 13 shows our
vectorization and representation features have merit and are needed to attain optimal performance
on graph queries over skewed data.

5.4 Pairwise Relational Comparison Results

Table 14 serves as a comparison of the worst-case optimal join algorithms in EmptyHeaded
and the pairwise join algorithms present in popular and state-of-the-art database engines on
the triangle counting query. We present a comparison to HyPer, MonetDB, and PostgreSQL on
only the triangle counting query for two reasons: (1) expressing PageRank and SSSP in these
engines is difficult and (2) when we benchmarked the other queries their performance difference
with EmptyHeaded got even larger (several orders of magnitude slower). Interestingly, Table 14
shows that the worst-case optimal join algorithm on its own is not always enough to outperform
existing state-of-the-art implementations. For example, on the triangle query HyPer outperforms
LogicBlox on all datasets except the Google+ dataset which has high density skew. On the other
hand, EmptyHeaded consistently outperforms HyPer on all datasets by 7.6×–129.9×, with the
largest performance difference occurring on the Google+ dataset. MonetDB and PostgreSQL were
at least an order of magnitude slower than EmptyHeaded across datasets and were often more
than two orders of magnitude slower.

5.5 Selections

To test our implementation of selections in EmptyHeaded, we ran two graph pattern queries that
contained selections. The first is a 4-clique selection query where we find all 4-cliques connected
to a specified node. The second is a barbell selection query where we find all pairs of 3-cliques
connected to a specified node. The syntax for each query in EmptyHeaded is shown in Table 1.

We run COUNT(*) versions of the queries here again as materializing the output for these queries
is prohibitively expensive. We did materialize the output for these queries on a couple of datasets
and noticed our performance gap with the competitors was still the same. We varied the selectivity
for each query by changing the degree of the node we selected. We tested this on both high and
low degree nodes.

The results of our experiments are in Table 15. Pushing down selections across GHDs can enable
over a four order of magnitude performance improvement on these queries and is essential to
enable peak performance. As shown in Table 15, the competitors are closer to EmptyHeaded when
the output cardinality is low but EmptyHeaded still outperforms the competitors. For example,
on the 4-clique selection query on the patents dataset the query contains no output but we still
outperform LogicBlox by 3.66× and SociaLite by 5,754×. The data layouts we choose for the sets

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:34 C. R. Aberger et al.

Table 15. 4-Clique Selection (SK4) and Barbell Selection (SB3,1) Runtime in Seconds for EmptyHeaded
and Relative Runtime for SociaLite, LogicBlox, and EmptyHeaded While Disabling Optimizations

Dataset Query |Out | EmptyHeaded -GHD SociaLite LogicBlox

Google+
SK4

1.5E+11 154.24 6.09× t/o t/o
5.5E+7 1.08 865.95× t/o 50.91×

SB3,1
4.0E+17 0.92 3.22× t/o t/o
2.5E+3 0.008 351.72× t/o t/o

Higgs
SK4

2.2E+7 1.92 14.48× t/o 58.10×
2.7E+7 2.91 9.50× t/o 52.44×

SB3,1
1.7E+12 0.060 17.36× t/o t/o
2.4E+12 0.070 14.88× t/o t/o

LiveJournal
SK4

1.7E+7 6.73 18.05× t/o 14.83×
5.1E+2 0.0095 13E3× t/o 10.46×

SB3,1
1.6E+12 0.27 6.47× t/o t/o
9.9E+4 0.0062 278.16× t/o 70.23×

Orkut
SK4

9.8E+8 208.20 1.26× t/o t/o
2.8E+5 0.020 13E+3× t/o 18.79×

SB3,1
1.1E+15 3.24 3.20× t/o t/o
2.2E+8 0.0072 1,314× 21E+3× 23E+3×

Patents
SK4

0 0.011 121.70× 5,754× 3.66×
9.2E+3 0.011 117.56× 5,572× 10.72×

SB3,1
1.6E+1 0.0060 77.82× 223.29× 15.17x
1.1E+7 0.0066 71.22× 1,073× 3,296×

“ |Out |” indicates the output cardinality. “t/o” indicates the engine ran for over 30 minutes. “-GHD” is EmptyHeaded

without pushing down selections across GHD nodes.

matter here as placing the selected attributes first in Algorithm 1, causes these attributes to appear
in the first levels of the trie which are often dense and can be represented using a bitset (see
Section 4.1). For equality selections this enables us to perform the actual selection in constant time
versus a binary search in an unsigned integer array.

6 EXTENSIONS

In this section, we show that the generic EmptyHeaded design can easily be extended to accommo-
date RDF workloads, which are typically processed in specialized RDF processing engines. Our goal
here is to reexamine the performance difference between specialized RDF engines and general-
purpose relational engines with this our new multiway join engine. RDF queries are typically
complex join queries and specialized RDF engines largely support a high-level query language
called SPARQL. We validate that worst-case optimal join algorithms have merit here and can serve
as an improvement over the traditional querying processing mechanisms for RDF workloads. We
first begin with an overview of RDF queries. Next, we describe the pipelining optimization, which
is a general optimization necessary for EmptyHeaded to compete with specialized RDF engines.
Finally, we end with a comparison of EmptyHeaded to specialized RDF processing engines as well
as MonetDB and LogicBlox.

6.1 RDF Overview

The volume of RDF data from the Semantic Web has grown exponentially in the past decade [48,
71]. RDF data is a collection of Subject-Predicate-Object triples that form a complex and massive

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:35

graph that traditional query mechanisms do not handle efficiently [33, 48]. As a result, there has
been significant interest in designing specialized engines for RDF processing [8, 32, 48, 71]. These
specialized engines accept the SPARQL query language and build several indexes (>10) over the
Subject-Predicate-Object triples to process RDF workloads efficiently [48, 71]. In contrast, the nat-
ural way of storing RDF data in a traditional relational engine is to use triple tables [48] or vertically
partitioned column stores [2], but these techniques can be three orders of magnitude slower than
specialized RDF engines [48].

6.2 Pipelining Optimization

Pipelining is a classic query optimization used to reduce the size of materialized intermediate
results in a query plan [27]. We add a simple rule such that the root node of a GHD can be pipelined
with one child node for RDF workloads in EmptyHeaded :

Definition 6.1. Given a GHD T , we say (t0, t1) ∈ V (T) ×V (T) are pipelineable if t0 � t1 and
χ (t0) ∩ χ (t1) is a prefix of the trie orders for both t0 and t1.

Example 6.2. Consider the following query pattern from LUBM query 8 over relation R with
attributes (x,y) and relation S with attributes (x,z):

OUT (x ,y, z) : −R (x ,y), S (x , z).

The GHD EmptyHeaded produced for this query contains two nodes with respective ordered
attributes [x,y] (root t0) and [x,z] (child t1). By definition this GHD is pipelinable as the nodes
share the common prefix ‘x’.

6.3 RDF Experiments

We benchmark a standard relational engine, two worst-case optimal join engines, and two state-
of-the-art specialized RDF engines on the LUBM benchmark. We select MonetDB as the classical
relational data processing engine baseline, LogicBlox and EmptyHeaded as the worst-case optimal
engine baselines, and RDF-3X and TripleBit as the specialized RDF engine baselines. Our com-
parison shows that EmptyHeaded and LogicBlox’s designs outperform all other engines on cyclic
queries, where, again, pairwise joins are suboptimal. On the remaining queries, we show how
EmptyHeaded remains competitive with the specialized RDF engines due to the layout, pushing
down selections, and pipelining optimizations presented in this article.

6.3.1 LUBM Benchmark. The LUBM benchmark is a standard RDF benchmark with a synthetic
data generator [24]. The data generator produces RDF data representing a university system on-
tology. We generated 133 million triples for the comparisons in this section. The LUBM benchmark
contains complex multiway star join patterns as well as two cyclic queries with triangle patterns.
We run the complete LUBM benchmark while removing the inference step for each query. This
is standard in benchmarking comparisons [8, 71]. We omit queries 6 and 10, since without the
inference step, they correspond to other queries in the benchmark. The syntax to run each query
in this section in EmptyHeaded is shown in Table 16.

6.3.2 Comparison Engines. We describe the specialized RDF engines (TripleBit and RDF-3X)
and relational engines (MonetDB and LogicBlox) with which we compare.

RDF Engines. We compare against RDF-3X v0.3.8 and TripleBit, two high-performance shared-
memory RDF engines. TripleBit [71] and RDF-3X [48] have been shown to consistently outperform
traditional column and row store databases [48, 71]. RDF-3X is a popular and established RDF en-
gine which performs well across a variety of SPARQL queries. RDF-3X builds a full set of permuta-
tions on all triples and uses selectivity estimates to choose the best join order. For fairness, it should

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:36 C. R. Aberger et al.

Table 16. Example LUBM RDF Query Patterns in EmptyHeaded

be noted that RDF-3X uses data structures and operators optimized for disk-based databases. This
can lead to a performance overhead when compared to in-memory engines like EmptyHeaded,
even in the warm-cache scenarios we consider in this section. TripleBit [71] is a more recent RDF
engine which uses a sophisticated matrix representation and has been shown to compete with and
often outperform RDF-3X on a range of RDF queries on larger scale data. TripleBit reduces the

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:37

Table 17. Runtime in Milliseconds for Best Performing System and Relative Runtime for Each Engine
on the LUBM Benchmark with 133 Million Triples

Query Best EmptyHeaded TripleBit RDF-3X MonetDB LogicBlox
Q1 4.00 1.51× 3.45× 1.00× 174.58× 8.62×
Q2 973.95 1.00× 2.38× 1.92× 8.79× 1.52×
Q3 0.47 1.00× 92.61× 8.44× 283.37× 83.41×
Q4 3.39 4.62× 1.00× 1.77× 2093.78× 116.32×
Q5 0.44 1.00× 99.21× 9.15× 303.11× 81.44×
Q7 6.00 3.18× 8.53× 1.00× 573.33× 6.52×
Q8 78.50 9.83× 1.00× 3.07× 206.62× 5.03×
Q9 581.37 1.00× 3.53× 6.63× 24.29× 1.35×
Q11 0.45 1.00× 6.07× 11.03× 58.63× 73.76×
Q12 3.05 2.22× 1.00× 7.86× 118.94× 50.23×
Q13 0.87 1.00× 48.90× 35.49× 86.18× 102.77×
Q14 3.00 1.90× 54.47× 1.00× 313.47× 325.02×

size of the data and indexes through two auxiliary data structures to minimize the cost of index
selection during query evaluation. Both engines generate optimal join orderings.

Relational Engines. We also provide comparisons to MonetDB (Jul2015-SP1 release) and Logic-
Blox v4.3.4, which are two general-purpose relational engines. MonetDB is a popular open source
column store database whose performance has been shown to outperform row store designs, such
as PostgreSQL, by orders of magnitude on RDF workloads [48]. For all relational engines, including
EmptyHeaded , we store and process the RDF data in a vertically partitioned manner as this has
been shown to be superior to storing the data as triples [2, 48]. Vertical partitioning is the process
of grouping the triples by their predicate name, with all triples sharing the same predicate name
being stored under a table denoted by the predicate name [2].

6.3.3 End-to-End Comparison. LUBM queries 2 and 9 are the two cyclic queries that contain
a triangle pattern. Unsurprisingly, here LogicBlox outperforms specialized engines by 3–5× and
MonetDB by 17.96× (Table 17) due to the asymptotic advantage of worst-case optimal join al-
gorithms. On these queries EmptyHeaded is 1.5× faster than LogicBlox due to our set layouts,
which are designed for single-instruction multiple data parallelism. In general, our speedup over
LogicBlox is more modest here than on the previously reported cyclic graph patterns due to the
presence of selections.

On acyclic queries with high selectivity, EmptyHeaded also competes with the specialized RDF
engines. On simple acyclic queries with selections (LUBM 1,3,5,11,13,14), EmptyHeaded is able to
provide covering indexes, like the specialized engines, using only our trie data structure and the
attribute order we described in Section 3.3.1. Therefore, EmptyHeaded maintains competitive per-
formance with RDF-3X and TripleBit (Table 17). On more complex acyclic queries with selections
(LUBM 7,8,12), RDF-3X and TripleBit observe a performance advantage over EmptyHeaded due
to their sophisticated cost-based query optimizers which combine selectivity estimates and join
order (Table 17). Our optimizations from Sections 3,4 and 6.2 can provide up to a 48× performance
improvement here, but more sophisticated optimizations are needed to outperform the specialized
engines. Finally, on LUBM query 8 we observe a performance slowdown when compared to Log-
icBlox. This is due to expensive reallocations that occur within the EmptyHeaded engine. When
removing allocations, we observed that EmptyHeaded’s performance for query 8 was equivalent
to that of RDF-3X.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:38 C. R. Aberger et al.

Table 18. Relative Speedup of Each Optimization on Selected LUBM
Queries with 133 Million Triples

Query +Layout +Attribute +GHD +Pipelining
Q1 2.10× 129.85× - -
Q2 8.22× 1.03× - -
Q4 2.02× 12.88× 69.94× -
Q7 4.35× 95.01× - -
Q8 2.24× 1.99× 1.5× 4.67×
Q14 7.92× 234.49× - -

+Layout refers to EmptyHeaded when using multiple layouts versus solely

an unsigned integer array (index layout). +Attribute refers to reordering at-

tributes with selections within a GHD node. +GHD refers to pushing down se-

lections across GHD nodes in our query plan. +Pipelining refers to pipelining

intermediate results in a given query plan. “-” means the optimization has no

impact on the query.

6.3.4 Micro-Benchmarking Results. The layout optimizations presented in Section 4.1, the push-
ing down selections optimization presented in Section 3.3, and the pipelining optimization pre-
sented in Section 6.2 can enable up to a 234× performance advantage on the LUBM benchmark
(see Table 18). We explain the impact of these optimizations on RDF queries next.

Pushing Down Selections. Recall from Section 3.3 that EmptyHeaded pushes down selections in
a GHD query plan in two phases: (1) by rearranging the attribute order inside of each node in the
GHD and (2) by rearranging the nodes in the GHD such that high-selectivity or low-cardinality
nodes appear as far away from the root as possible (so that they are executed earlier in our
bottom-up pass). We explain the empirical impact for each phase by walking through an example
RDF query for each next.

—Within a Node: Consider LUBM query 14 from Table 16. For this trivial query, we produce
a single node GHD containing attributes {x,’UndergraduateStudent’}.12 An attribute
ordering of [x,’UndergraduateStudent’] means that ‘x’ is the first level of the trie
and ‘UndergraduateStudent’ is the second level of the trie. Thus, EmptyHeaded would
execute this query by probing the second level of the trie for each ‘x’ attribute to de-
termine if there was a corresponding value of ‘UndergraduateStudent’. This is much
less efficient than selecting the attribute ordering of [‘UndergraduateStudent’,x],
where EmptyHeaded can perform a lookup in the first level of the trie (to find if a value
of ‘UndergraduateStudent’ exists) and, if successful, return the corresponding sec-
ond level as the result. This same optimization holds for more complex queries, such
as LUBM query 2 (see Table 16), where EmptyHeaded selects the attribute ordering of
[‘GraduateStudent’, ‘Department’, ‘University’, x, y, z]. We show in the
+Attribute column of Table 18 that forcing the attributes with selections or small car-
dinalities to come first can enable an up to a 234.49× performance increase.

—Across Nodes: Consider the acyclic join pattern for LUBM query 4 from Table 16. Figure 11
shows two possible GHDs for this query. The GHD on the left is the one produced with-
out the pushing out selection optimization. This GHD does not filter out any intermediate
results across potentially high-selectivity nodes when results are first passed up the GHD.
The GHD on the right uses the pushing down selections across nodes optimization from

12Here {} denotes an unordered set of attributes while [] denotes an ordered list of attributes.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:39

Fig. 11. Pushing down selections across nodes GHD transformation for LUBM query 4. Abbreviations
in the GHD nodes are ‘N’=‘name’, ‘E’=‘emailAddress’, ‘Te’=‘telephone’, ‘Ty’=‘type’, ‘Wf’=‘worksFor’,
‘k1’=‘Univ0Dept0’, and ‘k2’=‘AssociateProfessor’.

Section 3.3.2. Here the nodes with attributes ‘Univ0Dept0’ and ‘AssociateProfessor’
are below all other nodes in the GHD, ensuring that these high-selectivity attributes are pro-
cessed early in the query plan. Although it appears that the optimized GHD has redundant
work, EmptyHeaded uses the optimization in Section 3.5 to eliminate this redundant com-
putation. Pushing down selections across nodes applies to only two queries in the LUBM
benchmark, but provides up to a 69.94× speedup as we show in the +GHD column of Table 18.

Set Layout Choices. Recall that in EmptyHeaded a single trie is analogous to a single index in a
standard database. Therefore, EmptyHeaded performs an equality selection by checking whether a
set in the trie contains a value. The set layouts we choose from Section 4.1 can have a large impact
on the runtime performance when performing this set contains operation. For example, the bitset
layout can perform this operation in constant time, whereas the uint layout performs it inO (logn)
with a binary search. Because of this, the +Layout column in Table 18 shows that the set layout
optimizer presented in Section 4.1 provides up to a 8.22× performance increase when compared to
executing solely over the uint layout. As such, it is preferred to have equality selected attributes
in the bitset layout whenever possible. Interestingly, our pushing down selections optimization
will often ensure this. Pushing down selections forces the equality selected attributes to appear in
the first levels of the trie, which are liklier dense, and therefore best represented using the bitset
layout.

Pipelining. On LUBM query 8 we found that pipelining the results between nodes with mate-
rialized attributes provided up to a 4.67× performance advantage as shown in the +Pipelining
column of Section 6.3. This is due to the optimization presented in Section 6.2, which enables
EmptyHeaded to materialize fewer intermediate results. Unfortunately, the impact of pipelining
is negligible on the other LUBM queries as the output cardinality is often small and so are the
intermediate cardinalities.

7 RELATED WORK

Our work extends previous work in five main areas: our prior work, join processing, graph pro-
cessing, SIMD processing, and set intersection processing. We cover each of these in detail as well
as prior published by us in this area.

Prior Work. We briefly describe the main differences between this article and previous work [3]
with which there is significant overlap. The first difference comes in our expanded discussion of the

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

20:40 C. R. Aberger et al.

query language in Section 2.3, which now contains more concrete examples. Next, we expanded
and presented new content during our discussion of the query compiler in Section 3. Namely, we
now discuss how selections are supported in our GHD-based query compiler (Section 3.3), and how
we eliminate redundant work (Section 3.5). Moving on, in Section 4 we performed a more detailed
and complete experimental study surrounding our optimizer design for various set intersection
algorithms and layouts. This included presenting and testing more layouts (Section 4.1) and inter-
sections (Section 4.2). We also added an experimental study to test the impact of node ordering
in our design, which we discuss in Section 4.5. Additionally, our new section on implementing
selections in Section 3.3 motivated new experiments in Section 5.5 to measure the effectiveness of
our design. Finally, we merged previous work on RDF workloads [4] in the EmptyHeaded engine
to this article, presenting the relevant work in Section 6.

Join Processing. The first worst-case optimal join algorithm was recently derived [51]. The Log-
icBlox (LB) engine [68] is the first commercial database engine to use a worst-case optimal al-
gorithm. Researchers have also investigated worst-case optimal joins in distributed settings [17]
and have looked at minimizing communication costs [6] or processing on compressed represen-
tations [54]. Recent theoretical advances [28, 31] have suggested worst-case optimal join pro-
cessing is applicable beyond standard join pattern queries. We continue in this line of work.
The algorithm in EmptyHeaded is a derived from the worst-case optimal join algorithm [51] and
uses set intersection operations optimized for SIMD parallelism, an approach we exploit for the
first time. Additionally, our algorithm satisfies a stronger optimality property that we describe in
Section 3.

Graph Processing. Due to the increase in main memory sizes, there is a trend toward develop-
ing shared-memory graph analytics engines. Researchers have released high-performance shared-
memory graph processing engines, most notably SociaLite [61], Green-Marl [25], Ligra [62], and
Galois [52]. With the exception of SociaLite, each of these engines proposes a new domain-specific
language for graph analytics. SociaLite, based on datalog, presents an engine that more closely re-
sembles a relational model. Other engines such as PowerGraph [20], Graph-X [21], and Pregel
[43] are aimed at scale-out performance. Additionally, there have been several recent systems that
focus on using graph mining as the basis for graph computation [10, 12, 18, 55, 65]. For example,
Arabesque [65] and NScale [55] are two such systems designed for scale-out performance on core
graph mining problems such as finding subgraphs or motif counting. The merit of these specialized
approaches against traditional OLAP engines is a source of much debate [69], as some researchers
believe general approaches can compete with and outperform these specialized designs [21, 44].
Recent products, such as SAP HANA, integrate graph accelerators as part of a OLAP engine [57].
Others [19] have shown that relational engines can compete with distributed engines [20, 43] in
the graph domain, but have not targeted shared-memory baselines. We hope our work contributes
to the debate about which portions of the workload can be accelerated.

SIMD Processing. Recent research has focused on taking advantage of the hardware trend toward
increasing SIMD parallelism. DB2 Blu integrated an accelerator supporting specialized heteroge-
neous layouts designed for SIMD parallelism on predicate filters and aggregates [56]. Our approach
is similar in spirit to DB2 Blu, but applied specifically to join processing. Other approaches such
as WideTable [42] and BitWeaving [41] investigated and proposed several novel ways to leverage
SIMD parallelism to speed up scans in OLAP engines. Furthermore, researchers have looked at
optimizing popular database structures, such as the trie [72], and classic database operations [73]
to leverage SIMD parallelism. Our work is the first to consider heterogeneous layouts to leverage
SIMD parallelism as a means to improve worst-case optimal join processing.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

EmptyHeaded: A Relational Engine for Graph Processing 20:41

Set Intersection Processing. In recent years, there has been interest in SIMD sorted set intersection
techniques [26, 29, 37, 60]. Techniques such as the SIMDShuffling algorithm [29] break the min
property of set intersection but often work well on graph data, while techniques such as SIMD-
Galloping [37] that preserve the min property rarely work well on graph data. We experiment with
these techniques and slightly modify our use of them to ensure min property of the set intersection
operation in our engine. We use this as a means to speed up set intersection—the core operation
in our join algorithm.

RDF Engines. Two of the most popular specialized RDF engines are RDF-3X and TripleBit. Both
accept queries in the SPARQL query language and have been shown to significantly outperform
traditional relational engines. RDF-3X creates a full set of subject-predicate-object indexes by
building clustering B+ trees on all six permutations of the triples [48]. RDF-3X also maintains
nine aggregate indexes, which include all six binary and all three unary projections. Each index
provides some selectivity estimates and the aggregate indexes are used to select the fastest index
for a given query. In the TripleBit engine, RDF triples are represented using a compact matrix
representation [71]. TripleBit stores two auxiliary index structures and two binary aggregate in-
dexes which enable selectivity estimates for query patterns. This enables TripleBit to select the
most effective indexes, minimize the number of indexes needed, and determine the query plan.
Like EmptyHeaded, both RDF-3X and TripleBit use dictionary encoding.

8 CONCLUSION

We demonstrate the first general-purpose worst-case optimal join processing engine that competes
with low-level specialized engines on standard graph workloads. Our approach provides strong
worst-case running times and can lead to over a three orders of magnitude performance gain
over standard approaches due to our use of GHDs. We perform a detailed study of set layouts
to exploit SIMD parallelism on modern hardware and show that over a three orders of magnitude
performance gain can be achieved through selecting among algorithmic choices for set intersection
and set layouts at different granularities of the data. We show that on popular graph queries our
prototype engine can outperform specialized graph analytics engines by 4–60× and LogicBlox
by over three orders of magnitude. Finally, we demonstrate that our new design can easily be
extended to accommodate RDF workloads and achieve competitive performance with specialized
RDF engines. Our study suggests that this type of engine is a first step toward unifying standard
SQL and graph processing engines.

ACKNOWLEDGMENTS

We thank LogicBlox and SociaLite for their helpful conversations and verification of our compar-
isons, and Rohan Puttagunta and Manas Joglekar for their theoretical underpinnings.

REFERENCES

[1] 2014. U.S. patents network dataset – KONECT. Retrieved from http://konect.uni-koblenz.de/networks/patentcite.

[2] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach. 2007. Scalable semantic web data man-

agement using vertical partitioning. In VLDB. ACM, 411–422.

[3] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. EmptyHeaded: A relational engine for

graph processing. In SIGMOD Conference. ACM, 431–446.

[4] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. Old techniques for new join algorithms:

A case study in RDF processing. DESWEB: ICDE Workshop (2016).

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Vol. 8. Addison-Wesley. Chapters

3–4.

[6] Foto N. Afrati, Manas Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D. Ullman. 2014. GYM: A multiround

join algorithm in MapReduce. CoRR abs/1410.4156 (2014). http://arxiv.org/abs/1410.4156.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

http://konect.uni-koblenz.de/networks/patentcite
http://arxiv.org/abs/1410.4156

20:42 C. R. Aberger et al.

[7] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and

Geoffrey Washburn. 2015. Design and implementation of the logicblox system. In SIGMOD Conference. ACM, 1371–

1382.

[8] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. 2010. Matrix bit loaded: A scalable lightweight

join query processor for RDF data. In Proceedings of the 19th International Conference on World Wide Web. ACM, 41–50.

[9] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query plans for relational joins. SIAM J.

Comput. 42, 4 (2013), 1737–1767.

[10] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and mapreduce. Pro-

ceedings of the VLDB Endowment 5, 5 (2012), 454–465.

[11] Scott Beamer, Krste Asanovic, and David A. Patterson. 2012. Direction-optimizing breadth-first search. In SC.

IEEE/ACM, 12.

[12] Mansurul A. Bhuiyan and Mohammad Al Hasan. 2015. An iterative MapReduce based frequent subgraph mining

algorithm. IEEE Transactions on Knowledge and Data Engineering 27, 3 (2015), 608–620.

[13] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On random sampling over joins. In SIGMOD

Conference. ACM, 263–274.

[14] Chandra Chekuri and Anand Rajaraman. 1997. Conjunctive query containment revisited. In ICDT. Lecture Notes in

Computer Science, Vol. 1186. Springer, 56–70.

[15] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 1 (1985),

210–223.

[16] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar

Raghavan. 2009. On compressing social networks. In KDD. ACM, 219–228.

[17] Shumo Chu, Magdalena Balazinska, and Dan Suciu. 2015. From theory to practice: Efficient join query evaluation in

a parallel database system. In SIGMOD Conference. ACM, 63–78.

[18] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. 2014. Grami: Frequent subgraph and

pattern mining in a single large graph. VLDB 7, 7 (2014), 517–528.

[19] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The case against specialized graph analytics engines.

In CIDR. www.cidrdb.org.

[20] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

graph-parallel computation on natural graphs. In OSDI. USENIX Association, 17–30.

[21] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph processing in a distributed dataflow framework. In OSDI. USENIX Association, 599–613.

[22] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and Francesco Scarcello. 2005. Hypertree decompositions:

Structure, algorithms, and applications. In WG, Lecture Notes in Computer Science, Vol. 3787. Springer, 1–15.

[23] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. ACM, 31–40.

[24] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for OWL knowledge base systems. J. Web

Sem. 3, 2–3 (2005), 158–182.

[25] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. 2012. Green-Marl: A DSL for easy and efficient graph

analysis. In ASPLOS. ACM, 349–362.

[26] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2014. Faster set intersection with SIMD instructions by reducing

branch mispredictions. PVLDB 8, 3 (2014), 293–304.

[27] Matthias Jarke and Jurgen Koch. 1984. Query optimization in database systems. ACM Computing Surveys (CsUR) 16,

2 (1984), 111–152.

[28] Manas Joglekar, Rohan Puttagunta, and Christopher Ré. 2015. Aggregations over generalized hypertree decomposi-

tions. CoRR abs/1508.07532.

[29] Ilya Katsov. 2012. Fast Intersection of Sorted Lists Using SSE Instructions. https://highlyscalable.wordpress.com/2012/

06/05/fast-intersection-sorted-lists-sse/.

[30] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP main memory database system based

on virtual memory snapshots. In ICDE. IEEE, 195–206.

[31] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions asked frequently. In PODS. ACM, 13–28.

[32] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. 2015. Taming subgraph isomorphism

for RDF query processing. CoRR abs/1506.01973.

[33] Graham Klyne and Jeremy J. Carroll. 2006. Resource description framework (RDF): Concepts and abstract syntax.

[34] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. 2010. What is Twitter, a social network or a news

media?. In WWW. ACM, 591–600.

[35] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory

databases. In ICDE. IEEE, 38–49.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

https://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse/

EmptyHeaded: A Relational Engine for Graph Processing 20:43

[36] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through vectorization. Software:

Practice and Experience 45, 1 (2015), 1–29.

[37] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. 2014. SIMD compression and the intersection of sorted integers.

CoRR abs/1401.6399.

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.

stanford.edu/data.

[39] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008. Statistical properties of community

structure in large social and information networks. In WWW. ACM, 695–704.

[40] Jure Leskovec and Rok Sosič. 2016. SNAP: A general-purpose network analysis and graph-mining library. ACM Trans-

actions on Intelligent Systems and Technology (TIST) 8, 1 (2016), 1.

[41] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast scans for main memory data processing. In SIGMOD Conference.

ACM, 289–300.

[42] Yinan Li and Jignesh M. Patel. 2014. WideTable: An accelerator for analytical data processing. PVLDB 7, 10 (2014),

907–918.

[43] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A system for large-scale graph processing. In SIGMOD Conference. ACM, 135–146.

[44] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But at what COST?. In HotOS. USENIX

Association.

[45] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs:

Simple building blocks of complex networks. Science 298, 5594 (2002), 824–827.

[46] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2007. Measure-

ment and analysis of online social networks. In Internet Measurement Comference. ACM, 29–42.

[47] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern hardware. PVLDB 4, 9 (2011), 539–550.

[48] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB

Journal 19, 1 (2010), 91–113.

[49] Mark E. J. Newman. 2003. The structure and function of complex networks. SIAM Rev. 45, 2 (2003), 167–256.

[50] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal join algorithms: [Extended ab-

stract]. In PODS. ACM, 37–48.

[51] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: New developments in the theory of join

algorithms. SIGMOD Record 42, 4 (2013), 5–16.

[52] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In

SOSP. ACM, 456–471.

[53] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christopher Ré, and Atri Rudra.

2015. Join processing for graph patterns: An old dog with new tricks. In GRADES@SIGMOD/PODS. ACM, 2:1–2:8.

[54] Dan Olteanu and Jakub Závodný. 2015. Size bounds for factorised representations of query results. ACM Transactions

on Database Systems 40, 1 (2015), 2.

[55] Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale: Neighborhood-centric large-scale graph analytics in

the cloud. VLDB 25, 2 (2016), 125–150.

[56] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vincent KulandaiSamy, Jens

Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni

Schiefer, David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with BLU acceleration: So much

more than just a column store. PVLDB 6, 11 (2013), 1080–1091.

[57] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. 2013. The graph story of the SAP HANA

database. In BTW (LNI), Vol. 214. GI, 403–420.

[58] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan,

Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey. 2014. Navigating the maze of graph analytics frameworks

using massive graph datasets. In SIGMOD Conference. ACM, 979–990.

[59] Thomas Schank and Dorothea Wagner. 2005. Finding, counting and listing all triangles in large graphs, an experi-

mental study. In WEA, Lecture Notes in Computer Science, Vol. 3503. Springer, 606–609.

[60] Benjamin Schlegel, Thomas Willhalm, and Wolfgang Lehner. 2011. Fast sorted-set intersection using SIMD instruc-

tions. In ADMS@VLDB. 1–8.

[61] Jiwon Seo, Stephen Guo, and Monica S. Lam. 2013. SociaLite: Datalog extensions for efficient social network analysis.

In ICDE. IEEE Computer Society, 278–289.

[62] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In

PPOPP. ACM, 135–146.

[63] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In 2015 Data Compression Conference. IEEE, 403–412.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

http://snap.stanford.edu/data

20:44 C. R. Aberger et al.

[64] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau,

Amerson Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik.

2005. C-Store: A column-oriented DBMS. In VLDB. ACM, 553–564.

[65] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mohammed J. Zaki, and Ashraf

Aboulnaga. 2015. Arabesque: A system for distributed graph mining. In SOSP. ACM, 425–440.

[66] Susan Tu and Christopher Ré. 2015. DunceCap: Query plans using generalized hypertree decompositions. In SIGMOD

Conference. ACM, 2077–2078.

[67] Jeffrey D. Ullman. 2001. Conjunctive Queries. Retrieved from http://infolab.stanford.edu/ullman/cs345notes/

slides01-6.pdf.

[68] Todd L. Veldhuizen. 2012. Leapfrog triejoin: A worst-case optimal join algorithm. CoRR abs/1210.0481.

[69] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong, Hassan Chafi, and Jay Banerjee. 2013. Graph analysis: Do

we have to reinvent the wheel? In GRADES. CWI/ACM, 7.

[70] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB. IEEE Computer Society, 82–94.

[71] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013. TripleBit: A fast and compact system

for large scale RDF data. PVLDB 6, 7 (2013), 517–528.

[72] Steffen Zeuch, Johann-Christoph Freytag, and Frank Huber. 2014. Adapting tree structures for processing with SIMD

instructions. In EDBT. OpenProceedings.org, 97–108.

[73] Jingren Zhou and Kenneth A. Ross. 2002. Implementing database operations using SIMD instructions. In SIGMOD

Conference. ACM, 145–156.

Received December 2016; revised May 2017; accepted July 2017

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 20. Publication date: October 2017.

http://infolab.stanford.edu/ullman/cs345notes/slides01-6.pdf

