
A Brain-Friendly Guide

A Learner’s Guide to
Real-World Programming

with C#, XAML, and .NET

Head First

Boss your
objects
around with
abstraction
and inheritance

Build a fully
functional

retro classic
arcade game

Learn how
asynchronous
programming
helped Sue keep
her users thrilled

Unravel the
mysteries of the

Model-View-ViewModel
(MVVM) pattern

See how Jimmy used
collections and LINQ
to wrangle an unruly
comic book collection

Andrew Stellman
& Jennifer Greene

3rd
Edition

Updated to include

Visual Studio 2013 and

Windows 8.1Head
First

C#

Head First C#

ISBN: 978-1-449-34350-7

US $54.99	 CAN $57.99

3rd Edition

Build satisfying
and fun projects
from the very
first chapter.

twitter.com/headfirstlabs
facebook.com/HeadFirst

What will you learn from this book?
Head First C# is a complete learning experience for programming
with C#, XAML, the .NET Framework, and Visual Studio. Built for
your brain, this book keeps you engaged from the first chapter,
where you’ll build a fully functional video game. After that, you’ll
learn about classes and object-oriented programming, draw graph-
ics and animation, query your data with LINQ, and serialize it to
files. And you’ll do it all by building games, solving puzzles, and
doing hands-on projects. By the time you’re done you’ll be a solid
C# programmer, and you’ll have a great time along the way!

Programming/C#/.NET

Stellman &
Greene

Why does this book look so different?
We think your time is too valuable to spend struggling with new
concepts. Using the latest research in cognitive science and learning
theory to craft a multi-sensory learning experience, Head First C# uses a
visually rich format designed for the way your brain works, not a text-
heavy approach that puts you to sleep.

oreilly.com
headfirstlabs.com

“If you want to learn
C# in depth and have
fun doing it, this is
THE book for you.”

—Andy Parker,
fledgling C# programmer

“Head First C# will
guide beginners of all
sorts to a long and
productive relation-
ship with C# and the
.NET Framework.”

—Chris Burrows,
Developer on Microsoft’s

C# Compiler team

“Head First C# got
me up to speed in
no time for my first
large scale C#
development project
at work—I highly
recommend it.”

—Shalewa Odusanya,
Technical Account Manager,

Google

6 Chapter 1

v

If you don’t see the Error List or

Toolbox, choose them from the View menu.

We’ve �lled in the annotations about the di�erent sections of the Visual

Studio C# IDE. You may have some di�erent things written down, but you

should have been able to �gure out the basics of what each window and

section of the IDE is used for.
This toolbar has buttons
that apply to what you’re
currently doing in the IDE.

know your ide

This window
shows properties

of whatever is

currently select
ed

in your designer
.

This is the
toolbox. It
has a bunch of
visual controls
that you can
drag onto your
page.

This Error List window shows

you when there are er
rors in

your code. This pane will show

lots of diagnost
ic info about

your app.

The XAML and C# files
that the IDE created for
you when you added the new
project appear in the Solution Explorer, along with any
other files in your solution.

You can switch between
files using the Solution
Explorer in the IDE.

See this little
pushpin icon?
If you click it,
you can turn
auto-hide on or

off. The Toolbox

window has
auto-hide turned

on by default.

The designer lets you edit

the user interface by
dragging controls onto it

.

Solution

you are here  109

objects: get oriented!

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build five identical houses in a suburban housing development, you wouldn’t ask an architect to draw up five identical sets of blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to make any number of houses, and you can use one class to make any number of objects.

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from it using the new statement. When you do, every method in your class becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

Understand the difference between 	 classes and objects.
Exercise your C#
skills by building an
invaders game...
...and creating a role-playing game with deadly enemies.

Learn how to get the IDE to
do your grunt work for you.

Master the principles of
object-oriented programming.

A Brain-Friendly Guide

A Learner’s Guide to
Real-World Programming

with C#, XAML, and .NET

Head First

Boss your
objects
around with
abstraction
and inheritance

Build a fully
functional

retro classic
arcade game

Learn how
asynchronous
programming
helped Sue keep
her users thrilled

Unravel the
mysteries of the

Model-View-ViewModel
(MVVM) pattern

See how Jimmy used
collections and LINQ
to wrangle an unruly
comic book collection

Andrew Stellman
& Jennifer Greene

3rd
Edition

Updated to include

Visual Studio 2013 and

Windows 8.1Head
First

C#
Head First C#

ISBN: 978-1-449-34350-7

US $54.99	 CAN $57.99

3rd Edition

Build satisfying
and fun projects
from the very
first chapter.

twitter.com/headfirstlabs
facebook.com/HeadFirst

What will you learn from this book?
Head First C# is a complete learning experience for programming
with C#, XAML, the .NET Framework, and Visual Studio. Built for
your brain, this book keeps you engaged from the first chapter,
where you’ll build a fully functional video game. After that, you’ll
learn about classes and object-oriented programming, draw graph-
ics and animation, query your data with LINQ, and serialize it to
files. And you’ll do it all by building games, solving puzzles, and
doing hands-on projects. By the time you’re done you’ll be a solid
C# programmer, and you’ll have a great time along the way!

Programming/C#/.NET

Stellman &
Greene

Why does this book look so different?
We think your time is too valuable to spend struggling with new
concepts. Using the latest research in cognitive science and learning
theory to craft a multi-sensory learning experience, Head First C# uses a
visually rich format designed for the way your brain works, not a text-
heavy approach that puts you to sleep.

oreilly.com
headfirstlabs.com

“If you want to learn
C# in depth and have
fun doing it, this is
THE book for you.”

—Andy Parker,
fledgling C# programmer

“Head First C# will
guide beginners of all
sorts to a long and
productive relation-
ship with C# and the
.NET Framework.”

—Chris Burrows,
Developer on Microsoft’s

C# Compiler team

“Head First C# got
me up to speed in
no time for my first
large scale C#
development project
at work—I highly
recommend it.”

—Shalewa Odusanya,
Technical Account Manager,

Google

6 Chapter 1

v

If you don’t see the Error List or

Toolbox, choose them from the View menu.

We’ve �lled in the annotations about the di�erent sections of the Visual

Studio C# IDE. You may have some di�erent things written down, but you

should have been able to �gure out the basics of what each window and

section of the IDE is used for.
This toolbar has buttons
that apply to what you’re
currently doing in the IDE.

know your ide

This window
shows properties

of whatever is

currently select
ed

in your designer
.

This is the
toolbox. It
has a bunch of
visual controls
that you can
drag onto your
page.

This Error List window shows

you when there are er
rors in

your code. This pane will show

lots of diagnost
ic info about

your app.

The XAML and C# files
that the IDE created for
you when you added the new
project appear in the Solution Explorer, along with any
other files in your solution.

You can switch between
files using the Solution
Explorer in the IDE.

See this little
pushpin icon?
If you click it,
you can turn
auto-hide on or

off. The Toolbox

window has
auto-hide turned

on by default.

The designer lets you edit

the user interface by
dragging controls onto it

.

Solution

you are here  109

objects: get oriented!

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build five identical houses in a suburban housing development, you wouldn’t ask an architect to draw up five identical sets of blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to make any number of houses, and you can use one class to make any number of objects.

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from it using the new statement. When you do, every method in your class becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

Understand the difference between 	 classes and objects.
Exercise your C#
skills by building an
invaders game...
...and creating a role-playing game with deadly enemies.

Learn how to get the IDE to
do your grunt work for you.

Master the principles of
object-oriented programming.

Advance Praise for Head First C#

“Head First C# is a great book, both for brand new developers and developers like myself coming from
a Java background. No assumptions are made as to the reader’s proficiency yet the material builds up
quickly enough for those who are not complete newbies—a hard balance to strike. This book got me up
to speed in no time for my first large scale C# development project at work—I highly recommend it.”

— Shalewa Odusanya, Technical Account Manager, Google

“Head First C# is an excellent, simple, and fun way of learning C#. It’s the best piece for C# beginners
I’ve ever seen—the samples are clear, the topics are concise and well written. The mini-games that guide
you through the different programming challenges will definitely stick the knowledge to your brain. A
great learn-by-doing book!”

— Johnny Halife, Chief Architect, Mural.ly

“Head First C# is a comprehensive guide to learning C# that reads like a conversation with a friend. The
many coding challenges keep it fun, even when the concepts are tough.”

— Rebeca Duhn-Krahn, founding partner at Semphore Solutions

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. From the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—�Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

Praise for other Head First books

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who] want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, software engineer

“Going through this Head First C# book was a great experience. I have not come across a book series
which actually teaches you so well.…This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—�Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-
eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— �Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— �Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— �Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— �Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— �Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— �Ken Goldstein, Executive Vice President, Disney Online

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller… Bueller… Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— �Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— �Satish Kumar

Other related books from O’Reilly

Programming C# 4.0

C# 4.0 in a Nutshell

C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series

Head First HTML5 Programming

Head First iPhone and iPad Development

Head First Mobile Web

Head First Python

Head First Web Design

Head First WordPress

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First Physics

Head First Programming

Head First Ruby on Rails

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Andrew Stellman
Jennifer Greene

Head First C#
Third Edition

Wouldn’t it be dreamy if
there was a C# book that was

more fun than memorizing
a phone book? It’s probably

nothing but a fantasy....

Head First C#

Third Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2013 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Cover Designers:		 Louise Barr, Karen Montgomery

Production Editor:		 Melanie Yarbrough

Proofreader:			 Rachel Monaghan

Indexer:			 Ellen Troutman-Zaig

Page Viewers:	 	 Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.
May 2010: Second Edition.
August 2013: Third Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-449-34350-7

[LSI]										 [2014-09-12]

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

viii

Jennifer Greene studied philosophy in college
but, like everyone else in the field, couldn’t find
a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a
good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quality at a financial software company.
She’s managed a teams of developers, testers and
PMs on software projects in media and finance
since then.

She’s traveled all over the world to work with
different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, playing PS3
games, and hanging out with her huge siberian
cat, Sascha.

Andrew Stellman, despite being raised a
New Yorker, has lived in Minneapolis, Geneva,
and Pittsburgh... twice. The first time was when
he graduated from Carnegie Mellon’s School of
Computer Science, and then again when he and
Jenny were starting their consulting business and
writing their first book for O’Reilly.

Andrew’s first job after college was building
software at a record company, EMI-Capitol
Records—which actually made sense, as he went
to LaGuardia High School of Music & Art and
the Performing Arts to study cello and jazz bass
guitar. He and Jenny first worked together at
a company on Wall Street that built financial
software, where he was managing a team of
programmers. Over the years he’s been a Vice
President at a major investment bank, architected
large-scale real-time back end systems, managed
large international software teams, and consulted
for companies, schools, and organizations,
including Microsoft, the National Bureau of
Economic Research, and MIT. He’s had the
privilege of working with some pretty amazing
programmers during that time, and likes to think
that he’s learned a few things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing both music and video games, practicing
taiji and aikido, and owning a Pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they first

met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in 2005. Other

Stellman and Greene books for O’Reilly include Beautiful Teams (2009), and their first book in the Head First

series, Head First PMP (2007), now in its third edition.

They founded Stellman & Greene Consulting in 2003 to build a really neat software project for scientists studying

herbicide exposure in Vietnam vets. In addition to building software and writing books, they’ve consulted for

companies and spoken at conferences and meetings of software engineers, architects and project managers.

Check out their blog, Building Better Software: http://www.stellman-greene.com

Follow @AndrewStellman and @JennyGreene on Twitter

Jenny

Andrew

Thanks for buying our book! We
really love writing about this
stuff, and we hope you get a

kick out of reading it…

…because
we know you’re
going to have
a great time

learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Your brain on C#. � You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for?						 xxxii

We know what you’re thinking.	 				 xxxiii

Metacognition: thinking about thinking				 xxxv

Here’s what YOU can do to bend your brain into submission		 xxxvii

What you need for this book					 xxxviii

Read me							 xxxix

The technical review team						 xl

Acknowledgments						 xli

 	 Intro	 xxxi

1	 Start building with C#: Building something cool, fast!	 1

2	 It’s All Just Code: Under the hood	 53

3	 Objects: Get Oriented: Making code make sense	 101

4	 Types and References: It’s 10:00. Do you know where your data is?	 141

 	 C# Lab 1: A Day at the races	 187

5	 Encapsulation: Keep your privates…private	 197

6	 Inheritance: Your object’s family tree	 237

7	 Interfaces and abstract classes: Making classes keep their promises	 293

8	 Enums and collections: Storing lots of data	 351

9	 Reading and Writing Files: Save the last byte for me!	 409

 	 C# Lab 2: The Quest	 465

10	 Designing Windows Store Apps with XAML:
	 Taking your apps to the next level	 487

11	 XAML, File, I/O, and Data Contract Serialization: Writing files right	 535

12	 Exception Handling: Putting out fires gets old	 569

13	 Captain Amazing: The Death of the Object	 611

14	 Querying Data and Building Apps with LINQ: Get control of your data	 649

15	 Events and Delegates: What your code does when you’re not looking	 701

16	 Architecting Apps with the MVVM Pattern:
	 Great apps on the inside and outside	 745

 	 C# Lab 3: Invaders	 807

i	 Leftovers: The top 10 things we wanted to include in this book	 845

ii	 Windows presentation foundation: WPF Learner’s Guide to Head First C#	 861

table of contents

x

Build something cool, fast!1 Want to build great apps really fast?�
With C#, you’ve got a great programming language and a valuable tool at

your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able to

build really cool software, rather than remembering which bit of code was for

the name of a button, and which one was for its label. Sound appealing? Turn

the page, and let’s get programming.

start building with C#

Why you should learn C#						 2

C# and the Visual Studio IDE make lots of things easy			 3

What you do in Visual Studio…					 4

What Visual Studio does for you…					 4

Aliens attack!							 8

Only you can help save the Earth					 9

Here’s what you’re going to build					 10

Start with a blank application					 12

Set up the grid for your page					 18

Add controls to your grid						 20

Use properties to change how the controls look			 22

Controls make the game work					 24

You’ve set the stage for the game					 29

What you’ll do next						 30

Add a method that does something					 31

Fill in the code for your method					 32

Finish the method and run your program				 34

Here’s what you’ve done so far					 36

Add timers to manage the gameplay					 38

Make the Start button work					 40

Run the program to see your progress				 41

Add code to make your controls interact with the player			 42

Dragging humans onto enemies ends the game			 44

Your game is now playable					 45

Make your enemies look like aliens					 46

Add a splash screen and a tile					 47

Publish your app						 48

Use the Remote Debugger to sideload your app			 49

Start remote debugging						 50
?!

Uh oh! Aliens
are beaming up
humans. Not good!

table of contents

xi

Under the hood

You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this…					 54

…the IDE does this					 55

Where programs come from				 56

The IDE helps you code					 58

Anatomy of a program					 60

Two classes can be in the same namespace			 65

Your programs use variables to work with data			 66

C# uses familiar math symbols				 68

Use the debugger to see your variables change			 69

Loops perform an action over and over			 71

if/else statements make decisions				 72

Build an app from the ground up				 73

Make each button do something				 75

Set up conditions and see if they’re true			 76

Windows Desktop apps are easy to build			 87

Rebuild your app for Windows Desktop			 88

Your desktop app knows where to start			 92

You can change your program’s entry point			 94

When you change things in the IDE,
you’re also changing your code				 96

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework and Windows Store API classes.

A class has one or more methods. Your methods always have to live
inside a class. And methods are
made up of statements—like the
ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

table of contents

xii

3 Making Code Make Sense

Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects: get oriented!

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

How Mike thinks about his problems			 102

How Mike’s car navigation system thinks about his problems	 103

Mike’s Navigator class has methods to set and modify routes	 104

Use what you’ve learned to build a program that uses a class	 105

Mike gets an idea					 107

Mike can use objects to solve his problem			 108

You use a class to build an object				 109

When you create a new object from a class,
it’s called an instance of that class				 110

A better solution…brought to you by objects!			 111

An instance uses fields to keep track of things			 116

Let’s create some instances!				 117

Thanks for the memory					 118

What’s on your program’s mind				 119

You can use class and method names to make your code intuitive	 120

Give your classes a natural structure				 122

Class diagrams help you organize your classes so they make sense	 124

Build a class to work with some guys				 128

Create a project for your guys				 129

Build a form to interact with the guys			 130

There’s an easier way to initialize objects			 133

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

table of contents

xiii

4 It’s 10:00. Do you know where your data is?

Data type, database, Lieutenant Commander Data…
it’s all important stuff. �Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst…objects are data, too).

types and references

The variable’s type determines what kind of data it can store		 142

A variable is like a data to-go cup					 144

10 pounds of data in a 5-pound bag					 145

Even when a number is the right size, you can’t just assign it to any variable	 146

When you cast a value that’s too big, C# will adjust it automatically	 147

C# does some casting automatically					 148

When you call a method, the arguments must be compatible
with the types of the parameters					 149

Debug the mileage calculator					 153

Combining = with an operator 					 154

Objects use variables, too						 155

Refer to your objects with reference variables				 156

References are like labels for your object				 157

If there aren’t any more references, your object gets garbage-collected	 158

Multiple references and their side effects				 160

Two references means TWO ways to change an object’s data		 165

A special case: arrays						 166

Arrays can contain a bunch of reference variables, too			 167

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!		 168

Objects use references to talk to each other				 170

Where no object has gone before					 171

Build a typing game						 176

Controls are objects, just like any other object				 180

fido

Luck
y

fido
Luck

y

table of contents

xiv

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The spec: build a racetrack simulator				 188

The Finished Product					 196

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?�
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner					 198

What does the estimator do?					 199

You’re going to build a program for Kathleen				 200

Kathleen’s test drive						 206

Each option should be calculated individually				 208

It’s easy to accidentally misuse your objects				 210

Encapsulation means keeping some of the data in a class private		 211

Use encapsulation to control access to your class’s methods and fields	 212

But is the RealName field REALLY protected?			 213

Private fields and methods can only be accessed from inside the class 	 214

Encapsulation keeps your data pristine				 222

Properties make encapsulation easier				 223

Build an application to test the Farmer class				 224

Use automatic properties to finish the class				 225

What if we want to change the feed multiplier?			 226

Use a constructor to initialize private fields				 227

table of contents

xvi

6 Your object’s family tree

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well, that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through with this chapter,

you’ll learn how to subclass an object to get its behavior, but keep the flexibility to

make changes to that behavior. You’ll avoid duplicate code, model the real world

more closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too					 238

We need a BirthdayParty class					 239

Build the Party Planner version 2.0					 240

One more thing…can you add a $100 fee for parties over 12?		 247

When your classes use inheritance, you only need to write your code once	 248

Build up your class model by starting general and getting more specific	 249

How would you design a zoo simulator?				 250

Use inheritance to avoid duplicate code in subclasses			 251

Different animals make different noises				 252

Think about how to group the animals				 253

Create the class hierarchy						 254

Every subclass extends its base class					 255

Use a colon to inherit from a base class				 256

We know that inheritance adds the base class fields, properties,
and methods to the subclass…					 259

A subclass can override methods to change or replace methods it inherited	 260

Any place where you can use a base class,
you can use one of its subclasses instead				 261

A subclass can hide methods in the superclass				 268

Use the override and virtual keywords to inherit behavior		 270

A subclass can access its base class using the base keyword		 272

When a base class has a constructor, your subclass needs one, too		 273

Now you’re ready to finish the job for Kathleen!			 274

Build a beehive management system					 279

How you’ll build the beehive management system			 280

Canine

Eat()
Sleep()

Dog

MakeNoise()Wolf

MakeNoise()

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.�
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations…or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics						 294

We can use inheritance to create classes for different types of bees		 295

An interface tells a class that it must implement
certain methods and properties					 296

Use the interface keyword to define an interface			 297

Now you can create an instance of NectarStinger that does both jobs	 298

Classes that implement interfaces have to include
ALL of the interface’s methods 					 299

Get a little practice using interfaces					 300

You can’t instantiate an interface, but you can reference an interface	 302

Interface references work just like object references			 303

You can find out if a class implements a certain interface with “is”		 304

Interfaces can inherit from other interfaces				 305

The RoboBee 4000 can do a worker bee’s job without using valuable honey	 306

A CoffeeMaker is also an Appliance					 308

Upcasting works with both objects and interfaces			 309

Downcasting lets you turn your appliance back into a coffee maker	 310

Upcasting and downcasting work with interfaces, too			 311

There’s more than just public and private				 315

Access modifiers change visibility					 316

Some classes should never be instantiated				 319

An abstract class is like a cross between a class and an interface		 320

Like we said, some classes should never be instantiated			 322

An abstract method doesn’t have a body				 323

The Deadly Diamond of Death!					 328

Polymorphism means that one object can take many different forms	 331

Location
Name
Exits
Description

Room
decoration:
private string
field

Outside
hot: private
bool field

table of contents

xviii

8 Storing lots of data

When it rains, it pours.�
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles, and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort, and manage all the data that your programs

need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data			 352

Enums let you work with a set of valid values				 353

Enums let you represent numbers with names				 354

Arrays are hard to work with					 358

Lists make it easy to store collections of…anything			 359

Lists are more flexible than arrays					 360

Lists shrink and grow dynamically					 363

Generics can store any type					 364

Collection initializers are similar to object initializers			 368

Lists are easy, but SORTING can be tricky				 370

IComparable<Duck> helps your list sort its ducks			 371

Use IComparer to tell your List how to sort				 372

Create an instance of your comparer object				 373

IComparer can do complex comparisons				 374

Overriding a ToString() method lets an object describe itself 		 377

Update your foreach loops to let your Ducks and Cards print themselves	 378

When you write a foreach loop, you’re using IEnumerable<T>		 379

You can upcast an entire list using IEnumerable			 380

You can build your own overloaded methods				 381

Use a dictionary to store keys and values				 387

The dictionary functionality rundown				 388

Build a program that uses a dictionary				 389

And yet MORE collection types…					 401

A queue is FIFO—First In, First Out				 402

A stack is LIFO—Last In, First Out					 403

poof!

table of contents

xix

9 Save the last byte for me!

Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

.NET uses streams to read and write data				 410

Different streams read and write different things			 411

A FileStream reads and writes bytes to a file				 412

Write text to a file in three simple steps				 413

The Swindler launches another diabolical plan			 414

Reading and writing using two objects				 417

Data can go through more than one stream				 418

Use built-in objects to pop up standard dialog boxes			 421

Dialog boxes are just another WinForms control			 422

Use the built-in File and Directory classes to work with files and directories	 424

Use file dialogs to open and save files (all with just a few lines of code)	 427

IDisposable makes sure your objects are disposed of properly		 429

Avoid filesystem errors with using statements				 430

Use a switch statement to choose the right option			 437

Add an overloaded Deck() constructor that reads a deck of cards
in from a file							 439

When an object is serialized, all of the objects it refers to get serialized, too…443

Serialization lets you read or write a whole object graph all at once	 444

.NET uses Unicode to store characters and text			 449

C# can use byte arrays to move data around				 450

Use a BinaryWriter to write binary data				 451

You can read and write serialized files manually, too			 453

Find where the files differ, and use that information to alter them		 454

Working with binary files can be tricky				 455

Use file streams to build a hex dumper				 456

Use Stream.Read() to read bytes from a stream			 458

table of contents

xx

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game				 466

The fun’s just beginning!					 486

table of contents

xxi

The grid is made up of 20-pixel
squares called units.

Each unit is broken down
into 5-pixel sub-units

10 Taking your apps to the next level

You’re ready for a whole new world of app development.�
Using WinForms to build Windows Desktop apps is a great way to learn important C#

concepts, but there’s so much more you can do with your programs. In this chapter,

you’ll use XAML to design your Windows Store apps, you’ll learn how to build pages

to fit any device, integrate your data into your pages with data binding, and use

Visual Studio to cut through the mystery of XAML pages by exploring the objects

created by your XAML code.

designing windows store apps with xaml

Brian’s running Windows 8				 488

Windows Forms use an object graph set up by the IDE		 494

Use the IDE to explore the object graph			 497

Windows Store apps use XAML to create UI objects		 498

Redesign the Go Fish! form as a Windows Store app page	 500

Page layout starts with controls				 502

Rows and columns can resize to match the page size		 504

Use the grid system to lay out app pages			 506

Data binding connects your XAML pages to your classes	 512

XAML controls can contain text...and more			 514

Use data binding to build Sloppy Joe a better menu		 516

Use static resources to declare your objects in XAML		 522

Use a data template to display objects			 524

INotifyPropertyChanged lets bound objects send updates	 526

Modify MenuMaker to notify you when the
GeneratedDate property changes				 527

ListBox objec
t ObservableCo
lle

ct
io

nBinding
ItemsSource="{Binding}"

table of contents

xxii

11 Writing files right

xaml, file i/o, and data contract serialization

Nobody likes to be kept waiting...especially not users.�
Computers are good at doing lots of things at once, so there’s no reason your apps

shouldn’t be able to as well. In this chapter, you’ll learn how to keep your apps responsive

by building asynchronous methods. You’ll also learn how to use the built-in file

pickers and message dialogs and asynchronous file input and output without

freezing up your apps. Combine this with data contract serialization, and you’ve got the

makings of a thoroughly modern app.
Brian runs into file trouble						 536

Windows Store apps use await to be more responsive			 538

Use the FileIO class to read and write files				 540

Build a slightly less simple text editor				 542

A data contract is an abstract definition of your object’s data		 547

Use async methods to find and open files				 548

KnownFolders helps you access high-profile folders			 550

The whole object graph is serialized to XML				 551

Stream some Guy objects to your app’s local folder			 552

Take your Guy Serializer for a test drive				 556

Use a Task to call one async method from another			 557

Build Brian a new Excuse Manager app				 558

Separate the page, excuse, and Excuse Manager			 559

Create the main page for the Excuse Manager				 560

Add the app bar to the main page					 561

Build the ExcuseManager class					 562

Add the code-behind for the page					 564

table of contents

xxiii

12 Putting out fires gets old

exception handling

Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession. But you’re

still getting panicked phone calls in the middle of the night from work because your

program crashes, or doesn’t behave like it’s supposed to. Nothing pulls you

out of the programming groove like having to fix a strange bug...but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.
Brian needs his excuses to be mobile				 570

When your program throws an exception,
.NET generates an Exception object				 574

Brian’s code did something unexpected				 576

All exception objects inherit from Exception			 578

The debugger helps you track down
and prevent exceptions in your code				 579

Use the IDE’s debugger to ferret out exactly
what went wrong in the Excuse Manager	 		 580

Uh oh—the code’s still got problems...	 			 583

Handle exceptions with try and catch	 			 585

What happens when a method you want to call is risky?		 586

Use the debugger to follow the try/catch flow			 588

If you have code that ALWAYS should run, use a finally block	 590

Use the Exception object to get information about the problem	 595

Use more than one catch block to handle
multiple types of exceptions					 596

One class throws an exception that a method
in another class can catch					 597

An easy way to avoid a lot of problems:
using gives you try and finally for free				 601

Exception avoidance: implement IDisposable to do your own cleanup	602

The worst catch block EVER: catch-all plus comments		 604

A few simple ideas for exception handling		 	 606Exception obj
ec

t

int[] anArray = {3, 4, 1, 11};
int aValue = anArray[15];

your class, now with
exception handlinguser

now your program’s more robust!

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Wow, this program’s really stable!

Uh oh! what
the heck

happened?

An object

table of contents

xxiv

13 Your last chance to DO something…your object’s finalizer			 618

When EXACTLY does a finalizer run?					 619

Dispose() works with using; finalizers work with garbage collection			 620

Finalizers can’t depend on stability						 622

Make an object serialize itself in its Dispose()					 623

A struct looks like an object…						 627

…but isn’t an object							 627

Values get copied; references get assigned					 628

Structs are value types; objects are reference types				 629

The stack vs. the heap: more on memory					 631

Use out parameters to make a method return more than one value			 634

Pass by reference using the ref modifier					 635

Use optional parameters to set default values					 636

Use nullable types when you need nonexistent values				 637

Nullable types help you make your programs more robust			 638

“Captain” Amazing…not so much						 641

Extension methods add new behavior to EXISTING classes			 642

Extending a fundamental type: string					 644

CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

table of contents

xxv

14 Get control of your data

querying data and building apps with LINQ

It’s a data-driven world…it’s good to know how to live in it.�
Gone are the days when you could program for days, even weeks, without dealing

with loads of data. Today, everything is about data. And that’s where LINQ comes in.

LINQ not only lets you query data in a simple, intuitive way, but it lets you group data

and merge data from different data sources. And once you’ve wrangled your data

into manageable chunks, your Windows Store apps have controls for navigating

data that let your users navigate, explore, and even zoom into the details.

Jimmy’s a Captain Amazing super-fan...			 650

…but his collection’s all over the place			 651

LINQ can pull data from multiple sources			 652

.NET collections are already set up for LINQ			 653

LINQ makes queries easy					 654

LINQ is simple, but your queries don’t have to be		 655

Jimmy could use some help				 658

Start building Jimmy an app				 660

Use the new keyword to create anonymous types 		 663

LINQ is versatile					 666

Add the new queries to Jimmy’s app				 668

LINQ can combine your results into groups			 673

Combine Jimmy’s values into groups				 674

Use join to combine two collections into one sequence		 677

Jimmy saved a bunch of dough				 678

Use semantic zoom to navigate your data			 684

Add semantic zoom to Jimmy’s app				 686

You made Jimmy’s day					 691

The IDE’s Split App template helps you build apps
for navigating data					 692

table of contents

xxvi

Fan object

Pitcher object

Umpire object

BallEventArgs

~
BallInPlay event

15 What your code does when you’re not looking

events and delegates

Ever wish your objects could think for themselves?		 702

But how does an object KNOW to respond?			 702

When an EVENT occurs…objects listen			 703

One object raises its event, others listen for it…		 704

Then, the other objects handle the event			 705

Connecting the dots					 706

The IDE generates event handlers for you automatically		 710

Generic EventHandlers let you define your own event types	 716

Windows Forms use many different events			 717

One event, multiple handlers				 718

Windows Store apps use events for
process lifetime management				 720

Add process lifetime management to Jimmy’s comics		 721

XAML controls use routed events				 724

Create an app to explore routed events			 725

Connecting event senders with event listeners			 730

A delegate STANDS IN for an actual method			 731

Delegates in action					 732

An object can subscribe to an event…			 735

Use a callback to control who’s listening			 736

A callback is just a way to use delegates			 738

You can use callbacks with MessageDialog commands		 740

Use delegates to use the Windows settings charm		 742

Your objects are starting to think for themselves.�
You can’t always control what your objects are doing. Sometimes things…happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is great,

until you want your object to take control over who can listen. That’s when callbacks will

come in handy.

table of contents

xxvii

The Head First Basketball Conference needs an app		 746

But can they agree on how to build it?			 747

Do you design for binding or for working with data?		 748

MVVM lets you design for binding and data			 749

Use the MVVM pattern to start building
the basketball roster app					 750

User controls let you create your own controls			 753

The ref needs a stopwatch					 761

MVVM means thinking about the state of the app		 762

Start building the stopwatch app’s Model			 763

Events alert the rest of the app to state changes		 764

Build the view for a simple stopwatch			 765

Add the stopwatch ViewModel				 766

Converters automatically convert values for binding		 770

Converters can work with many different types		 772

Visual states make controls respond to changes		 778

Use DoubleAnimation to animate double values		 779

Use object animations to animate object values		 780

Build an analog stopwatch using the same ViewModel		 781

UI controls can be instantiated with C# code, too		 786

C# can build “real” animations, too				 788

Create a user control to animate a picture			 789

Make your bees fly around a page				 790

Use ItemsPanelTemplate to bind controls to a Canvas		 793

Congratulations! (But you’re not done yet...)			 806

16 Great apps on the inside and outside

architecting apps with the mvvm pattern

Your apps need to be more than just visually stunning.�
When you think of design, what comes to mind? An example of great building architecture?

A beautifully-laid-out page? A product that’s as aesthetically pleasing as it is well

engineered? Those same principles apply to your apps. In this chapter you’ll learn about

the Model-View-ViewModel pattern and how you can use it to build well-architected,

loosely coupled apps. Along the way you’ll learn about animation and control templates

for your apps’ visual design, how to use converters to make data binding easier, and how

to pull it all together to lay a solid C# foundation to build any app you want.

VIEW
MODE

L

table of contents

xxviii

C# Lab 3
Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games				 808

And yet there’s more to do…					 829

table of contents

xxix

i The top 10 things we wanted to include
in this book

appendix i: leftovers

#1. There’s so much more to Windows Store				 846

#2. The Basics							 848

#3. Namespaces and assemblies					 854

#4. Use BackgroundWorker to make your WinForms responsive		 858

#5. The Type class and GetType()					 861

#6. Equality, IEquatable, and Equals()				 862

#7. Using yield return to create enumerable objects			 865

#8. Refactoring							 868

#9. Anonymous types, anonymous methods, and lambda expressions	 870

#10. LINQ to XML						 872

Did you know that C# and the .NET Framework can…			 875

The fun’s just beginning!�
We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

table of contents

xxx

ii WPF Learner’s Guide to Head First C#

appendix ii: Windows Presentation Foundation

Why you should learn WPF	 2

Build WPF projects in Visual Studio	3

How to use this appendix	 4

Start with a blank application	 12

Use properties to change how the controls look	 20

Add a method that does something	 29

Finish the method and run your program	 32

Add timers to manage the gameplay	36

Add code to make your controls interact with the player	 40

Build an app from the ground up	 73

Redesign the Go Fish! form as a WPF application	 500

Use data binding to build Sloppy Joe a better menu	 516

Use a data template to display objects	 524

INotifyPropertyChanged lets bound objects send updates	 526

What happens when a method you want to call is risky?	 586

Build a WPF comic query application	 680

Create an app to explore routed events	 725

Build the view for a simple stopwatch	 765

Build an analog stopwatch using the same ViewModel	 781

Create a user control to animate a picture	 789

Use ItemsPanelTemplate to bind controls to a Canvas	 793

Congratulations! (But you’re not done yet...)	 807

Not running Windows 8? Not a problem.
We wrote many chapters in the third edition of Head First C# using the latest

technology available from Microsoft, which requires Windows 8 and Visual Studio

2013. But what if you’re using this book at work, and you can’t install the latest

version? That’s where Windows Presentation Foundation (or WPF) comes in. It’s

an older technology, so it works with Visual Studio 2010 and 2008 running on

Windows editions as mature as 2003. But it’s also a core C# technology, so even if

you’re running Windows 8 it’s a good idea to get some experience with WPF. In this

appendix, we’ll guide you through building most of the Windows Store projects in

the book using WPF.

Stars fade in and out.

xxxi

how to use this book

Intro
I can’t believe
they put that in a
C# programming

book!

In this section, we answer the burning question:

“So why DID they put that in a C# programming book?”

xxxii   intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Does the idea of doing projects and building
programs make you bored and a little twitchy?

Are you a really advanced C++ programmer
looking for a dry reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t
be serious if C# concepts are anthropomorphized?

Do you know another
programming language,
and now you need to ramp
up on C#?

Are you already a good C#
developer, but you want to
learn more about XAML,
Model-View-ViewModel
(MVVM), or Windows Store
app development?

Do you want to get
practice writing lots of
code?

If so, then lots of people
just like you have used
this book to do exactly
those things!

No programming experience
is required to use this book...
just curiosity and interest!
Thousands of beginners with
no programming experience
have already used Head First
C# to learn to code. That
could be you!

ARE YOU USING WINDOWS 7 OR EARLIER? THEN THIS BOOK IS FOR YOU!

We need to keep our book up to date with the latest technology, so we based many projects
in this book on Windows 8.1, the latest version of Microsoft Windows available at press time.
However, we worked really hard to support previous versions of Windows. We
included a special appendix with replacement pages for some of the book’s projects. We did
our best to minimize the amount of page flipping required. There’s a complete replacement
for most of Chapter 1, so you won’t need to flip back to the book at all for the first project.
Then there are just five replacement pages for Chapter 2. After that, the you’ll be able to use
any version of Windows (and even old versions of Visual Studio!) until you get to Chapter 10.

READ
 THIS!

Many readers have used this book Windows 7, Windows 2003, or other versions of Windows. We’ll give
you all the information you need to use any version of Windows at the end of this introduction.

you are here 4   xxxiii

the intro

Great. Only
700 more dull,

dry, boring
pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with
the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxxiv   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if

it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I’m more technical than thou” Bob from engineering doesn’t.

you are here 4   xxxv

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as a
tiger. Otherwise, you’re in for a constant battle, with your brain doing
its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder
how I can trick

my brain into
remembering
this stuff…

So just how DO you get your brain to treat C# like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective
way. The slow way is about sheer repetition. You obviously
know that you are able to learn and remember even the dullest
of topics if you keep pounding the same thing into your brain. With
enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxxvi   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth a thousand words. And when text and
pictures work together, we embedded the text in the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember more
when you do things than when you read about things. And we made the paper puzzles and
code exercises challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just
wants to see an example. But regardless of your own learning preference, everyone
benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

you are here 4   xxxvii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

3

4

5 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of software!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when you
solve the exercises. We included a solution to each
exercise—don’t be afraid to peek at the solution
if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to					 bend
your brain into submission

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

xxxviii   intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you’ve already seen and learned.

The activities are NOT optional.

The puzzles and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you’ve learned. Don’t skip the written problems. The pool puzzles are
the only things you don’t have to do, but they’re good for giving your brain a chance to
think about twisty little logic puzzles.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills
by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” questions don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power questions you will find hints to point you in the
right direction.

We use a lot of diagrams to
make tough concepts easier
to understand.

You should do ALL of the
“Sharpen your pencil” activities

Activities marked with the Exercise (running shoe) logo are really important! Don’t skip them if you’re serious about learning C#.

If you see the Pool Puzzle logo,
the activity is optional, and if
you don’t like twisty logic, you
won’t like these either.

 mi5Agent

 ciaAgent



you are here 4   xxxix

the intro

We wrote this book using Visual Studio Express 2013 for Windows and Visual Studio
Express 2013 for Windows Desktop. All of the screenshots that you see throughout the
book were taken from those two editions, so we recommend that you use them. You can also
use Visual Studio 2013 Professional, Premium, Ultimate or Test Professional editions, but you’ll
see some small differences (but nothing that will cause problems with the coding exercises).

We built this book using Windows 8.1, the latest version of Windows available when we went to
press. We’ll refer to it as “Windows 8” throughout the book. Visual Studio 2013 requires Windows 8.1,
which is available as a free Windows Store update to Windows 8.

What version of Windows are you using?

Using Windows 8 or later? Then you’ll start with Windows Store apps.
Windows Store apps are programs built with the latest Microsoft technology. They get their name because they can be
downloaded and sold through the Windows Store.

In the first two chapters, you’ll build Windows Store apps,
starting with a game called Save the Humans. This will be your
first experience with Visual Studio, and will teach you the
basic mechanics of creating a user interface and entering
code—core skills that you’ll use throughout the book as you
use it to build many different projects.

The screenshots in this book match Visual Studio 2013 Express Edition, the latest free
version available at the time of this printing. We’ll keep future printings up to date, but

Microsoft typically makes older versions available for download. It’s possible that some of
the code for Windows Store apps may not work with future versions of Visual Studio. If the
links on the next page don’t work, search Microsoft.com for “Visual Studio 2013 Express

update 3 download”— and also check the forum on http://headfirstlabs.com/hfcsharp.

Some of the code in this
book may not work with
earlier or later editions
of Visual Studio! But
you can always download
Visual Studio 2013 from
Microsoft’s website.

You’ll build this game in Chapter 1. By the time you get to Chapter 10, you’ll understand many of the C# concepts and techniques used to build it. And by the end of the book you’ll be able to build games like it on your own!

Visual Studio 2013
can be installed on
the same computer

as other editions
or older versions
of Visual Studio
without causing

any problems.

xl   intro

how to use this book

Don’t have Windows 8 or VS2013 yet? No problem—you’ll start with WPF apps
There’s another technology for building desktop apps called Windows Presentation Foundation (WPF) that
works with previous versions of Windows. It’s very important to us that you can use our book with Windows 7,
Windows 2003, or other previous versions of Windows! If you’re one of these readers, we worked very hard
to make our book easy for you to use. We added an Appendix with alternate versions of almost every Windows
Store project in this book that you’ll build and run as WPF desktop applications. And if you’re using an older version
of Visual Studio, you’ll be able to use it to build WPF apps too. Here’s what you need to do:

≥≥ Flip to Appendix II, the WPF Learner’s Guide to Head First C#. You’ll find a complete replacement for
the Save the Humans project in Chapter 1 and five replacement pages for Chapter 2 (which are all you need!).

≥≥ After that, Chapters 3 through 9 the first two labs do not require Windows 8 at all, because Windows Forms
and Console applications work on all versions of Windows. You’ll even be able to build them using Visual
Studio 2012 (and even 2010 or 2008), although the Visual Studio screenshots may differ a bit from the book.

≥≥ For the rest of the book, you’ll use the replacement pages in the Appendix to build WPF desktop apps instead
of Windows Store apps. That way you’ll still build lots of projects and learn the same important C# concepts.

≥≥ You can download a PDF of the appendix from the book’s website (http://headfirstlabs.com/hfcsharp) in case you
want to print out the replacement pages.

≥≥ And even if you’re running the latest version of Windows, you should still have a look at the WPF Learner’s
Guide! Building the same projects with two different technologies is an excellent way to get C# into your brain.

Microsoft regularly releases updates to Visual Studio, and sometimes they make minor changes to its look
and feel between updates. The screenshots in this book were taken from Visual Studio 2013 with Update 3.

Here are direct links to the download pages for Visual Studio 2013 Express with Update 3:

VS2013 Express for Windows with Update 3: http://www.microsoft.com/en-us/download/details.aspx?id=43729
VS2013 Express for Windows Desktop with Update 3: http://www.microsoft.com/en-us/download/details.aspx?id=43733

The Visual Studio home page also has many useful download links: http://www.microsoft.com/visualstudio

If these download links don’t work, go to microsoft.com
and search for “Visual Studio Express 2013 Download”

If you’re running
Windows 7 or
earlier, you can
still build all of
the Windows
Forms, Console,
and WPF
applications in
this book.

WPF applications
run in windows on
the desktop, and
work with older
versions of Windows.
Here’s the WPF
version of the game
that you’ll build in
Chapter 1.

you are here 4   xli

the intro

 SETTING UP VISUAL STUDIO 2013 EXPRESS EDITIONS
¥¥ You can download Visual Studio Express 2013 for Windows for free from Microsoft’s website. It installs cleanly alongside

other editions of VS2013, as well as previous versions. You can download the edition from the Visual Studio home page.

Click the “Install
Now” link to launch
the web installer,
which automatically
downloads and
installs Visual Studio.

You’ll also need to generate a product key, which is free for the
Express editions (but requires you to create a Microsoft.com account).

¥¥ Once you’ve got it installed, you’ll need to do the same thing for Visual Studio Express 2013 for Windows Desktop. You’ll
use this version to create Windows Forms Application and Console Application projects.

¥¥ If you have Visual Studio 2013 Professional, Premium, or Ultimate installed, then you can create all of the different types
of applications with any of those editions. But you’ll be able to do all of the projects in this book using the free editions.

You’ll move on to create desktop applications
Chapters 1 and 2 focus on creating Windows Store (or WPF) apps. After that, you’ll switch gears and create two different
kinds of desktop applications. In the following few chapters you’ll build Windows Forms applications and
design user interfaces that are based on desktop windows. And later in the book you’ll create console applications that
use a command window for input and output. You’ll mix Windows Store (or WPF) apps back in starting in Chapter 10.

Windows Forms applications are based on an older
Microsoft technology. They use windows that
pop up on the Windows desktop. They’re a great
tool for learning and experimenting with C#.

Console applications are text-only programs
that don’t display a graphical user interface.

xlii   intro

The technical review team

the review team

Lisa Kellner

Technical Reviewers:

The book you’re reading has very few errors in it, and give a lot of credit for its high quality to some great technical
reviewers. We’re really grateful for the work that they did for this book—we would have gone to press with errors
(including one or two big ones) had it not been for the most kick-ass review team EVER.…

First of all, we really want to thank Lisa Kellner—this is our ninth (!) book that she’s reviewed for us, and she made a
huge difference in the readability of the final product. Thanks, Lisa! And special thanks to Chris Burrows, Rebeca
Dunn-Krahn, and David Sterling for their enormous amount of technical guidance, and to Joe Albahari and Jon
Skeet for their really careful and thoughtful review of the first edition, and Nick Paladino who did the same for the
second edition.

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

Rebeca Dunn-Krahn is a founding partner at Semaphore Solutions, a custom software shop in Victoria, Canada,
that specializes in .NET applications. She lives in Victoria with her husband Tobias, her children, Sophia and Sebastian,
a cat, and three chickens.

David Sterling has worked on the Visual C# Compiler team for nearly three years.

Johnny Halife is a Chief Architect & Co-Founder of Mural.ly (http://murally.com), a web start-up that allows people
to create murals: collecting any content inside them and organizing it in a flexible and organic way in one big space.
Johnny’s a specialist on cloud and high-scalability solutions. He’s also a passionate runner and sports fan.

Not pictured (but just
as awesome are the
reviewers from previous
editions): Joe Albahari,
Jay Hilyard, Aayam
Singh, Theodore, Peter
Ritchie, Bill Meitelski
Andy Parker, Wayne
Bradney, Dave Murdoch,
Bridgette Julie
Landers, Nick Paldino,
David Sterling. Special
thanks to readers Alan
Ouellette, Terry Graham,
and our other readers
who let us know about
issues that slipped
through QC. Thanks!!

David SterlingJohnny Halife

Chris Burrows

Rebeca Dunn-Krahn

you are here 4   xliii

the intro

Acknowledgments
Our editor:

We want to thank our editor, Courtney Nash, for editing this
book. Thanks!

There are so many people at O’Reilly we want to thank that we hope we don’t
forget anyone. Special Thanks to production editor Melanie Yarbrough,
indexer Ellen Troutman-Zaig, Rachel Monaghan for her sharp
proofread, Ron Bilodeau for volunteering his time and preflighting expertise,
and for offering one last sanity check—all of whom helped get this book from
production to press in record time. And as always, we love Mary Treseler,
and can’t wait to work with her again! And a big shout out to our other
friends and editors, Andy Oram, Mike Hendrickson, Laurie Petryki,
Tim O’Reilly, and Sanders Kleinfeld. And if you’re reading this book
right now, then you can thank the greatest publicity team in the industry:
Marsee Henon, Sara Peyton, and the rest of the folks at Sebastopol.

The O’Reilly team:

Courtney Nash

xliv   intro

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over 7,500
technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and
others on similar topics from O’Reilly and other publishers, sign up for free at http://safaribooksonline.com.

safari books online

this is a new chapter   1

I’m ready for a
wild ride!

start building with c#1

Build something cool, fast!

Want to build great apps really fast?�
With C#, you’ve got a great programming language and a valuable tool at

your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to build really cool software, rather than remembering which bit of code was

for the name of a button, and which one was for its label. Sound appealing?

Turn the page, and let’s get programming.

2   Chapter 1

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

c# makes it easy

What you get with Visual Studio and C#…
With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

Here’s what the IDE automates for you…
Every time you want to get started writing a program, or
just putting a button on a page, your program needs a
whole bunch of repetitive code.

using System;

using System.C
ollections.Gen

eric;

using System.W
indows.Forms;

namespace A_Ne
w_Program

{
 static cla

ss Program

 {
 /// <s

ummary>

 /// Th
e main entry p

oint for the a
pplication.

 /// </
summary>

 [STATh
read]

 static
 void Main()

 {
 Ap

plication.Enab
leVisualStyles

();

 Ap
plication.SetC

ompatibleTextR
enderingDefaul

t(false);

 Ap
plication.Run(

new Form1());

 }
 }
}

private void InitializeComponent(){
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout(); //
 // button1 //
 this.button1.Location = new System.Drawing.Point(105, 56);
 this.button1.Name = "button1"; this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0; this.button1.Text = "button1"; this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(292, 267);
 this.Controls.Add(this.button1); this.Name = "Form1"; this.Text = "Form1"; this.ResumeLayout(false);}

It takes all this code just to draw a button in a window. Adding a bunch of visual elements to a page could take 10 times as much code.

Data access

C#, the .NET Framework,

and the Visual Studio IDE
have prebuilt structures
that handle the tedious
code that’s part of most
programming tasks.

.NET Framework
solutions

The result is a better-looking app that takes less time to write.

Visual obje
ct

s

The IDE—or Visual Studio Integrated
Development Environment—is an
important part of working in C#. It’s a
program that helps you edit your code,
manage your files, and submit your apps
to the Windows Store.

you are here 4   3

start building with c#

 Build an application, FAST. Creating programs in C# is a snap. The
language is flexible and easy to learn, and the Visual Studio IDE does a lot of
work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

1

 Build visually stunning programs. When you combine C# with
XAML, the visual markup language for designing user interfaces, you’re
using one of the most effective tools around for creating visual programs...
and you’ll use it to build software that looks as great as it acts.

3

 Design a great-looking user interface. The Visual Designer in the
Visual Studio IDE is one of the easiest-to-use design tools out there. It
does so much for you that you’ll find that creating user interfaces for your
programs is one of the most satisfying parts of developing a C# application.
You can build full-featured professional programs without having to spend
hours writing a graphical user interface entirely from scratch.

2

 Focus on solving your REAL problems. The IDE does a lot for you, but you
are still in control of what you build with C#. The IDE lets you just focus on your
program, your work (or fun!), and your users. It handles all the grunt work for you:

≥≥ Keeping track of all your project files

≥≥ Making it easy to edit your project’s code

≥≥ Keeping track of your project’s graphics, audio, icons, and other resources

≥≥ Helping you manage and interact with your data

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building and sharing killer apps.

4

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

You’re going to see exactly
what we mean next.

C# and the Visual Studio IDE make
lots of things easy

apps

you are here 4
3

5

4   Chapter 1

let’s get started

App.xaml.csMainPage.xaml

This file contains the C# code that’s run when the app is launched or resumed.

This file contains the XAML
code that defines the user
interface of the main page.

What you do in Visual Studio…
Go ahead and start up Visual Studio 2013 for Windows, if you haven’t already. Skip over the start page and select
New Project from the File menu. There are several project types to choose from. Expand Visual C#→Windows
Store→Windows App, and select Blank App (Windows). The IDE will create a folder called Visual Studio 2013 in
your Documents folder, and put your applications in a Projects folder under it (you can use the Location box to change this).

MainPage.Xaml.cs

The C# code that
controls the main
page’s behavior
lives here.

What Visual Studio does for you…
As soon as you save the project, the IDE creates a bunch of files, including
MainPage.xaml, MainPage.Xaml.cs, and App.xaml.cs, when you create a new
project. It adds these to the Solution Explorer window, and by default, puts
those files in the Projects\App1\App1 folder.

Visual Studio creates all three of these files
automatically. It creates several other files as well!
You can see them in the Solution Explorer window.

	 Things may
look a bit
different in
your IDE.

This is what the New
Project window looks like
in Visual Studio 2013
Express for Windows.
If you’re using the
Professional or Team
Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as you create it by selecting
Save All from the File menu—that’ll
save all of the project files out to
the folder. If you select Save, it just
saves the one you’re working on.

If you don’t see this option, you might be running
Visual Studio 2013 for Windows Desktop. You’ll
need to exit that IDE and launch Visual Studio
Express 2013 for Windows.

To see this file, you need
to expand App.xaml, just
like you need to look
under MainPage.xaml to
see MainPage.xaml.cs

you are here 4   5

start building with c#

v Just a couple more steps and your screen will match the picture below. First, open MainPage.xaml by
double-clicking on it in the Solution Explorer window. Next, select the Light color theme from the
Options menu. Finally, make sure you open the Toolbox and Error List windows by choosing them from
the View menu. You should be able to figure out the purpose of many of these windows and files based
on what you already know. Then, in each of the blanks, try to fill in an annotation saying what that part of
the IDE does. We’ve done one to get you started. See if you can guess what all of these things are for.This toolbar has buttons that

apply to what
you’re currently doing in the IDE.

We’ve blown up this
window below so you
have more room.

If you don’t see the Error List or
Toolbox, choose them from the View menu.

We switched to the Light color
theme because it’s easier
to see light screenshots in
a book. If you like it, pick

“Options...” from the Tools
menu, expand Environment,

and click on General to change
it (feel free to change back).

The designer lets you edit
the user interface by
dragging controls onto it.

The screenshot on page 4 is
in the Dark color theme.

6   Chapter 1

v

If you don’t see the Error List or
Toolbox, choose them from the View menu.

We’ve filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

know your ide

This window
shows properties
of whatever is
currently selected
in your designer.

This is the
toolbox. It
has a bunch of
visual controls
that you can
drag onto your
page.

This Error List window shows

you when there are errors in

your code. This pane will show

lots of diagnostic info about

your app.

The XAML and C# files that the IDE created for you when you added the new project appear in the Solution Explorer, along with any other files in your solution.

You can switch between files using the Solution Explorer in the IDE.

See this little
pushpin icon?
If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by default.

The designer lets you edit
the user interface by
dragging controls onto it.

Solution
This toolbar has buttons that
apply to what
you’re currently doing in the IDE.

you are here 4   7

start building with c#

Q: So if the IDE writes all this code for
me, is learning C# just a matter of learning
how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it’s
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your pages. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It’s you—not the IDE—who writes the code
that actually does the work.

Q: What if the IDE creates code I don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly
used. But sometimes that’s not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-to-
use interface in the IDE.

Q: Is it OK that I downloaded and
installed Visual Studio Express? Or do
I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

A: There’s nothing in this book that you
can’t do with the free version of Visual Studio
(which you can download from Microsoft’s
website). The main differences between
Express and the other editions aren’t going to
get in the way of writing C# and creating fully
functional, complete applications.

Q: You said something about
combining C# and XAML. What is XAML,
and how does it combine with C#?

A: XAML (the X is pronounced like Z, and
it rhymes with “camel”) is a markup language
that you’ll use to build your user interfaces for
your full-page Windows Store apps. XAML is
based on XML (which you’ll also learn about
later in the book), so if you’ve ever worked
with HTML you have a head start. Here’s an
example of a XAML tag to draw a gray ellipse:

<Ellipse Fill="Gray"
 Height="100" Width="75"/>

You can tell that that’s a tag because it starts
with a < followed by a word (“Ellipse”),
which makes it a start tag. This particular
Ellipse tag has three properties: one to
set its fill color to gray, and two to set its height
and width. This tag ends with />, but some
XAML tags can contain other tags. We can turn
this tag into a container tag by replacing />
with a >, adding other tags (which can also
contain additional tags), and closing it with an
end tag that looks like this: </Ellipse>.

You’ll learn a lot more about how XAML works
and the different XAML tags throughout the
book.

Q: I’m looking at the IDE right now, but
my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the Reset Window Layout
command under the Window menu, the IDE
will restore the default window layout for you.
Then you can use the View→Other Windows
menu to make your screen look just like the
ones in this chapter.

Visual Studio will
generate code
you can use as a
starting point for
your applications.

Making sure the
app does what
it’s supposed to
do is entirely up
to you.

8   Chapter 1

Well, there’s a surprise: vicious aliens have launched a full-scale attack
on planet Earth, abducting humans for their nefarious and unspeakable
gastronomical experiments. Didn’t see that coming!

Aliens attack!

if only humans weren’t so delicous

Uh oh! Aliens
are beaming up
humans. Not good!

Mmm,
tasty humans!

?!

you are here 4   9

start building with c#

Only you can help save the Earth
The last hopes of humanity rest on your shoulders! The
people of planet Earth need you to build an awesome C#
app to coordinate their escape from the alien menace. Are
you up to the challenge?

Drag the human into the
target before the timer at the
bottom of the page runs out.

More and more evil aliens
will fill up the screen. If
you drag your human into
one, “Game over, man!”

Don’t drag
your human
too quickly or
you’ll lose him.

Our greatest human scientific
minds have invented protective

interdimensional diamond-shaped
portals to protect the human race.

It’s up to YOU to SAVE THE
HUMANS by guiding them safely

to their target portals.

10   Chapter 1

here’s your goal

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

Here’s what you’re going to build

You’ll be building
an app that has

a main

page with a bunch of vi
sual controls on i

t.
The app uses controls to provide gameplay for the player.

You’re going to need an application with a graphical user
interface, objects to make the game work, and an executable to
run. It sounds like a lot of work, but you’ll build all of this over
the rest of the chapter, and by the end you’ll have a pretty good
handle on how to use the IDE to design a page and add C# code.

Here’s the structure of the app we’re going to create:

You’ll lay out the main page using a grid. The

gameplay will take place in the center
 cell of

the grid—we’ll use a Canvas for that.

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Each human that
the player has
to save is drawn
using a StackPanel,
which contains
an ellipse and a
rectangle.

The app uses these controls
to draw the target the
human is dragged to and the countdown timer display.

The Target
timer checks the
ProgressBar’s
properties to
see if the player
ran out of time.

Grab a cup of coffee and
settle in! You’re about to
really put the IDE through
its paces, and build a pretty

cool project.

By the end of this
chapter, you’ll know your
way around the IDE,
and have a good head
start on writing code.

Save the Humans is a Windows Store app—you need Windows 8 to build and run

it. Don’t have Windows 8? The WPF Learner’s Guide to Head First C# appendix

at the end of this book shows you how to build this project as a desktop app.

you are here 4   11

start building with c#

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()

C# Code Deployment
Package

.exe

Program
file

You’ll write C# code that manipulates the controls and makes the game work.

After your app is working, you can package it up so it can be uploaded to the Windows Store, Microsoft’s online marketplace for selling and distributing apps.

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You’ll use two
timers to add
enemies and end the
game if the player
runs out of time.

You’ll be building an app with two different
kinds of code. First you’ll design the
user interface using XAML (Extensible
Application Markup Language), a really
flexible design language. Then you’ll
add C# code to make the game actually
work. You’ll learn a lot more about XAML
throughout the second half of the book.

		� No Windows 8? No problem.

The first two chapters and the
last half of this book have many
projects that are built with Visual

Studio 2013 for Windows, but many readers aren’t
running Windows 8 yet. Luckily, almost all of the
Windows Store apps in this book can also be built
as desktop apps using Windows Presentation
Foundation (WPF), which is compatible with earlier
operating systems. Flip back to the last few pages
of the Introduction, to the section called “What
version of Windows are you using?” to learn more.

It’s not unusual for computers in an office to be running an operating system as old as Windows 2003, and may have an old version of Visual Studio. With WPF you can still do the projects in the book.

The WPF Guide appendix contiains complete replacement pages
for the rest of this chapter, and then just five replacement
pages for Chapter 2. After that, you won’t need to use the
WPF Learner’s Guide appendix again until Chapter 10.

We worked really hard to build the WPF Learner’s Guide appendix so that you keep

page flipping to a minimum, while still letting you use an earlier version of Windows and

even a previous edition of Visual Studio to learn all of the same important C# concepts.

12   Chapter 1

fill in the blanks

Start with a blank applicat ion
Every great app starts with a new project. Choose New Project from the File
menu. Make sure you have Visual C#→Window Store selected and choose
Blank App (XAML) as the project type. Type Save the Humans as
the project name.

If your code filenames don’t end in “.cs”
you may have accidentally created a
JavaScript, Visual Basic, or Visual C++
program. You can fix this by closing the
solution and starting over. If you want
to keep the project name “Save the
Humans,” then you’ll need to delete the
previous project folder.

 Your starting point is the Designer window. Double-click on MainPage.xaml in the Solution
Explorer to bring it up. Find the zoom drop-down in the lower-left corner of the designer and
choose “Fit all” to zoom it out.

1

Use these three buttons to turn on the
grid lines, turn on snapping (which
automatically lines up your controls to
each other), and turn on snapping to grid
lines (which aligns them with the grid).

The designer shows
you a preview of
the page that
you’re working
on. It looks like a
blank page with
a default black
background.

you are here 4   13

start building with c#

 The bottom half of the Designer window shows you the XAML
code. It turns out your “blank” page isn’t blank at all—it contains
a XAML grid. The grid works a lot like a table in an HTML
page or Word document. We’ll use it to lay out our pages in a way
that lets them grow or shrink to different screen sizes and shapes.

You can see the XAML code for the blank grid that the IDE generated for you. Keep your eyes on it—we’ll add some columns and rows in a minute.

This part of the project

has steps numbered 1 to 5 .

Flip the page to keep going!

These are the opening and closing tags for a grid that contains controls.
When you add rows, columns, and controls to the grid, the code for them
will go between these opening and closing tags.

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

Looking to learn WPF? Look no further!

Most of the Windows Store apps in this book can be built with WPF (Windows
Presentation Foundation), which is compatible with Windows 7 and earlier operating
systems and Visual Studio versions. Flip back to the last few pages of the Introduction,
to the section called “What version of Windows are you using?” to learn more.

AnimateEnemy()

EndTheGame()

14   Chapter 1

get a running start

 Your page is going to need a title, right? And it’ll need margins, too. You
can do this all by hand with XAML, but there’s an easier way to get your
app to look like a normal Windows Store app.

Go to the Solution Explorer window and find . Right-
click on it and choose Delete to delete the MainPage.xaml page:

2

When you start
a Windows Store
app, you’ll often
replace the main
page with one
of the templates
that Visual
Studio provides.

 Now you’ll need to replace the main page. Go back to the Solution Explorer and
right-click on (it should be the second item in the
Solution Explorer) to select the project. Then choose Add→New Item... from
the menu:

3

If you chose a different name when you
created your project, you’ll see that
name instead of “Save the Humans” in
the Solution Explorer.

Over the next few pages
you’ll explore a lot of
different features in

the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and

teaching. You’ll use the
IDE throughout the book

to explore C#. That’s a
really effective way to
get it into your brain!

If you don’t see the
Solution Explorer, you
can use the View menu
to open it. You can
also reset the IDE’s
window layout using
the Window menu.

If you really get stuck, you can download all of the code for this project from
the book’s website: http://www.headfirstlabs.com/hfcsharp — all of the

code in this chapter was copied and pasted from the downloadable source!

you are here 4   15

start building with c#

The IDE will pop up the Add New Item window for your project. Choose Basic Page and give it the name
MainPage.xaml. Then click the Add button to add the replacement page to your project.

The IDE will prompt you to add missing files—choose Yes to add them. Wait for the designer to finish loading. It
might display either or . Choose Rebuild Solution from the
Build menu to bring the IDE’s Designer window up to date. Now you’re ready to roll!

Let’s explore your newly added MainPage.xaml file. Scroll through the XAML pane in the designer window until you
find this XAML code. This is the grid you’ll use as the basis for your program:

Choose Basic Page to
add a new page to your
projcet based on the
Basic Page template.

Make sure you name it MainPage.xaml, because it needs
the same name as the page that you deleted.

Notice how there’s a whole separate grid,
with its own starting <Grid> and ending
</Grid> tags? That’s the page header
that displays the app name. This grid is
also contained inside the root grid that
you’ll be adding controls to. The inner
grid contains a Button and a TextBlock.

You’ll use the IDE to lay out
your app by modifying this grid.

When you replace
MainPage.xaml with
the new Basic Page
item, the IDE needs
to add additional
files. Rebuilding
the solution brings
everything up to
date so it can
display the page in
the designer.

Your page should
be displayed in
the designer.
If it isn’t,
double-click on
MainPage.xaml
in the Solution
Explorer.

16   Chapter 1

Q:But it looks like I already have many rows and
and columns in the grid. What are those gray lines?

A: The gray lines were just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
on the page. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves
when it’s compiled and executed.

Q: Wait a minute. I wanted to learn about C#. Why
am I spending all this time learning about XAML?

A: Because Windows Store apps built in C# almost
always start with a user interface that’s designed in XAML.
That’s also why Visual Studio has such a good XAML
editor—to give you the tools you need to build stunning
user interfaces. Throughout this book, you’ll learn how
to build two other types of programs with C#, desktop
applications and console applications, neither of which
use XAML. Seeing all three of these will give you a deeper
understanding of programming with C#.

not so blank after all

 Your app will be a grid with two rows and three columns (plus the
header row that came with the blank page template), with one big cell
in the middle that will contain the play area. Start defining rows by
hovering over the border until a line and triangle appear:

4

If you don’t see
the numbers 140
and 1* along
the border of
your page, click
outside the page.

...then click to
create a bottom
row in the grid.

Hover over the
border of the grid
until an orange
triangle and line
appear...

After the row is added,
the line will change
to blue and you’ll see
the row height in the
border. The height
of the center row will
change from 1* to a
larger number followed
by a star.

Windows Store
apps need to
look right on
any screen,
from tablets
to laptops to
giant monitors,
in portrait or
landscape.

Laying out the page using a
grid’s columns and rows allows
your app to automatically
adjust to the display.

you are here 4   17

start building with c#

 Do the same thing along the top border of the page—except this time create two columns, a small one
on the lefthand side and another small one on the righthand side. Don’t worry about the row heights
or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

5

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your page.

Here’s the width of the left column
you created in step 5—the width
matches the width that you saw in
the designer. That’s because the IDE
generated this XAML code for you.

Don’t worry if your
row heights or column
widths are different;
you’ll fix them on the
next page.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other
controls. Grids consist of rows and columns that define cells, and
each cell can hold other XAML controls that show buttons, text, and
shapes. A grid is a great way to lay out a page, because you can set its
rows and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like

the looks of this.

When you added the new Basic Page,
it already had a top row with a
height of 140 pixels. It contains the
back button and page name.

18   Chapter 1

let’s size up the competition

 Set the width of the left column.
Hover over the number above the first column until a drop-
down menu appears. Choose Pixel to change the star to a
lock, then click on the number to change it to 160. Your
column’s number should now look like this:

1

Set up the grid for your page
Your app needs to be able to work on a wide range of devices, and using
a grid is a great way to do that. You can set the rows and columns of
a grid to a specific pixel height. But you can also use the Star setting,
which keeps them the same size proportionally—to each other and also
to the page—no matter how big the display or what its orientation is.

 Repeat for the right column and
the bottom row.
Make the right column and the bottom row 160 by
choosing Pixel and typing 160 into the box.

2

		� It’s OK if you’re not
a pro at app
design...yet.

We’ll talk a lot more
about what goes into designing a good
app later on. For now, we’ll walk you
through building this game. By the end of
the book, you’ll understand exactly what
all of these things do!

When you change this
number, you modify
the grid—and its
XAML code.

Set your columns or rows to
Pixel to give them a fixed
width or height. The Star
setting lets a row or column
grow or shrink proportionally
to the rest of the grid. Use
this setting in the designer
to alter the Width or Height
property in the XAML. If
you remove the Width or
Height property, it’s the same
as setting the property to 1*.

you are here 4   19

start building with c#

 Make the center column and center row the
default size 1* (if they aren’t already).
Click on the number above the center column and enter 1. Don’t use
the drop-down (leave it Star) so it looks like the picture below. Then
make sure to look back at the other columns to make sure the IDE
didn’t resize them. If it did, just change them back to 160.

3

 Look at your XAML code!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.

4

You used the column and row
drop-downs to set the Width
and Height properties.

This is how a column is defined for a XAML
grid. You added three columns and three rows,
so there are three ColumnDefinition tags and
three RowDefinition tags.

In a minute, you’ll be adding controls
to your grid, which will show up here,
after the row and column definitions.

The <Grid .. > line at the top
means everything that comes
after it is part of the grid.

When you enter 1* into the box,
the IDE sets the column to its
default width. It might adjust
the other columns. If it does, just
reset them back to 160 pixels.

This top row with a height of 140 pixels is part of the Basic Page template you added.

XAML and C# are
case sensitive! Make
sure your uppercase
and lowercase letters
match example code.

20   Chapter 1

take control of your program

Add controls to your grid
Ever notice how apps are full of buttons, text, pictures, progress bars, sliders,
drop-downs, and menus? Those are called controls, and it’s time to add some
of them to your app—inside the cells defined by your grid’s rows and columns.

Drag a into the lower-right cell of the grid. Your XAML will look something like this.
See if you can figure out how it determines which row and column the controls are placed in.

2

Expand the section of the toolbox and
drag a into the bottom-left cell of the grid.

Then look at the bottom of the Designer window and have
a look at the XAML tag that the IDE generated for you.
You’ll see something like this—your margin numbers will be
different depending on where in the cell you dragged it, and the
properties might be in a different order.

1

The XAML for the button starts
here, with the opening tag.

These are properties. Each
property has a name, followed by
an equals sign, followed by its value.

If you don’t see
the toolbox, try
clicking on the
word “Toolbox”
that shows up
in the upper-left
corner of the
IDE. If it’s not
there, select
Toolbox from
the View menu
to make it
appear.

We added line breaks to make the XAML easier to
read. You can add line breaks too. Give it a try!

Click on Pointer in the toolbox, then click on the TextBlock and move it around and watch the IDE update the Margin property in the XAML.

If you don’t see the
toolbox in the IDE, you
can open it using the View menu. Use the pushpin to
keep it from collapsing.

When you pin
the Toolbox,
you can use this
tab to open it

you are here 4   21

start building with c#

When you drag a
control out of the
toolbox and onto
your page, the
IDE automatically
generates XAML
to put it where you
dragged it.

Next, expand the section of the toolbox. Drag a
into the bottom-center cell, a into the bottom-right cell (make sure it’s
below the TextBlock you already put in that cell), and a into the center cell.
Your page should now have controls on it (don’t worry if they’re placed differently than
the picture below; we’ll fix that in a minute):

3

You’ve got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window:

...

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and
ends with />, and between them it has properties like Grid.Column="1" (to put
the Canvas in the center column) and Grid.Row="1" (to put it in the center row).
Try clicking in both the grid and the XAML window to select different controls.

4

Here’s the TextBlock
control you added in
step 2. You dragged
a ContentControl
into the same cell.

You just added
this ProgressBar.

When you add the
Canvas control, it
looks like an empty
box. We’ll fix that
shortly.

Here’s the ContentControl.
What do you think it does?

Try clicking this button.
It brings up the Document
Outline window. Can you
figure out how to use it?
You’ll learn more about it
in a few pages.

Here’s the
button you
added in step 1.

22   Chapter 1

your app’s property value is going up

Use propert ies to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window
in the IDE lets you change the look and even the behavior of the controls on your page.

 Use the Properties window to modify the button.
Make sure the button is selected in the IDE, then look at the
Properties window in the lower-right corner of the IDE. Use
it to change the name of the control to startButton and
center the control in the cell. Once you’ve got the button looking
right, right-click on it and choose View Source to jump
straight to the <Button> tag in the XAML window.

2

 Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text
from the menu. Change the text to: Start! and see what you did to the button’s XAML:

...

1

When you edit the text in the button, the IDE
updates the Content property in the XAML.

Use the Name box to change the
name of the control to startButton.

When you used “Edit Text” on the right-click menu to change
the button’s text, the IDE updated the Content property.

Use the and buttons to set the
HorizontalAlignment and VerticalAlignment properties

to “Center” and center the button in the cell.

These little squares tell you if the property has been set. A filled square means it’s been set; an empty square means it’s been left with a default value.

When you dragged the button onto the page, the IDE
used the Margin property to place it in an exact position
in the cell. Click on the square and choose Reset from

the menu to reset the margins to 0.
Go back to the
XAML window in
the IDE and have a
look at the XAML
that you updated!

You might
need to
expand the
Common
and Layout
sections.

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

The properties may be in a different order. That’s OK!

you are here 4   23

start building with c#

 Change the page header text.
Right-click on the page header (“My Application”) and choose View Source to jump to the XAML for the
text block. Scroll in the XAML window until you find the Text property:

Wait a minute! That’s not text that says “My Application”—what’s going on here?

The Blank Page template uses a static resource called AppName for the name that it displays at the top
of the page. Scroll to the top of the XAML code until you find a <Page.Resources> section that has
this XAML code in it:

Replace “My Application” with the name of your application:

Now you should see the correct text at the top of the page:

3

 Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose

. This adds a new control to your page: a StackPanel control. You can
select the StackPanel by clicking between the two controls.

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls
(it’s called a “container”), so it’s not visible on the page. But since you dragged the
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel to
select it, then right-click and choose and to quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Finally, right-
click on the TextBox and ContentControl to reset their layouts as well. While you have
the ContentControl selected, set its vertical and horizontal alignments to Center.

5

You are here!

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls
C# Code

Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

 Update the TextBlock to change its text and its style.
Use the Edit Text right-mouse menu option to change the TextBlock so it says
Avoid These (hit Escape to finish editing the text). Then right-click on it, choose
the menu item, and then choose the submenu and
select SubheaderTextBlockStyle to make its text bigger.

4

Don’t worry about that back
button. You’ll learn all about how to use it in Chapter 14. You’ll
also learn about static resources.

Your TextBlock and
ContentControl are
in the lower-right cell
of the grid.

Right-click and
reset the layout
of the StackPanel,
TextBlock, and
ContentControl.

A box appears around
the StackPanel if you
hover over it.

You can use Edit→Undo (or Ctrl-Z) to undo
the last change. Do it several times to undo

the last few changes. If you selected the
wrong thing, you can choose Select None

from the Edit menu to deselect. You can also
hit Escape to deselect the control. If it’s

living inside a container like a StackPanel or
Grid, hitting Escape will select the container,

so you may need to hit it a few times.

AnimateEnemy()

EndTheGame()

24   Chapter 1

you want your game to work, right?

Controls make the game work
Controls aren’t just for decorative touches like titles and captions. They’re central to the way your game works.
Let’s add the controls that players will interact with when they play your game. Here’s what you’ll build next:

 Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout
menu option, and then choose Reset All to reset all of the properties to their default
values. Use the Height box in the Layout section of the Properties window to set the
Height to 20. The IDE stripped all of the layout-related properties from the XAML,
and then added the new Height:

1

 Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard
to see it right now because a Canvas control is invisible when you first drag it out of

the toolbox, but there’s an easy way to find it. Click the very small button above
the XAML window to bring up the Document Outline. Click on to
select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the
Properties window to set the name to playArea.

2

After you’ve named the Canvas control, you can close the
Document Outline window. Then use the and buttons
in the Properties window to set its vertical and horizontal
alignments to Stretch, reset the margins, and click both
buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.

Finally, open the Brush section of the Properties window and
use the button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs
at the bottom of the color editor and then clicking on a color.

Click on the lefthand
tab, then on the
starting color for the
gradient. Then click on
the righthand tab and
choose the ending color.

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

You can also open the Document Outline by
clicking the tab on the side of the IDE.

You can also get to the Document Outline by choosing the View→Other Windows menu.

...and you’ll work on the
bottom row. You’ll make the ProgressBar

as wide as its column...
...and you’ll use a
template to make your
enemy look like this.

You’ll create a play area with a
gradient background...

you are here 4   25

start building with c#

You’re almost done laying out the page! Flip the page for the last steps...

 Use the Document Outline to modify the StackPanel and TextBlock controls.
Go back to the Document Outline (if you see at the top of the Document
Outline window, just click to get back to the Page outline). Select the StackPanel control, make sure its
vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock.

5

 Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them to all look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose
Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

Your newly created template is currently selected in the IDE. Collapse the Document Outline window so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,
and choosing Edit Template→Edit Current.

3

You’re “flying blind” for this
next bit—the designer won’t
display anything for the
template until you add a control
and set its height and width so
it shows up. Don’t worry; you
can always undo and try again if
something goes wrong.

You can also use the
Document Outline
window to select
the grid if it gets
deselected.

 Edit the enemy template.
Add a red circle to the template:

≥≥ Double-click on in the toolbox to add an ellipse.

≥≥ Set the ellipse’s Height and Width properties to 100,
which will cause the ellipse to be displayed in the cell.

≥≥ Reset the HorizontalAlignment,
VerticalAlignment, and Margin properties by
clicking on their squares and choosing Reset.

≥≥ Go to the Brush section of the Properties window and click
on to select a solid-color brush.

≥≥ Color your ellipse red by clicking in the color bar and
dragging to the top, then clicking in the color sector and
dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

4

Click in this color
selector and drag
to the upper-right
corner.

Scroll around your page’s XAML window and see if you can find where the
EnemyTemplate is defined. It should be right below the AppName resource.

Make sure you don’t click anywhere else in the designer until
you see the ellipse. That will keep the template selected.

26   Chapter 1

check out the page you built

 Add the human to the Canvas.

You’ve got two options for adding the human. The first option is to follow the next three paragraphs. The second, quicker
option is to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, then open the All XAML Controls section of the toolbox and double-click
on Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on
Rectangle. The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse,
choose Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its
color to white, and set its Width and Height properties to 10. Then select the Rectangle, make it white as
well, and change its Width to 10 and its Height to 25.

Use the Document Outline window to select the Stack Panel (make sure you see at the top
of the Properties window). Click both buttons to set the Width and Height to Auto. Then use
the Name box at the top of the window to set its name to human. Here’s the XAML you generated:

You might also see a Stroke property on the Ellipse and Rectangle set to “Black”. (If you don’t see one, try
adding it. What happens?)

Go back to the Document Outline window to see how your new controls appear:

If human isn’t indented underneath playArea, click and drag human onto it.

6

 Add the Game Over text.
When your player’s game is over, the game will need to display a Game
Over message. You’ll do it by adding a TextBlock, setting its font, and
giving it a name:

≥≥ Select the Canvas, then drag a TextBlock out of the toolbox and
onto it.

≥≥ Use the Name box in the Properties window to change the
TextBlock’s name to gameOverText.

≥≥ Use the Text section of the Properties window to change the font to
Arial Black, change the size to 100 px, and make it Bold and Italic.

≥≥ Click on the TextBlock and drag it to the middle of the Canvas.

≥≥ Edit the text so it says Game Over.

7

If you choose to type this into the XAML
window of the IDE, make sure you do it directly
above the </Canvas> tag. That’s how you indicate
that the human is contained in the Canvas.

When you drag
a control around
a Canvas, its
Left and Top
properties are
changed to set
its position. If
you change the
Left and Top
properties, you
move the control.

You gave the Canvas control the
name playArea in step 2, so it shows
up in the Document Outline window.
Try hovering over the controls in it.

If you used
the designer
to create
your human,
make sure
its source
matches this
XAML.

you are here 4   27

start building with c#

 Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the
human into. (It doesn’t matter where in the Canvas you drag it.)

Select the Canvas control, then drag a Rectangle control onto it. Use the button in the
Brushes section of the Properties window to give it a gradient. Set its Height and Width
properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform
section of the Properties window to rotate the Rectangle 45 degrees by clicking on
and setting the angle to 45.

Finally, use the Name box in the Properties window to give it the name target.

 Take a minute and double-check a few things.
Open the Document Outline window and make sure that the human StackPanel,
gameOverText TextBlock, and target Rectangle are indented underneath the
playArea Canvas control, which is indented under the second [Grid]. (If you see

 at the top of the Document Outline window,
just click to get back to the Page outline, which has pageRoot at the top.) Select
the playArea Canvas control and make sure its Height and Width are set to Auto.
These are all things that could cause bugs in your game that will be difficult to track down.

Congratulations—you’ve finished building the main page for your app!

8

9

When you open the
Document Outline
for your page, it
should look like this.

We collapsed
human to make it
obvious that it’s
indented underneath
playArea, along with
gameOverText and
target. It’s okay if
the controls are in a
different order (you
can even drag them
up an down!), as long
as the indenting
is correct—that’s
how you know which
controls are inside
other container
controls.

28   Chapter 1

you took control

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

What it does
Where to find it

in the Properties
window in the IDE

At the top

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of

these properties aren’t on every type of control.

Solution on page 37

you are here 4   29

start building with c#

You’ve set the stage for the game
Your page is now all set for coding. You set up the grid that will
serve as the basis of your page, and you added controls that will
make up the elements of the game.

Visual Studio gave you useful tools for laying
out your page, but all it really did was help you
create XAML code. You’re the one in charge!

The first step you did was to create the project and set up the grid.

Then you added controls to your page. The next step is to write code that uses them.

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n
methods

You are here!

30   Chapter 1

keep your stub for re-entry

What you’l l do next
Now comes the fun part: adding the code that makes your game
work. You’ll do it in three stages: first you’ll animate your enemies,
then you’ll let your player interact with the game, and finally
you’ll add polish to make the game look better.

...then you’ll add the gameplay...

...and finally, you’ll
make it look good.

First you’ll animate the enemies...

The first thing you’ll do
is add C# code that
causes enemies to shoot
out across the play
area every time you
click the Start button.

To make the game
work, you’ll need the
progress bar to count
down, the human to
move, and the game
to end when the
enemy gets him or
time runs out.

You used a template
to make the enemies
look like red circles.
Now you’ll update
the template to make
them look like evil
alien heads.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build
the rest of this program. You’ll start by creating

a method called AddEnemy() that adds an
animated enemy to the Canvas control. First

you’ll hook it up to the Start button so you can fill
your page up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

you are here 4   31

start building with c#

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by
generating code.

When you’re editing a page in the IDE, double-clicking on any of the
controls on the page causes the IDE to automatically add code to your
project. Make sure you’ve got the page designer showing in the IDE,
and then double-click on the Start button. The IDE will add code to
your project that gets run any time a user clicks on the button. You
should see some code pop up that looks like this:

Q: What’s a method?

A: A method is just a named block of code.
We’ll talk a lot more about methods in Chapter 2.

Q: And the IDE generated it for me?

A: Yes...for now. A method is one of the basic
building blocks of programs—you’ll write a lot of
them, and you’ll get used to writing them by hand.

When you double-clicked on the Button control, the
IDE created this method. It will run when a user
clicks the “Start!” button in the running application.

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it
might be able to help you fix the error.

Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

The red squiggly line is the IDE telling you
there’s a problem, and the blue box is the
IDE telling you that it might have a solution.

The IDE also added
this to the XAML. See
if you can find it. You’ll
learn more about what
this is in Chapter 2.

32   Chapter 1

intelligent and sensible

Fil l in the code for your method
It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

Select this and delete it. You’ll learn
about exceptions in Chapter 12.

Delete the contents of the method stub that the IDE
generated for you.

1

Start adding code. Type the word Content into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

2

Finish adding the first line of code. You’ll get another IntelliSense window after you type new.3

	 C# code must be
added exactly as
you see it here.

It’s really easy to throw
off your code. When

you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
get all of the parentheses, commas,
and semicolons. If you miss one,
your program won’t work!

This line creates a new ContentControl object. You’ll learn about objects and the new keyword in Chapter 3, and reference variables like enemy in Chapter 4.

you are here 4   33

start building with c#

Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the file. Find
the line that starts with public sealed partial class MainPage and add this line after the
bracket ({) and before the first line of code ():

4

This is called a field. You’ll learn more about how it works in Chapter 4.

Flip the page to see your program run!

Finish adding the method. You’ll see some squiggly red underlines. The ones
under AnimateEnemy() will go away when you generate its method stub.

5 Do you see a squiggly underline
under playArea? Go back to the
XAML editor and sure you set
the name of the Canvas control
to playArea.

This line adds your
new enemy control
to a collection called
Children. You’ll learn
about collections in
Chapter 8.

If you need to switch between the XAML and C#
code, use the tabs at the top of the window.

Use the blue box and the button to generate a method stub for AnimateEnemy(), just like you
did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit the
top line of the method to change the last three parameters. Change the parameter p1 to from, the
parameter p2 to to, and the parameter p3 to propertyToAnimate. Then change any int types to
double.

6

You’ll learn
about methods and parameters in Chapter 2.

Flip the page to see your program run!
The IDE may generate the method stub
with “int” types. Change them to “double”.
You’ll learn about types in Chapter 4.

Make sure each XAML control has the right name, and all properties
(like Width and Height) are correct! If not, your program might crash.

34   Chapter 1

ok, that’s pretty cool

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your
AnimateEnemy() method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

 Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

1

You’ll need this line to make the next bit of code work. You can use the IntelliSense window to get it right—and don’t forget the semicolon at the end.

You’ll learn about
object initializers
like this in
Chapter 4.

And you’ll learn
about animation
in Chapter 16.

 Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the
previous page. Now you’ll add its code. It makes an enemy start bouncing across
the screen.

2

		 Still seeing red?
The IDE helps
you track down
problems.

If you still have some of those red
squiggly lines, don’t worry! You
probably just need to track down
a typo or two. If you’re still seeing
squiggly red underlines, it just means
you didn’t type in some of the code
correctly. We’ve tested this chapter
with a lot of different people, and we
didn’t leave anything out. All of the
code you need to get your program
working is in these pages.

 Look over your code.
You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

3

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error window and debugging your code in Chapter 2.

Statements
like these let
you use code
from .NET
libraries that
come with
C#. You’ll
learn more
about them in
Chapter 2.

This using statement lets you use animation code from the .NET Framework in your program to move the enemies on your screen.

This code makes the enemy you created move across playArea. If you change 4 and 6, you can make the enemies move slower or faster.

you are here 4   35

start building with c#

 Start your program.
Find the button at the top of the IDE. This starts your program running.

4

 Now your program is running!
First, a big X will be displayed for a few seconds, and then your main page will be displayed. Click
the “Start!” button a few times. Each time you click it, a circle is launched across your canvas.

5

This button starts your program.

 Stop your program.
Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with to
break, stop, and restart your program. Click the square to stop the program running.

6

This big X is the splash
screen. You’ll make your
own splash screen at the
end of the chapter.

You built something cool! And it didn’t take

long, just like we promised. But there’s more

to do to get it right.

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing

Reset Window Layout from the Window menu.

If the enemies aren’t bouncing,
or if they leave the play area,
double-check the code. You may
be missing parentheses or keywords.

Do you see numbers in the upper corners of the page? Those are frame rate counters.

You’ll learn more about them in Chapter 10.

36   Chapter 1

what you’ve done, where you’re going

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

Visual Studio can generate code for you, but you
need to know what you want to build BEFORE
you start building it. It won’t do that for you!

We’ve gotten a good start by building the user interface...

…but we still need
the rest of the C#
code to make the app
actually work.

This step is where we write C# code that makes the gameplay run.

.png

Splash
screen

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Page
and Containers Windows UI

Controls

C# Code Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

you are here 4   37

start building with c#

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
text or graphics in your
control

What it does
Where to find it

in the Properties
window in the IDE

At the top

solution

Remember how you set the Name of the
Canvas control to “playArea”? That set its
“x:Name” property in the XAML, which will
come in handy in a minute when you write C#
code to work with the Canvas.

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the anwers to the pencil-and-paper puzzles and

exercises, but they won’t always be on the next page.

38   Chapter 1

tick tick tick

Add t imers to manage the gameplay
Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

 Add more lines to the top of your C# code.
Go up to the top of the file where you added that Random line. Add three more lines:

1

The MainPage.Xaml.cs file you’ve been editing
contains the code for a class called MainPage.
You’ll learn about classes in Chapter 3.

Add these three lines
below the one you added
before. These are fields,
and you’ll learn about
them in Chapter 4. Add a method for one of your timers.

Find this code that the IDE generated:

Put your cursor right after the last semicolon, hit Enter two times, and type
enemyTimer. (including the period). As soon as you type the dot, an
IntelliSense window will pop up. Choose Tick from the IntelliSense window
and type the following text. As soon as you enter += the IDE pops up a box:

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

 ...

2

The IDE generated
a method for you
called an event
handler. You’ll learn
about event handlers
in Chapter 15.

TickTick
Tick

Timers “tick”
every time
interval by
calling methods
over and over
again. You’ll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

you are here 4   39

start building with c#

 Add the EndTheGame() method.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add
the following code. The IntelliSense window might not seem quite right:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.

Next, go back to the code window and generate a method stub for EndTheGame(), just like you
did a few pages ago for AddEnemy(). Here’s the code for the new method:

4

 Finish the MainPage() method.
You’ll add another Tick event handler for the other timer, and you’ll add
two more lines of code. Here’s what your finished MainPage() method
and the two methods the IDE generated for you should look like:

3

If you closed the Designer tab that had the XAML code, double-click on MainPage.xaml in the Solution Explorer window to bring it up.

If gameOverText comes up as an error, it means you didn’t set the name of the “Game Over” TextBlock. Go back and do it now.

Right now your Start button
adds bouncing enemies to the
play area. What do you think
you’ll need to do to make it
start the game instead?

This method ends the
game by stopping the

timers, making the
Start button visible
again, and adding

the GAME OVER text
to the play area.

The IDE generated these lines as placeholders when you
pressed Tab to add the Tick event handlers. You’ll replace
them with code that gets run every time the timers tick.

Try changing these numbers once
your game is finished. How does
that change the gameplay?

Did the IDE
keep trying
to capitalize
the P in
progressBar?
That’s because
there was no
lowercase-P
progressBar,
and the
closest match
it could
find was the
type of the
control.

Don’t forget the exclamation point in the first line of code!
Without it, the Game Over text won’t show up.

40   Chapter 1

so close i can taste it

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now
you’ll fix it so it actually starts the game.

 Make the Start button start the game.
Find the code you added earlier to make the Start button add an
enemy. Change it so it looks like this:

1

 Add the StartGame() method.
Generate a method stub for the StartGame() method. Here’s the
code to fill into the stub method that the IDE added:

2

 Make the enemy timer add the enemies.
Find the enemyTimer_Tick() method that the IDE added for
you and replace its contents with this:

3

Did you forget to set the names of
the target Rectangle or the human
StackPanel? You can look a few pages
back to make sure you set the right
names for all of the controls.

When you change this line, you make the Start button start the game instead of just adding an enemy to the playArea Canvas.

Ready Bake
Code

We’re giving you a lot of code to
type in.

By the end of the book, you’ll know
what all of this code does—in fact,
you’ll be able to write code just like it
on your own.

For now, your job is to make sure
you enter each line accurately, and
to follow the instructions exactly. This
will get you used to entering code,
and will help give you a feel for the
ins and outs of the IDE.

If you get stuck, you can download
working versions of MainPage.xaml
and MainPage.Xaml.cs or copy and
paste XAML or C# code for each
individual method:
http://www.headfirstlabs.com/hfcsharp.

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

You’ll learn about
IsHitTestVisible in
Chapter 15.

It’s normal to add parentheses ()
when writing about a method.

Are you seeing errors in the Error List window that don’t make sense?
One misplaced comma or semicolon can cause two, three, four, or
more errors to show up. Don’t waste your time trying to track down
every typo! Just go to the Head First Labs web page—we made it
really easy for you to copy and paste all the code in this program.

There’s also a link to the Head First C# forum, which you can check
for tips to get this game working!

http://www.headfirstlabs.com/hfcsharp/

you are here 4   41

start building with c#

What do you think you’ll need to do to get the rest
of your game working?

Alert! Our spies
have reported that the
humans are building up

their defenses!When you press the “Start!” button,
it disappears, clears the enemies, and
starts the progress bar filling up.

When the progress bar at the bottom fills up, the game ends and the Game Over text is displayed.

The play area slowly starts to fill up
with bouncing enemies.

Flip the page to find out!

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

The target timer should fill up slowly, and the enemies should appear every two seconds. If the timing is off, make sure you added all of the lines to the MainPage() method.

42   Chapter 1

in any event...

Go to the XAML designer and use the Document Outline window to select human
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the
Properties window and press the button to switch it to show event handlers. Find
the PointerPressed row and double-click in the empty box.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_PointerPressed in
the XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

1

Fill in the C# code:2

Add code to make your controls
interact with the player
You’ve got a human that the player needs to drag to the target, and a
target that has to sense when the human’s been dragged to it. It’s time
to add code to make those things work. You’ll learn more

about the event
handlers in the
Properties window
in Chapter 4.

Double-click in this box.

If you go back to the designer and
click on the StackPanel again, you’ll
see that the IDE filled in the name
of the new event handler method.
You’ll be adding more event handler
methods the same way.

You can use these
buttons to switch
between showing
properties and
event handlers
in the Properites
window.

Make sure you switch back
to the IDE and stop the
app before you make more
changes to the code.

The Document Outline
may have collapsed [Grid], playArea, and other lines. If it did, just expand them to find the human control.

you are here 4   43

start building with c#

Use the Document Outline window to select the Rectangle named target,
then use the event handlers view of the Properties window to add a
PointerEntered event handler. Here’s the code for the method:

3

Make sure you add the right event handler! You added a PointerPressed event handler to the human, but now you’re adding a PointerEntered event handler to the target.

Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to find the
right [Grid] in the Document Outline (there are two of them—use the child grid that’s indented under
the main grid for the page) and set its name to grid. Then you can add these event handlers to playArea:

4

You’ll need to switch your Properties window back
to show properties instead of event handlers.

That’s a lot of parentheses!
Be really careful and get
them right.

These two vertical
bars are a logical
operator. You’ll
learn about them
in Chapter 2.

Make sure you put the right code
in the correct event handler!
Don’t accidentally swap them.

You can make the
game more or

less sensitive by
changing these
3s to a lower or
higher number.

When the Properties
window is in the mode
where it displays event

handlers, double-
clicking on an empty

event handler box
causes the IDE to add

a method stub for it.

44   Chapter 1

you can’t save them all

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

Choose PointerEntered from the list. (If you choose the wrong one, don’t worry—just backspace
over it to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)

Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Here’s the last line of your
AddEnemy() method. Put your
cursor at the end of the line
and hit Enter to add the
new line of code.

Start typing this line of
code. As soon as you enter
the dot, an IntelliSense
window will pop up. Keep
typing “Pointer” to jump
down to the entries in
the list that start with
“Pointer...”

You’ll learn all about
how event handlers like
this work in Chapter 15.

you are here 4   45

start building with c#

Your game is now playable
Run your game—it’s almost done! When you click the Start button, your play
area is cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Drag the human to safety!

...but drag too fast, and you’ll lose your human!

Get him to the target before time’s up...

The aliens only spend their time patrolling for moving humans, so the game only ends if you drag a human onto an enemy. Once you
release the human, he’s
temporarily safe from aliens.

Look through the code and find where you set the IsHitTestVisible property on the human. When it’s on, the human intercepts the PointerEntered event because the human’s StackPanel control is sitting between the enemy and the pointer.

46   Chapter 1

 Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

and add a skew like this:

4

bells whistles aliens

Make your enemies look like aliens
Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Now your enemies
look a lot more like
human-eating aliens.

 Go to the Document Outline, right-click on the ContentControl,
choose Edit Template, and then Edit Current to edit the template.
You’ll see the template in the XAML window. Edit the XAML code
for the ellipse to set the width to 75 and the fill to Gray. Then add

 to add a black outline (if it’s not already there),
and reset its vertical and horizontal alignments. Here’s what it should
look like (you can delete any additional properties that may have
inadvertently been added while you worked on it):

1

 Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

2

 Use the button in the Transforms section of the Properties window to add a Skew transform:3

	 Seeing events
instead of
properties?

You can toggle the
Properties window

between displaying properties or
events for the selected
control by clicking the
wrench or lightning bolt icons.

You can also “eyeball” it (excuse the pun) by using
the mouse or arrow keys to drag the ellipse into
place. Try using Copy and Paste in the Edit menu to
copy the ellipse and paste another one on top of it.

you are here 4   47

start building with c#

Add a splash screen and a t i le
That big X that appears when you start your program is a splash
screen. And when you go back to the Windows Start page, there it
is again in the tile. Let’s change these things.

Here’s the updated XAML for the
new enemy template that you created.

Expand the folder in the Solution Explorer window and
you’ll see four files. Double-click each of them to edit them in the
Visual Studio graphics editor. Edit SplashScreen.scale-100.png to create a
splash screen that’s displayed when the game starts. Logo.scale-100.png
and SmallLogo.scale-100.png are displayed in the Start screen. And when
your app is displayed in the search results (or in the Windows Store!), it
displays StoreLogo.scale-100.png.

There’s just One more thing you need to do...

Play your game!
And don’t forget to step back and really
appreciate what you built. Good job!

See if you can get creative and change the way the human, target, play area, and enemies look.

Don’t feel like making your own splash
screen or logos? You can download ours:
http://www.headfirstlabs.com/hfcsharp

48   Chapter 1

your app becomes everyone’s app You are here!

.png

Splash
screen

StartGame()

AddEnemy()

Ellip
se

XAML Main Page
and Containers Windows UI

Controls
C# Code

Deployment
Package

.exe

Program
file

Main p
ag

e

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

.xml

App
manifest

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

Publish your app
You should be pretty pleased with your app! Now
it’s time to deploy it. When you publish your app
to the Windows Store, you make it available to
millions of potential users. The IDE can help
guide you through the steps to publish your app to
the Windows Store.

Here’s what it takes to get your app out there:

1 Open a Windows Store
developer account.

2 Choose your app’s name, set an
age rating, write a description,
and choose a business model to
determine if your app is free,
ad-supported, or has a price.

3 Test your app using the
Windows App Certification Kit
to identify and fix any problems.

You can learn more about how to publish apps to the Windows Store here:
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx

Throughout the book we’ll show you where to find
more information from MSDN, the Microsoft
Developer Network. This is a really valuable resource
that helps you keep expanding your knowledge.

4 Submit your app to the
Store! Once it’s accepted,
millions of people around the
world can find and download it. The Store menu in the IDE has all of the

tools you need to publish your app.

In some editions of Visual Studio, the
Windows Store options appear under the
Project menu instead of having their own
top-level Store menu.

AnimateEnemy()

EndTheGame()

you are here 4   49

start building with c#

Use the Remote Debugger to side load your app
Sometimes you want to run your app on a remote machine without publishing it to the
Windows Store. When you install your app on a machine without going through the
Windows Store it’s called sideloading, and one of the easiest ways to do it is to install
the Visual Studio Remote Debugger on another computer.

If you have an odd network setup, you may have trouble running the
remote debugger. This MDSN page can help you get it set up:

http://msdn.microsoft.com/en-us/library/vstudio/bt727f1t.aspx

Here’s how to get your app loaded using the Remote Debugger:

≥≥ Make sure the remote machine is running Windows 8.

≥≥ Go to the Microsoft Download Center (http://www.microsoft.com/en-hk/download/default.aspx) on the
remote machine and search for “Remote Tools for Visual Studio” to find the download page.

≥≥ Download the installer for your machine’s architecture (x86, x64, ARM) and run it to install the
remote tools.

≥≥ Go to the Start page and launch the Remote Debugger.
(You may need to search for the app if there’s no icon.)

≥≥ If your computer’s network configuration needs to change, it may pop up a wizard to help with that.
Once it’s running, you’ll see the Visual Studio Remote Debugging Monitor window:

≥≥ Your remote computer is now running the Visual Studio Remote Debugging Monitor and waiting
for incoming connections from Visual Studio on your development machine.

At the time this is being written, you’ll find “Remote Tools for Visual Studio 2013,” but you may find future updates.

This is running on a computer called MY-SURFACE. Take
note of the machine name, because it will come in handy in
a minute.

Flip to get your app up and running on the remote computer!

50   Chapter 1

humans saved for now

Start remote debugging
Once you’ve got a remote computer running the remote debugging monitor, you
can launch the app from Visual Studio to install and run it. This will automatically
sideload your app on the computer, and you’ll be able to run it again from the Start
page any time you want.

 Choose “Remote Machine” from the Debug drop-down.
You can use the Debug drop-down to tell the IDE to run your program on a remote
machine. Take a close look at the button you’ve been using to run your
program—you’ll see a drop-down (). Click it to show the drop-down and choose Remote
Machine:

1

 Run your program on the remote machine.
Now run your program by clicking the button. The IDE will pop up a window asking for the
machine to run on. If it doesn’t detect it in your subnet, you can enter the machine name manually:

2

Don’t forget to change this
back to Simulator when you’re
ready to move on to the next
chapter! You’ll be writing a bunch
of programs, and you’ll need this
button to run them.

Enter the name of the machine running
the Remote Debugging Monitor.

If you need to change the machine
in the future, you can do it in the
project settings. Right-click on

the project name in the Solution
Explorer and choose Properties,

then choose the tab.
If you clear the field
and restart the remote debugger,

the Remote Debugger Connections
window will pop up again.

you are here 4   51

start building with c#

 Enter your credentials.
You’ll be prompted to enter the username and
password of the user on the remote machine.
You can turn off authentication in the Remote
Debugging Monitor if you want to avoid this (but
that’s not a great idea, because then anyone can
run programs on your machine remotely!).

3

 Get your developer license.
You already obtained a free developer license from
Microsoft when you installed Visual Studio. You need
that license in order to sideload apps onto a machine.
Luckily, the Remote Debugging Monitor will pop up a
wizard to get it automatically.

4

 Now...save some humans!
Once you get through that setup, your program will start running on the
remote machine. Since it’s sideloaded, if you want to run it again you can
just run it from the Windows Start page. Congratulations, you’ve built your
first Windows Store app and loaded it onto another computer!

5

Invasion force, full retreat! That’s
an order! These Earthlings are no

pushovers. We’ll need to regroup and
replan our attack.

Congratulations! You’ve
held off the alien
invasion...for now. But we have a feeling that this
isn’t the last we’ve heard from them.

this is a new chapter   53

it’s all just code2

Under the hood

You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

One of these days
I’ll figure out
what’s going on
under there…

54   Chapter 2

When you’re doing this…
The IDE is a powerful tool—but that’s all it is, a tool for you to use. Every time
you change your project or drag and drop something in the IDE, it creates code
automatically. It’s really good at writing boilerplate code, or code that can be
reused easily without requiring much customization.

Let’s look at what the IDE does in a typical application development, when you’re…

The Properties window in the IDE is a really easy way to edit a specific chunk of XAML code in MainPage.xaml automatically, and it can save you time. Use the Alt-Enter shortcut to open the Properties window if it’s closed.

at your service

Creating a Windows Store project
There are several kinds of applications the IDE lets
you build. We’ll be concentrating on Windows Store
applications for now—you’ll learn about other kinds of
applications in the next chapter.

1

Dragging a control out of the
toolbox and onto your page, and
then double-clicking it
Controls are how you make things happen in your page.
In this chapter, we’ll use Button controls to explore
various parts of the C# language.

2

Setting a property on your page
The Properties window in the IDE is a really
powerful tool that you can use to change attributes of
just about everything in your program: all visual and
functional properties for the controls on your page,
and even options on your project itself.

3

All of these tasks have to
do with standard actions
and boilerplate code. Those
are the things the IDE is
great for helping with.

In Chapter 1, you created a blank Windows Store project—that told the IDE to create an empty page and add it to your new project.

you are here 4   55

it’s all just code

…the IDE does this

private void startButton_Click(object sender, RoutedEventArgs e)
{

}

MainPage.xaml.cs

Save The Humans
.csproj

MainPage.xaml.cs SplashScreen.
scale-100.png

Properties

The IDE knows how to add an empty method
to handle a button click. But it doesn’t know
what to put inside it—that’s your job.

<Button x:Name="startButton"

 Content="Start!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" Click="startButton_Click"/>

The IDE went into this file…

…and updated this XAML code.

These files are created from a predefined template that contains the basic code to create and display a page.

...the IDE opens the MainPage.xaml file
and updates a line of XAML code.

3

...The IDE adds code to MainPage.xaml that adds a
button, and then adds a method to MainPage.xaml.cs
that gets run any time the button is clicked.

2

...the IDE creates the files and
folders for the project.

1

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

MainPage.xaml

MainPage.xaml

MainPage.xaml

56   Chapter 2

Where programs come from
A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.
Here’s how it gets there.

great, the “talk”

Every program starts out as source code f i les
You’ve already seen how to edit a program, and how the IDE saves your program to
files in a folder. Those files are your program—you can copy them to a new folder
and open them up, and everything will be there: pages, resources, code, and anything
else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,
and even suggests what words might come next. But in the end, all the IDE does is
edit the files that contain your program.

The IDE bundles all of the files for your program into a solution by creating a
solution (.sln) file and a folder that contains all of the other files for the program. The
solution file has a list of the project files (which end in .csproj) in the solution, and the
project files contain lists of all the other files associated with the program. In this
book, you’ll be building solutions that only have one project in them, but you can
easily add other projects to your solution using the IDE’s Solution Explorer.

Build the program to create an executable
When you select Build Solution from the Build menu, the IDE compiles
your program. It does this by running the compiler, which is a tool that
reads your program’s source code and turns it into an executable. The
executable is a file on your disk that ends in .exe—that’s the actual program
that Windows runs. When you build the program, it creates the executable
inside the bin folder, which is inside the project folder. When you publish
your solution, it copies the executable (and any other files necessary) into a
package that can be uploaded to the Windows Store or sideloaded.

When you select Start Debugging from the Debug menu, the IDE compiles
your program and runs the executable. It’s got some more advanced tools
for debugging your program, which just means running it and being able
to pause (or “break”) it so you can figure out what’s going on.

There’s no reason you
couldn’t build your
programs in Notepad,
but it’d be a lot
more time-consuming.

you are here 4   57

it’s all just code

Your program runs inside the Common Language Runt ime
Every program in Windows 8 runs on an architecture called the Windows Runtime. But
there’s an extra “layer” between the Windows Runtime and your program called the
Common Language Runtime, or CLR. Once upon a time, not so long ago (but before
C# was around), writing programs was harder, because you had to deal with hardware and
low-level machine stuff. You never knew exactly how someone was going to configure his
computer. The CLR—often referred to as a virtual machine—takes care of all that for
you by doing a sort of “translation” between your program and the computer running it.

You’ll learn about all sorts of things the CLR does for you. For example, it tightly manages
your computer’s memory by figuring out when your program is finished with certain pieces
of data and getting rid of them for you. That’s something programmers used to have to do
themselves, and it’s something that you don’t have to be bothered with. You won’t know it
at the time, but the CLR will make your job of learning C# a whole lot easier.

You don’t really have to worry
about the CLR much right
now. It’s enough to know it’s
there, and takes care of
running your program for you
automatically. You’ll learn more
about it as you go.

You can see an overview of .NET for Windows Store apps here:
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx

The .NET Framework gives you the right tools for the job
C# is just a language—by itself, it can’t actually do anything. And that’s where the .NET
Framework comes in. Those controls you dragged out of the toolbox? Those are all part of
a library of tools, classes, methods, and other useful things. It’s got visual tools like the XAML
toolbox controls you used, and other useful things like the DispatcherTimer that made your
Save the Humans game work.

All of the controls you used are part of .NET for Windows Store apps, which contains
an API with grids, buttons, pages, and other tools for building Windows Store apps. But for
a few chapters starting with Chapter 3, you’ll learn all about writing desktop applications,
which are built using tools from the .NET for Windows Desktop (which some people call

“WinForms”). It’s got tools to build desktop applications from windows that hold forms with
checkboxes, buttons, and lists. It can draw graphics, read and write files, manage collections
of things…all sorts of tools for a lot of jobs that programmers have to do every day. The
funny thing is that Windows Store apps need to do those things, too! One of the things
you’ll learn by the end of this book is how Windows Store and Windows Desktop apps do
some of those things differently. That’s the kind of insight and understanding that helps good
programmers become great programmers.

The tools in both the Windows Runtime and the .NET Framework are divided up into
namespaces. You’ve seen these namespaces before, at the top of your code in the “using” lines.
One namespace is called Windows.UI.Xaml.Conrols—it’s where your buttons, checkboxes,
and other controls come from. Whenever you create a new Windows Store project, the IDE will
add the necessary files so that your project contains a page, and those files have the line “using
Windows.UI.Xaml.Controls;” at the top.

An API, or Application
Programming Interface, is
a collection of code tools
that you use to access
or control a system.
Many systems have APIs,
but they’re especially
important for operating
systems like Windows.

58   Chapter 2

The IDE helps you code
You’ve already seen many of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you, to
make sure you’re starting off with all the tools you need.

The Solution Explorer shows you everything
in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looked like after creating a blank Windows Application called App1:

≥

Use the tabs to switch between open files
Since your program is split up into more than one file, you’ll usually have several
code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (*) next to a filename if it hasn’t been saved yet.

≥

When you’re working on a program, you’ll often have two
tabs for it at the same time—one for the designer, and
one to view the code. Use Control-Tab to switch between
open windows quickly.

The Solution
Explorer
shows you the
different files
in the solution
folder.

mother’s little helper

you are here 4   59

it’s all just code

The Error List helps you troubleshoot
compiler errors
If you haven’t already discovered how easy it is to make typos in a C#
program, you’ll find out very soon! Luckily, the IDE gives you a great tool for
troubleshooting them. When you build your solution, any problems that keep it
from compiling will show up in the Error List window at the bottom of the IDE:

Double-click on an error, and the IDE will jump to the problem in the code:

≥

The IDE helps you write code
Did you notice little windows popping up as you typed code into the IDE? That’s
a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type random and then a
period, it knows that there are three valid ways to complete that line:

If you select Next and type (, the IDE’s IntelliSense will show you information
about how you can complete the line.

The IDE knows that random
has methods Next, NextBytes,
NextDouble, and four others. If you type N, it selects Next. Type “(”
or space, Tab, or Enter to tell the
IDE to fill it in for you. That can
be a real timesaver if you’re typing
a lot of really long method names.

This means that there are 3 different ways that
you can call the Random.Next() method.

When you use the debugger to
run your program inside the IDE,
the first thing it does is build
your program. If it compiles,
then your program runs. If not,
it won’t run, and will show you
errors in the Error List.

The IDE will show a squiggly
underscore to show you that
there’s an error. Hover over it
to see the same error message
that appears in the Error List.

A missing
semicolon at
the end of a
statement is
one of the most
common errors
that keeps your
program from
building.

≥

60   Chapter 2

Anatomy of a program

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework and Windows Store API classes.

A class has one or more methods. Your methods always have to live
inside a class. And methods are
made up of statements—like the
ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of the
.NET Framework or Windows Store API to use. If you use other classes that are in other namespaces,
then you’ll add using lines for them, too. Since apps often use a lot of different tools from the .NET
Framework and Windows Store API, the IDE automatically adds a bunch of using lines when it
creates a page (which isn’t quite as “blank” as it appeared) and adds it to your project.

1

Every C# program’s code is structured in exactly the
same way. All programs use namespaces, classes,
and methods to make your code easier to manage.

Let’s take a closer look at your code
Open up the code from your Save the Humans project’s
MainPage.xaml.cs so we can have a closer look at it.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;

These using lines are at the top of every code file. They tell C# to use all of those .NET Framework classes. Each one tells your program that the classes in this particular .cs file will use all of the classes in one specific .NET Framework (System) or Windows Store API namespace.

your program makes a statement

One thing to keep in mind: you don’t actually have to use a using statement. You can always use
the fully qualified name. Back in your Save the Humans app, you added this line:

using Windows.UI.Xaml.Media.Animation;

Try commenting out that line by adding // in front of it, then have a look at the errors that show
up in the error list. You can make one of them go away. Find a Storyboard that the IDE now tells
you has an error, and change it to Windows.UI.Xaml.Media.Animation.Storyboard (but you
should undo the comment you added to make your program work again).

The order of the
methods in the
class file doesn’t
matter—method
2 can just as
easily come
before method 1.

you are here 4   61

it’s all just code

This is the method called StartGame() that gets

called when the user clicks the Start button.

namespace Save_the_Humans

{

 public sealed partial class MainPage : Page

 {

 void startButton_Click(object sender, object e)

 {

 StartGame();

 }

C# programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes
do one specific thing. When you created the new program, the IDE added a class called
MainPage that displays the page.

2

Classes contain methods that perform actions
When a class needs to do something, it uses a method. A method takes input, performs some
action, and sometimes produces an output. The way you pass input into a method is by using
parameters. Methods can behave differently depending on what input they’re given. Some
methods produce output. When they do, it’s called a return value. If you see the keyword
void in front of a method, that means it doesn’t return anything.

3

A statement performs one single action
When you filled in the StartGame() method, you added a bunch of statements. Every
method is made up of statements. When your program calls a method, it executes the first
statement in the method, then the next, then the next, etc. When the method runs out of
statements or hits a return statement, it ends, and the program resumes after the statement
that originally called the method.

4

This is a class called MainPage. It contains all of the code to make the page work. The
IDE created it when you told it to create a new blank C# Windows Store project.

This line calls a method named
StartGame(), which the IDE
helped you create when you
asked it to add a method stub.

This method
has two
parameters
called sender
and e.

Look for the
matching pairs
of brackets.
Every { is
eventually
paired up with
a }. Some
pairs can be
inside others.

When you called your program Save the Humans, the IDE created a namespace for it called Save_the_Humans (it converted the spaces to underscores because namespaces can’t have spaces) by adding the namespace keyword at the top of your code file. Everything inside its pair of curly brackets is part of the Save_the_Humans namespace.

 private void StartGame()
 {
 human.IsHitTestVisible = true;
 humanCaptured = false;
 progressBar.Value = 0;
 startButton.Visibility =
 Visibility.Collapsed;
 playArea.Children.Clear();
 playArea.Children.Add(target);
 playArea.Children.Add(human);
 enemyTimer.Start();
 targetTimer.Start();
 }
 }

 }

The StartGame() method contains
nine statements. Each statement
ends with a semicolon.

Here’s the closing bracket at the very
bottom of your MainPage.xaml.cs file.

It’s OK to add extra line breaks to make your statements more readable. They’re ignored when your program builds.

62   Chapter 2

get some answers

Q: What’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to group statements
together into blocks. Curly brackets always come in pairs. You’ll
only see a closing curly bracket after you see an opening one. The
IDE helps you match up curly brackets—just click on one, and you’ll
see it and its match get shaded darker.

Q: How come I get errors in the Error List window when I try
to run my program? I thought that only happened when I did

“Build Solution.”

A: Because the first thing that happens when you choose Start
Debugging from the menu or press the toolbar button to start your
program running is that it saves all the files in your solution and then
tries to compile them. And when you compile your code—whether
it’s when you run it, or when you build the solution—if there are
errors, the IDE will display them in the Error List instead of running
your program.

A lot of the errors that show up when you try to run your program also show up in the Error List window and as red squiggles under your code.

So the IDE can really

help me out. It generates

code, and it also helps me find

problems in my code.

The IDE helps you build your code right.

A long time ago, programmers had to use simple text
editors like Notepad to edit their code. (In fact, they would
have been envious of some of the features of Notepad, like
search and replace or ^G for “go to line number.”) We had
to use a lot of complex command-line applications to build,
run, debug, and deploy our code.

Over the years, Microsoft (and, let’s be fair, a lot of other
companies, and a lot of individual developers) figured out
a lot of helpful things like error highlighting, IntelliSense,
WYSIWYG click-and-drag page editing, automatic code
generation, and many other features.

After years of evolution, Visual Studio is now one of the
most advanced code-editing tools ever built. And lucky for
you, it’s also a great tool for learning and exploring C# and
app development.

you are here 4   63

it’s all just code

Set properties for a TextBlock control

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

myGrid.Background =
 new SolidColorBrush(Colors.Violet);

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

helloLabel.Text = "hi there";
helloLabel.FontSize = 24;

public sealed partial class MainPage : Page
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of a Grid
control named myGrid

A method that executes whenever a
program displays its main page

64   Chapter 2

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

exercise solution

Wait, a window? Not a page?
You’ll start learning about
desktop apps with windows and
forms later in this chapter.

Set properties for a TextBlock controlmyGrid.Background =
 new SolidColorBrush(Colors.Violet);

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

helloLabel.Text = "hi there";
helloLabel.FontSize = 24;

public sealed partial class MainPage : Page
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of a Grid
control named myGrid

A method that executes whenever a
program displays its main page

you are here 4   65

it’s all just code

namespace PetFiler2 {

 class Fish {

 public void Swim() {
 // statements
 }

 }

 partial class Cat {

 public void Purr() {
 // statements
 }

 }
 }

MoreClasses.cs

SomeClasses.cs

namespace PetFiler2 {

 class Dog {

 public void Bark() {
 // statements go here
 }

 }

 partial class Cat {

 public void Meow() {
 // more statements
 }

 }
}

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and
a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the
Dog.Bark() method can call Cat.Meow()
and Fish.Swim(). It doesn’t matter how
the various namespaces and classes are divided
up between files. They still act the same when
they’re run. When a method is “public”

it means every other
class in the namespace
can access its methods.

Two classes can be in the
same namespace

You can only split a class up into different files
if you use the “partial” keyword. You probably
won’t do that in any of the code you write in
this book, but the IDE used it to split your
page up into two files so it could put the
XAML code into MainPage.xaml and the C#
code into MainPage.xaml.cs.

Since these classes are in the same namespace,
they can all “see” each other—even though
they’re in different files. A class can span
multiple files too, but you need to use the

“partial” keyword when you declare it.

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #3
in the “Leftovers” appendix to read more.

66   Chapter 2

Declare your variables
Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

			

		 int maxWeight;

		 string message;

		 bool boxChecked;

These are the names of these variables.These are the var
iable types.

These names are for YOU.
Like methods and classes, use
names that make sense and
describe the variable’s usage.

C# uses the variable type to define what data these variables can hold.

your mileage may vary

Your programs use variables to work with data
When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a
video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Variables vary
A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is
why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

 int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

 myHeight = 12;

C# will replace myHeight with 12—but the variable is still called
myHeight.

Whenever your
program needs to
work with numbers,
text, true/false
values, or any other
kind of data, you’ll
use variables to keep
track of them.

	 Are you
already
familiar with
another
language?

If so, you might find that a
few things in this chapter
seem really familiar. Still, it’s
worth taking the time to run
through the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

you are here 4   67

it’s all just code

var-i-a-ble, noun.
an element or feature likely to change.
Predicting the weather would be a whole lot
easier if meterologists didn’t have to take so
many variables into account.

If you write code
that uses a variable
that hasn’t been
assigned a value,
your code won’t
compile. It’s easy to
avoid that error
by combining your
variable declaration
and assignment into
a single statement.

You have to assign values to variables
before you use them
Try putting these statements into a C# program:

 string z;
 string message = "The answer is " + z;

Go ahead, give it a shot. You’ll get an error, and the IDE will
refuse to compile your code. That’s because the compiler
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine
the statement that declares a variable with a statement that
assigns its value:

	 int maxWeight = 25000;

	 string message = "Hi!";

	 bool boxChecked = true;

These values
are assigned to
the variables.

Each declaration has a type,
exactly like before.

Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or whole numbers),
string holds text, and bool holds Boolean true/false values.

68   Chapter 2

int number = 15;

number = number + 10;

number = 36 * 15;

number = 12 - (42 / 7);

number += 10;

number *= 3;

number = 71 / 3;

int count = 0;

count ++;

count --;

string result = "hello";

result += " again " + result;

output.Text = result;

result = "the value is: " + count;

result = "";

bool yesNo = false;

bool anotherBool = true;

yesNo = !anotherBool;

operators are standing by

C# uses familiar math symbols
Once you’ve got some data stored in a variable, what can you
do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

We declared a new
int variable called
number and set it to
15. Then we added 10
to it. After the second
statement, number is
equal to 25.

The third statement changes the
value of number, setting it equal to
36 times 15, which is 540. Then it
resets it again, setting it equal to
12 - (42 / 7), which is 6.

This operator is a little different.
+= means take the value of number
and add 10 to it. Since number is
currently equal to 6, adding 10 to it
sets its value to 16.

The *= operator
is similar to +=,
except it multiplies
the current value of
number by 3, so it
ends up set to 48.

You’ll use int a lot for counting, and when you do, the ++
and -- operators come in handy. ++ increments count
by adding one to the value, and -- decrements count by
subtracting one from it, so it ends up equal to zero.

		� Don’t worry about
memorizing these
operators now.

You’ll get to know them
because you’ll see ’em over and over again.

A bool stores true
or false. The !
operator means NOT.
It flips true to
false, and vice versa.

When you use the + operator
with a string, it just puts
two strings together. It’ll
automatically convert
numbers to strings for you.

This sets the
contents of a
TextBlock control
named output to
“hello again hello”.

The “” is an empty string.
It has no characters.
(It’s kind of like a zero
for adding strings.)

Normally, 71 divided by 3 is 23.666666.... But when you’re
dividing two ints, you’ll always get an int result, so 23.666…
gets truncated to 23.

To programmers, the
word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

you are here 4   69

it’s all just code

Debug this!

Flip the page and keep going!

When you set a breakpoint on a line of code, the line turns red and a red dot appears in the margin of the code editor.

When you debug your code by running it inside the IDE, as soon as your program hits a breakpoint it’ll pause and let you inspect and change the values of all the variables.

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

Use the debugger to see your variables change

Create a new Visual C# Windows Store Blank App (XAML) project.
Drag a TextBlock onto your page and give it the name output. Then add a Button and double-click it
to add a method called Button_Click(). The IDE will automatically open that method in the code
editor. Enter all of the code on the previous page into the method.

1

Insert a breakpoint on the first line of code.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug→Toggle Breakpoint or press F9.)

2

Creating a new
Blank App project

will tell the IDE
to create a new

project with a blank
page. You might
want to name it
something like

UseTheDebugger
(to match the
header of this

page). You’ll be
building a whole
lot of programs
throughout the

book, and you may
want to go back to

them later.

Comments (which
either start with two
or more slashes or are
surrounded by /* and
*/ marks) show up
in the IDE as green
text. You don’t have
to worry about what
you type in between
those marks, because
comments are always
ignored by the compiler.

70   Chapter 2

stop bugging me!

Start debugging your program.
Run your program in the debugger by clicking the Start Debugging
button (or by pressing F5, or by choosing Debug→Start Debugging from
the menu). Your program should start up as usual and display the page.

3

Click on the button to trigger the breakpoint.
As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the
current line of code in yellow.

4

Add a watch for the number variable.
Right-click on the number variable (any occurrence of it will do!) and
choose from the menu. The Watch window should appear in
the panel at the bottom of the IDE:

5

Step through the code.
Press F10 to step through the code. (You can also choose Debug→Step Over from
the menu, or click the Step Over button in the Debug toolbar.) The current line
of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

6

Adding a
watch can help
you keep track
of the values of
the variables in
your program.
This will really
come in handy
when your
programs get
more complex.

As soon as the number
variable gets a new
value (15), its watch is
updated.

Continue running the program.
When you want to resume, just press F5 (or Debug→Continue), and the
program will resume running as usual.

7

When you’re debugging a
Windows Store app, you can
return to the debugger by
pressing the Windows logo
key+D. If you’re using a touch
screen, swipe from the left
edge of the screen to the
right. Then you can pause or
stop the debugger using the
Debug toolbar or menu items.

IDE Tip: +D

You can also hover over a
variable while you’re debugging
to see its value displayed in
a tooltip…and you can pin
it so it stays open!

you are here 4   71

it’s all just code

That’s a big part of why
Booleans are so important.
A loop uses a test to figure
out if it should keep looping.

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for—they tell your program to keep executing a certain set
of statements as long as some condition is true (or false!).

while (x > 5)

{

 x = x - 3;

}

for (int i = 0; i < 8; i = i + 2)

{

 // Everything between these brackets
 // is executed 4 times

}

Every for loop has three statements. The first sets
up the loop. It will keep looping as long as the second
statement is true. And the third statement gets
executed after each time through the loop.

In a while loop, all of the
statements inside the curly
brackets get executed as
long as the condition in the
parentheses is true.

Use a code snippet to write simple for loops
You’ll be typing for loops in just a minute, and the IDE can help
speed up your coding a little. Type for followed by two tabs,
and the IDE will automatically insert code for you. If you type
a new variable, it’ll automatically update the rest of the snippet.
Press Tab again, and the cursor will jump to the length.

If you change the variable to
something else, the snippet
automatically changes the
other two occurrences of it.

Press Tab to get the cursor to jump to the length. The number of times this loop runs is determined by whatever you set length to. You can change length to a number or a variable.

Loops perform an act ion over and over
If your brackets (or braces—either name
will do) don’t match up, your program
won’t build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

IDE Tip: Brackets

72   Chapter 2

if/else statements make decisions
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

	 Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals
signs (==) to compare two variables. You won’t believe how many bugs in
programs—even ones made by experienced programmers!—are caused

by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’ to ‘bool’, that’s probably what happened.

if (someValue == 24)

{

 // You can have as many statements
 // as you want inside the brackets

 message = "The value was 24.";

} else {

 message = "The value wasn’t 24.";

}

string message = "";

if (someValue == 24)

{

 message = "The value was 24.";

}

Every if statement
starts with a
conditional test.

The statement inside
the curly brackets is
executed only if the
test is true.

if/else statements are
pretty straightforward.
If the conditional
test is true, the
program executes the
statements between the
first set of brackets.
Otherwise, it executes
the statements between
the second set.

Always use two equals signs to check if

two things are equal to each othe
r.

on one condition

you are here 4   73

it’s all just code

Build an app from the ground up
The real work of any program is in its statements. You’ve already seen how statements fit into a page.
Now let’s really dig into a program so you can understand every line of code. Start by creating a
new Visual C# Windows Store Blank App project. This time, don't delete the MainPage.xaml
file created by the Blank App template. Instead, use the IDE to modify it by adding three rows and
two columns to the grid, then adding four Button controls and a TextBlock to the cells. Build this page

You don’t see anything here, but there’s actually a
TextBlock control. It doesn’t have any text, so it’s
invisible. It’s centered and in the bottom row, with
ColumnSpan set to 2 so it spans both columns.

The page has a grid with three rows
and two columns. Each row definition
has its height set to 1*, which gives

it a <RowDefinition/> without any
properties. The column heights work the

same way.

The page has four Button controls, one in
each row. Use the Content property to
set their text to Show a message, If/else,

Another conditional test, and A loop.

Each button is centered in the cell. Use the
Grid.Row and Grid.Column properties to set
the row and column (they default to 0).

The bottom cell has a TextBlock control
named myLabel. Use its Style property
to set the style to BodyTextBlockStyle.

Use the x:Name property to name the buttons
button1, button2, button3, and button4.
Once they’re named, double-click on each of

them to add an event handler method.

When you see these sneakers, it
means that it’s time for you to
come up with code on your own.

If you need to use the Edit Style right-mouse menu to
set this but you’re having trouble selecting the control,
you can right-click on the TextBlock control in the
Document Outline and choose Edit Style from there.

Make sure you choose a sensible name for this project,
because you’ll refer back to it later in the book.

74   Chapter 2

ready, set, code!

Here’s our solution to the exercise. Does
your solution look similar? Are the line
breaks different, or the properties in a
different order? If so, that’s OK!

Here are the row and
column definitions: three
rows and two columns.

This button is in the
second column and
second row, so these
properties are set to 1.

When you double-clicked
on each button, the IDE
generated a method with
the name of the button
followed by _Click.

Why do you think the left column and top row are given the
number 0, not 1? Why is it OK to leave out the Grid.Row
and Grid.Column properties for the top-left cell?

Here are the
<Page> and <Grid>
tags that the IDE
generated for you
when you created
the blank app.

A lot of programmers don’t use the
IDE to create their XAML—they build
it by hand. If we asked you to type in
the XAML by hand instead of using
the IDE, would you be able to do it?

you are here 4   75

it’s all just code

≥≥ Don’t forget that all your statements
need to end in a semicolon:

	 name = "Joe";

≥≥ You can add comments to your code
by starting them with two slashes:

	 // this text is ignored

≥≥ Variables are declared with a name
and a type (there are plenty of types
that you’ll learn about in Chapter 4):

	 int weight;
	// weight is an integer

≥≥ The code for a class or a method goes
between curly braces:

	 public void Go() {
	 // your code here
	}

≥≥ Most of the time, extra whitespace is
fine:

	 int j = 1234 ;

is the same as:

	 int j = 1234;

private void button1_Click(object sender, RoutedEventArgs e)

{

 // this is a comment

 string name = "Quentin";

 int x = 3;

 x = x * 17;

 double d = Math.PI / 2;

 myLabel.Text = "name is " + name

 + "\nx is " + x

 + "\nd is " + d;

}

A few helpful tips

x is a variable. The “int”
part tells C# that it’s
an integer, and the rest
of the statement sets
its value to 3.

There’s a built-in class called Math, and it’s got a member called PI. Math lives in the System namespace, so the file this code came from needs to have a using System; line at the top.

The \n is an escape sequence
to add a line break to the
TextBlock text.

Make each button do something
Here’s how your program is going to work. Each time you press one
of the buttons, it will update the TextBlock at the bottom (which you
named myLabel) with a different message. The way you’ll do it is
by adding code to each of the four event handler methods that you
had the IDE generate for you. Let’s get started!

Luckily, the IDE generated the using line for you.

This line creates the output of the program: the updated text in the TextBlock named myLabel.

Make button1 update the label.

Go to the code for the button1_Click() method and fill in
the code below. This is your chance to really understand what
every statement does, and why the program will show this output:

Here’s the code for the button:

1

Flip the page to finish your program!

Run your program and make
sure the output matches the
screenshot on this page.

Do this!
When you see a “Do this!”, pop
open the IDE and follow along.
We’ll tell you exactly what to
do, and point out what to look
for to get the most out of
the example we show you.

76   Chapter 2

Set up condit ions and see if they’re true
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

private void button2_Click(object sender, RoutedEventArgs e)
{
 int x = 5;
 if (x == 10)
 {
 myLabel.Text = "x must be 10";
 }
 else
 {
 myLabel.Text = "x isn’t 10";
 }
}

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

the things you can do

Make sure you stop your program before you do this—the IDE won’t let you edit the code while the program’s running. You can stop it by closing the window, using the stop button on the toolbar, or selecting Stop Debugging from the Debug menu.

Use logical operators to check condit ions
You’ve just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few
chapters.

≥≥ The != operator works a lot like ==, except it’s true if the two things
you’re comparing are not equal.

≥≥ You can use > and < to compare numbers and see if one is bigger or
smaller than the other.

≥≥ The ==, !=, >, and < operators are called conditional operators.
When you use them to test two variables or values, it’s called
performing a conditional test.

≥≥ You can combine individual conditional tests into one long test using
the && operator for AND and the || operator for OR. So to check if
i equals 3 or j is less than 5, do (i == 3) || (j < 5).

When you use
a conditional
operator to
compare two
numbers, it’s
called a
conditional test.

First we set
up a variable
called x and
make it equal
to 5. Then we check if it’s
equal to 10.

Set a variable and then check its value.

Here’s the code for the second button. It’s an if/else statement
that checks an integer variable called x to see if it’s equal to 10.

2

you are here 4   77

it’s all just code

private void button3_Click(object sender, RoutedEventArgs e)

{

 int someValue = 4;

 string name = "Bobbo Jr.";

 if ((someValue == 3) && (name == "Joe"))

 {

 myLabel.Text = "x is 3 and the name is Joe";

 }

 myLabel.Text = "this line runs no matter what";

}

This line checks someValue to
see if it’s equal to 3, and then
it checks to make sure name
is “Joe”.

Before you click on the button, read through the code and try to figure out what the
TextBlock will show. Then click the button and see if you were right!

private void button4_Click(object sender, RoutedEventArgs e)
{

 int count = 0;

 while (count < 10)
 {
 count = count + 1;
 }

 for (int i = 0; i < 5; i++)
 {
 count = count - 1;
 }

 myLabel.Text = "The answer is " + count;
}

The second part of the for statement is
the test. It says “for as long as i is les

s than

five, the loop should keep on going.” The
test is run before the code block, and

the
block is executed only if the test is tr

ue.

This sets up the loop.
It just assigns a
value to the integer
that’ll be used in it.

This statement gets executed at
the end of each loop. In this case,
it adds one to i every time the
loop executes. This is called the
iterator, and it’s run immediately
after all the statements in the
code block.

This loop keeps
repeating as long as
the count variable
is less than 10.

Add another conditional test.

The third button makes this output. Then change it so someValue is set to 3 instead of 4. The code inside
the if block doesn't get run—can ypou figure out why? Put a breakpoint on the first statement and step
through the method, using Alt-Tab to switch to the app and back to make sure the TextBlock gets updated.

3

Add loops to your program.

Here’s the code for the last button. It’s got two loops. The first is a while loop, which
repeats the statements inside the brackets as long as the condition is true—do something
while this is true. The second one is a for loop. Take a look and see how it works.

4

78   Chapter 2

More about conditional tests
You can do simple conditional tests by checking the value of a variable using a comparison operator. Here’s how you compare two ints, x and y:
 x < y (less than)
 x > y (greater than)
 x == y (equals - and yes, with two equals signs)

These are the ones you’ll use most often.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will update a TextBlock with text that says

//

myLabel.Text = "The result is " + result;

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

set it to 6
We filled in the
first one for you.

over and over and over and…

you are here 4   79

it’s all just code

Wait up! There’s a flaw in your
logic. What happens to my loop if I

write a conditional test that never
becomes false?

Then your loop runs forever!

Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
goes through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause
the conditional test to eventually return false. But if it
doesn’t, then the loop will keep running until you kill the
program or turn the computer off !

Can you think of a reason that you’d want to write a
loop that never stops running?

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
int count = 5;
while (count > 0) {
 count = count * 3;
 count = count * -1;
}

Loop #2
int i = 0;
int count = 2;
while (i == 0) {
 count = count * 3;
 count = count * -1;
}

Loop #3
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - 1;
 while (j < 25)
 {
 j = j + 5;
 }
}

Loop #5
int p = 2;
for (int q = 2; q < 32;
 q = q * 2)
{
 while (p < q)
 {
 p = p * 2;
 }
 q = p - q;
}

Loop #4

while (true) { int i = 1;}

This is sometimes called an infinit
e loop,

and there are actu
ally times when you’ll

want to use one in y
our program.

Remember, a for loop always
runs the conditional test at the
beginning of the block, and the
iterator at the end of the block.

Hint: p starts out equal to 2. Think about when the iterator “p = p * 2” is executed.

For Loop #3, how
many times will this
statement be executed?

For Loop #5, how
many times will this
statement be executed?

80   Chapter 2

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

// execute these statements as long as

result = result + x; // add x

x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

// start the loop by

// keep looping as long as

// after each loop,

result = result + z; //

}

// The next statement will update a TextBlock with text that says

//

myLabel.Text = "The result is " + result;

set it to 6

x is greater than 3

to the result variable

1 from the value of x

declaring a variable z and setting it to 1
z is less than 3

add 1 to z

The result is 18

add the value of z to result

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
This loop executes once

Loop #2
This loop runs forever

Loop #3
This loop executes 7 times

Loop #4
Another infinite loop

Loop #5
This loop
executes 8 times

if only, but only if

This loop runs twice—first with z set to 1, and
then a second time with z set to 2. Once it hits
3, it’s no longer less than 3, so the loop stops.

Take the time to really figure this one out. Here’s a perfect opportunity to try out the debugger on your own! Set a
breakpoint on the statement q = p - q;. Add watches for the variables p and q and step through the loop.

you are here 4   81

it’s all just code

Q: Is every statement always in a class?

A: Yes. Any time a C# program does something, it’s because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on a control on your page—if you
search through your code you’ll find that the IDE added or changed
statements inside a class somewhere.

Q: Are there any namespaces I’m not allowed to use? Are
there any I have to use?

A: Yes, there are a few namespaces that will technically work, but
which you should avoid. Notice how all of the using lines at the
top of your C# class files always said System? That’s because
there’s a System namespace that’s used by the Windows Store
API and the .NET Framework. It’s where you find all of your important
tools to add power to your programs, like System.Linq, which
lets you manipulate sequences of data, and System.IO, which
lets you work with files and data streams. But for the most part, you
can choose any name you want for a namespace (as long as it only
has letters, numbers, and underscores). When you create a new
program, the IDE will automatically choose a namespace for you based
on the program’s name.

Q: I still don’t get why I need this partial class stuff.

A: Partial classes are how you can spread the code for one class
between more than one file. The IDE does that when it creates
a page—it keeps the code you edit in one file (like MainPage.
xaml), and the code it modifies automatically for you in another file
(MainPage.xaml.cs). You don’t need to do that with a namespace,
though. One namespace can span two, three, or a dozen or more
files. Just put the namespace declaration at the top of the file, and
everything within the curly brackets after the declaration is inside
the same namespace. One more thing: you can have more than one
class in a file. And you can have more than one namespace in a file.
You’ll learn a lot more about classes in the next few chapters.

Q: Let’s say I drag something onto my page, so the IDE
generates a bunch of code automatically. What happens to that
code if I click Undo?

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.
Drag a button on a page, change properties. Then try to undo it.
What happens? For most simple things, you’ll see that the IDE is
smart enough to undo it itself. (For some more complex things, like
working with databases, you might be given a warning message that
you’re about to make a change that the IDE can’t undo. You won’t
see any of those in this book.)

Q: So exactly how careful do I have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It’s really useful to
know what the IDE is doing to your code, and once in a while you’ll
need to know what’s in there in order to solve a serious problem. But
in almost all cases, you’ll be able to do everything you need to do
through the IDE.

¢¢ You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

¢¢ Every statement ends with a semicolon (;).

¢¢ When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

¢¢ Code blocks are surrounded by curly braces { }.
Classes, while loops, if/else statements, and lots of
other kinds of statements use those blocks.

¢¢ A conditional test is either true or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

¢¢ Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

¢¢ A while loop runs everything within its block (defined
by curly braces) as long as the conditional test is true.

¢¢ If the conditional test is false, the while loop code
block won’t run, and execution will move down to the
code immediately after the loop block.

82   Chapter 2

Output:

This magnet didn’t fall off the fridge…

Answers on page 86.

your code…now in magnet form

Code Magnets
Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
output? Some of the curly braces fell on the floor and they were too small
to pick up, so feel free to add as many of those as you need! (Hint: you’ll
definitely need to add a couple. Just write them in!)

The “” is an empty string—it means the
variable result has no characters in it yet.

string result = "";

output.Text = result;

int x = 3;

while (x > 0)

if (x > 2) {

 result = result
+ "a";

}

x = x - 1;

result = result + "-";

if (x == 2) {

 result = result + "b c";

}

if (x == 1) {
 result = result + "d"; x = x - 1;

}

This is a
TextBlock
named “output”
that the
program updates
by setting its
Text property.

you are here 4   83

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

Build this page.
It’s got a grid with two
rows and two columns. Just
use the default page (don't
delete MainPage.xaml and
add a basic page).

Add a TextBlock.
It’s almost identical to the one you
added to the bottom of the page in
the last project. This time, name it
labelToChange and set its Grid.
Row property to "1".

Add a Button and a CheckBox.
You can find the CheckBox control in the toolbox,
just below the Button control. Set the Button’s name
to changeText and the CheckBox’s name to
enableCheckbox. Use the Edit Text right-click
menu option to set the text for both controls (hit
Escape to finish editing the text). Right-click on each
control and chose Reset Layout→All, then make
sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

Set the TextBlock to this message if the user clicks the button but the box IS
NOT checked.
Here’s the conditional test to see if the checkbox is checked:

 enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS checked, change the TextBlock so it
either shows on the lefthand side or on the righthand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and set its HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment.Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend naming
this one “PracticeUsingIfElse”. It helps to put
programs from a chapter in the same folder.

Hint: you’ll put this
code in the else block.

If you create two rows and set one row’s height to 1* in the IDE, it seems to disappear because it’s collapsed to a tiny size. Just set the other row to 1* and it’ll show up again.

84   Chapter 2

Pool Puzzle
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to make a class

that will compile and run. Don’t
be fooled—this one’s harder than it
looks.

Note: each snippet
from the pool can only
be used once!

poem = poem + " ";
poem = poem + "a";
poem = poem + "n";
poem = poem + "an";

x = x + 1;
x = x + 2;
x = x - 2;
x = x - 1;

x > 0
x < 1
x > 1
x > 3
x < 4

poem = poem + "noys ";
poem = poem + "oise ";
poem = poem + " oyster ";
poem = poem + "annoys";
poem = poem + "noise";

int x = 0;
string poem = "";

while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }

}

output.Text = poem;

Output

this puzzle’s tougher than it looks

We included these Pool Puzzle exercises throughout the book
to give your brain an extra-tough workout. If you’re the kind
of person who loves twisty little logic puzzles, then you’ll love
this one. If you’re not, give it a shot anyway—but don’t be
afraid to look at the answer to figure out what’s going on.
And if you’re stumped by a pool puzzle, definitely move on.

Here’s another TextBlock,
and we also gave it the
name “output”.

you are here 4   85

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:
<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true" Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

And here’s the C# code for the button’s event handler method:
private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

We added line breaks as usual to make it easier to read on the page.

If you double-clicked the button in the designer before you set its name, it may have created a Click event handler method called Button_Click_1() instead of changeText_Click().

86   Chapter 2

introducing a different kind of app

This magnet didn’t fall off the fridge…

Code Magnets
Solution

string result = "";

output.Text = result;

int x = 3;

while (x > 0)

if (x > 2) {

 result = result
+ "a";

}

x = x - 1;

result = result + "-";

if (x == 2) {

 result = result + "b c";

}

if (x == 1) {
 result = result + "d"; x = x - 1;

}

The first time through the
loop, x is equal to 3, so this
conditional test will be true.

This statement
makes x equal
to 2 the first
time through
the loop, and
1 the second
time through.

Pool Puzzle
Solution

int x = 0;
string poem = "";

while (x < 4) {

 poem = poem + "a";
 if (x < 1) {
 poem = poem + " ";
 }
 poem = poem + "n";

 if (x > 1) {

 poem = poem + " oyster";

 x = x + 2;
 }
 if (x == 1) {

 poem = poem + "noys ";
 }
 if (x < 1) {

 poem = poem + "oise ";
 }

 x = x + 1;
}
output.Text = poem;

Did you get a different solution? Type it into
the IDE and see if it works! There’s more than
one correct solution to the pool puzzle.

If you want a real challenge, see if you can figure out what that other solution is! Here’s a
hint: there’s another solution that keeps the word fragments in order. If you came up with
that solution instead of the one on this page, see if you can figure out why this one works too.

you are here 4   87

it’s all just code

Windows Desktop apps are easy to build
Windows 8 brought Windows Store apps, and that gave everyone a totally new way
to use software on Windows. But that’s not the only kind of program that you can
create with Visual Studio. You can use Visual Studio for Windows Desktop to build
Windows Desktop applications that run in windows on your Windows 8 desktop.

Windows Desktop apps are an effective learning tool

We’ll spend the next several chapters building programs using Visual Studio
for Windows Desktop before coming back to Windows Store apps. The
reason is that in many ways, Windows Desktop apps are simpler. They may
not look as slick, and more importantly, they don’t integrate with Windows
8 or provide the great, consistent user interface that you get with Windows
Store apps. But there are a lot of important, fundamental concepts that
you need to understand in order to build Windows Store apps effectively.
Windows Desktop programming is a great tool for exploring those
fundamental concepts. We’ll return to programming Windows Store
apps once we’ve laid down that foundation.

This sounds fishy.

Why do I need to learn

more than one way to

build programs?

Another great reason to
learn Windows Desktop
programming is that you
get to see the same thing done more than one way. That’s a really quick way to get concepts into your brain. Flip the page to
see what we mean...

We’ll use Visual Studio
for Windows Desktop
to build programs that
run in windows on your
Windows 8 desktop.

88   Chapter 2

Rebuild your app for Windows Desktop
Start up Visual Studio 2013 for Windows Desktop and create a new project. This
time, you’ll see different options than before. Click on Visual C# and Windows,
and create a new Windows Forms Application project.

When you create a new
project in Visual Studio 2013
Express for Windows Desktop,
you get these options. Choose
Windows Forms Application.

Do this!

Windows Forms Apps start with a form that you can resize.
Your Windows Forms Application has a main window that you design using the designer in the IDE.
Start by resizing it to 500x130. Find the handle on the form in the Designer window and drag to resize it.
As you drag it, keep an eye on the changing numbers in the status bar in the IDE that show you the new
size. Keep dragging until you see in the status bar.

1

Keep dragging these handles
until your form is the right size.

Here’s what your
form should look
like after you
resize it.

this looks oddly familiar

Normally you
should choose
a better name
than “Chapter
2 - Program
4,” but we’re
specifically using
a name with
spaces and a
hyphen for this
project so you
can see what
it does to the
namespace.

you are here 4   89

it’s all just code

	 Make sure you’re
using the right
Visual Studio

If you’re using the
Express edition of Visual Studio
2013, you’ll need to install two
editions. You’ve been using Visual
Studio 2013 for Windows to build
Windows Store apps. Now you’ll
need to use Visual Studio 2013
for Windows Desktop. Luckily,
both Express editions are available
for free from Microsoft.

Change the title of your form.
Right now the form has the default title (“Form1”). You can
change that by clicking on the form to select it, and then
changing the Text property in the Properties window.

2

Add a button, checkbox, and label.
Open up the toolbox and drag a Button, CheckBox, and
Label control onto your form.

3

You can expand the toolbox by choosing “Toolbox” from
the View menu, or by clicking on the Toolbox tab on the
side of the IDE. You can keep it from disappearing by
clicking the pushpin icon () on the Toolbox window. You
can also drag the window title so that it floats over the IDE.

On the next page you’ll use the Properties window
to change the text on each control, and to set the
CheckBox control’s state to checked. See if you can
figure out how to do that before you flip the page!

These spacer lines help you position your controls as you drag them around.

The IDE helps you align your controls by displaying alignment lines as you drag them around the form.

Hint: you’ll need to use the AutoSize property
to get the Label control to look right.

90   Chapter 2

Add the event handler method for your button.
Double-click on the button to make the IDE add an event handler method. Here’s the code:

5

When you double-clicked on the
button, the IDE generated this
event handler and named it
changeText_Click() to match your
button’s name, changeText.

Here’s the code
for the event
handler method.
Take a careful
look—can you see
what’s different
from the similar
code you added
for the exercise?

Use the Properties window to set up the controls.
Click on the Button control to select it. Then go to the Properties window and set its Text property:

Change the Text property for the CheckBox control and the Label control so they match the screenshot on
the next page, and set the CheckBox’s Checked property to True. Then select the Label control and set the

TextAlign control to MiddleCenter. Use the Properties window to
set the names of your controls. Name the Button changeText,
set the CheckBox control’s name to enableCheckbox, and
name the Label control labelToChange. Look at the code below
carefully and see if you can see how those names are used in the code.

Change the AutoSize property on the Label control to False.
Labels normally resize themselves based on their contents. Disabling
AutoSize to true causes the drag handles to show up. Drag it so
it’s the entire width of the window.

4

déjà vu

you are here 4   91

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show("This is a message");

		 }

	 }

}

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you. Can
you guess what the last annotation should say?

C# classes have these “using”
lines to add methods from
other namespaces

Solution on page 95

Here’s a hint. You haven’t seen MessageBox yet, but
it’s something that a lot of desktop apps use. Like
most classes and methods, it has a sensible name.

Debug your program in the IDE.

When you do, the IDE will build your
program and run it, which pops up the
main window that you built. Try clicking
the button and checkbox.

When label changing is
enabled, the label shows
either Left or Right
with matching alignment.
If it’s disabled, it shows
a message that’s centered.

Click the
checkbox to
enable or
disable label
changing.

92   Chapter 2

Your desktop app knows
where to start

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Chapter_2___Program_4
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.

 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());
 }
 }
}

When you created the new Windows Forms
Application project, one of the files the IDE added
was called Program.cs. Go to the Solution Explorer and
double-click on it. It’s got a class called Program, and
inside that class is a method called Main(). That
method is the entry point, which means that it’s the
very first thing that’s run in your program.

This statement creates and
displays the form, and ends the
program when the form’s closed.

I do declare!
The first part of every class or method is called a declaration.

Remember, this is just a starting point for you to dig into the code. But before you do, you’ll need to know what you’re looking at.

a closer look

1

2

3

4

5

Your Code Up Close

The IDE generated this namespace based on

the project name. We named ours “Chapter

2 - Program 4,” so this is the namespace the

IDE generated for us. We chose a name with

spaces and a hyphen to show you how the IDE

converts them to underscores in the namespace.

Every time you run your program, it starts here, at the entry point.

Here’s some code the IDE built for you
automatically in the last chapter. You’ll
find it in Program.cs.

Lines that begin with two or more slashes are comments, which you can add anywhere you want. The slashes tell C# to ignore them.

		 Desktop apps are different,
and that’s good for learning.

Windows Desktop applications
are a lot less slick than Windows

Store apps because it’s much harder (but not
impossible) to build the kinds of advanced user
interfaces that Windows Store apps give you. And
that’s a good thing for now! Because they’re simple
and straightforward, desktop apps are a great
tool for learning the core C# concepts, and that
will make it much easier for you to understand
Windows Store apps when we return to them later.

you are here 4   93

it’s all just code

Every desktop app must
have exactly one method
called Main. That method
is the entry point for
your code.
When you run your code,
the code in your Main()
method is executed FIRST.

Namespaces let you use the same name in different programs, as long as those programs aren’t also in the same namespace.

C# and .NET have lots of built-in features.

You’ll find lines like this at the top of almost every C# class file.
System.Windows.Forms is a namespace. The using
System.Windows.Forms line makes everything in that
namespace available to your program. In this case, that namespace
has lots of visual elements in it, like buttons and forms.

1

The IDE chose a namespace for your code.

Here’s the namespace the IDE created for you—it chose a
namespace based on your project’s name. All of the code in your
program lives in this namespace.

2

Your code is stored in a class.

This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the
form called Form1.

3

This code has one method, and it
contains several statements.

A namespace has classes in it, and classes have methods.
Inside each method is a set of statements. In this
program, the statements handle starting up the form.
You already know that methods are where the action
happens—every method does something.

4

Each desktop app has a special kind
of method called the entry point.

Every desktop app must have exactly one method
called Main. Even though your program has a lot
of methods, only one can be the first one that gets
executed, and that’s your Main method. C# checks
every class in your code for a method that reads
static void Main(). Then, when the program
is run, the first statement in this method gets executed,
and everything else follows from that first statement.

5

You can have multiple
classes in a single namespace.

Your programs will use more and more
namespaces like this one as you learn
about C# and .NET’s other built-in
features throughout the book.

Technically, a program can have more
than one Main() method, and you can

tell C# which one is the entry point…

but you won’t need to do that now.

If you didn’t specify the “using” line,
you’d have to explicitly type out System.
Windows.Forms every time you use
anything in that namespace.

These are some of the “nuts and bolts” of desktop apps. You’ll play with them on the next few pages
so you can see what’s going on behind the scenes. But most of the work you do on desktop apps will
be done by dragging controls out of the toolbox and onto a form—and, obviously, editing C# code.

94   Chapter 2

You can change your
program’s entry point
As long as your program has an entry point, it doesn’t matter
which class your entry point method is in, or what that method
does. There’s nothing magical or mysterious about how it works,
or how your desktop app runs. You can prove it to yourself by
changing your program’s entry point.

Now let’s create a new entry point. Add a new class called AnotherClass.cs. You add a
class to your program by right-clicking on the project name in the Solution Explorer and
selecting “Add→Class…”. Name your class file AnotherClass.cs. The IDE will add a class to
your program called AnotherClass. Here’s the file the IDE added:

2

Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

3

class AnotherClass
{
 public static void Main()
 {
 MessageBox.Show("Pow!");
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter_2___Program_4
{
 class AnotherClass
 {
 }
}

These four standard using lines
were added to the file.

The IDE automatically named the class based on the filename.

This class is in the same
namespace that the IDE
added when you first
created the project.

Add this method to the AnotherClass class by typing it in between the curly brackets:4

MessageBox is a class that lives
in the System.Windows.Forms
namespace, which is why you had
to add the using line in step #3.
Show() is a method that’s part of
the MessageBox class.

classy things

Do this!

Right-click on the
project in Properties
and select “Add” and
“Class…”

C# is case-sensitive! Make sure your upper- and lowercase letters match the example code.

Go back to the program you just wrote. Edit Program.cs and change the
name of the Main() method to NotMain(). Now try to build and
run your program. What happens? Can you guess why it happened?

1

you are here 4   95

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show("This is a message");

		 }

	 }

}

Now run it!

So what happened?
Instead of popping up the app you wrote, your program
now shows this message box. When you made the new
Main() method, you gave your program a new entry
point. Now the first thing the program does is run the
statements in that method—which means running that
MessageBox.Show() statement. There’s nothing else
in that method, so once you click the OK button, the
program runs out of statements to execute and then it ends.

Figure out how to fix your program so it pops up the app again.5 Hint: you only have
to change two lines in
two files to do it.

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces.

All of the code lives in
classes, so the program
needs a class here.

This is a statement.
When it’s executed,
it pops up a little
window with a
message inside of it.

This class has one method.
Its name is “DoSomething,”
and when it’s called it pops
up a MessageBox.

Solution

Desktop apps use MessageBox.Show() to
pop up windows with messages and alerts.

96   Chapter 2

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new
Windows Forms Application project, and see for yourself.

Open up the designer code.
Open the Form1.Designer.cs file in the IDE. But this time, instead of opening it in the
Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting View Code. Look for the Form1 class declaration:

1

partial class Form1
Notice how it’s a partial class? We’ll talk about that in a minute.

Find and expand the designer-generated code for the PictureBox.
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the + on the lefthand side of the line to expand the code. Scroll down and find these lines:

3

//

// pictureBox1

//

this.pictureBox1.Image = ((System.Drawing.Image)(resources.GetObject("pictureBox1.Image")));

this.pictureBox1.Location = new System.Drawing.Point(416, 160);

this.pictureBox1.Name = "pictureBox1";

this.pictureBox1.Size = new System.Drawing.Size(141, 147);

this.pictureBox1.TabIndex = 0;

this.pictureBox1.TabStop = false;

Don’t worry if the numbers in
your code for the Location and
Size lines are a little different
than these. They’ll vary depending
on where you dragged your
PictureBox control.

let’s dig in

When you change things in the IDE,
you’re also changing your code

Do this!

Click on the plus sign.

Open up the Form designer and add a PictureBox to your form.
Get used to working with more than one tab. Go to the Solution Explorer and open up the Form designer
by double-clicking on Form1.cs. Drag a new PictureBox control out of the toolbox and onto the form. A
PictureBox control displays a picture, which you can import from an image file.

2

You can choose the image for the PictureBox by selecting
it and clicking the “Choose Image...” link in the Properties
window to pop up a window that lets you select the image
to load. Choose any image file on your computer!

Select “Local resource” and
click the Import... button
to pop up a dialog to find
the image file to import.

If you double-click on Form1.resx in the Solution Explorer, you’ll see the image that you
imported. The IDE imported our image and named it “pictureBox1.Image”—and here’s the
code that it generated to load that image into the PictureBox control so it’s displayed.

you are here 4   97

it’s all just code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

There’s nothing more attractive to a kid than a big sign that says, “Don’t touch
this!” Come on, you know you’re tempted…let’s go modify the contents of that
method with the code editor! Add a button to your form called button1
(you’ll need to switch back to the designer), and then go ahead and do this:

Change the code that sets the BUTTON1.TEXT
property. What do you think it will do to the
Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

Stay in the designer, and use the Properties
window to change the NAME property to
something else.
See if you can find a way to get the IDE to change the Name property. It’s in
the Properties window at the very top, under “(Name)”. What happened to
the code? What about the comment in the code?

Go back to the designer, and change the button’s
BACKCOLOR property to something else.
Look closely at the Form1.Designer.cs code. Were any lines added?

You don’t have to save the
form or run the program
to see the changes. Just
make the change in the code
editor, and then click on
the tab labeled “Form1.cs
[Design]” to flip over to the
form designer—the changes
should show up immediately.

It’s always easier to use the IDE to change your form’s designer‑generated
code. But when you do, any change you make in the IDE ends up as a change
to your project’s code.

Wait, wait ! What did that say?
Scroll back up for a minute. There it is, at the top of the Windows
Form Designer–generated code section: Most comments only start

with two slashes (//).
But the IDE sometimes
adds these three-slash
comments.

These are XML comments,
and you can use them to
document your code. Flip to
“Leftovers” section #2 in the
Appendix of this book to learn
more about them.

Q: I don’t quite get what the entry point is. Can you
explain it one more time?

A: Your program has a whole lot of statements in it, but
they’re not all run at once. The program starts with the first
statement in the program, executes it, and then goes on to the

next one, and the next one, etc. Those statements are usually
organized into a bunch of classes. So when you run your
program, how does it know which statement to start with?

That’s where the entry point comes in. The compiler will not build
your code unless there is exactly one method called Main(),
which we call the entry point. The program starts running with the
first statement in Main().

1

2

4

Change the code that sets the LOCATION
property to (0,0) and the Size property to make
the button really big.
Did it work?

3

98   Chapter 2

this.BackColor = Color.FromArgb(c, 255 - c, c);

Application.DoEvents();

Here’s the form
to build.

1

Make the form background go all
psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable c go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

2

Make it slower.
Slow down the flashing by adding this line after the
Application.DoEvents() line:

3

I’m tickled pink!
The .NET Framework has a bunc

h

of predefined
colors like Blue and

Red, but it also
 lets you make

your own colors using t
he Color.

FromArgb() method, by spec
ifying

three numbers: a red valu
e, a

green value, an
d a blue value.

This line tells the program to stop your loop momentarily and do the other things it needs to do, like refresh the form, check for mouse clicks, etc. Try taking out this line and see what happens. The form doesn’t redraw itself, because it’s waiting until the loop is done before it deals with those events.

System.Threading.Thread.Sleep(3); This statement inserts a 3 millisecond

delay in the loop. It’s a part
of the

.NET Framework, and it’s in the
System.Threading namespace.

Here’s a hint for this exercise: if you declar
e a variable inside

a for loop—for (int c = 0; …)—then that variable’s only valid

inside the loop’s curly brackets. So if you h
ave two for loops that

both use the variable, you’ll either declare
it in each loop or have

one declaration outside the loop. And if the variable c is already

declared outside of the loops, you can’t us
e it in either one.

ooh, pretty!

Desktop apps aren’t nearly as easy to animate as Windows Store apps,
but it’s definitely possible! Let’s build something flashy to prove it.
Start by creating a new Windows Forms Application.

For now, you’ll use Application.DoEvents() to make sure
your form stays responsive while it’s in a loop, but it’s
kind of a hack. You shouldn’t use this code outside of a
toy program like this. Later on in the book, you’ll learn
about a much better way to let your programs do more
than one thing at a time!

Make the button bigger
by clicking on a corner
handle and dragging it.

you are here 4   99

it’s all just code

Make it smoother.
Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

4

Keep it going.
Surround your two loops with another loop that continuously executes and doesn’t
stop, so that when the button is pressed, the background starts changing colors and
then keeps doing it. (Hint: the while (true) loop will run forever!)

5 When one loop is inside another
one, we call it a “nested” loop.

Make it stop.
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

 while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except…there’s a
delay of a few seconds before the IDE goes back to edit mode.

6

Uh oh! The program doesn’t stop!
Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
is still running. You need to actually stop the program using the square stop
button in the IDE (or select Stop Debugging from the Debug menu).

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

Hint: the && operator means “AND.” It’s how you string a bunch of conditional tests together into one big test that’s true only if the first test is true AND the second is true AND the third, etc. And it’ll come in handy to solve this problem.

When you’re checking a Boolean value like Visible in an if statement or a loop, sometimes it’s tempting to test for (Visible == true). You can leave off the “== true”—it’s enough to include the Boolean.

When you’re working with a
form or control, Visible is
true as long as the form or
control is being displayed. If
you set it to false, it makes
the form or control disappear.

Remember, to create a Windows Forms
Application you need to be using Visual
Studio for Windows Desktop.

100   Chapter 2

private void button1_Click(object sender, EventArgs e) {

 while (Visible) {

 for (int c = 0; c < 254 && Visible; c++) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 for (int c = 254; c >= 0 && Visible; c--) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 }

}

Sometimes we won’t show you the entire code in the solution, just the bits that changed. All of the logic in the FlashyThing project is in this button1_Click() method that the IDE added when you double-clicked the button in the form designer.

Was your code a little different than ours? There’s more than one way to
solve any programming problem (e.g., you could have used while loops instead
of for loops). If your program works, then you got the exercise right!

We fixed the extra delay by
using the && operator to make
each of the for loops also check
Visible. That way the loop ends
as soon as Visible turns false.

The outer loop
keeps running as
long as the form
is visible. As soon
as it’s closed,
Visible is false,
and the while
will stop looping.

The first for loop makes the colors cycle one way, and the second for loop reverses them so they look smooth.

When the IDE added this method, it added an extra
return before the curly bracket. Sometimes we’ll put the
bracket on the same line like this to save space—but C#
doesn’t care about extra space, so this is perfectly valid.

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by
adding && Visible to the conditional test in each for loop.

We used &&
Visible instead
of && Visible
== true. It’s
just like saying
“if it’s visible”
instead of “if
it’s true that
it’s visible”—they
mean the same
thing.

Consistency is generally really important to make it easy
for people to read code. But we’re purposefully showing you
different ways, because you’ll need to get used to reading
code from different people using different styles.

exercise solution

this is a new chapter   101

objects: get oriented!3

Making code make sense

Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

...and that’s
why my Husband

class doesn’t have a
HelpOutAroundTheHouse()

method or a
PullHisOwnWeight()

method.

102   Chapter 3

How Mike thinks about his problems
Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

This is Frank Loudly
with your eye-in-the-sky shadow
traffic report. It looks like a
three-car pileup on Liberty has
traffic backed up all the way to

32nd Street.

I’ll take the
31st Street bridge, head

up Liberty Avenue, and go
through Bloomfield.

No problem. If
I take Route 28

instead, I’ll
still be on time!

Mike figures out the route he’ll take to get to the interview.1

Good thing he had his radio on. There’s
a huge traffic jam that’ll make him late!

2

Mike comes up with a new route to get
to his interview on time.

3

Mike sets his destination, then comes up with a route.

Mike gets new
information about a

street he needs to
 avoid.

Now he can come up
with a new route to
the interview.

mike’s going places

you are here 4   103

objects: get oriented!

How Mike’s car navigat ion system thinks about his problems
Mike built his own GPS navigation system, which he
uses to help him get around town.

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

SetDestination("Fifth Ave & Penn Ave");
string route;
route = GetRoute();

"Take 31st Street Bridge to Liberty Avenue to Bloomfield"

string route;
route = GetRoute();

"Take Route 28 to the Highland Park Bridge to Washington Blvd"

ModifyRouteToAvoid("Liberty Ave");

The navigation system sets
a destination and comes up
with a route.

Mike’s navigation system solves the street
navigation problem the same way he does.

The navigation system gets new information about a street it needs to avoid.

Now it can come up with a new

route to the dest
ination.

Here’s the output from the
GetRoute() method—it’s
a string that contains the
directions Mike should follow.

GetRoute() gives a new route that doesn’t include the
street Mike wants to avoid.

Here’s a diagram of a class
in Mike’s program. It shows
the name on top, and the
methods on the bottom.

104   Chapter 3

Some methods have a return value
Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

The return statement tells the method to immediately exit. If your method doesn’t
have a return value—which means it’s declared with a return type of void—then
the return statement doesn’t need any values or variables (“return;”), and you
don’t always have to have one in your method. But if the method has a return type,
then it must use the return statement.

Here’s a statement that calls a method to multiply two numbers. It returns an int:

Mike’s Navigator class has methods to set and modify routes
Mike’s Navigator class has methods, which are where the action happens. But unlike the
button_Click() methods in the forms you’ve built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination() method to set the destination, and
then uses the GetRoute() method to put the route into a string. If he needs to change the
route, his program calls the ModifyRouteToAvoid() method to change the route so that
it avoids a certain street, and then calls the GetRoute() method to get the new directions.

class Navigator {

 public void SetCurrentLocation(string locationName) { ... }

 public void SetDestination(string destinationName) { ... }

 public void ModifyRouteToAvoid(string streetName) { ... }

 public string GetRoute() { ... }

} This is the return type of the method. It means that the statement calling the GetRoute() method can use it to set a string variable that will contain the directions. When it’s void, that means the method doesn’t return anything.
string route =
 GetRoute();

Mike chose method
names that would make
sense to someone who
was thinking about how
to navigate a route
through a city.

public int MultiplyTwoNumbers(int firstNumber, int secondNumber) {

 int result = firstNumber * secondNumber;

 return result;

}

int myResult = MultiplyTwoNumbers(3, 5);

Here’s an example of a method
that has a return type—it
returns an int. The method uses
the two parameters to calculate
the result.

Methods can take values
like 3 and

5. But you can also use var
iables to

pass values to a method.

set methods and modify routes

This return statement passes the value back
to the statement that called the method.

you are here 4   105

objects: get oriented!

Create a new Windows Forms Application project in the IDE. Then add a class file to it
called Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class…”
from the Add menu. When you name your new class file “Talker.cs,” the IDE will automatically
name the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

1

Use what you’ve learned to build a program that uses a class
Let’s hook up a form to a class, and make its button call a method inside that class. Do this!

Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = "";
 for (int count = 0; count < numberOfTimes; count++)
 {
 finalString = finalString + thingToSay + "\n";
 }
 MessageBox.Show(finalString);
 return finalString.Length;
 }
}

2

The BlahBlahBlah() method’s return value is an
integer that has the total length of the message it
displayed. You can add “.Length” to any string to
figure out how long it is.

This line of code adds the
contents of thingToSay and a line break (“\n”) onto the end of it to the finalString variable.

This is called a property. Every string
has a property called Length. When it
calculates the length of a string, a line
break (“\n”) counts as one character.

This statement
declares a finalString
variable and sets it
equal to an empty
string.

Flip the page to keep going!

¢¢ Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

¢¢ Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
“public int” returns an int value. Here’s an example of a statement that returns an int value: return 37;

¢¢ When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you’ve got a method that’s declared “public string” then you need a return statement that returns a string.

¢¢ As soon as a return statement in a method executes, your program jumps back to the statement that called the method.

¢¢ Not all methods have a return type. A method with a declaration that starts “public void” doesn’t return anything at
all. You can still use a return statement to exit a void method: if (finishedEarly) { return; }

106   Chapter 3

introducing objects

Make your project’s form look like this.

Then double-click on the button and have it run this code that calls BlahBlahBlah() and assigns its return
value to an integer called len:

private void button1_Click(object sender, EventArgs e)
{
 int len = Talker.BlahBlahBlah(textBox1.Text, (int)numericUpDown1.Value);
 MessageBox.Show("The message length is " + len);
}

3

This is a NumericUpDown control. Set its Minimum property to 1, its Maximum property to 10, and its Value property to 3.

Set the default
text of this
TextBox control to
“Hello!” using its Text
property.

Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the
form pops up the second one.

4

The BlahBlahBlah() method
pops up this message box
based on what’s in its
parameters.

When the
method returns
a value, the form
pops it up in this
message box.

So what did you just build?
The new class has one method called BlahBlahBlah() that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say
it. When it’s called, it pops up a message box with the message repeated a number of times.
Its return value is the length of the string. The method needs a string for its thingToSay
parameter and a number for its numberOfTimes parameter. It’ll get those parameters
from a form that lets the user enter text using a TextBox control and a number using a
NumericUpDown control.

Now add a form that uses your new class!

You can add a class to your project and share
its methods with the other classes in the project.

To turn off
the minimize

and maximize
buttons, set
the form’s

MaximizeBox
and

MinimizeBox
properties to

False.

The length is 21 because “Hello!”
is six characters, plus the \n
counts as another character,
which gives 7 x 3 = 21.

you are here 4   107

objects: get oriented!

It’d be great if I
could compare a few

routes and figure out
which is fastest....

Mike gets an idea
The interview went great! But the traffic
jam this morning got Mike thinking about
how he could improve his navigator.

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator2

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator3

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He could create three different Navigator classes…
Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

Whoa, that can’t be right!
What if I want to change a
method? Then I need to go

back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you have to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of people, or aliens,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

This box is a class diagram. It lists
all of the methods in a class, and
it’s an easy way to see everything
that it does at a glance.

108   Chapter 3

for instance…

new Navigator()

new
 Na

vig
ato

r()

Navigator obj
e c

tnavigator3

Mike can use objects to solve his problem
Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

Navigator obj
e c

tnavigator1

Navigator obj
e c

t

navigator2

new Navigator()

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator navigator1 = new Navigator();

navigator1.SetDestination("Fifth Ave & Penn Ave");

string route;

route = navigator1.GetRoute();

All you need to create an
object is the new keyword
and the name of a class.

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

This is the Navigator class

in Mike’s program. It lists

all of the methods that a

Navigator object
can use.

Mike needed to compare
three different routes
at once, so he used
three Navigator objects
at the same time.

you are here 4   109

objects: get oriented!

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class
becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

110   Chapter 3

objects improve your code

House object

115 Maple
Drive

When you create a new object from a class,
i t’s called an instance of that class

Check it out for yourself!

Open any project that uses a button called button1,
and use the IDE to search the entire project for the
text “button1 = new”. You’ll find the code that
the IDE added to the form designer to create the
instance of the Button class.

in-stance, noun.
an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another.

Do this!

Guess what…you already know this stuff ! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label
class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls
it button1. When you drag another button out of the toolbox,
it creates another instance called button2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: here’s a picture of your
computer’s memory when your
program starts.

After: now it’s
got an instance
of the House
class in memory.

House mapleDrive115 = new House();

Your program executes a new statement.

you are here 4   111

objects: get oriented!

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator obj
e c

tnavigator1

3.5 miles

A better solut ion…brought to you by objects!
Mike came up with a new route comparison program that uses objects to find
the shortest of three different routes to the same destination. Here’s how he
built his program.

string destination = textBox1.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

route = navigator1.GetRoute();

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He created a Navigator object and set its destination.2

Mike set up a GUI with a textbox—textBox1 contains the destination for the three routes.
Then he added textBox2, which has a street that one of the routes should avoid; and
textBox3, which contains a different street that the third route has to include.

1

Then he added a second Navigator object called navigator2. He
called its SetDestination() method to set the destination, and
then he called its ModifyRouteToAvoid() method.

3

The third Navigator object is called navigator3. Mike set its
destination, and then called its ModifyRouteToInclude() method.

4

The SetDestination(),

ModifyRouteToAvoid(), and

ModifyRouteToInclude()

methods all take a st
ring as a

parameter.

Now Mike can call each object’s TotalDistance() method to figure
out which route is the shortest. And he only had to write the code once,
not three times!

5

Any time you
create a new
object from a
class, it’s called
creating an
instance of
that class.

GUI stands for Graphical User Interface, which is what you’re building when you make a form in the form designer.

The navigator1
object is an
instance of the
Navigator class.

112   Chapter 3

a little head first secret sauce

Wait a minute! You
didn’t give me nearly enough

information to build the
navigator program.

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

Theory and pract ice
Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the
course of a few pages, using pictures and short code excerpts to demonstrate the
idea. This is your opportunity to take a step back and try to understand what’s
going on without having to worry about getting a program to work.

House object

115 Maple
DriveWhen we’re introducing a new concept

(like objects), keep your eyes open for
pictures and code excerpts like this.

House mapleDrive115 = new House();

After we’ve introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—like the
Sharpen your pencil exercise on the next page. Other times, we’ll jump straight
into code. This combination of theory and practice is an effective way to get
these concepts off of the page and stuck in your brain.

A lit t le adv ice for the code exercises
If you keep a few simple things in mind, it’ll make the code exercises go
smoothly:

≥≥ It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

≥≥ It’s much better to look at the solution than to get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn.

≥≥ All of the code in this book is tested and definitely works in Visual
Studio 2012! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L).

≥≥ If your solution just won’t build, try downloading it from the Head
First Labs website: http://www.headfirstlabs.com/hfcsharp

When you run into
a problem with
a coding exercise,
don’t be afraid
to peek at the
solution. You can
also download the
solution from the
Head First Labs
website.

you are here 4   113

objects: get oriented!

Follow the same steps that Mike followed earlier in the chapter to write
the code to create Navigator objects and call their methods.

string destination = textBox1.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and
use its TotalDistance() method to set an integer variable called distance2.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the text boxes.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method,
and use its TotalDistance() method to set an integer variable called distance3.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

114   Chapter 3

string destination = textBox1.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

Follow the same steps that Mike followed earlier in the chapter to write
the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and
use its TotalDistance() method to set an integer variable called distance2.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method,
and use its TotalDistance() method to set an integer variable called distance3.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

new Navigator()

SetDestination(destination);

ModifyRouteToAvoid(route2StreetToAvoid);

navigator2.TotalDistance();

Navigator navigator3 = new Navigator()

navigator3.SetDestination(destination);

navigator3.ModifyRouteToInclude(route3StreetToInclude);

int distance3 = navigator3.TotalDistance();

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the text boxes.

you are here 4   115

objects: get oriented!

Yes! That’s why you used the static keyword in your methods.

Take another look at the declaration for the Talker class you built a few pages ago:

 class Talker
 {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = "";

When you called the method, you didn’t create a new instance of Talker. You just did this:

 Talker.BlahBlahBlah("Hello hello hello", 5);

That’s how you call static methods, and you’ve been doing that all along. If you take away
the static keyword from the BlahBlahBlah() method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and
they live in classes.

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a nonstatic
method to a static class, it won’t compile.

I’ve written a few classes now, but I
haven’t used “new” to create an instance
yet! So does that mean I can call methods

without creating objects?

Q: When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean nonstatic
methods can change, but static methods don’t? Do they
behave differently?

A: No, both static and nonstatic methods act exactly the
same. The only difference is that static methods don’t require
an instance, while nonstatic methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q: So I can’t use my class until I create an instance of
an object?

A: You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

Q: Then why would I want a method that needs an
instance? Why wouldn’t I make all my methods static?

A: Because if you have an object that’s keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid() method
in the navigator2 instance, it only affected the route
that was stored in that particular instance. It didn’t affect the
navigator1 or navigator3 objects. That’s how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?

A: Turn the page and find out!

116   Chapter 3

An instance uses f ie lds to keep track of things
You change the text on a button by setting its Text property in the
IDE. When you do, the IDE adds code like this to the designer:

 button1.Text = "Text for the button";

Now you know that button1 is an instance of the Button class.
What that code does is modify a field for the button1 instance.
You can add fields to a class diagram—just draw a horizontal line in
the middle of it. Fields go above the line, methods go underneath it.

Technically, it’s setting a property. A property is very similar to a field—but we’ll get into all that a little later on.

Class

Field1
Field2
Field3

Method1()
Method2()
Method3()

Methods are what an object does. Fields are what the object knows.
When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator2 instance and called its SetDestination() method, it set the destination for that
one instance. But it didn’t affect the navigator1 instance or the navigator3 instance.

An object’s behavior is defined by its methods,
and it uses fields to keep track of its state.

This is where a class
diagram shows the
fields. Every instance
of the class uses
them to keep track
of its state.

Add this line to
separate the fields from the methods.

Navigator

Destination
Route

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Every instance of Navigator knows
its destination and its route.

What a Navigator object does is let you set a destination, modify its route, and get information about that route.

an object’s state of affairs

you are here 4   117

objects: get oriented!

Clown

Name
Height

TalkAboutYourself()

Let’s create some instances!
It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

class Clown {
 public string Name;
 public int Height;

 public void TalkAboutYourself() {
 MessageBox.Show("My name is "
 + Name + " and I’m "
 + Height + " inches tall.");
 }
}

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Remember, when you see “void” in front of a method, it means that it doesn’t return any value.

When you want to create instances
of your class, don’t use the static
keyword in either the class declaration or the method declaration.

Remember, the *= operator tells C#
to take whatever’s on the left of the
operator and multiply it by whatever’s
on the right.

118   Chapter 3

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Each of these new statements creates an instance of the Clown class by reserving a chunk of memory on the heap for that object and filling it up with the object’s data.

Boffo

Biff

Biff

Biff

14

16

11

32

Thanks for the memory
When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the
heap so it can store the data for that object.

Let’s take a closer look at what happened here

Here’s a picture of the heap before the
project starts. Notice that it’s empty.

When your program creates a new object, it gets added to the heap.

toss it in the heap

you are here 4   119

objects: get oriented!

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

32

Clown object
 #

 1
“Boffo”

14

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 1

Clown oneClown = new Clown();

oneClown.Name = "Boffo";

oneClown.Height = 14;

oneClown.TalkAboutYourself();

1

Clown anotherClown = new Clown();

anotherClown.Name = "Biff";

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

2

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

3

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

4

What’s on your program’s mind
Here’s how your program creates a new instance of the
Clown class:

 Clown myInstance = new Clown();

That’s actually two statements combined into one. The
first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new
object and assigns it to the variable that was just created
(myInstance = new Clown();). Here’s what the heap
looks like after each of these statements:

The first objec
t

is created, an
d its

fields are set
.

These statements create
the second object and fill it
with data.

Then the third Clown object is

created and populated.

There’s no “new” statement, which
means these statements don’t create a
new object. They’re just modifying one
that’s already in memory.

This object is an instance of the
Clown class.

“Boffo”

14

120   Chapter 3

You can use class and method
names to make your code intuit i ve
When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

int t = m.chkTemp();
if (t > 160) {
 T tb = new T();
 tb.clsTrpV(2);
 ics.Fill();
 ics.Vent();
 m.airsyschk();
}

Here’s a nice, compact chunk of code. It’s from a control program that
runs a machine that makes candy bars.

1

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to
read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

2

General Electronics Type 5 Candy Bar Maker

Specification Manual

The nougat temperature must be checked every 3 minutes by an

automated system. If the temperature exceeds 160°C, the candy

is too hot, and the system must perform the candy isolation

cooling system (CICS) vent procedure.

•	 Close the trip throttle valve on turbine #2.

•	 Fill the isolation cooling system with a solid stream of water.

•	 Vent the water.

•	 Verify that there is no evidence of air in the system.

How do you figure out what

your code is supposed to
 do?

Well, all code is written for

a reason. So it’s up to y
ou to

figure out that reason!
In this

case, we can look up the page

in the specification manual
that the programmer followed.

Take a second and look at that code. Can you figure out what it does?

The clsTrpV()
method has one
parameter, but we
don’t know what
it’s supposed to be.

The chkTemp() method returns an integer…but what does it do?

making methods make sense

“tb”, “ics”, and “m”
are terrible names!
We have no idea
what they do. And
what’s that T class
for?

Great developers
write code
that’s easy to
understand.
Comments can
help, but nothing
beats choosing
intuitive names
for your methods,
classes, variables,
and fields.

you are here 4   121

objects: get oriented!

public void DoCICSVentProcedure() {
 Turbine turbineController = new Turbine();
 turbineController.CloseTripValve(2);
 IsolationCoolingSystem.Fill();
 IsolationCoolingSystem.Vent();
 Maker.CheckAirSystem();
}

public boolean IsNougatTooHot() {
 int temp = Maker.CheckNougatTemperature();
 if (temp > 160) {
 return true;
 } else {
 return false;
 }
}

That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
is too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

3

You can make your code easier to read and write by thinking about
the problem your code was built to solve. If you choose names for your
methods that make sense to someone who understands that problem,
then your code will be a lot easier to decipher...and develop!

What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

4

Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

5

if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
}

This method’s return type is
Boolean, which means it returns a
true or false value.

A void return type means the method doesn’t return any value at all.

The IsNougatTooHot()
method’s return type By naming the class “Maker” and the

method “CheckNougatTemperature”,
we make the code a lot easier to
understand.

122   Chapter 3

Give your classes a natural structure
Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your
code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain…).

CandyController

DoMaintenanceTests()
DoCICSVentProcedure()
IsNougatTooHot()

Let’s build a class diagram
Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that if statement was
in a method called DoMaintenanceTests(), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController {

 public void DoMaintenanceTests() {
 ...
 if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
 }
 ...
 }

 public void DoCICSVentProcedure() ...

 public boolean IsNougatTooHot() ...

}

Use class diagrams to plan out your classes
A class diagram is a simple way to draw your
classes out on paper. It’s a really valuable tool
for designing your code BEFORE you start
writing it.
Write the name of the class at the top of
the diagram. Then write each method in the
box at the bottom. Now you can see all of the
parts of the class at a glance!

ClassName

Method()
Method()
Method()

.

.

.

classes au naturale

you are here 4   123

objects: get oriented!

t

Turbine

The code for the candy control system we built on the previous
page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

Fill()

We filled in the class name for this one. What method goes here?

One of the classes had
a method called Fill().
Fill in its class name
and its other method.

There was one other class in the code on the previous page. Fill in its name and method.

124   Chapter 3

t

Turbine

CloseTripValve()
Fill()

IsolationCoolingSystem

Vent()

Maker

CheckNougatTemperature()

CheckAirSystem()

picture your classes

The code for the candy control system we built on the
previous page called three other classes. Flip back and
look through the code, and fill in their class diagrams.

Class diagrams help you organize your
classes so they make sense
Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()
ParkTheCar()

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()

The class is called
Dishwasher, so all the

methods should be about
washing dishes. But one

method—ParkTheCar()—
has nothing to do with dishes,
so it should be taken out and

put in another class.

You could figure out that
Maker is a class because it
appears in front of a dot in
Maker.CheckAirSystem().

you are here 4   125

objects: get oriented!

v

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you’d fix it.

Class23

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
PumpGas()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryGirl

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

126   Chapter 3

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways
you could design these classes depending on how they’ll be used.

create a class

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

The class name doesn’t describe what the class does. A programmer

who sees a line of code that calls Class23.Go() will have no idea what

that line does. We’d also rename the method to something that’s more

descriptive—we chose MakeTheCandy(), but it could be anything.

It looks like the DeliveryGuy class and the DeliveryGirl class

both do the same thing—they track a delivery person who’s out

delivering pizzas to customers. A better design would replace

them with a single class that adds a field for gender.

All of the methods in the class do stuff that has to do with

a cash register—making a sale, getting a list of transactions,

adding cash…except for one: pumping gas. It’s a good idea to pull

that method out and stick it in another class.

We added the Gender field because we
assumed there was a reason to track delivery
guys and girls separately, and that’s why
there were two classes for them.

you are here 4   127

objects: get oriented!

x == 3
x == 4

x < 4
x < 5
x > 0
x > 1

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 private void button1_Click(object sender, EventArgs e) {
 string result = "";

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + "\n";

 if (____________) {

 e2.Count = e2.Count + 1;

 }

 if (____________) {

 e2.Count = e2.Count + e1.Count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + "Count: " + e2.Count);
 }
}
class ____________ {
 public int _________ = 0;

 public string ___________ {

 return "helloooo...";
 }
}

Output

e1 = e1 + 1;
e1 = Count + 1;
e1.Count = Count + 1;
e1.Count = e1.Count + 1;

e2 = e1;
Echo e2;
Echo e2 = e1;
Echo e2 = new Echo();

X
Y
e2
Count

Echo
Tester
Echo()
Count()
Hello()

Bonus Question!

If the last line of output was
24 instead of 10, how would
you complete the puzzle?
You can do it by changing
just one statement.

Answers on page 138.

Pool
Puzzle
Your job is to take
code snippets

from the pool and
place them into the blank

lines in the code. You may use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal is to
make classes that will compile and run and
produce the output listed.

Note: each
snippet from the
pool can be used
more than once!

There are two possible solutions to this puzzle. Can you find them both?

128   Chapter 3

Build a class to work with some guys
Joe and Bob lend each other money all the time. Let’s create a class to
keep track of them. We’ll start with an overview of what we’ll build.

Guy object #
 2

Guy object #
 1

Guy

Name
Cash

GiveCash()
ReceiveCash()

The new statements
that create the two
instances live in the
code that gets run as
soon as the form is
created. Here’s what
the heap looks like
after the form is
loaded.

We’ll create a Guy class and add two instances of it to a form.
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object).

1

We’ll set each Guy object’s cash and name fields.
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

2

Guy object #
 2

“Bob”

50

Guy object #
 1

“Joe”

100

We’ll give cash to the guys and take cash from them.
We’ll use each guy’s ReceiveCash() method to increase a guy’s cash,
and we’ll use his GiveCash() method to reduce it.

3

Guy object #
2

“Bob”

75

Each guy has a Name
field that keeps track of
his name, and a Cash field
that has the number of
bucks in his pocket.

When you take an instance
of Guy and call its
ReceiveCash() method, you
pass the amount of cash
the guy will take as a
parameter. So calling bob.
ReceiveCash(25) tells Bob
to receive 25 bucks and
add them to his wallet.

The form calls the object’s ReceiveCash()
method. It’s called ReceiveCash() because
he’s receiving the cash.

The method returns the
number of bucks that the guy
added to his Cash field.

working class guys

Guy object #
2

“Bob”

50 bob.ReceiveCash(25);

We chose names for the
methods that make sense.
You call a Guy object’s
GiveCash() method to tell
him to give up some of his
cash, and his ReceiveCash()
method when you want him
to take some cash back.
We could have called them
GiveCashToSomeone() and
ReceiveCashFromSomeone(),
but that would have been
very long!

you are here 4   129

objects: get oriented!

Do this!

class Guy {
 public string Name;
 public int Cash;

 public int GiveCash(int amount) {
 if (amount <= Cash && amount > 0) {
 Cash -= amount;
 return amount;
 } else {
 MessageBox.Show(
 "I don’t have enough cash to give you " + amount,
 Name + " says...");
 return 0;
 }
 }

 public int ReceiveCash(int amount) {
 if (amount > 0) {
 Cash += amount;
 return amount;
 } else {
 MessageBox.Show(amount + " isn’t an amount I’ll take",
 Name + " says...");
 return 0;
 }
 }

}

Create a project for your guys
Create a new Windows Forms Application project (because we’ll
be using a form). Then use the Solution Explorer to add a new
class to it called Guy. Make sure to add “using System.
Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The Guy class has two fields. The Name field is
a string, and it’ll contain the guy’s name (“Joe”).
And the Cash field is an int, which will keep
track of how many bucks are in his pocket.

The GiveCash() method has one parameter
called amount that you’ll use to tell the
guy how much cash to give you.

He uses an if statement to check
whether he has enough cash—if he
does, he takes it out of his pocket and
returns it as the return value.

The guy makes
sure that you’re
asking him for a
positive amount of
cash—otherwise,
he’d add to his
cash instead of
taking away from
it.

If the guy doesn’t have enough cash, he’ll tell you so with a message box, and then he’ll make GiveCash() return 0.

Be careful with your curly brackets. It’s easy to have the wrong number—make sure that every opening bracket has a matching closing bracket. When they’re all balanced, the IDE will automatically indent them for you when you type the last closing bracket.

The ReceiveCash() method works just like
the GiveCash() method. It’s passed an
amount as a parameter, checks to make
sure that amount is greater than zero,
and then adds it to his cash.

If the amount was positive, then the
ReceiveCash() method returns the amount
added. If it was zero or negative, the guy
shows a message box and then returns 0.

What happens if you pass a
negative amount to a Guy object’s
ReceiveCash() or GiveCash() method?

130   Chapter 3

Build a form to interact with the guys
The Guy class is great, but it’s just a start. Now put together a form that uses two
instances of the Guy class. It’s got labels that show you their names and how much cash
they have, and buttons to give and take cash from them. They have to get their money
from somewhere before they can lend it to each other, so we’ll also need to add a bank. Build this!

Add two buttons and three labels to your form.
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want
to name and changing its “(Name)” row in the Properties window. That’ll make your code a
lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of

“label1” and “label2”.

1

Add fields to your form.
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your_Project_Name {

 public partial class Form1 : Form {

 Guy joe;

 Guy bob;

 int bank = 100;

 public Form1() {

 InitializeComponent();

 }

2

Since we’re using
Guy objects to
keep track of
Joe and Bob,
you declare
their fields in
the form using
the Guy class.

The amount of cash in the form’s bank
field goes up and down depending on how much money the form gave to and received from the Guy objects.

Name the top label
joesCashLabel, the label
underneath it bobsCashLabel, and the bottom label
bankCashLabel. You can
leave their Text properties
alone; we’ll add a method to
the form to set them.

This button will call
the Joe object’s
ReceiveCash() method,
passing it 10 as
the amount, and
subtracting from the
form’s bank field the
cash that Joe receives.

This button will call the Bob
object’s GiveCash() method,
passing it 5 as the amount, and
adding the cash that Bob gives
to the form’s bank field.

joe says, “where’s my money?”

you are here 4   131

objects: get oriented!

Add a method to the form to update the labels.
The labels on the lefthand side of the form show how much cash each guy has and how much is
in the bank field. So add the UpdateForm() method to keep them up to date—make sure
the return type is void to tell C# that the method doesn’t return a value. Type this method
into the form right underneath where you added the bank field:

 public void UpdateForm() {

 joesCashLabel.Text = joe.Name + " has $" + joe.Cash;

 bobsCashLabel.Text = bob.Name + " has $" + bob.Cash;

 bankCashLabel.Text = "The bank has $" + bank;

 }

3

Double-click on each button and add the code to interact with the objects.
Make sure the lefthand button is called button1, and the righthand button is called button2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
button1_Click() and button2_Click() to the form. Add this code to each of them:

 private void button1_Click(object sender, EventArgs e) {

 if (bank >= 10) {

 bank -= joe.ReceiveCash(10);

 UpdateForm();

 } else {

 MessageBox.Show("The bank is out of money.");

 }

 }

 private void button2_Click(object sender, EventArgs e) {

 bank += bob.GiveCash(5);

 UpdateForm();

 }

4

The “Receive $5 from Bob” button
doesn’t need to check how much is
in the bank, because it’ll just add
whatever Bob gives back. If Bob’s out of money,

GiveCash() will return zero.

When the user clicks the “Give $10 to Joe” button, the form calls the Joe object’s ReceiveCash() method—but only if the bank has enough money.

The bank needs at least $10 to give to
Joe. If there’s not enough, it’ll pop up
this message box.

This new method
is simple. It just
updates the three
labels by setting
their Text properties.
You’ll have each
button call it to keep
the labels up to date.

Start Joe out with $50 and start Bob out with $100.
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.
Once you’ve done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

 public Form1() {
 InitializeComponent();

 // Initialize joe and bob here!

 }

5

Add the lines of code here to create the two objects and set their Name and Cash fields.

Notice how the labels
are updated using the
Guy objects’ Name and
Cash fields.

You already
know that
you can
choose

names for
controls.

Are
button1

and
button2
really the

best names
we can find?
What names
would you

choose
for these
buttons?

132   Chapter 3

Make sure you save the
project now—we’ll come
back to it in a few pages.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the
form.

public Form1() {
 InitializeComponent();

 bob = new Guy();
 bob.Name = "Bob";
 bob.Cash = 100;

 joe = new Guy();
 joe.Name = "Joe";
 joe.Cash = 50;

 UpdateForm();
}

Here’s where we set up the first
instance of Guy. The first line
creates the object, and the next
two set its fields.

Q: Why doesn’t the solution start with “Guy bob = new
Guy()”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement “int i = 5;” is the same
as the two statements “int i” and “i = 5;”? This is the same
thing. You could try to declare the bob field in one line like this:

“Guy bob = new Guy();”. But you already have the first
part of that statement (“Guy bob;”) at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A: Then a variable called bob will only exist inside that special
“public Form1()” method. When you declare a variable
inside a method, it’s only valid inside the method—you can’t access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you’ve
added a field accessible from any other method inside the form.

Q: What happens if I don’t leave off that first “Guy”? What if
it’s Guy bob = new Guy() instead of bob = new Guy()?

A: You’ll run into problems—your form won’t work, because it
won’t ever set the form’s bob variable. If you have this code at the
top of your form:

 public partial class Form1 : Form {
 Guy bob;

and then you have this code later on, inside a method:

 Guy bob = new Guy();

then you’ve declared two variables. It’s a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob.Name = "Bob";)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it’ll give you a nasty error
message (“NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

Then we do the same for the
second instance of the Guy class.

Make sure you call UpdateForm() so
the labels look right when the form
first pops up.

exercise solution

you are here 4   133

objects: get oriented!

There’s an easier way to init ialize objects
Almost every object that you create needs to be initialized in some way.
And the Guy object is no exception—it’s useless until you set its Name
and Cash fields. It’s so common to have to initialize fields that C# gives
you a shortcut for doing it called an object initializer. And the IDE’s
IntelliSense will help you do it.

joe = new Guy();
joe.Name = "Joe";
joe.Cash = 50;

joe = new Guy() { Cash = 50, Name = "Joe" };

joe = new Guy() {

joe = new Guy() { Cash = 50,

Delete the second two lines and the semicolon after “Guy(),” and add a right curly bracket.2

Here’s the original code that you
wrote to initialize Joe’s Guy object.

1

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

3

joe = new Guy() { Cash = 50
Press Tab to tell it to add the Cash field. Then set it equal to 50.4

Type in a comma. As soon as you do, the other field shows up.5

Finish the object initializer. Now you’ve saved yourself two lines of code!6

Object initializers
save you time and
make your code
more compact
and easier to
read…and the
IDE helps you
write them.

This new declaration does exactly the same
thing as the three lines of code you wrote
originally. It’s just shorter and easier to read.

joe = new Guy() {

You used an object
initializer in your

“Save the Humans”
game. Flip back and

see if you can spot it!

134   Chapter 3

Navigator obj
e c

tbestRoute

obj Object

myInst

± �You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

A few ideas for designing intuitive classes

± �What real-world things will your program use?
A program to help a zookeeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

± �Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

± �Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

It’d be great if I
could compare a few

routes and figure out
which is fastest...

BlockedRoad
Name
Duration

FindDetour()

ClosedRoad
StreetName
ReasonItsClosed

CalculateDelay()

Detour
Name
Duration
ReasonItsClosed

FindDetour()
CalculateDelay()

a few helpful tips

you are here 4   135

objects: get oriented!

Use an object initializer to initialize Bob’s
instance of Guy.
You’ve already done it with Joe. Now make Bob’s instance work with an object
initializer too.

1

Add two more buttons to your form.
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one
bobGivesToJoe.

2

This button tells Joe to
give 10 bucks to Bob, so
you should use the “(Name)”
row in the Properties
window to name it
joeGivesToBob.

This button tells Bob to give 5 bucks to Joe. Name it bobGivesToJoe.

Make the buttons work.
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob_Click() that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe_Click() method
that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

3

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

If you already clicked the button, just delete it, add it back to your form, and rename it. Then delete the old button3_Click() method that the IDE added before, and use the new method it adds now.

Here’s a tip for designing your forms. You can use these buttons on the IDE’s
toolbar in the form designer to align controls, make them equal sizes, space

them evenly, and bring them to the front or back.

136   Chapter 3

exercise solution

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

public partial class Form1 : Form {
 Guy joe;
 Guy bob;
 int bank = 100;

 public Form1() {
 InitializeComponent();
 bob = new Guy() { Cash = 100, Name = "Bob" };
 joe = new Guy() { Cash = 50, Name = "Joe" };
 UpdateForm();
 }

 public void UpdateForm() {
 joesCashLabel.Text = joe.Name + " has $" + joe.Cash;
 bobsCashLabel.Text = bob.Name + " has $" + bob.Cash;
 bankCashLabel.Text = "The bank has $" + bank;
 }

 private void button1_Click(object sender, EventArgs e) {
 if (bank >= 10) {
 bank -= joe.ReceiveCash(10);
 UpdateForm();
 } else {
 MessageBox.Show("The bank is out of money.");
 }
 }

 private void button2_Click(object sender, EventArgs e) {
 bank += bob.GiveCash(5);
 UpdateForm();
 }

 private void joeGivesToBob_Click(object sender, EventArgs e) {
 bob.ReceiveCash(joe.GiveCash(10));
 UpdateForm();
 }

 private void bobGivesToJoe_Click(object sender, EventArgs e) {
 joe.ReceiveCash(bob.GiveCash(5));
 UpdateForm();
 }

}

Here are the object initializers for the two instances of the Guy class. Bob gets initialized with 100 bucks and his name.

The trick here is
thinking through
who’s giving the
cash and who’s
receiving it.

Take a close look at
how the Guy methods
are being called. The
results returned
by GiveCash() are
pumped right into
ReceiveCash() as its
parameter.

To make Joe give cash
to Bob, we call Joe’s
GiveCash() method and
send its results into
Bob’s ReceiveCash()
method.

Before you go on, take a minute and flip to #2 in the “Leftovers” appendix,
because there’s some basic syntax that we haven’t covered yet. You won’t
need it to move forward, but it’s a good idea to see what’s there.

you are here 4   137

objects: get oriented!

Objectcross
It’s time to give your left brain a break, and put that
right brain to work: all the words are object‑related
and from this chapter.

1

2 3 4 5 6

7

8 9

10

11

12

13

14 15

Across

2. If a method's return type is _____, it doesn't return
anything.
7. An object's fields define its _______
9. A good method __________ makes it clear what the
method does.
10. Where objects live
11. What you use to build an object
13. What you use to pass information into a method
14. The statement you use to create an object
15. A special kind of field that's used by the form
controls

Down

1. This form control lets the user choose a number
from a range you set.
3. It's a great idea to create a class ________ on paper
before you start writing code
4. What an object uses to keep track of what it knows
5. These define what an object does
6. An object's methods define its ________
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it
8. An object is an ______________ of a class
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method.

Across

2. If a method’s return type is _____, it doesn’t return anything

7. An object’s fields define its _______

9. A good method __________ makes it clear what the method
does

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method

14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

Down

1. This form control lets the user choose a number from a range
you set

3. It’s a great idea to create a class ________ on paper before
you start writing code

4. An object uses this to keep track of what it knows

5. These define what an object does

6. An object’s methods define its ________

7. Don’t use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an ______________ of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

138   Chapter 3

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 private void button1_Click(object sender, EventArgs e) {
 string result = "";

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + "\n";

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + "Count: " + e2.count);
 }
}
class ____________ {
 public int _________ = 0;

 public string ___________ {

 return "helloooo...";
 }
}

puzzle solutions

That’s the correct answer.

And here’s the bonus answer!

Pool Puzzle Solution
Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

Echo e2 = new Echo();

x < 4

e1.Count = e1.Count + 1;

x > 0

x ==3

Echo
Count

Echo e2 = e1;

Hello()

The alternate solution has
this in the fourth blank:

x == 4
and this in the fifth:

x < 4

you are here 4   139

objects: get oriented!

N
1

U

M V
2

O I D
3

F
4

M
5

B
6

E I I E S
7

T A T E

R I
8

N
9

A M E T T H

I N G L H
10

E A P A

C
11

L A S S R D O T V

U T A R
12

D I I

P P
13

A R A M E T E R S C O

D N T R

O C U

W N
14

E W P
15

R O P E R T Y

N N

Across

2. If a method's return type is _____, it doesn't return
anything. [void]
7. An object's fields define its _______ [state]
9. A good method __________ makes it clear what the
method does. [name]
10. Where objects live [heap]
11. What you use to build an object [class]
13. What you use to pass information into a method
[parameters]
14. The statement you use to create an object [new]
15. A special kind of field that's used by the form
controls [property]

Down

1. This form control lets the user choose a number
from a range you set. [numericupdown]
3. It's a great idea to create a class ________ on paper
before you start writing code [diagram]
4. What an object uses to keep track of what it knows
[field]
5. These define what an object does [methods]
6. An object's methods define its ________ [behavior]
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it [static]
8. An object is an ______________ of a class
[instance]
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method. [return]

Objectcross Solution

this is a new chapter   141

This data just got
garbage-collected.

types and references4

It’s 10:00.
 Do you know where your data is?

Data type, database, Lieutenant Commander Data…
it’s all important stuff. �Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst…objects are data, too).

142   Chapter 4

The variable’s type determines what
kind of data it can store
There are a bunch of types built into C#, and each one stores a
different kind of data. You’ve already seen some of the most common
ones, and you know how to use them. But there are a few that you
haven’t seen, and they can really come in handy, too.

Types you’ll use all the time
It shouldn’t come as a surprise that int, string, bool, and double are the most
common types.

≥≥ int can store any whole number from –2,147,483,648 to 2,147,483,647.

≥≥ string can hold text of any length (including the empty string "").

≥≥ bool is a Boolean value—it’s either true or false.

≥≥ double can store real numbers from ±5.0 × 10−324 to ±1.7 × 10308 with up to
16 significant figures. That range looks weird and complicated, but it’s actually
pretty simple. The “significant figures” part means the precision of the number:
35,048,410,000,000, 1,743,059, 14.43857, and 0.00004374155 all have seven
significant figures. The 10308 thing means that you can store any number as large
as 10308 (or 1 followed by 308 zeros)—as long as it only has 16 or fewer significant
figures. On the other end of the range, 10–324 means that you can store any number
as small as 10–324 (or a decimal point followed by 324 zeros followed by 1)…but, you
guessed it, as long as it only has 16 or fewer significant figures.

More types for whole numbers
Once upon a time, computer memory was really expensive, and processors were really
slow. And, believe it or not, if you used the wrong type, it could seriously slow down your
program. Luckily, times have changed, and most of the time if you need to store a whole
number you can just use an int. But sometimes you really need something bigger…and
once in a while, you need something smaller, too. That’s why C# gives you more options:

≥≥ byte can store any whole number between 0 and 255.

≥≥ sbyte can store any whole number from –128 to 127.

≥≥ short can store any whole number from –32,768 to 32,767.

≥≥ ushort can store any whole number from 0 to 65,535.

≥≥ uint can store any whole number from 0 to 4,294,967,295.

≥≥ long can store any whole number between minus and plus 9 billion billion.

≥≥ ulong can store any whole number between 0 and about 18 billion billion.

A lot of times, if
you’re using these
types it’s because
you’re solving a
problem where
it really helps to
have the “wrapping
around” effect that
you’ll read about in
a few minutes.

The “u”
stands for

“unsigned.”

not my type

A whole number doesn’t
have a decimal point.

The “s” in sbyte stands for “signed,”
which means it can be negative (the
“sign” is a minus sign).

These numbers are called “floating-point”...as opposed to a “fixed point” number, which always has the same number of decimal places.

All of the projects in this
chapter are Windows Forms

applications. If we tell you
to create a new project
in this chapter but don’t

specify what type of project
to create, assume it’s a

Windows Forms Application
created with Visual Studio

for Windows Desktop.

you are here 4   143

types and references

When you used the
Value property in
your numericUpDown control, you were
using a decimal.

You can use the Windows desktop calculator to convert between decimal (normal, base-10) numbers
and binary numbers (base-2 numbers written with only ones and zeros)—put it in Programmer mode,
enter a number, and click the Bin radio button to convert to binary. Then click Dec to convert it back.
Now enter some of the upper and lower limits for the whole number types (like –32,768 and
255) and convert them to binary. Can you figure out why C# gives you those particular limits?

Types for storing really HUGE and really tiny numbers
Sometimes seven significant figures just isn’t precise enough. And, believe it or not, sometimes 1038 isn’t big
enough and 10–45 isn’t small enough. A lot of programs written for finance or scientific research run into
these problems all the time, so C# gives us multiple types to handle floating-point values:

≥≥ float can store any number from ±1.5 × 10–45 to ±3.4 × 1038 with 7 significant digits.

≥≥ double can store any number from ±5.0 × 10–324 to ±1.7 × 10308 with 15-16 significant digits.

≥≥ decimal can store any number from ±1.0 × 10–28 to ±7.9 × 1028 with 28–29 significant digits.

Literals have types, too
When you type a number directly into your C# program, you’re using a literal…and
every literal is automatically assigned a type. You can see this for yourself—just enter this
line of code that assigns the literal 14.7 to an int variable:

 int myInt = 14.7;

Now try to build the program. You’ll get this:

That’s the same error you’ll get if you try to set an int equal to a double variable. What
the IDE is telling you is that the literal 14.7 has a type—it’s a double. You can change its
type to a float by sticking an F on the end (14.7F). And 14.7M is a decimal. If you try to assign a

float literal to a double
or a decimal literal to a
float, the IDE will give
you a helpful message
reminding you to add
the right suffix. Cool!

A few more useful built-in types
Sometimes you need to store a single character like Q or 7 or $, and when you do you’ll
use the char type. Literal values for char are always inside single quotes ('x', '3').
You can include escape sequences in the quotes, too ('\n' is a line break, '\t' is
a tab). You write an escape sequence in your C# code using two characters, but your
program stores each escape sequence as a single character in memory.

And finally, there’s one more important type: object. You’ve already seen how you
can create objects by creating instances of classes. Well, every one of those objects can
be assigned to an object variable. You’ll learn all about how objects and variables
that refer to objects work later in this chapter.

You’ll learn a lot more about how char and byte relate to each other in Chapter 9.

A “literal” just means a number that you
type into your code. So when you type “int
i = 5;”, the 5 is a literal.

When your
program needs
to deal with
currency, you
usually want to
use a decimal
to store the
number.

The “M” stands for “money”—seriously!

The Windows desktop calculator app has a really neat feature called “Programmer” mode, where you can see binary and decimal at the same time!

double is a lot
more common
than float.
Many XAML
properties use
double values.

Windows 8 has two different calculators, a Windows Store app and a desktop app. Use
Search to find the desktop app, and use its “View” menu to switch between its modes.

144   Chapter 4

A variable is like a data to-go cup
All of your data takes up space in memory. (Remember the heap
from last chapter?) So part of your job is to think about how much
space you’re going to need whenever you use a string or a number in
your program. That’s one of the reasons you use variables. They let
you set aside enough space in memory to store your data.

Think of a variable like a cup that you keep your data in. C# uses
a bunch of different kinds of cups to hold different kinds of data.
And just like the different sizes of cups at the coffee shop, there are
different sizes of variables, too.

long	 int short byte	

 64	 32 16 8	

 float double decimal	 	
	 32	 64	 128

Numbers that have decimal places are stored differently than
whole numbers. You can handle most of your numbers that have
decimal places using float, the smallest data type that stores
decimals. If you need to be more precise, use a double. And
if you’re writing a financial application where you’ll be storing
currency values, you’ll want to use the decimal type.

It’s not always about numbers, though. (You wouldn’t expect to
get hot coffee in a plastic cup or cold coffee in a paper one.) The
C# compiler also can handle characters and non-numeric types.
The char type holds one character, and string is used for lots
of characters “strung” together. There’s no set size for a string
object, either. It expands to hold as much data as you need to store
in it. The bool data type is used to store true or false values, like
the ones you’ve used for your if statements.

 bool char string

 8	 16

You’ll use long for whole numbers that are going to be really big.

int is commonly used for whole

numbers. It holds numbers up to

2,147,483,647.

These are the number of bits of memory set aside for the variable when you declare it.

These types are for
fractions. Larger
variables store more
decimal places.

A short will hold whole numbers
up to 32,767.

byte holds numbers
between 0 and 255.

depends on
the size

of the string

i’ll take an ice cream float to go

Not all data ends up on the heap. Value
types usually keep their data in another
part of memory called the stack. You’ll
learn all about that in Chapter 14.

you are here 4   145

types and references

Three of these statements won’t compile, either because they’re
trying to cram too much data into a small variable or because
they’re putting the wrong type of data in. Circle them.

10 pounds of data in a 5-pound bag
When you declare your variable as one type, that’s how your
compiler looks at it. Even if the value is nowhere near the upper
boundary of the type you’ve declared, the compiler will see the cup
it’s in, not the number inside. So this won’t work:

 int leaguesUnderTheSea = 20000;

 short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But since
leaguesUnderTheSea is declared as an int, the compiler sees
it as int-sized and considers it too big to put in a short container.
The compiler won’t make those translations for you on the fly. You
need to make sure that you’re using the right type for the data
you’re working with.

int hours = 24;

short y = 78000;

bool isDone = yes;

short RPM = 33;

int balance = 345667 - 567;

string taunt = "your mother";

byte days = 365;

long radius = 3;

char initial = 'S';

string months = "12";

20,000

int

short

All the compiler sees is an
int going into a short (which
doesn’t work). It doesn’t care
about the value in the int cup.

This makes sense. What if you later put a larger value in the int cup, one that wouldn’t fit into the short cup? The compiler is trying to protect you.

146   Chapter 4

Three of these statements won’t compile, either because they’re
trying to cram too much data into a small variable or because
they’re putting the wrong type of data in. Circle them.

short y = 78000;

bool isDone = yes;

byte days = 365;

A byte can only hold a
value between 0 and 255.
You’ll need a short for this.

The short type holds numbers
from -32,767 to 32,768.
This number’s too big!

You can only assign a value of
“true” or “false” to a bool.

Even when a number is the r ight size,
you can’t just assign it to any variable
Let’s see what happens when you try to assign
a decimal value to an int variable.

Create a new Windows Forms project and add a button to it. Then add
these lines to the button’s Click() method:

 decimal myDecimalValue = 10;
 int myIntValue = myDecimalValue;

 MessageBox.Show("The myIntValue is " + myIntValue);

1

Check out how
the IDE figured
out that you
were probably
missing a cast.

Try building your program. Uh oh—you got an error that looks like this:2

Make the error go away by casting the decimal to an int. Once you change
the second line so it looks like this, your program will compile and run:

int myIntValue = (int) myDecimalValue;

3

casting call

Take a minute to flip back to the beginning of the last chapter and check out how you used casting when you passed the NumericUpDown.Value to the Talker Tester form.

Do this

So what happened?
The compiler won’t let you assign a value to a variable if it’s the wrong type—even if that variable
can hold the value just fine—because that’s the underlying cause behind an enormous number of
bugs, and the compiler is helping by nudging you in the right direction. When you use casting,
you’re essentially making a promise to the compiler that you know the types are different, and that
in this particular instance it’s OK for C# to cram the data into the new variable.

Here’s where you cast the
decimal value to an int.

You can read more about the value types in C# here:
http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx

you are here 4   147

types and references

When you cast a value that’s too
big , C# wil l adjust it automatically
You’ve already seen that a decimal can be cast to an
int. It turns out that any number can be cast to any other
number. But that doesn’t mean the value stays intact
through the casting. If you cast an int variable that’s set
to 365 to a byte variable, 365 is too big for the byte. But
instead of giving you an error, the value will just wrap
around: for example, 256 cast to a byte will have a value
of 0. 257 would be converted to 1, 258 to 2, etc., up to 365,
which will end up being 109. And once you get back to
255 again, the conversion value “wraps” back to zero.

Hey, I’ve been
combining numbers and
strings in my message
boxes since I learned
about loops in Chapter

2! Have I been converting
types all along?

Yes! The + operator converts for
you.

What you’ve been doing is using the +
operator, which does a lot of converting
for you automatically—but it’s especially
smart about it. When you use + to add a
number or Boolean to a string, then it’ll
automatically convert that value to a string,
too. If you use + (or *, /, or -) with two
different types, it automatically converts
the smaller type to the bigger one.
Here’s an example:

 int myInt = 36;

 float myFloat = 16.4F;

 myFloat = myInt + myFloat;

Since an int can fit into a float but a
float can’t fit into an int, the + operator
converts myInt to a float before adding it
to myFloat.

When you’re
assigning a number value to a float,
you need to add
an F to the end
of the number to
tell the compiler
that it’s a float,
and not a double.
Otherwise, the
code won’t compile.

You can’t always cast any type to any
other type. Create a new project, drag a

button onto a form, double-click on it, and type
these statements in. Then build your program—it
will give lots of errors. Cross out the ones that
give errors. That’ll help you figure out which
types can be cast , and which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = "false";

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = 'x';

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte
+ myDouble + myChar;

Wrap it yourself!
There’s no mystery to how casting “wraps” the numbers—you can do it yourself. Just pop up the Windows desktop calculator, switch it to Scientific mode, and calculate 365 Mod 256 (using the Mod button, which does a modulo calculation). You’ll get 109.

148   Chapter 4

a true convert

long l = 139401930;

short s = 516;

double d = l - s;

d = d / 123.456;

MessageBox.Show("The answer is " + d);

When you use + it’s smart enough
to convert the decimal to a string.

The - operator
subtracted the short
from the long, and the
= operator converted
the result to a double.

C# does some cast ing automatically
There are two important conversions that don’t require
you to do the casting. The first is done automatically any
time you use arithmetic operators, like in this example:

The other way C# converts types for you automatically is when
you use the + operator to concatenate strings (which just
means sticking one string on the end of another, like you’ve been
doing with message boxes). When you use + to concatenate
a string with something that’s another type, it automatically
converts the numbers to strings for you. Here’s an example. The
first two lines are fine, but the third one won’t compile.

long x = 139401930;

MessageBox.Show("The answer is " + x);

MessageBox.Show(x);

The C# compiler spits out an error that mentions something
about invalid arguments (an argument is what C# calls the
value that you’re passing into a method’s parameter). That’s
because the parameter for MessageBox.Show() is a
string, and this code passed a long, which is the wrong
type for the method. But you can convert it to a string really
easily by calling its ToString() method. That method is a
member of every value type and object. (All of the classes you
build yourself have a ToString() method that returns the
class name.) That’s how you can convert x to something that
MessageBox.Show() can use:

MessageBox.Show(x.ToString());

You can’t always cast any type to any other
type. Create a new project, drag a button onto a
form, and type these statements into its method.
Then build your program—it will give lots of
errors. Cross out the ones that give errors. That’ll
help you figure out which types can be cast , and
which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = "false";

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = 'x';

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte
+ myDouble + myChar;

you are here 4   149

types and references

When you call a method, the arguments must
be compat ible with the types of the parameters
Try calling MessageBox.Show(123)—passing MessageBox.Show()
a literal (123) instead of a string. The IDE won’t let you build your program.
Instead, it’ll show you an error in the IDE: “Argument ‘1’: cannot convert from
‘int’ to ‘string’.” Sometimes C# can do the conversion automatically—like if
your method expects an int, but you pass it a short—but it can’t do that for
ints and strings.

But MessageBox.Show() isn’t the only method that will give you compiler
errors if you try to pass it a variable whose type doesn’t match the parameter.
All methods will do that, even the ones you write yourself. Go ahead and try
typing this completely valid method into a class:

When the
compiler gives
you an “invalid
arguments” error,
it means that
you tried to
call a method
with variables
whose types
didn’t match
the method’s
parameters.

public int MyMethod(bool yesNo) {

 if (yesNo) {
 return 45;
 } else {
 return 61;
 }

}

It works just fine if you pass it what it expects (a bool)—call MyMethod(true) or
MyMethod(false), and it compiles just fine.

But what happens if you pass it an integer or a string instead? The IDE gives you a
similar error to the one that you got when you passed 123 to MessageBox.Show().
Now try passing it a Boolean, but assigning the return value to a string or passing it on
to MessageBox.Show(). That won’t work, either—the method returns an int, not
a long or the string that MessageBox.Show() expects.

One reminder—the code that c
alls

this parameter doesn’t hav
e to pass

it a variable call
ed yesNo. It just has

to pass it a Boolean value or v
ariable.

The only place it’s
 called yesNo is

inside the method’s code.

if statements always test to see if something’s true
Did you notice how we wrote our if statement like this:

 if (yesNo) {
We didn’t have to explicitly say “if (yesNo == true)”. That’s because an if statement always

checks if something’s true. You check if something’s false using ! (an exclamation point, or the

NOT operator). “if (!yesNo)” is the same thing as “if (yesNo == false)”. In our code examples

from now on, you’ll usually just see us do “if (yesNo)” or “if (!yesNo)”, and not explicitly

check to see if a Boolean is true or false.

You can assign
anything to a variable, parameter, or field
with the type object.

A parameter is what you define in your method. An argument is what you pass to it. A method with an int parameter can take a byte argument.

You did this
in the code
you wrote
in “Save the
Humans”—go
back and
have a look;
see if you
can spot it.

150   Chapter 4

this table is reserved

namespace

for

class

public

else

new

using

if

while

Answers on page 182.

If you really want to use reserved keywords as variable names, you can put @ in front of it, but that’s as close as the compiler will let you get to the reserved keyword. You can do that with nonreserved names too, if you want to.
There are about 77 reserved words called keywords in C#. These are words reserved by the C#
compiler; you can’t use them for variable names. You’ll know a lot of them really well by the time you
finish the book. Here are some you’ve already used. Write down what you think these words do in C#.

you are here 4   151

types and references

Create a reimbursement calculator for a business trip. It should allow the user to enter a starting
and ending mileage reading from the car’s odometer. From those two numbers, it will calculate
how many miles she’s traveled and figure out how much she should be reimbursed if her
company pays her $.39 for every mile she puts on her car.

Start with a new Windows Forms project.
Make the form look like this:

1

Create the fields you’ll need for the calculator.
Put the fields in the class definition at the top of Form1. You need two whole number
values to track the starting odometer reading and the ending odometer reading. Call them
startingMileage and endingMileage. You need three numbers that can hold decimal
places. Make them doubles and call them milesTraveled, reimburseRate, and
amountOwed. Set the value for reimburseRate to .39.

2

For the two NumericUpDown controls, set the Minimum property to 1 and Maximum to 999999.

Get rid of
the minimize
and maximize buttons.

This label is 12 pt bold.

When you’re done with the form, double-click on the
button to add some code to the project.

Make your calculator work.
Add code in the button1_Click() method to:

≥≥ Make sure that the number in the startingMileage field is smaller than the
number in the endingMileage field. If not, show a message box that says “The
starting mileage must be less than the ending mileage.” Make the title for the
message box “Cannot Calculate Mileage.”

≥≥ Subtract the starting number from the ending number and then multiply it by the
reimburse rate using these lines:

	 milesTraveled = endingMileage -= startingMileage;

	 amountOwed = milesTraveled *= reimburseRate;

	 label4.Text = "$" + amountOwed;

3

Run it.
Make sure it’s giving the right numbers. Try changing the starting value to be higher than
the ending value, and make sure it’s giving you the message box.

4

152   Chapter 4

v You were asked to create a reimbursement calculator for a business trip. Here’s the code for the
first part of the exercise.

something’s wrong…

public partial class Form1 : Form

{

 int startingMileage;

 int endingMileage;

 double milesTraveled;

 double reimburseRate = .39;

 double amountOwed;

 public Form1() {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e){

 startingMileage = (int) numericUpDown1.Value;

 endingMileage = (int)numericUpDown2.Value;

 if (startingMileage < endingMileage){

 milesTraveled = endingMileage -= startingMileage;

 amountOwed = milesTraveled *= reimburseRate;

 label4.Text = "$" + amountOwed;

 } else {

 MessageBox.Show(
 "The starting mileage must be less than the ending mileage",
 "Cannot Calculate Mileage");

 }
 }
}

Did you remember
that you have to
cast the decimal
value from the
numericUpDown
control to an int?

int works great for whole
numbers. This number could
go all the way up to 999,999. So a short or a byte won’t
cut it.

This block is
supposed to figure
out how many
miles were traveled
and then multiply
them by the
reimbursement rate.

This button seems to work, but it has a
pretty big problem. Can you spot it?

We used an alternate way of calling the MessageBox.Show() method here. We gave it two parameters: the first one is the message to display, and the second one goes in the title bar.

you are here 4   153

types and references

Now add another button to the form.
Let’s track down that problem by adding a button to your form that shows the value
of the milesTraveled field. (You could also use the debugger for this!)

1

One line should do it.
All we need to do is get the form to display the milesTraveled variable, right? So this line
should do that:

private void button2_Click(object sender, EventArgs e) {

 MessageBox.Show(milesTraveled + " miles", "Miles Traveled");

}

2

When you’re done with the form, double-click on the
Display Miles button to add some code to the project.

Run it.
Type in some values and see what happens. First enter a starting mileage and
ending mileage, and click the Calculate button. Then click the Display Miles
button to see what’s stored in the milesTraveled field.

3

Um, something’s not right…
No matter what numbers you use, the number of miles always matches the amount owed. Why?

4

Clicking this button after you’ve clicked Calculate should show the number of miles traveled in a message box.

Do thisDebug the mileage calculator
There’s something wrong with the mileage calculator. Whenever your code doesn’t work
the way you expect it to, there’s always a reason for it, and your job is to figure out what
that reason is. Let’s figure out what went wrong here and see if we can fix it.

154   Chapter 4

operators are standing by

 private void button1_Click(object sender, EventArgs e)

 {

 startingMileage = (int) numericUpDown1.Value;

 endingMileage = (int)numericUpDown2.Value;

 if (startingMileage < endingMileage){

 milesTraveled = endingMileage -= startingMileage;

 amountOwed = milesTraveled *= reimburseRate;

 label4.Text = "$" + amountOwed;

 } else {

 MessageBox.Show("The starting mileage number must
 be less than the ending mileage number",
 "Cannot Calculate Mileage");

 }

Take a good look at the operator we used to subtract ending mileage from
starting mileage (-=). The problem is it doesn’t just subtract, it also assigns a
value to the variable on the left side of the subtraction sign. The same thing
happens in the line where we multiply the number of miles traveled by the
reimbursement rate. We should replace the -= and the *= with just - and *:

Combining = with an operator

These are
called compound
operators. This
one subtracts
startingMileage
from endingMileage
but also assigns
the new value to
endingMileage and
milesTraveled at
the same time.

So can good variable names help you out here? Definitely! Take a
close look at what each variable is supposed to do. You already get a lot of
clues from the name milesTraveled—you know that’s the variable that
the form is displaying incorrectly, and you’ve got a good idea of how that
value ought to be calculated. So you can take advantage of that when you’re
looking through your code to try to track down the bug. It’d be a whole lot
harder to find the problem if the incorrect lines looked like this instead:

		 mT = eM -= sM;

		 aO = mT *= rR;

milesTraveled = endingMileage - startingMileage;

amountOwed = milesTraveled * reimburseRate;

This is better—now
your code won’t modify
endingMileage and
milesTraveled.

Variables named like this are essentially useless in telling you what their purpose might be.

you are here 4   155

types and references

Objects use variables, too
So far, we’ve looked at objects separate from other types. But
an object is just another data type. Your code treats objects
exactly like it treats numbers, strings, and Booleans. It uses
variables to work with them:

Using an int Using an object

Write a statement to declare the object.

 Dog spot;

1Write a statement to declare the integer.

 int myInt;

1

Assign a value to the object.

 spot = new Dog();

2Assign a value to the new variable.

 myInt = 3761;

2

Check one of the object’s fields.

 while (spot.IsHappy) {

3Use the integer in your code.

 while (i < myInt) {

3

When you have a class
like Dog, you use it as
the type in a variable
declaration statement.

Objects are just one more type of
variable your program can use.

If your program needs to work with a whole
number that’s really big, use a long. If it needs
a whole number that’s small, use a short. If it
needs a yes/no value, use a boolean. And if it
needs something that barks and sits, use a Dog. No
matter what type of data your program needs to
work with, it’ll use a variable.

So it doesn’t matter if I’m
working with an object or a numeric
value. If it’s going into memory, and my

program needs to use it, I use a variable.

156   Chapter 4

Guy object #
1Joe

get the reference

When you create a new object, you use code like new Guy(). But that’s not enough;
even though that code creates a new Guy object on the heap, it doesn’t give you
a way to access that object. You need a reference to the object. So you create
a reference variable: a variable of type Guy with a name, like joe. So joe
is a reference to the new Guy object you created. Any time you want to use that
particular guy, you can reference it with the reference variable called joe.

So when you have a variable that is an object type, it’s a reference variable: a
reference to a particular object. Take a look:

Refer to your objects with reference variables

public partial class Form1 : Form
{
 Guy joe;

 public Form1()
 {
 InitializeComponent();

 joe = new Guy();
 }

That’s called
instantiating
the object.

Here’s the heap before your
code runs. Nothing there.

Here’s the heap after
this code runs. There’s an
object, with the variable
joe referring to it.

This variable
is named
joe, and will
reference
an object of
type Guy.

This is the
reference variable…

…and this is the
object that joe
now refers to.

The ONLY way to reference this Guy object is through the reference variable called joe.

Creating a reference is like making a label
with a label maker—instead of sticking it
on your stuff, you’re using it to label an
object so you can refer to it later.

you are here 4   157

types and references

In your kitchen, you probably have containers of salt and sugar. If you
switched their labels, it would make for a pretty disgusting meal—even
though the labels changed, the contents of the containers stayed the same.
References are like labels. You can move labels around and point them at
different things, but it’s the object that dictates what methods and data are
available, not the reference itself.

References are like labels for your object

cust
omer

uncl
ejoe

dad

broth
er

joe

heyy
ou

programm
er

This object is of type Guy.
It’s a SINGLE object with
MULTIPLE references.

You never refer to your object directly. For example, you can’t write code like
Guy.GiveCash() if Guy is your object type. The C# compiler doesn’t
know which Guy you’re talking about, since you might have several instances
of Guy on the heap. So you need a reference variable, like joe, that you
assign to a specific instance, like Guy joe = new Guy().

Now you can call (non-static) methods like joe.GiveCash(). joe refers
to a specific instance of the Guy class, and your C# compiler knows exactly
which instance to use. And, as you saw above, you might have multiple
labels pointing to the same instance. So you could say Guy dad =
joe, and then call dad.GiveCash(). That’s OK, too—that’s what Joe’s
kid does every day.

Form1’s button1_Click method has a variable called “Joe” that references this object.

There are lots of different references to this same Guy, because a lot of different methods use him for different things. Each reference has a different name that makes sense in its context.

Every one of these labels is a different reference variable, but they all point to the SAME Guy object.

When your code
needs to work
with an object
in memory, it
uses a reference,
which is a
variable whose
type is a class
of the object it’s
going to point to.
A reference is
like a label that
your code uses
to talk about a
specific object.

An instance of the Guy class is keeping a reference to this object in a variable called “dad”.

Guy dad = joe;

158   Chapter 4

Guy object

Guy object #
2

Guy object #
1

Guy object #
2

If all of the labels come off of an object, programs can no longer
access that object. That means C# can mark the object for garbage
collection. That’s when C# gets rid of any unreferenced objects, and
reclaims the memory those objects took up for your program’s use.

For an object
to stay in the
heap, it has to
be referenced.
Some time
after the last
reference to
the object
disappears, so
does the object.

If there aren’t any more references,
your object gets garbage-collected

JOE

When you use the “new” statement,
you’re telling C# to create an object.
When you take a reference variable
like Joe and assign it to that object,
it’s like you’re slapping a new label
on it.

Here’s some code that creates an object.

Guy joe = new Guy()

 { Name = "Joe", Cash = 50 };

1

Now let’s create a second object.

Guy bob = new Guy()

 { Name = "Bob", Cash = 75 };

2
bob JOE

Let’s take the reference to the first object, and
change it to point at the second object.

 joe = bob;

3

Now joe is pointing to the same object as bob. bob
JOE

poof!

that’s sanitation engineer, thank you very much

Now we have two Guy object instances, and two reference variables: one for each Guy.

But there is no longer
a reference to the
first Guy object…

…so C# marks the object for garbage collection, and eventually trashes it. It’s gone!

“Joe”
50

“Bob”
75

“Joe”
50

“Bob”
75

you are here 4   159

types and references

Across

1. The second part of a variable declaration

4. namespace, for, while, using, and new are
examples of _____________ words

6. What (int) is doing in this line of code: x = (int) y;

8. When an object no longer has any references pointing to it,
it’s removed from the heap using ____________ collection

10. What you’re doing when you use the + operator to stick two
strings together

14. The numeric type that holds the biggest numbers

15. The type that stores a single letter or number

16. \n and \r are _______ sequences

17. The four whole-number types that only hold positive
numbers

Down

2. You can combine the variable declaration and the _________
into one statement

3. A variable that points to an object

5. What your program uses to work with data that’s in memory

7. If you want to store a currency value, use this type

9. += and -= are this kind of operator

11. A variable declaration always starts with this

12. Every object has this method that converts it to a string

13. When you’ve got a variable of this type, you can assign any
value to it

1 2

3 4 5

6

7

8

9

10 11 12

13

14

15

16 17

Across

1. The second part of a variable declaration
4. "namespace", "for", "while", "using" and "new" are
examples of _____________ words.
6. What (int) does in this line of code: x = (int) y;
8. When an object no longer has any references
pointing to it, it's removed from the heap using
____________ collection.
10. What you're doing when you use the + operator to
stick two strings together.
14. The type that holds the biggest numbers.
15. The type that stores a single letter or number
16. \n and \r are _______ sequences
17. The four whole number types that only hold
positive numbers

Down

2. You can combine the variable declaration and the
____________ into one statement.
3. A variable that points to an object
5. What your program uses to work with data that's in
memory
7. If you want to store a currency value, use this type
9. += and -= are this kind of operator
11. A variable declaration always starts with this.
12. Every object has this method that converts it to a
string.
13. When you've got a variable of this type, you can
assign any value to it

Typecross
Take a break, sit back, and give
your right brain something
to do. It’s your standard
crossword; all of the solution
words are from this chapter.

When you’re done, turn the
page and take on the rest
of the chapter.

Answers on page 183.

160   Chapter 4

Dog object #
1

Dog object #
3

Dog object #
1

Dog object #
2

so many labels

You’ve got to be careful when you start moving around reference
variables. Lots of times, it might seem like you’re simply pointing
a variable to a different object. But you could end up removing all
references to another object in the process. That’s not a bad thing, but
it may not be what you intended. Take a look:

Mult iple references and their side effects

Dog object #
1Rove
r

Rove
r

SPOT

Fido

Fido

Rove
r

SPOT

Luck
y

Dog rover = new Dog();

rover.Breed = "Greyhound";
1

Dog fido = new Dog();

fido.Breed = "Beagle";

Dog spot = rover;

2

Dog lucky = new Dog();

lucky.Breed = "Dachshund";

fido = rover;

3

Rover is a Dog object with a
Breed field set to Greyhound.

Fido is another Dog object.
But Spot is just another
reference to the first object.

Lucky is a third object.
But Fido is now pointing
to object #1. So, Object
#2 has no references.
It’s done as far as the
program is concerned.

Objects:______

References:_____

Objects:______

References:_____

Objects:______

References:_____

1
1

2
3

2
4

poof!

you are here 4   161

types and references

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

1

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

2

Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

3

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

4

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

5

Objects:______

References:_____

Objects:______

References:_____

Now it’s your turn. Here’s one long block of code. Figure out how many
objects and references there are at each stage. On the righthand side,
draw a picture of the objects and labels in the heap.

162   Chapter 4

Dog object
 #

5

Dog object
 #

3

Dog object
 #

1

Dog object
 #

4

Dog object
 #

1

Dog object
 #

3

Dog object
 #

5

Dog object
 #

4

Dog object
 #

2
Dog object

 #
3

Dog object
 #

1

Dog object
 #

4

Dog object
 #

3

Dog object
 #

1

Dog object
 #

2

Dog object
 #

3

swapping elephants

Dog rover = new Dog();
rover.Breed = "Greyhound";
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

1

Dog spot = new Dog();
spot.Breed = "Dachshund";
spot = rover;

2

Dog lucky = new Dog();
lucky.Breed = "Beagle";
Dog charlie = fido;
fido = rover;

3

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = "pug";

4

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

5

Objects:______

References:_____

Objects:______

References:_____

Now it’s your turn. Here’s one long block of code. Figure out how many
objects and references there are at each stage. On the righthand side,
draw a picture of the objects and labels in the heap.

3

3

 4
7

4
8

4
8

One new Dog object is
created, but Spot is the
only reference to it. When
Spot is set to Rover, that
object goes away.

Here a new Dog object is
created, but when Fido is
set to Rover, Fido’s object
from #1 goes away.

Charlie was set to Fido
when Fido was still on
object #3. Then, after
that, Fido moved to object
#1, leaving Charlie behind.

Here the references move
around, but no new objects
are created. And setting
Lucky to Rin Tin Tin did
nothing because they already
pointed to the same object.

4

5

fido
quen

tin

rove
r

rint
inti

n

fido
quen

tin

spot

rove
r

rint
inti

n

fido

quen
tin

spot

LUCK
Y

char
lie

rove
r

fido

quen
tin

spot

LUCK
Y

char
lie

LAVE
RNE

rove
r

rint
inti

n

fido

quen
tin

spot

LUCK
Y

LAVE
RNE

char
lie

Dog object
 #

1rove
r

Dog object
 #

2

rint
inti

n

rint
inti

n

poof!
Dog #2 lost its
last reference, and
it went away.

When Rin Tin Tin
moved to Lucky’s
object, the old Rin Tin
Tin object disappeared.

you are here 4   163

types and references

v Create a program with an Elephant class. Make two Elephant instances and
then swap the reference values that point to them, without getting any Elephant
instances garbage-collected.

Start with a new Windows Forms Application project.
Make the form look like this:

1

Create the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram—you’ll need an int
field called EarSize and a String field called Name. (Make sure both are public.) Then add a method
called WhoAmI() that displays a message box that tells you the name and ear size of the elephant.

2

Create two Elephant instances and a reference.
Add two Elephant fields to the Form1 class (in the area right below the class declaration) named
Lloyd and Lucinda. Initialize them so they have the right name and ear size. Here are the
Elephant object initializers to add to your form:

 lucinda = new Elephant() { Name = "Lucinda", EarSize = 33 };
 lloyd = new Elephant() { Name = "Lloyd", EarSize = 40 };

3

Make the Lloyd and Lucinda buttons work.
Have the Lloyd button call lloyd.WhoAmI() and the Lucinda button call lucinda.WhoAmI().

4

Hook up the swap button.
Here’s the hard part. Make the Swap button exchange the two references, so that when you click
Swap, the Lloyd and Lucinda variables swap objects and a “Objects swapped” box is displayed.
Test out your program by clicking the Swap button and then clicking the other two buttons. The first
time you click Swap, the Lloyd button should pop up Lucinda’s message box, and the Lucinda button
should pop up Lloyd’s message box. If you click the Swap button again, everything should go back.

5

Elephant
Name
EarSize

WhoAmI()

Clicking on the Lucinda button

calls lucinda.WhoAmI(), which

displays this message box.

C# garbage-collects any object with no references to it. So here’s your
hint: If you want to pour a glass of beer into another glass that’s currently
full of water, you’ll need a third glass to pour the water into....

Here’s the class diagram for the Elephant class you need to create.

The WhoAmI() method should pop
up this message box. Make sure the
message includes the ear size and the
title bar includes the name.

164   Chapter 4

Create a program with an Elephant class. Make two Elephant instances and
then swap the reference values that point to them, without getting any Elephant
instances garbage-collected.

Why do you think we didn’t add a Swap() method to the Elephant class?

 using System.Windows.Forms;

 class Elephant {

 public int EarSize;
 public string Name;

 public void WhoAmI() {
 MessageBox.Show("My ears are " + EarSize + " inches tall.",
 Name + " says…");
 }
}

public partial class Form1 : Form {

 Elephant lucinda;
 Elephant lloyd;

 public Form1()
 {
 InitializeComponent();
 lucinda = new Elephant()
 { Name = "Lucinda", EarSize = 33 };
 lloyd = new Elephant()
 { Name = "Lloyd", EarSize = 40 };
 }

 private void button1_Click(object sender, EventArgs e) {
 lloyd.WhoAmI();
 }

 private void button2_Click(object sender, EventArgs e) {
 lucinda.WhoAmI();
 }

 private void button3_Click(object sender, EventArgs e) {
 Elephant holder;
 holder = lloyd;
 lloyd = lucinda;
 lucinda = holder;
 MessageBox.Show("Objects swapped");
 }
}

There’s no “new" statement for the
reference because we don’t want to
create another instance of Elephant.

If you just point Lloyd
to Lucinda, there won’t
be any more references
pointing to Lloyd, and
his object will be lost.
That’s why you need
to have the Holder
reference hold onto
the Lloyd object until
Lucinda can get there.

This is the Elephant
class definition code
in the Elephant.cs
file we added to the
project. Don’t forget
the “using System.
Windows.Forms;” line
at the top of the
class. Without it, the
MessageBox statement
won’t work.

Here’s the Form1 class code from Form1.cs.

hold that reference

You can put the using statements inside
the namespace curly brackets if you want.

you are here 4   165

types and references

Elephant objec
t

Elephant object

private void button4_Click(object sender, EventArgs e)
{
 lloyd = lucinda;
 lloyd.EarSize = 4321;
 lloyd.WhoAmI();
}

Two references means TWO
ways to change an object’s data
Besides losing all the references to an object, when
you have multiple references to an object, you can
unintentionally change an object. In other words, one
reference to an object may change that object, while
another reference to that object has no idea that
something has changed. Watch:

Do this

Add another button to your form.1

Add this code for the button. Can you guess what’s going to happen when you click it?2

OK, go ahead and click the new button. Wait a second, that’s the Lucinda message
box. Didn’t we call the WhoAmI()method from Lloyd?

3

You’re calling the
WhoAmI() method from

the lloyd object.

It’s lucinda’s
message box… But we set this

EarSize using the
lloyd reference! What gives?

Lloy
d

Luci
nda

After this code runs, both the lloyd and lucinda variables reference the SAME Elephant object.

Lloy
d

Luci
nda

lloyd and lucinda are now interchangeable. Changes to

one affect the object that BOTH are pointing at…

there’s no longer a real difference between lloyd and

lucinda, since they point to the SAME object.

But lloyd points at the same thing that lucinda does.

This statement
says to set
EarSize to 4321
on whatever
object the lloyd
reference happens
to point to.

Note that the
data is NOT being
overwritten—the
only things changing
are the references.

166   Chapter 4

int[] heights;

heights = new int[7];

heights[0] = 68;

heights[1] = 70;

heights[2] = 63;

heights[3] = 60;

heights[4] = 58;

heights[5] = 72;

heights[6] = 74;

Array

pick an object out of a line up

A special case: arrays

name The type
of each
element in
the array.

Notice that the array is an object,
even though the 7 elements are just
value types—like the ones on the first
two pages of this chapter.

7 int variables

heig
hts

In memory, the array

is stored as one ch
unk

of memory, even though

there are multiple int

variables within it.

If you have to keep track of a lot of data of the same type, like a list of heights
or a group of dogs, you can do it in an array. What makes an array special is
that it’s a group of variables that’s treated as one object. An array gives you
a way of storing and changing more than one piece of data without having to
keep track of each variable individually. When you create an array, you declare
it just like any other variable, with a name and a type:

bool[] myArray;

myArray = new bool[15];

myArray[4] = true;

You declare an array by
specifying its type, followed
by square brackets.

Use each e lement in an array like
i t is a normal variable
When you use an array, first you need to declare a reference
variable that points to the array. Then you need to create the
array object using the new statement, specifying how big you
want the array to be. Then you can set the elements in the
array. Here’s an example of code that declares and fills up an
array—and what’s happening on the heap when you do it. The
first element in the array has an index of zero.

You could combine the declaration of the myArray variable with its initialization—just like any other variable. Then it’d look like this:bool[] myArray = new bool[15];

You use the new keyword
to create an array because
it’s an object. So an
array variable is a kind of
reference variable. This line sets the value of the fifth

element of myArray to true. It’s the
fifth one because the first is myArray[0],
the second is myArray[1], etc.

This array has 15
elements within it.

You
reference
these by
index, but
each one
works
essentially
like a normal
int variable.

 int int int int int int int

Strings and arrays are different
from the other data types you’ve

seen so far, because they’re
the only ones without a set size

(think about that for a bit).

you are here 4   167

types and references

Dog obje
ct

Dog obje
ct

You can create an array of object references just like you create an
array of numbers or strings. Arrays don’t care what type of variable
they store; it’s up to you. So you can have an array of ints, or an
array of Duck objects, with no problem.

Here’s code that creates an array of seven Dog variables. The line
that initializes the array only creates reference variables. Since there
are only two new Dog() lines, only two actual instances of the Dog
class are created.

 Dog[] dogs = new Dog[7];

 dogs[5] = new Dog();

 dogs[0] = new Dog();

Arrays can contain a bunch of
reference variables, too

This line declares a
dogs variable to hold an
array of references to
Dog objects, and then
creates a seven-element
array.

These two lines create new instances of Dog() and put them at indexes 0 and 5.

When you set or
retrieve an element
from an array, the
number inside the
brackets is called
the index. The first
element in the array
has an index of zero.

All of the elements in the array are
references. The array itself is an object.

7 Dog variables

The first line of code only
created the array, not the
instances. The array is a
list of seven Dog reference
variables.

 Dog Dog Dog Dog Dog Dog Dog

Array

An array’s lengt
h

You can find o
ut how many

elements are in an
array using its

Length property
. So if you’ve g

ot

an array called
 heights, then

you

can use heights
.Length to find

out how long it is. If t
here are

seven elements in the arr
ay, that’ll

give you 7—which means the array

elements are numbered 0 to 6.

168   Chapter 4

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Sloppy Joe has a pile of meat, a whole lotta bread, and more condiments
than you can shake a stick at. But what he doesn’t have is a menu! Can
you build a program that makes a new random menu for him every day?

sloppy joe sez: “it’s not old, it’s vintage”

Start a new project and add a MenuMaker class.
If you need to build a menu, you need ingredients. And arrays would be perfect
for those lists. We’ll also need some way of choosing random ingredients to
combine together into a sandwich. Luckily, the .NET Framework has a built-in
class called Random that generates random numbers. So we’ll have four fields
in our class: a Randomizer field that holds a reference to a Random object, and
three arrays of strings to hold the meats, condiments, and breads.

1

Do this

 class MenuMaker {
 public Random Randomizer;

 string[] Meats = { "Roast beef", "Salami", "Turkey", "Ham", "Pastrami" };
 string[] Condiments = { "yellow mustard", "brown mustard",
 "honey mustard", "mayo", "relish", "french dressing" };
 string[] Breads = { "rye", "white", "wheat", "pumpernickel",
 "italian bread", "a roll" };
 }

MenuMaker
Randomizer
Meats
Condiments
Breads

GetMenuItem()

 public string GetMenuItem() {
 string randomMeat = Meats[Randomizer.Next(Meats.Length)];
 string randomCondiment = Condiments[Randomizer.Next(Condiments.Length)];
 string randomBread = Breads[Randomizer.Next(Breads.Length)];
 return randomMeat + " with " + randomCondiment + " on " + randomBread;
 }

Add a GetMenuItem() method to the class that generates a random sandwich.
The point of the class is to generate sandwiches, so let’s add a method to do exactly that. It’ll use
the Random object’s Next() method to choose a random meat, condiment, and bread from
each array. When you pass an int parameter to Next(), the method returns a random number
that’s less than that parameter. So if your Random object is called Randomizer, then calling
Randomizer.Next(7) will return a random number between 0 and 6.

So how do you know what parameter to pass into the Next() method? Well, that’s easy—just
pass in each array’s Length. That will return the index of a random item in the array.

2

The method puts a random item from the Meats array into randomMeat by
passing Meats.Length to the Random object’s Next() method. Since there are
five items in the Meats array, Meats.Length is 5, so Next(5) will return a
random number between 0 and 4.

The field called
Randomizer holds
a reference to a
Random object.
Calling its Next()
method will
generate random
numbers.

The class has three fields to
store three different arrays of
strings. It’ll use them to build
the random menu items.

The GetMenuItem()
method returns
a string that
contains a sandwich
built from random
elements in the
three arrays.

Remember, use square brackets to
access a member of an array.The
value of Breads[2] is “wheat”.

Notice how you’re
initializing these
arrays? That’s
called a collection
initializer, and
you’ll learn all
about it in
Chapter 8.

you are here 4   169

types and references

I eat all my
meals at Sloppy

Joe’s!
How it works…

Meats[Randomizer.Next(Meats.Length)]

Meats is an array of strings. It’s got five e
lements,

numbered from 0 to 4. So Meats[0] equals
“Roast Beef”, and Meats[3] equals “Ham”.

The randomizer.Next(7) method gets a random int that’s less than 7. Meats.Length returns the number of elements in Meats. So randomizer.Next(Meats.Length) gives you a random number that’s greater than or equal to zero, but less than the number of elements in the Meats array.

Build your form.
Add six labels to the form, label1 through label6. Then add code to set each label’s
Text property using a MenuMaker object. You’ll need to initialize the object using a new
instance of the Random class. Here’s the code:

public Form1() {

 InitializeComponent();

 MenuMaker menu = new MenuMaker() { Randomizer = new Random() };

 label1.Text = menu.GetMenuItem();

 label2.Text = menu.GetMenuItem();

 label3.Text = menu.GetMenuItem();

 label4.Text = menu.GetMenuItem();

 label5.Text = menu.GetMenuItem();

 label6.Text = menu.GetMenuItem();

}

3

Use an object initializer to set the
MenuMaker object’s Randomizer field to
a new instance of the Random class.

Now you’re all set to
generate six different
random sandwiches using the
GetMenuItem() method.

When you run the
program, the six labels
show six different
random sandwiches.

Here’s something
to think about.
What would
happen if you
forgot to
initialize the
MenuMaker
object’s
Randomizer
field? Can you
think of a way
to keep this
from happening?

170   Chapter 4

Objects use references to talk to each other
So far, you’ve seen forms talk to objects by using reference variables to call their
methods and check their fields. Objects can call one another’s methods using
references, too. In fact, there’s nothing that a form can do that your objects can’t do,
because your form is just another object. And when objects talk to each other,
one useful keyword that they have is this. Any time an object uses the this keyword,
it’s referring to itself—it’s a reference that points to the object that calls it.

Here’s a method to tell an elephant to speak.
Let’s add a method to the Elephant class. Its first parameter is a message from an
elephant. Its second parameter is the elephant that said it:

 public void TellMe(string message, Elephant whoSaidIt) {

 MessageBox.Show(whoSaidIt.Name + " says: " + message);

 }

Here’s what it looks like when it’s called. You can add to button4_Click(), but add it
before the statement that resets the references! (lloyd = lucinda;)

 lloyd.TellMe("Hi", lucinda);

We called Lloyd’s TellMe() method, and passed it two parameters: “Hi” and a reference to
Lucinda’s object. The method uses its whoSaidIt parameter to access the Name parameter
of whatever elephant was passed into TellMe() using its second parameter.

1

Lloyd uses whoToTalkTo
(which has a reference to
Lucinda) to call TellMe().

this is replaced
with a reference to

Lloyd’s object.

This method in the Elephant class calls another
elephant’s TellMe() method. It lets one elephant
communicate with another one.

your object’s a chatty cathy

Elephant
Name
EarSize

WhoAmI()
TellMe()
SpeakTo()

Here’s a method that calls another method.
Now let’s add this SpeakTo() method to the Elephant class. It uses a special keyword:
this. That’s a reference that lets an object talk about itself.

 public void SpeakTo(Elephant whoToTalkTo, string message) {

 whoToTalkTo.TellMe(message, this);

 }

Let’s take a closer look at how this works.

 lloyd.SpeakTo(lucinda, "Hello");

When Lloyd’s SpeakTo() method is called, it uses its whoToTalkTo parameter (which has a
reference to Lucinda) to call Lucinda’s TellMe() method.

 whoToTalkTo.TellMe(message, this);

 lucinda.TellMe(message, [a reference to Lloyd]);

So Lucinda acts as if she was called with ("Hello", lloyd), and shows this message:

2

you are here 4   171

types and references

Q: One more time—my form is an
object?

A: Yes! That’s why your form's code starts
with a class declaration. Open up code for
a form and see for yourself. Then open up
Program.cs in any program you’ve written so
far and look inside the Main() method—
you’ll find “new Form1()”.

Q: Why would I ever use null?

A: There are a few ways you see null
used in typical programs. The most common
way is testing for it:

 if (lloyd == null) {

That test will return true if the lloyd
reference is set to null.

Another way you’ll see the null keyword
used is when you want your object to get
garbage-collected. If you’ve got a reference
to an object and you’re finished with the
object, setting the reference to null will
immediately mark it for collection (unless
there’s another reference to it somewhere).

Q: You keep talking about garbage
collecting, but what’s actually doing the
collecting?

A: Remember how we talked about the
Common Language Runtime (or CLR)
back at the beginning of Chapter 2? That’s
the virtual machine that runs all .NET
programs. A virtual machine is a way for it
to isolate running programs from the rest of
the operating system. One thing that virtual
machines do is manage the memory that
they use. That means that it keeps track of
all of your objects, figures out when the last
reference to the object disappears, and frees
up the memory that it was using.

Where no object has gone before
There’s another important keyword that you’ll use with objects.
When you create a new reference and don’t set it to anything, it has
a value. It starts off set to null, which means it’s not pointing to
anything.

Dog object #
2fidopoof!

Dog fido;

Dog lucky = new Dog();

fido = new Dog();

Right now, there’s only one object. The fido
reference is set to null. Dog object #

1Luck
y

lucky = null;

Dog object #
2fido

Dog object #
1Luck

y

Now that fido’s pointing
to an object, it’s no
longer equal to null.

When we set lucky to null,
it’s no longer pointing at its
object, so it gets garbage-
collected.

172   Chapter 4

Q:  I’m still not sure I get how
references work.

A: References are the way you use all of the
methods and fields in an object. If you create a
reference to a Dog object, you can then use
that reference to access any methods you’ve
created for the Dog object. If you have a
(nonstatic) method called Dog.Bark() or
Dog.Beg(), you can create a reference
called spot. Then you can use that to access
spot.Bark() or spot.Beg(). You
could also change information in the fields for
the object using the reference. So you could
change a Breed field using spot.Breed.

Q: Wait, then doesn’t that mean that
every time I change a value through a
reference I’m changing it for all of the
other references to that object, too?

A: Yes. If rover is a reference to the
same object as spot, changing rover.
Breed to “beagle” would make it so that
spot.Breed was “beagle.”

Q: I still don’t get that stuff about
different types holding different sized
values. What’s the deal with that?

A: OK. The thing about variables is they
assign a size to your number no matter how
big its value is. So if you name a variable
and give it a long type even though the
number is really small (like, say, 5), the CLR
sets aside enough memory for it to get really
big. When you think about it, that’s really
useful. After all, they’re called variables
because they change all the time.

The CLR assumes you know what you’re
doing and you’re not going to give a variable
a type that you don’t need. So even though
the number might not be big now, there’s a
chance that after some math happens, it’ll
change. The CLR gives it enough memory
to handle whatever type of number you call it.

Q: Remind me again—what does
this do?

A: this is a special variable that you
can only use inside an object. When you’re
inside a class, you use this to refer
to any field or method of that particular
instance. It’s especially useful when you’re
working with a class whose methods call
other classes. One object can use it to send
a reference to itself to another object. So
if Spot calls one of Rover’s methods
passing this as a parameter, he’s giving
Rover a reference to the Spot object.

this and that

Any time you’ve got
code in an object
that’s going to be
instantiated, the
instance can use the
special this variable
that has a reference
to itself.

¢¢ When you declare a variable you specify a type and a
variable name. Sometimes you combine it with setting
the value on the same line of code.

¢¢ There are value types for variables that hold different
sizes of numbers. The biggest numbers should be of the
type long and the smallest ones (up to 255) can be
declared as bytes.

¢¢ Every value type has a size, and you can’t put a value of
a bigger type into a smaller variable, no matter what the
actual size of the data is.

¢¢ When you’re using literal values, use the F suffix to
indicate a float (15.6F) and M for a decimal (36.12M).

¢¢ There are a few types (like short to int) that C#
knows how to convert automatically. When the compiler
won’t let you set a variable equal to a value of a different
type, that’s when you need to cast it.

¢¢ There are some words that are reserved by the
language and you can’t name your variables with them.
They’re words like for, while, using, new, and
others that do specific things in the language.

¢¢ References are like labels: you can have as many
references to an object as you want, and they all refer to
the same thing.

¢¢ If an object doesn’t have any references to it, it
eventually gets garbage-collected.

There’s a very specific case where you don’t declare a type. You’ll
learn about it when you use the var keyword in Chapter 14.

you are here 4   173

types and references

private void button1_Click(object sender, EventArgs e)

{

 Elephant[] elephants = new Elephant[7];

 elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

 elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 };

 elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 };

 elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 };

 elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 };

 elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 };

 elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

 Elephant biggestEars = elephants[0];

 for (int i = 1; i < elephants.Length; i++)

 {

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 }

 MessageBox.Show(biggestEars.EarSize.ToString());

}

Here’s an array of Elephant objects and a loop that will go through
it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

Be careful—this loop starts
with the second element of the
array (at index 1) and iterates
six times until i is equal to the
length of the array.

Every array
starts with
index 0, so the
first elephant
in the array is
Elephants[0].

This line makes the biggestEars
reference point at whatever
elephant elephants[i] points to.

Answers on page 184.

Iteration #1 biggestEars.EarSize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

We’re creating an array of
seven Elephant() references.

174   Chapter 4

refNum = index[y];

int y =
0;

string result = "";

MessageBox.Show(result);

y = y + 1;

index[0] =
 1;

index[1] =
 3;

index[2] =
 0;

index[3] =
 2;

result += islands[refNum];

int[] index = new int[4];

result += "\nisland = ";

string[] islands = new string[4];

int refNum;

while (y < 4) {

private void button1_Click (object sender, EventArgs e) {

islands[0] = "Bermuda";islands[1] = "Fiji";
islands[2] = "Azores";islands[3] = "Cozumel";

}

Code Magnets
The code for a button is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working method that
produces the output listed below?

}

code magnets and pool puzzle

Answers on page 185.

you are here 4   175

types and references

Note: each snippet from
the pool can be used
more than once.

class Triangle
{
 double area;
 int height;
 int length;
 public static void Main(string[] args)
 {
 string results = "";

 while (________)
 {

 _____.height = (x + 1) * 2;
 _____.length = x + 4;

 results += "triangle " + x + ", area";
 results += " = " + _____.area + "\n";

 }

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 results += "y = " + y;
 MessageBox.Show(results +
 ", t5 area = " + t5.area);
 }
 void setArea()
 {
 ____________ = (height * length) / 2;
 }
}

Output

Bonus Question!
For extra bonus points, use snippets
from the pool to fill in the two blanks
missing from the output.

Here’s the entry p
oint for the

application. Assume it’s in a file with

the right “using”
 lines at the top

.

x = x + 1;
x = x + 2;
x = x - 1; x < 4

x < 5Triangle [] ta = new Triangle(4);
Triangle ta = new [] Triangle[4];
Triangle [] ta = new Triangle[4];

ta = new Triangle();
ta[x] = new Triangle();
ta.x = new Triangle();

ta[x] = setArea();
ta.x = setArea();
ta[x].setArea();

int x;
int y;
int x = 0;
int x = 1;
int y = x;

area
ta.area
ta.x.area
ta[x].area

ta.x
ta(x)
ta[x]

x
y

28
30.0

4, t5 area = 18
4, t5 area = 343
27, t5 area = 18
27, t5 area = 343

Hint: SetArea()
is NOT a
static method.
Flip back to
Chapter 3 for
a refresher on
what the static
keyword means.

Pool Puzzle
Your job is to take code snippets

from the pool and place them
into the blank lines in the
code. You may use the same
snippet more than once, and
you won’t need to use all the
snippets. Your goal is to make

a class that will compile and run,
and produce the output listed.

Answers on page 186.

176   Chapter 4

this looks fun

Build a typing game
You’ve reached a milestone...you know enough to build a game! Here’s how your game will
work. The form will display random letters. If the player types one of them, it disappears
and the accuracy rate goes up. If the player types an incorrect letter, the accuracy rate
goes down. As the player keeps typing letters, the game goes faster and faster, getting more
difficult with each correct letter. If the form fills up with letters, the game is over! Do this

Build the form.
Here’s what the form will look like in the form designer:

1

You’ll need to:

≥≥ Turn off the minimize box and maximize box. Then set the form’s FormBorderStyle
property to Fixed3D. That way, the player won’t be able to accidentally drag and resize it.
Then resize it so that it’s much wider than it is tall (we set our form’s size to 876, 174).

≥≥ Drag a ListBox out of the toolbox onto the form. Set its Dock property to Fill, and its
MultiColumn property to True. Set its Font to 72 point bold.

≥≥ In the toolbox, expand the All Windows Forms group at the top. This will display many
controls. Find the Timer control and double-click on it to add it to your form.

≥≥ Find the StatusStrip in the All Windows Forms group in the toolbox and double-click on it
to add a status bar to your form. You should now see the StatusStrip and Timer icons in the
gray area at the bottom of the form designer:

See how you can use a Timer to make your form
do more than one thing at once? Take a minute
and flip to #4 in the “Leftovers” appendix to
learn about another way to do that.

you are here 4   177

types and references

Add a StatusLabel to your StatusStrip by clicking its drop-down and selecting
StatusLabel. Then do the following:

≥≥ Use the Properties window to set its (Name) to correctLabel and its
Text to “Correct: 0”. Add three more StatusLabels: missedLabel,
totalLabel, and accuracyLabel, and set their Text properties to

“Missed: 0”, “Total: 0”, and “Accuracy: 0%”.

≥≥ Add one more StatusLabel. Set its Spring to True, TextAlign to MiddleRight, and Text to
“Difficulty”. Finally, add a ProgressBar and name it difficultyProgressBar.

≥≥ Set the StatusStrip’s SizingGrip property to False (hit Escape if you’ve got a child StatusLabel or
ProgressBar selected to return the IDE’s focus to the parent StatusStrip).

You’ll be using three new
controls, but they’re easy
to work with!

Even though you haven’t seen a ListBox,
StatusStrip, or Timer before, you already
know how to set their properties and work
with them in your code. You’ll learn a lot
more about them in the next few chapters.

Set up the Timer control.
Did you notice how your Timer control didn’t show up on your form? That’s because
the Timer is a nonvisual control. It doesn’t actually change the look and feel of the
form. It does exactly one thing: it calls a method over and over again. Set the
Timer control’s Interval property to 800, so that it calls its method every 800
milliseconds. Then double-click on the timer1 icon in the designer. The IDE will
do what it always does when you double-click on a control: it will add a method to
your form. This time, it’ll add one called timer1_Tick. Here’s the code for it:

3

private void timer1_Tick(object sender, EventArgs e)
{
 // Add a random key to the ListBox
 listBox1.Items.Add((Keys)random.Next(65, 90));
 if (listBox1.Items.Count > 7)
 {
 listBox1.Items.Clear();
 listBox1.Items.Add("Game over");
 timer1.Stop();
 }
}

Set up the StatusStrip control.
Take a closer look at the status bar at the bottom of the
screenshot. On one side, it’s got a series of labels:

2

And on the other side, it’s got a label and a progress bar:

You’ll add a field called
“random” in just a minute.
Can you guess what its
type will be?

The Timer class has a Start() method, but you don’t need to call it for this project. Instead, you’ll set its Enabled property to True, which makes it start automatically.

178   Chapter 4

the key to a great game

Add a class to keep track of the player stats.
If the form is going to display the total number of keys the player pressed, the number that
were missed and the number that were correct, and the player’s accuracy, then we’ll need
a way to keep track of all that data. Sounds like a job for a new class! Add a class called
Stats to your project. It’ll have four int fields called Total, Missed, Correct, and
Accuracy, and a method called Update with one bool parameter: true if the player
typed a correct letter that was in the ListBox, or false if the player missed one.

4 Stats
Total
Missed
Correct
Accuracy

Update()

class Stats
{
 public int Total = 0;
 public int Missed = 0;
 public int Correct = 0;
 public int Accuracy = 0;

 public void Update(bool correctKey)
 {
 Total++;

 if (!correctKey)
 {
 Missed++;
 }
 else
 {
 Correct++;
 }

 Accuracy = 100 * Correct / Total;
 }
}

Every time the Update() method is
called, it recalculates the % correct
and puts it in the Accuracy field.

Add fields to your form to hold a Stats object
and a Random object.
You’ll need an instance of your new Stats class to actually store the information,
so add a field called stats to store it. And you already saw that you’ll need a field
called random—it’ll contain a Random object.

Add the two fields to the top of your form:

public partial class Form1 : Form
{
 Random random = new Random();
 Stats stats = new Stats();
 ...

5

Before you go on, there are three properties
you need to set. Set the Timer control’s

Enabled property to True, the ProgressBar
control’s Maximum property to 701, and the
Form’s KeyPreview property to True. Take
a minute and figure out why you need those

properties. What happens if you don’t set them?

you are here 4   179

types and references

Handle the keystrokes.
There’s one last thing your game needs to do: any time the player hits a key, it needs to check if that key
is correct (and remove the letter from the ListBox if it is), and update the stats on the StatusStrip.

6

private void Form1_KeyDown(object sender, KeyEventArgs e)
{
 // If the user pressed a key that's in the ListBox, remove it
 // and then make the game a little faster
 if (listBox1.Items.Contains(e.KeyCode))
 {
 listBox1.Items.Remove(e.KeyCode);
 listBox1.Refresh();
 if (timer1.Interval > 400)
 timer1.Interval -= 10;
 if (timer1.Interval > 250)
 timer1.Interval -= 7;
 if (timer1.Interval > 100)
 timer1.Interval -= 2;
 difficultyProgressBar.Value = 800 - timer1.Interval;

 // The user pressed a correct key, so update the Stats object
 // by calling its Update() method with the argument true
 stats.Update(true);
 }
 else
 {
 // The user pressed an incorrect key, so update the Stats object
 // by calling its Update() method with the argument false
 stats.Update(false);
 }

 // Update the labels on the StatusStrip
 correctLabel.Text = "Correct: " + stats.Correct;
 missedLabel.Text = "Missed: " + stats.Missed;
 totalLabel.Text = "Total: " + stats.Total;
 accuracyLabel.Text = "Accuracy: " + stats.Accuracy + "%";
}

Run your game.
Your game’s done! Give it a shot and see how well you do. You may need to adjust the font size of the
ListBox to make sure it holds exactly seven letters, and you can change the difficulty by adjusting the values
that are subtracted from timer1.Interval in the Form1_KeyDown() method.

7

This is the part that increases the difficulty
as the player gets more keys right. You can
make the game easier by reducing the amounts
that are subtracted from timer1.Interval, or
make it harder by increasing them.

This if statement
checks the ListBox
to see if it contains
the key the player
pressed. If it does,
then the key gets
removed from the
ListBox and the
game difficulty is
increased.

When the player
presses a key, the
Form1_KeyDown()
method calls the
Stats object’s
Update() method to
update the player
stats, and then it
displays them in the
StatusStrip.

Go back to the form designer and select the form.
Then go to the Properties window and click on the
lightning bolt button. Scroll to the KeyDown row
and double-click on it. This tells the IDE to add
a method called Form1_KeyDown() that gets
called every time the user presses a key. Here’s the
code for the method:

Click this button to
change the Properties
window’s view. The
button to the left
of it switches the
Properties window
back to showing you
properties.

These are called
events, and you’ll
learn a lot more
about them later on.

This game only
runs once. Can
you figure out how
to modify it so the
player can start a
new game when
it’s displaying
“Game Over”?

180   Chapter 4

take control of your controls

Controls are objects, just like any other object
You’ve built plenty of forms by dragging controls out of the toolbox. It turns out that those controls are
just regular old objects. And since they’re objects, you can add references to them and work with them
like you’d work with an instance of a class that you wrote yourself. Let’s see a live example of that by
building a program that animates some Label controls by bouncing them back and forth on a form.

using System.Windows.Forms;

class LabelBouncer {
 public Label MyLabel;

 public bool GoingForward = true;

 public void Move() {
 if (MyLabel != null) {
 if (GoingForward == true) {
 MyLabel.Left += 5;
 if (MyLabel.Left >= MyLabel.Parent.Width - MyLabel.Width) {
 GoingForward = false;
 }
 }
 else
 {
 MyLabel.Left -= 5;
 if (MyLabel.Left <= 0) {
 GoingForward = true;
 }
 }
 }
 }
}

Create a new Windows Forms Application and build this form.1

This class has a field called MyLabel with the type
Label, which means it holds a reference to a Label
object. Like all references, it starts out null. It
will get set to one of the labels on the form.

You’ll need
this “using"
line because
Label is in this
namespace.

Add a class called LabelBouncer. Here’s the code for it:2

Drag three Labels and three Buttons
onto the form. Double-click on

each of the buttons to add an event
handler method for each of them.

Drag a Timer onto the form and use the
Properties window to set its Enabled

property to True and its Interval property
to 1. Then double-click on it to add the
timer1_Tick() event handler method.

This Boolean flips from true to false to
true again as the label bounces back and
forth across the form.

All you need to do to bounce a label across
a form is to create a new instance of the
LabelBouncer class, set its MyLabel field to
point to a Label control on the form, and then call
its Move() method over and over again.

Each time the Move() method is called, the
LabelBouncer nudges the label by changing
its Left property. If the GoingForward field
is true, then it nudges it to the right by adding 5;
otherwise, it nudges it to the left by subtracting 5.

Every control has a Parent property that
contains a reference to the form, because the
form is an object too!

Do this

The Move() method figures out
if the label has hit the right
edge of the form by using >=
to check if its Left property
is greater than or equal to the
width of the form.

When you drag a control around
a form, the IDE sets the Top and
Left properties. Your programs
can use these properties to move
controls around the form.

Why do you think we need to
subtract the width of the label
from the width of the form?

you are here 4   181

types and references

public partial class Form1 : Form {

 public Form1() {
 InitializeComponent();
 }

 LabelBouncer[] bouncers = new LabelBouncer[3];

 private void ToggleBouncing(int index, Label labelToBounce) {
 if (bouncers[index] == null) {
 bouncers[index] = new LabelBouncer();
 bouncers[index].MyLabel = labelToBounce;
 }
 else {
 bouncers[index] = null;
 }
 }

 private void button1_Click(object sender, EventArgs e) {
 ToggleBouncing(0, label1);
 }

 private void button2_Click(object sender, EventArgs e) {
 ToggleBouncing(1, label2);
 }

 private void button3_Click(object sender, EventArgs e) {
 ToggleBouncing(2, label3);
 }

 private void timer1_Tick(object sender, EventArgs e) {
 for (int i = 0; i < 3; i++) {
 if (bouncers[i] != null) {
 bouncers[i].Move();
 }
 }
 }
}

Here’s the code for the form. See if you can figure out exactly what’s going on here.
It uses an array of LabelBouncer objects to bounce labels back and forth, and has the
Timer’s Tick event handler method call their Move() methods over and over again.

3

Click button1 to start label1
bouncing. Click it again to stop
it. The other two buttons
control the other two labels.

The labels will keep bouncing off the edges of the form, even if you drag it wider or narrower.

Since
controls are
just objects,
you can pass
references
to them as
method
parameters
and store
them in
arrays, fields,
and variables.

Each button calls
the ToggleBouncing()
method, passing it
an index of an array
and a reference to
one of the Labels on
the form.

The form stores an array of LabelBouncer references in
a field called bouncers. When the ToggleBouncing()
method is called, it uses the index parameter to check
an element of the array. If the element is null, it creates a
new LabelBouncer object and stores its reference in the
array; otherwise, it clears the element by setting it to null.

The Timer uses a for loop
to call each LabelBouncer’s
Move() method, but only
if it’s not null. Setting the
element to null stops it from
bouncing on the form.

Can you
follow exactly
what’s going
on with the
button event
handlers?
Your job is to
figure out how
they turn the
bouncing on
and off for
the labels.

182   Chapter 4

There are about 77 reserved words called keywords in C#. These are words reserved by the C#
compiler; you can’t use them for variable names. You’ll know a lot of them really well by the time you
finish the book. Here are some you’ve already used. Write down what you think these words do in C#.

namespace

for

class

public

else

new

using

if

while

Namespaces make sure that the names you are using in your program don’t collide
with the ones in the .NET Framework or other external classes you’ve used in your
program. All of the classes and methods in a program are inside a namespace.

This lets you do a loop that executes three statements. First it declares the
variable it’s going to use, then there’s the statement that evaluates the variable
against a condition. The third statement does something to the value.

A class is how you define an object. Classes have properties and methods.
Properties are what they know and methods are what they do.

A public class can be used by every other class in the project. When a variable or
method is declared as public, it can be used by classes and called by methods that are
outside of the one it’s being declared in.

Code that starts with else will get executed if the if statement preceding it fails.

You use this to create a new instance of an object.

This is a way of listing off all of the namespaces you are using in your program. using
lets you use code from the .NET Framework and predefined classes from third parties
as well as classes you can make yourself.

This is one way of setting up a conditional statement in a program.
It says if one thing is true, do one thing; if not, do something else.

while loops are loops that keep on going as long as the condition in them is true.

exercise solutions

you are here 4   183

types and references

Typecross Solution

N
1

A
2

M E

R
3

S R
4

E S E R V
5

E D

E S A

F I R

E G C
6

A S T I N G

R N A D
7

E M G
8

A R B A G E

N E L C C
9

C
10

O N C A T
11

E N A T
12

E I O

E T Y O M M

O
13

P S A P

D
14

O U B L E T L O

J C
15

H A R U

E I N

E
16

S C A P E U
17

N S I G N E D

T G

Across

1. The second part of a variable declaration [name]
4. "namespace", "for", "while", "using" and "new" are
examples of _____________ words. [reserved]
6. What (int) does in this line of code: x = (int) y;
[casting]
8. When an object no longer has any references
pointing to it, it's removed from the heap using
____________ collection. [garbage]
10. What you're doing when you use the + operator to
stick two strings together. [concatenate]
14. The type that holds the biggest numbers. [double]
15. The type that stores a single letter or number
[char]
16. \n and \r are _______ sequences [escape]
17. The four whole number types that only hold
positive numbers [unsigned]

Down

2. You can combine the variable declaration and the
____________ into one statement. [assignment]
3. A variable that points to an object [reference]
5. What your program uses to work with data that's in
memory [variable]
7. If you want to store a currency value, use this type
[decimal]
9. += and -= are this kind of operator [compound]
11. A variable declaration always starts with this.
[type]
12. Every object has this method that converts it to a
string. [tostring]
13. When you've got a variable of this type, you can
assign any value to it [object]

184   Chapter 4

private void button1_Click(object sender, EventArgs e)

{

 Elephant[] elephants = new Elephant[7];

 elephants[0] = new Elephant() { Name = "Lloyd", EarSize = 40 };

 elephants[1] = new Elephant() { Name = "Lucinda", EarSize = 33 };

 elephants[2] = new Elephant() { Name = "Larry", EarSize = 42 };

 elephants[3] = new Elephant() { Name = "Lucille", EarSize = 32 };

 elephants[4] = new Elephant() { Name = "Lars", EarSize = 44 };

 elephants[5] = new Elephant() { Name = "Linda", EarSize = 37 };

 elephants[6] = new Elephant() { Name = "Humphrey", EarSize = 45 };

 Elephant biggestEars = elephants[0];

 for (int i = 1; i < elephants.Length; i++)

 {

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 }

 MessageBox.Show(biggestEars.EarSize.ToString());

}

Iteration #1 biggestEars.EarSize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

exercise solutions

40

42

42

44

44

45

Did you remember that
the loop starts with the
second element of the
array? Why do you think
that is?

The biggestEars
reference is used to
keep track of which
element we’ve seen while going through the for loop has the biggest
ears so far.

The for loop starts with the second elephant and
compares it to whatever elephant biggestEars
points to. If its ears are bigger, it points
biggestEars at that elephant instead. Then it
moves to the next one, then the next one…by the
end of the loop, biggestEars points to the one
with the biggest ears.

Here’s an array of Elephant objects and a loop that will go through
it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

Use the debugger to check
this! Put your breakpoint here
and watch biggestEars.EarSize.

you are here 4   185

types and references

Code Magnets Solution
The code for a button is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working method that
produces the output listed below?

private void button1_Click (object sender, EventArgs e) {

string result = "";

int[] index = new int[4];

index[0] =
 1;

index[1] =
 3;

index[2] =
 0;

index[3] =
 2;

islands[0] = "Bermuda";islands[1] = "Fiji";
islands[2] = "Azores";islands[3] = "Cozumel";

string[] islands = new string[4];

int y =
0;

int refNum;

while (y < 4) {

refNum = index[y];

result += "\nisland = ";

result += islands[refNum];

y = y + 1;

}

}

MessageBox.Show(result);

The result string is built up
using the += operator to
concatenate lines onto it.

This while loop pulls a value from the index[] array and uses it for the index in the islands[] array.

The islands[] array is
initialized here.

Here’s where the
index[] array
gets initialized.

186   Chapter 4

class Triangle
{
 double area;
 int height;
 int length;
 public static void Main(string[] args)
 {
 string results = "";

 while (________)
 {

 _____.height = (x + 1) * 2;
 _____.length = x + 4;

 results += "triangle " + x + ", area";
 results += " = " + _____.area + "\n";

 }

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 results += "y = " + y;
 MessageBox.Show(results +
 ", t5 area = " + t5.area);
 }
 void setArea()
 {
 ____________ = (height * length) / 2;
 }
}

28
4, t5 area = 343

After this line,
we’ve got an array
of four Triangle
references—but
there aren’t any
Triangle objects yet!

Notice how this class contains
the entry point, but it also
creates an instance of itself?
That’s completely legal in C#.

The setArea() method
uses the height and
length fields to set the
area field. Since it’s not
a static method, it can
only be called from inside
an instance of Triangle.

The while loop
creates the four
instances of
Triangle by calling
the new statement
four times.

Pool Puzzle Solution

Bonus Answer

int x = 0;
Triangle[] ta = new Triangle[4];

x < 4

ta[x] = new Triangle();
ta[x]

ta[x].setArea();

ta[x]
x = x + 1;

int y = x;

area

ta[x]

exercise solutions

C# Lab   187

Name: Date:

C# Lab   187

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.

This project is bigger than the ones you’ve seen so far.
So read the whole thing before you get started, and
give yourself a little time. And don’t worry if you get
stuck—there’s nothing new in here, so you can move
on in the book and come back to the lab later.

We’ve filled in a few design details for you, and we’ve
made sure you’ve got all the pieces you need...and
nothing else.

It’s up to you to finish the job. You can download
the graphics files we used in our solution...but we
won’t give you code for a solution.

C# Lab
A Day at the Races

But other readers have claimed their bragging rights by publishing
their solutions on CodePlex, GitHub, and other collaborative source
code hosting sites, in case you need a hint!

188  

A Day at the Races

The Spec: Build a Racetrack Simulator
Joe, Bob, and Al love going to the track, but they’re tired of
losing all their money. They need you to build a simulator
for them so they can figure out winners before they lay their
money down. And, if you do a good job, they’ll cut you in
on their profits.

Here’s what you’re going to build for them…

The Guys

Joe, Bob, and Al want to bet on a dog race. Joe starts with 50 bucks,
Bob starts with 75 bucks, and Al starts with 45 bucks. Before
each race, they’ll each decide if they want to bet, and how
much they want to put down. The guys can change their bets
right up to the start of the race...but once the race starts, all
bets are final.

The Betting Parlor

The betting parlor keeps track of how much cash each
guy has, and what bet he’s placed. There’s a minimum
bet of 5 bucks. The parlor only takes one bet per person
for any one race.

The parlor checks to make
sure that the guy who’s betting
has enough cash to cover his
bet—so the guys can’t place a
bet if they don’t have the cash
to cover the bet.

Welcome to Curly’s
Betting Parlor

Minimum Bet: $5
One bet per person per race

Got enough cash?

   189

A Day at the Races

Betting

Every bet is double-or-nothing—either the winner doubles
his money, or he loses what he bet. There’s a minimum
bet of 5 bucks, and each guy can bet up to 15 bucks on a
single dog. If the dog wins, the bettor ends up with twice
the amount that he bets (after the race is complete). If he
loses, that amount disappears from his pile.

The Race

There are four dogs that run on a straight track. The
winner of the race is the first dog to cross the finish line.
The race is totally random, there are no handicaps or
odds, and a dog isn’t more likely to win his next race
based on his past performance.

If you want to build a handicap system, by all means do it! It’ll be really good practice writing some fun code.

Sound fun? We’ve got more details coming up...

All bets: double-or-nothing
Minimum bet: $5

Up to $15 per dog
Win: $$ added

Lose: $$ removed
Say a guy places a $10 bet at the window. At
the end of the race, if his dog wins, his cash
goes up by $10 (because he keeps the original $10
he bet, plus he gets $10 more from winning). If
he loses, his cash goes down by $10.

190  

A Day at the Races

You’ll need three classes and a form

Greyhound
StartingPosition
RacetrackLength
MyPictureBox
Location
Randomizer

Run()
TakeStartingPosition()

public class Greyhound {
 public int StartingPosition; // Where my PictureBox starts
 public int RacetrackLength; // How long the racetrack is
 public PictureBox MyPictureBox = null; // My PictureBox object
 public int Location = 0; // My Location on the racetrack
 public Random Randomizer; // An instance of Random

 public bool Run() {
 // Move forward either 1, 2, 3 or 4 spaces at random

 // Update the position of my PictureBox on the form like this:

 // MyPictureBox.Left = StartingPosition + Location;

 // Return true if I won the race
 }

 public void TakeStartingPosition() {
 // Reset my location to 0 and my PictureBox to starting position
 }
}

You’ll build three main classes in the project, as well as a GUI for
the simulator. You should have an array of three Guy objects to
keep track of the three guys and their winnings, and an array of
four Greyhound objects that actually run the race. Also, each
instance of Guy should have its own Bet object that keeps track
of his bet and pays out (or takes back) cash at the end of the race.

We’ve gotten you started with class descriptions and some
snippets of code to work from. You’ve got to finish everything up.

Initialize your arrays of Greyhound and Guy objects

The Greyhound class keeps track of its position on the racetrack during the race, and
it updates the location of the PictureBox representing the dog to move down the race
track. Each instance of Greyhound uses a field called MyPictureBox to reference
the PictureBox control on the form that shows the picture of the dog. It also needs to
know its starting position and the length of the racetrack, which it can determine using the
PictureBox for the racetrack (we named it racetrackPictureBox). Here’s the object
initializer for one of the Greyhound objects in the array (we called it GreyhoundArray):

We’ve given you the skeleton of the class you need to build. Your job is to fill in the methods.

See how the class diagram
matches up with the code?

We’ve added comments to give
you an idea of what to do.

Don’t overthink this...
sometimes you just need to set
two fields, and you’re done.

You’ll need to add
 using System.Windows.Forms;
to the top of the Greyhound and

Guy classes. You’ll also need to add
the public keyword in front of
each of your class declarations.

This works just like LabelBouncer: the form passes a reference to a PictureBox to the Greyhound object, which uses its Left property to make it move.

You only need one instance of Random—each Greyhound’s Randomizer reference should point to the same Random object.

Make sure you add public to
each class declaration.

GreyhoundArray[0] = new Greyhound() {
 MyPictureBox = pictureBox1,
 StartingPosition = pictureBox1.Left,
 RacetrackLength = racetrackPictureBox.Width - pictureBox1.Width,
 Randomizer = MyRandomizer
};

This Greyhound object controls pictureBox1.

You’ll need to do this for each object in the array of Greyhounds.
You’ll also need to initialize your three Guy objects. Don’t forget to
set each guy’s MyRadioButton and MyLabel to the right control!

   191

A Day at the Races

Bet
Amount
Dog
Bettor

GetDescription
PayOut

Guy
Name
MyBet
Cash
MyRadioButton
MyLabel

UpdateLabels()
PlaceBet()
ClearBet()
Collect()

public class Guy {
 public string Name; // The guy's name
 public Bet MyBet; // An instance of Bet that has his bet
 public int Cash; // How much cash he has

 // The last two fields are the guy’s GUI controls on the form
 public RadioButton MyRadioButton; // My RadioButton
 public Label MyLabel; // My Label

 public void UpdateLabels() {
 // Set my label to my bet’s description, and the label on my
 // radio button to show my cash ("Joe has 43 bucks")
 }

 public void ClearBet() { } // Reset my bet so it’s zero

 public bool PlaceBet(int BetAmount, int DogToWin) {
 // Place a new bet and store it in my bet field
 // Return true if the guy had enough money to bet
 }

 public void Collect(int Winner) {
 // Ask my bet to pay out, clear my bet, and update my labels
 }
}

public class Bet {
 public int Amount; // The amount of cash that was bet
 public int Dog; // The number of the dog the bet is on
 public Guy Bettor; // The guy who placed the bet

 public string GetDescription() {
 // Return a string that says who placed the bet, how much

 // cash was bet, and which dog he bet on ("Joe bets 8 on

 // dog #4"). If the amount is zero, no bet was placed

 // ("Joe hasn’t placed a bet").

 }

 public int PayOut(int Winner) {
 // The parameter is the winner of the race. If the dog won,

 // return the amount bet. Otherwise, return the negative of

 // the amount bet.

 }

}

Hint: you’ll instantiate Bet
in the Guy code. Guy will
use the this keyword to
pass a reference to himself
to the Bet’s initializer.

Add your code here.

The key here is to use the Bet
object... let it do the work.

Remember
that bets are
represented by
instances of Bet.

This is a common programming task:

assembling a string or message from

several individual bits of da
ta.

This is the object that Guy uses to represent bets in the application.

When you initialize
the Guy object, make
sure you set its MyBet
field to null, and call
its UpdateLabels()
method as soon as it’s
initialized.

The object initializer for Bet just
sets the amount, dog, and bettor.

Once you set MyLabel to one of the
labels on the form, you’ll be able to change
the label’s text using MyLabel.Text. The
same goes for MyRadioButton.

This works exactly like the MyLabel field
in LabelBouncer from Chapter 4.

Remember: the form keeps the dogs in an array that starts
at index 0. Dog #1 is at index 0, dog #2 is at index 1, etc.
You’ll need to add 1 to the array index to get the winner.

192  

A Day at the Races

Here’s your application architecture

System.Window
s.

Fo
rm

 o
b

je
c

t

Greyhound[]
ar

ra
y

Guy[] a

rr
ay

Among the visual objects will be four PictureBox controls for the pictures of the dogs. You’ll pass references to them to the object initializers of the four Greyhound objects. It’ll also have three RadioButton controls and three labels, which you’ll pass to the object initializers of the three Guy objects.

The Guys array contains references to three Guy objects. Each of those objects has a field called MyBet, which is a reference to a Bet object.

The form uses its Dogs field

to hold an array of fou
r Dog

references, each of which points

to a separate instance o
f the

Greyhound class.

Array of Greyhound references

Array of Guy references

The form needs to initialize
both of these arrays when
it starts up.

Spend some time looking closely at the architecture. It
looks pretty complicated at first, but there’s nothing here
you don’t know. Your job is to recreate this architecture
yourself, starting with the Greyhound and Guy arrays in
your main form.

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Visual obje
ct

s

Guy obje
ct

Bet obje
ct

Guy obje
ct

Bet obje
ct

Guy obje
ct

Bet obje
ct

If your code won’t build because of an error message about
“inconsistent accessibility,” make sure you added public to the beginning of
the three class declarations. (You’ll learn more about this later on in the book.)

   193

A Day at the Races

Greyhound[]
ar

ra
ySystem.Window

s.
Fo

rm
 o

b
je

c
t

Bet obje
ct

Guy obje
ct

Form obje
ct

When a Guy places a bet, he
creates a new Bet object

Guy[1].PlaceBet(7, 3)

First the form tells Guy #2
to place a bet for 7 bucks on
dog #3... MyBet = new Bet()

{ Amount = 7, Dog = 3, Bettor = this };

...so Guy #2 creates a new instance of Bet, using the this keyword to tell the Bet object that he’s the bettor...

return true ...and since the Guy had enough money to place the bet, PlaceBet() updates the Guy’s labels and returns true. (If he didn’t have enough, it would return false instead.)
The form uses a Timer to keep the dogs
running until there’s a winner

The Bet object figures out if it
should pay out

private void timer1_Tick(...) {
 for (loop through each dog) {
 if (call the dog’s Run() method) {
 we have a winner!
 call timer1.Stop() to stop the dogs
 show a message saying who won
 each Guy collects his winnings
 }
 }

When the user
tells the form to
start the race,
the form starts
the timer, which
starts the dogs.

Each dog’s Run() method checks to see if that dog won the race, so the timer should Stop() as soon as it returns True.

Guy[1].Collect(winningDog) MyBet.PayOut(winningDog)

if (my dog won) {
 return Amount;
} else {
 return -Amount;
}

The Guy will add the result of Bet.Payout() to
his cash. All the intelligence is in the Bet.Payout()
method: if the dog won, it returns Amount;
otherwise, it returns -Amount.

The betting parlor in the form tells
each Guy which dog won so he can
collect any winnings from his bet.

Bet obje
ct

Guy obje
ct

Form obje
ct

Set the Timer object’s
Enabled property to false,
and use its Start() and
Stop() methods to start
and end the race.

But you won’t be using
numbers like 7 and 3, you’ll
be using the arguments
passed into PlaceBet,
BetAmount, and DogToWin.

Don’t forget to
add 1 to the array
index to find the
winning dog!

194  

A Day at the Races

Here’s what your GUI should look like
The graphical user interface for the “Day at the Races” application
consists of a form that’s divided into two sections. The top is the
racetrack: a PictureBox control for the track, and four more for
the dogs. The bottom half of the form shows the betting parlor, where
three guys (Joe, Bob, and Al) can bet on the outcome of the race.

All three guys can bet on the race, but there’s only one betting window so only one guy can place a bet at a time. These radio buttons are used to select which guy places the bet. Turn Joe’s on by setting its Checked property to true. Double-click on each of them to add its code.

When a Guy places a bet, it overwrites
any previous bet he placed. The current
bets show up in these label controls.
Each label has AutoSize set to False
and BorderStyle set to FixedSingle.

Once all bets are
placed, click this
button to start
the race.

Each of the four dogs has its ow
n PictureBox control. When

you initialize each of the four G
reyhound objects, each one’s

MyPictureBox field will have a reference to one of th
ese objects.

You’ll pass the reference (along
with the racetrack length and

starting position) to the Greyhound’s object initializer.

You’ll use the Width property of the racetrack PictureBox control to set the racetrack length in the Greyhound object, which it’ll use to figure out if it won the race. Right-click on it and choose “Send to Back” to make sure it’s behind the other PictureBox controls.

The form should update this label with the minimum bet using the Minimum property of the NumericUpDown control for the bet amount.

You can download the graphics files from www.headfirstlabs.com/books/hfcsharp/.

Play with the Timer object’s Interval property
to change the speed of the race.

Flip back to the end of Chapter 2 to remind
yourself how to load an image into a PictureBox.

Set the SizeMode property to StretchImage so you can resize
the PictureBox and have the image stretch to fill it up.

Set the form’s FormBorderStyle property to FixedSingle and its MaximizeBox and MinimizeBox
properties to false.

   195

A Day at the Races

Placing bets

Use the controls in the Betting Parlor GroupBox to place
each guy’s bet. There are three distinct stages here:

No bets have been placed yet.
When the program first starts up, or if a race has just
finished, no bets have been placed in the betting parlor.
You’ll see each guy’s total cash next to his name on the left.

1

Each guy places his bets.
To place a bet, select the guy’s radio button, select an amount and a dog, and click
the Bets button. His PlaceBet() method will update the label and radio button.

2

Each guy’s cash
shows up here.

The minimum bet should be the
same as the Minimum value in
the NumericUpDown control.

When a guy places a bet, his Guy object updates this label using the MyLabel reference. He also updates the cash he has using his MyRadioButton reference.

After the race, each guy collects his winnings (or pays up!).
Once the race is complete and there’s a winner, each Guy object calls his
Collect() method and adds his winnings or losses to his cash.

3

Sorry, Bob, your dog lost, so
you lose your 13 bucks. All
bets are double-or-nothing,
so if he’d won he would have
gotten an extra 13 bucks.

Make sure all the Greyhound objects share the same Random object! If each dog creates its own new instance
of Random, you might see a bug where all of the dogs generate the same sequence of random numbers.

Fill in
the
minimum
bet

You’ll need a loop to initialize
each Guy object by calling his
ClearBet() method (which
has him place a bet with
zero bucks) and then calling
his UpdateLabels() method.

Once Bob places
his bet, his Guy
object updates this label and the radio button text.

196  

A Day at the Races

The Finished Product
You’ll know your “Day at the Races” application is
done when your guys can place their bets and watch
the dogs race.

During the race, the four dog
images run across the racetrack
until one of them wins the race.

During the race, no bets can be placed...and make sure you can’t start a new race while the dogs are running! You can enable and disable the GroupBox by setting its Enabled property to true or false.
You can download a finished executable,
as well as the graphics files for the four
dogs and the racetrack, from the Head
First labs website:
www.headfirstlabs.com/books/hfcsharp

We didn’t give solutions for this lab
because when programs get large enough,
there are too many ways to build them for
us to say there’s one “right” solution. But
if you need a hint, plenty of people have

claimed their bragging rights by publishing
their own code on CodePlex.com and other

collaborative source code hosting sites.

this is a new chapter   197

encapsulation5

private

Ever wished for a little more privacy?�
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

No peeking!

Keep your privates…

198   Chapter 5

Kathleen is an event planner

kathleen needs your help

She’s been planning dinner parties for
her clients and she’s doing really well.
But lately she’s been having a hard time
responding to clients fast enough with an
estimate for her services.

When a new client calls Kathleen to do a party, she needs to find
out the number of guests, what kind of drinks to serve, and what
decorations she should buy. Then she uses a pretty complicated
calculation to figure out the total cost, based on a flow chart she’s
been using for years. The bad news is that it takes her a long time
to work through her chart, and while she’s estimating, her potential
clients are checking out other event planners.

It’s up to you to build her a C#-driven event estimator and save
her business. Imagine the party she’ll throw you when you succeed!

Kathleen would rather spend
her time planning events, not
planning estimates.

you are here 4   199

encapsulation

What does the est imator do?
Kathleen runs down some of the basics of her system
for figuring out the costs of an event. Here’s part of
what she came up with:

Kathleen’s Party Planning Program—Cost Estimate for a Dinner Party

•	 For each person on the guest list there’s a $25 food charge.

•	 Clients have a choice when it comes to drinks. Most parties serve alcohol, which

costs $20 per person. But they can also choose to have a party without alcohol.

Kathleen calls that the “Healthy Option,” and it only costs $5 per person to have

soda and juice instead of alcohol. Choosing the Healthy Option is a lot easier for

her, so she gives the client a 5% discount on the entire party, too.

•	 There are two options for the cost of decorations. If a client goes with the

normal decorations, it’s $7.50 per person with a $30 decorating fee. A client can

also upgrade the party decorations to the “Fancy Decorations”—that costs $15

per person with a $50 one-time decorating fee.

Number of
people.
Food ($25
per person)

Healthy
Option?

Alcohol
($20 per
person)

Fancy
Decorations?

Juice and soda
($5 per person +
5% discount on
total cost)

Fancy
decorations
($15 per person

+$50 decorating
fee)

Normal
decorations
($7.50 per
person +$30
decorating fee)

Yes

No

Yes

No

Here’s another look at this same set of costs, broken
down into a little flow chart to help you see how it works:

Some of these choices involve a change to the final price of the event, as well as individual per-person costs.

While most choices affect thecost for each guest, there arealso one-time fees to figure in.

200   Chapter 5

DinnerParty

NumberOfPeople
CostOfBeveragesPerPerson
CostOfDecorations

SetHealthyOption()
CalculateCostOfDecorations()
CalculateCost()

how you'll solve kathleen's problem

You're going to build a program for Kathleen
When you flip the page, you’ll see an exercise to build a dinner party–planning
program for Kathleen. Here’s a sneak preview of what you’ll build.

The logic for the program will
be built into a class called
DinnerParty. The form will create a
DinnerParty object, store a reference to that
object in a field, and use its fields and methods
to perform the calculation.

public partial class Form1 : Form

{

 DinnerParty dinnerParty;

 public Form1()

 {

 InitializeComponent();

 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };

 dinnerParty.SetHealthyOption(false);

 dinnerParty.CalculateCostOfDecorations(true);

 DisplayDinnerPartyCost();

 }

 ...

You'll build this form, which Kathleen will
use to set the options for her party. She'll set the
number of people and check or uncheck the boxes for fancy
decorations or a healthy option. As she does, the cost at the
bottom will change based on her selections.

Here's what the top of
the form will look like. It
will have a field called
dinnerParty to do the cost
calculation. The first thing
the form will do is set it up with
default values, and then calculate
the cost using a method called
DisplayDinnerPartyCost().
The form will call that method every
time the user changes an option.

you are here 4   201

encapsulation

Number of
people.
Food ($25
per person)

Healthy
Option?

Alcohol
($20 per
person)

Fancy
Decorations?

Juice and soda
($5 per person +
5% discount on
total cost)

Fancy
decorations
($15 per person

+$50 decorating
fee)

Normal
decorations
($7.50 per
person +$30
decorating fee)

Yes

No

Yes

No

The cost of food per person is
always $25. You'll learn about
how to use a constant to store

a value that never changes.

Every time the user checks a box or changes the number of people, the
event handler methods use the DinnerParty object's fields and methods
to update its state. Then they call the CalculateCost() method to come

up with a final cost for the party and display it in the label.

You'll use a NumericUpDown
control to set the number of people

by having its event handler set a
field in the DinnerParty object.

When the user clicks
the Healthy Option
checkbox, the form

calls a method called
SetHealthyOption()

that changes the way the
total cost is calculated.

If the user checked
the "Fancy Decorations"

box, the form will pass the
CalculateCostOfDecorations()
method true for its fancy parameter.

Here's how the DinnerParty class will work. The current state of the
DinnerParty object—the values stored in its fields—determines how it does
its cost calculation. Setting the healthy option, choosing fancy decorations, and adding or
removing people changes the state of the object, which causes the CalculateCost() method to
return a different number.

The beverages cost
less if the user chooses
the healthy option. The
SetHealthyOption()

method updates a field called
CostOfBeveragesPerPerson
to keep track of how much the

beverages cost.

Got all that? Let's start building!

202   Chapter 5

v

DinnerParty

NumberOfPeople
CostOfBeveragesPerPerson
CostOfDecorations

SetHealthyOption()
CalculateCostOfDecorations()
CalculateCost()

Create a new Windows Forms Application project, add a class file to it called DinnerParty.
cs, and build the DinnerParty class using the class diagram to the left. It’s got three
methods: CalculateCostOfDecorations(), SetHealthyOption(), and
CalculateCost(). For the fields, use decimal for the two costs, and an int for
the number of people. Make sure you add an M after every literal you assign to a
decimal value (10.0M).

1

Add this code to your form:

DinnerParty dinnerParty;
public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.SetHealthyOption(false);
 dinnerParty.CalculateCostOfDecorations(true);
 DisplayDinnerPartyCost();
}

4

Flip back to the previous page to be sure you’ve got the calculations right for
the methods. Only one of them returns a value (a decimal)—the other two
are void. The CalculateCostOfDecorations() method figures out
the cost of decorations for the number of people attending the party. Use the
CalculateCost() method to figure out the total cost by adding the cost of
the decorations to the cost of drinks and food per person. If the client wants the
healthy option, you can apply the discount inside the CalculateCost()method
after you’ve figured out the total cost.

3

This is a label named costLabel. The Text Property is empty, the BorderStyle
property set to Fixed3D, and the AutoSize property set to false.

Here’s the class di
agram for

the DinnerParty class
you’ll

need to create.

Set the default
value to 5. The
minimum should be
1 and the maximum
should be 20.

Build a program to solve Kathleen’s party estimating problem.

Here’s what the form
should look like. Use the
NumericUpDown control’s
properties to set the maximum
number of people to 20, the
minimum to 1, and the default
to 5. Get rid of the maximize
and minimize buttons, too.

5

Here’s a useful C# tool. Since the cost of food won’t be changed by the program,
you can declare it as a constant, which is like a variable except that its value can
never be changed. Here’s the declaration to use:

public const int CostOfFoodPerPerson = 25;

2

The SetHealthyOption() method uses a bool parameter (healthyOption) to update the CostOfBeveragesPerPerson field based on whether or not the client wants the healthy option.

ok, no problem

Set the Fancy
Decorations
checkbox’s Checked
property to True.

You’ll declare the dinnerParty field in
the form, and then add these four lines
below InitializeComponent().

We're going to start asking you to solve longer and tougher problems

The checkboxes are
named fancyBox and
healthyBox. You can keep
the default name for the
NumericUpDown control.

you are here 4   203

encapsulation

v Instead of using a button to calculate the costs, this form will update the cost label
automatically as soon as you use a checkbox or the NumericUpDown control. The first
thing you need to do is create a method in the form that displays the cost.

Add this method to the Form1 class. It’ll get called when the NumericUpDown control is clicked:

private void DisplayDinnerPartyCost()
{
 decimal Cost = dinnerParty.CalculateCost(checkBox2.Checked);
 costLabel.Text = Cost.ToString("c");
}

6

Double-click on the Fancy Decorations checkbox on the form and make
sure that it first calls CalculateCostOfDecorations() and then
DisplayDinnerPartyCost(). Next, double-click the Healthy Option
checkbox and make sure that it calls the SetHealthyOption() method in the
DinnerParty class and then calls the DisplayDinnerPartyCost() method.

8

Now hook up the NumericUpDown field to the NumberOfPeople variable you
created in the DinnerParty class and display the cost in the form. Double-click on
the NumericUpDown control—the IDE will add an event handler method that
gets run every time the value in the control is changed. Use this method to reset the
number of people in the party. Here's the code for the method:

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e)
{
 dinnerParty.NumberOfPeople = (int) numericUpDown1.Value;
 DisplayDinnerPartyCost();
}

7

This method will
get called by all of
the other methods
you create on the
form. It’s how you
update the cost
label with the right
value whenever
anything changes.

These are just two-line methods. The first line will call the method you created in the class to figure out the costs, and the second will display the total cost on the form.

The value you send from the form to the
method will be fancyBox.Checked. That will
be passed as a boolean parameter to the
method in the class.

Add this method to the form—it’ll recalculate the cost of the party and put it in the Cost label.

Change the name of the
label that displays the cost
to costLabel.

This is true if the
checkbox for the Healthy
Option is checked.

You’ve been using
event handlers
all along—when
you double-click
on a button,
the IDE adds
a Click event
handler. Now
you know what
it’s called.

You need to cast numericUpDown.Value to
an int because it’s a Decimal property.

Passing “c” to ToString() tells it to format the cost as a currency value. If you’re in a country that uses dollars, it’ll add a dollar sign.

Uh oh—there’s a problem with
this code. Can you spot it? Don’t
worry if you don’t see it just yet.

because we know you're up to the challenge!

The goal is to help you become a great
C# programmer, and the quickest way to
that goal is solving problems like this one.

204   Chapter 5

wv

exercise solution

class DinnerParty {
 public const int CostOfFoodPerPerson = 25;
 public int NumberOfPeople;
 public decimal CostOfBeveragesPerPerson;
 public decimal CostOfDecorations = 0;

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption) {
 CostOfBeveragesPerPerson = 5.00M;
 } else {
 CostOfBeveragesPerPerson = 20.00M;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 if (fancy)
 {
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 } else {
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 }
 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = CostOfDecorations +
 ((CostOfBeveragesPerPerson + CostOfFoodPerPerson)
 * NumberOfPeople);

 if (healthyOption) {
 return totalCost * .95M;
 } else {
 return totalCost;
 }
 }
}

Here’s the code that goes into DinnerParty.cs.

This applies the 5% discount to
the overall event cost if the
nonalcoholic option was chosen.

Using a constant for CostOfFoodPerPerson
ensures the value can’t be changed. It also
makes the code easier to read—it’s clear that
this value never changes.

When the form first creates
the object, it uses the initializer to set NumberOfPeople. Then
it calls SetHealthyOption() and CalculateCostOfDecorations() to set the other fields.

We used “if (Fancy)” instead of
typing “if (Fancy == true)” because
the if statement always checks if the
condition is true.

We used parentheses to make sure the
math works out properly.

You don’t need to add “using System.Windows.Forms;” to your DinnerParty class, because it doesn’t use MessageBox.Show() or anything else from that .NET Framework namespace.

you are here 4   205

encapsulation

wv

public partial class Form1 : Form {
 DinnerParty dinnerParty;
 public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void fancyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void healthyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;
 DisplayDinnerPartyCost();
 }

 private void DisplayDinnerPartyCost() {
 decimal Cost = dinnerParty.CalculateCost(healthyBox.Checked);
 costLabel.Text = Cost.ToString("c");
 }
}

Changes to the checkboxes on the form set
the healthyOption and Fancy booleans to
true or false in the SetHealthyOption() and
CalculateCostOfDecorations() methods.

We call DisplayDinnerPartyCost to
initialize the label that shows the
cost as soon as the form’s loaded.

We had you use a decimal for the prices because it’s designed for monetary values. Just make
sure you always put an “M” after every literal—so if you want to store $35.26, make sure you
write 35.26M. You can remember this because the M stands for Money!

We named our checkboxes “healthyBox”
and “fancyBox” so you could see what’s
going on in their event handler methods.

The new dinner party cost needs to be
recalculated and displayed any time the number
changes or the checkboxes are checked.

String formatting
You’ve already seen how you can convert any object to a string using its ToString() method. If you pass “c” to ToString(), it converts it to the local currency. You can also pass it “f3” to format it as a decimal number with three decimal places, “0” (that’s a zero) to convert it to a whole number, “0%” for a whole number percentage, and “n” to display it as a number with a comma separator for thousands. Take a minute and see how each of these looks in your program!

206   Chapter 5

Kathleen’s test dri ve

something’s gone terribly wrong

This is so cool!
Estimating is about

to get a whole lot
easier.

Rob (on phone): Hi, Kathleen. How are the arrangements
for my dinner party going?

Kathleen: Just great. We were out looking at decorations this
morning and I think you’ll love the way the party’s going to
look.

Rob: That’s awesome. Listen, we just got a call from my wife’s
aunt. She and her husband are going to be visiting for the next
couple of weeks. Can you tell me what it does to the estimate
to move from 10 to 12 people on the guest list?

Kathleen: Sure! I’ll have that for you in just one minute.

Kathleen: OK. It looks like the total cost for the dinner will
go from $575 to $665.

Rob: Only $90 difference? That sounds like a great deal! What
if we decide to cut the fancy decorations? What’s the cost then?

Changing the Number of
People value from 10 to 12
and hitting enter shows $665
as the total cost. Hmm, that
seems a little low....

Rob’s one of Kathleen’s
favorite clients. She did hi

s
wedding last year, and now
she’s planning an important
dinner party for him.

When you start the
program, the Fancy
Decorations box should
already be checked
because you set its
Checked property
to true. Setting the
number of people to 10
gives a cost of $575.

We took this screenshot in
the United States, so we saw
a dollar sign. If you're in the
United Kingdom, France, or
Japan, you'll see a sign for the
pound, euro, or yen because
you're using ToString(“c") to
convert the decimal cost to a
currency string.

you are here 4   207

encapsulation

Kathleen: Um, it looks like…um, $660.

Rob: $660? I thought the decorations were $15 per person. Did you change your
pricing or something? If it’s only $5 difference, we might as well go with the fancy
decorations. I’ve gotta tell you though, this pricing is confusing.

Kathleen: We just had this new program written to do the estimation for us.
But it looks like there might be a problem. Just one second while I add the fancy
decorations back to the bill.

Kathleen: Rob, I think there’s been a mistake. It looks like the cost with the fancy
decorations just shot up to $770. That does seem to make more sense. But I am
beginning not to trust this application. I’m going to send it back for some bug fixes
and work up your estimate by hand. Can I get back to you tomorrow?

Rob: I am not paying $770 just to add two people to the party. The price you
quoted me before was a lot more reasonable. I’ll pay you the $665 you quoted me in
the first place, but I just can’t go higher than that!

When you turn the Fancy
Decorations back on, the
number shoots up to $770.
These numbers are just wrong.

Turning off the Fancy Decorations checkbox only reduces the amount by $5. That can’t be right!

Why do you think the numbers are coming out wrong every time Kathleen makes a change?

208   Chapter 5

wasn’t expecting that

Each option should be calculated individually
Even though we made sure to calculate all of the amounts according
to what Kathleen said, we didn’t think about what would happen when
people made changes to just one of the options on the form.

When you launch the program, the form sets the number of people to 5
and Fancy Decorations to true. It leaves Healthy Option unchecked and
it calculates the cost of the dinner party as $350. Here’s how it comes up
with the initial total cost:

5 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $100

Total cost of food = $125

Total cost of decorations = $125

$100 + $125 + 125 = $350

When you change the number of guests, the application should
recalculate the total estimate the same way. But it doesn’t:

10 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $200

Total cost of food = $250

Total cost of decorations = $200

$200 + $250+ 200 = $650

So far, so good.

The program is adding the old cost of
decorations up with the new cost of
food and drink.
It’s doing $200 + $250 + $125= $575.

This is the total we should get. But we’re not getting it!
New food and drink cost Old decorations

		� Don’t worry!
This one
wasn’t your
fault.

We built a nasty little bug into the
code we gave you to show you just
how easy it is to have problems
with how objects use one another’s
fields…and just how hard those
problems are to spot.

Uncheck the Fancy Decorations
checkbox and then check it again.

This will cause the DinnerParty object’s

CostOfDecorations field to be updated,

and then the correct cost of $650 will show up.

you are here 4   209

encapsulation

The Problem Up Close
Take a look at the method that handles changes to the value in the numericUpDown
control. It sets the value from the field to the NumberofPeople variable and then
calls the DisplayDinnerPartyCost() method. Then it counts on that method
to handle recalculating all the individual new costs.

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e) {

 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;

 DisplayDinnerPartyCost();

}

public void CalculateCostOfDecorations(bool Fancy) {

 if (Fancy) {

 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;

 } else {

 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;

 }

}

So, when you make a change to the value in the NumberofPeople
field, this method never gets called:

This line sets the value
of NumberofPeople
in this instance of
DinnerParty to the
value in the form.

This method calls the CalculateCost() method, but not
the CalculateCostofDecorations() method.

People won’t always use your classes in
exactly the way you expect.

Luckily, C# gives you a powerful tool to make sure your
program always works correctly—even when people do
things you never thought of. It’s called encapsulation
and it’s a really helpful technique for working with objects.

Hold on! I assumed Kathleen would
always set all three options at once!

This variable is set to $125 from when the
form first called it, and since this method
doesn’t get called again, it doesn’t change.

That’s why the number corrects itself when you turn
Fancy Decorations back on. Clicking the checkbox makes
the program run CalculateCostOf Decorations() again.

…and sometimes
those “people” who
are using your classes
are you! You might
be writing a class
today that you’ll be
using tomorrow.

This isn’t the only part of the program that has problems, either. The two checkboxes are inconsistent
in how they behave: one calls a method to set the object’s state, and the other is passed as an argument to a
method. A programmer trying to figure out how this program works will find it totally counterintuitive!

Did you have a bit
of trouble figuring
out how this exercise
works? Don't be hard
on yourself if you did.
It could be because
we asked you to build
a program that had
these conceptual
problems! You'll
build a much better,
simpler version at the
end of this chapter.

210   Chapter 5

It’s easy to accidentally misuse your objects
Kathleen ran into problems because her form ignored the convenient
CalculateCostOfDecorations() method that you set up and instead
went directly to the fields in the DinnerParty class. So even though your
DinnerParty class worked just fine, the form called it in an unexpected way…
and that caused problems.

NumberOfPeople = 10;

CalculateCostOfDecorations(
true);

 Form

How the DinnerParty class expected to be called
The DinnerParty class gave the form a perfectly good method to calculate the
total cost of decorations. All it had to do was set the number of people and then call
CalculateCostOfDecorations(), and then CalculateCost() will return the correct cost.

1

Even though the form didn’t set up the party properly, CalculateCost() still returned a number…and there was no way for Kathleen to know that the number was wrong.

CalculateCost() returns $650

How the DINNERPARTY class was actually called
The form set the number of people, but just called the CalculateCost() method without first
recalculating the cost of the decorations. That threw off the whole calculation, and Kathleen ended
up giving Rob the wrong price.

2

NumberOfPeople = 10;

CalculateCost() returns $575

protect your objects

DinnerParty
ob

je
ct

 Form

DinnerParty
ob

je
ct

you are here 4   211

encapsulation

Encapsulat ion means keeping some of
the data in a class pri vate
There’s an easy way to avoid this kind of problem: make sure that there’s only one
way to use your class. Luckily, C# makes it easy to do that by letting you declare
some of your fields as private. So far, you’ve only seen public fields. If you’ve
got an object with a public field, any other object can read or change that field.
But if you make it a private field, then that field can only be accessed from
inside that object (or by another object of the same class).

en-cap-su-la-ted, adj.
enclosed by a protective coating
or membrane. The divers were fully
encapsulated by their submersible,
and could only enter and exit through
the airlock.

class DinnerParty {

 private int numberOfPeople;

 ...

 public void SetPartyOptions(int people, bool fancy) {

 numberOfPeople = people;

 CalculateCostOfDecorations(fancy);

 }

 public int GetNumberOfPeople() {

 return numberOfPeople;

 }

If you want to make a field private, all you need to do is use the private keyword when you declare it. That tells C# that if you’ve got an instance of DinnerParty, its numberOfPeople field can only be read and written by that instance—or another instance of DinnerParty. Other objects won’t even know it’s there.

Other objects still need a way to set the

number of people for the dinner party.
 One

good way to give them access to it is to

add methods to set or get the number of

people. That way you can make sure that

the CalculateCostOfDecorations() method

gets run every time the number of people is

changed. That’ll take care of that pesky bug.

By making the field that holds the number
of party guests private, we only give the
form one way to tell the DinnerParty class
how many people are at the party—and
we can make sure the cost of decorations
is recalculated properly. When you make
some data private and then write code to
use that data, it’s called encapsulation.

Use your laziness to your own benefit—if you leave off the “private” or “public” declaration, then C# will just assume that your field is private.

Also, a class’s static methods can access the
private field in any instance of that class.

212   Chapter 5

Use encapsulat ion to control access to your
class’s methods and f ie lds
When you make all of your fields and methods public, any other class
can access them. Everything your class does and knows about becomes
an open book for every other class in your program…and you just saw
how that can cause your program to behave in ways you never expected.
Encapsulation lets you control what you share and what you keep private
inside your class. Let’s see how this works:

SecretAgent

Alias
RealName
Password

AgentGreeting()

Super-spy Herb Jones is defending life, liberty, and the pursuit of
happiness as an undercover agent in the USSR. His ciaAgent object is
an instance of the SecretAgent class.

1

Agent Jones has a plan to help him evade the enemy KGB agents. He
added an AgentGreeting() method that takes a password as its
parameter. If he doesn’t get the right password, he’ll only reveal his
alias, Dash Martin.

2

Seems like a foolproof way to protect the agent’s identity, right? As
long as the agent object that calls it doesn’t have the right password,
the agent’s name is safe.

3

AgentGreeting("the jeep is
parked outside")

The ciaAgent object is an
instance of the SecretAgent
class, while kgbAgent is an
instance of EnemyAgent.

"Dash Martin"

spy versus spy

The KGB only gets the alias of the CIA agent. Perfect. Right?

The KGB agent uses the wrong
password in his greeting.

EnemyAgent

Borscht
Vodka

ContactComrades()
OverthrowCapitalists()

RealName: "Herb Jones"

Alias: "Dash Martin"

Password: "the crow flies at midnight" ciaAgent



 kgbAgent

 ciaAgent



you are here 4   213

encapsulation

public string RealName;Setting your variables as
public means they can be
accessed, and even changed,
from outside the class.

string name = ciaAgent.Real
Name;

Agent Jones can use private fields to keep his identity secret from
enemy spy objects. Once he declares the realName field as private, the
only way to get to it is by calling methods that have access to the
private parts of the class. So the KGB agent is foiled!

private string realName;

Keeping your fields and methods private makes sure no outside
code is going to make changes to the values you’re using when you don’t expect it.

You’d also want to make sure that the field

that stores the password is private; otherwise,

the enemy agent can get to it.

He left the field
public...Why go

through all of the
trouble to guess

his password? I can
just get his name

directly!

But is the RealName f ie ld REALLY protected?
So as long as the KGB doesn’t know any CIA agent passwords, the
CIA’s real names are safe. Right? But what about the field declaration
for the realName field:

Making your variables public means they can be accessed, and even changed, from outside the class.

There’s no need to call any
method. The RealName field is
wide open for everyone to see!

Just replace public with private, and boom, your fields are now hidden from the world.

 kgbAgent

 ciaAgent



The kgbAgent object can’t access the ciaAgent’s private fields because they’re instances of different classes.

Why do you think we used an uppercase
R for the public field, but switched to a
lowercase r for the private one?

214   Chapter 5

Q: OK, so I need to access private data through
public methods. What happens if the class with the
private field doesn’t give me a way to get at that
data, but my object needs to use it?

A: Then you can’t access the data from outside the
object. When you’re writing a class, you should always
make sure that you give other objects some way to
get at the data they need. Private fields are a very
important part of encapsulation, but they’re only part
of the story. Writing a class with good encapsulation
means giving a sensible, easy-to-use way for other
objects to get the data they need, without giving them
access to hijack data your class depends on.

Q: Why would I ever want a field in an object
that another object can’t read or write?

A: Sometimes a class needs to keep track of
information that is necessary for it to operate, but that
no other object really needs to see. Here’s an example.
When computers generate random numbers, they use
special values called seeds. You don’t need to know
how they work, but every instance of

Random actually contains an array of several dozen
numbers that it uses to make sure that Next()
always gives you a random number. If you create an
instance of Random, you won’t be able to see that
array. That’s because you don’t need it—but if you
had access to it, you might be able to put values in it
that would cause it to give nonrandom values. So the
seeds have been completely encapsulated from you.

Q: Hey, I just noticed that all of the event
handlers I’ve been using have the private
keyword. Why are they private?

A: Because C# forms are set up so that only the
controls on the forms can trigger event handlers.
When you put the private keyword in front of
any method, then that method can only be used from
inside your class. When the IDE adds an event handler
method to your program, it declares it as private so
other forms or objects can’t get to it. But there’s no rule
that says that an event handler must be private. In fact,
you can check this out for yourself—double-click on a
button, then change its event handler declaration to
public. The code will still compile and run.

Private f ie lds and methods can only be
accessed from inside the class
There’s only one way that an object can get at the data stored inside another
object’s private fields: by using the public fields and methods that return the data.
But while KGB and MI5 agents need to use the AgentGreeting() method,
friendly spies can see everything—any class can see private fields in other
instances of the same class.

keeping secrets

AgentGreeting("the crow fli
es at midnight")

Now that the fields are private,
this is pretty much the only
way the mi5Agent can get the
ciaAgent’s real name.

"Herb Jones"

mi5agent is an instance of the BritishAgent class, so it doesn’t have access to ciaAgent’s private fields either.

The only
way that
one object
can get to
data stored
in a private
field inside
another
object of a
different
type is by
using public
methods
that return
the data.

 mi5Agent

 ciaAgent


Only another
ciaAgent object can see them.

you are here 4   215

encapsulation

Here’s a class with some private fields. Circle the statements
below that won’t compile if they’re run from outside the class
using an instance of the object called mySuperChef.

class SuperChef
{
	 public string cookieRecipe;
	 private string secretIngredient;
	 private const int loyalCustomerOrderAmount = 60;
	 public int Temperature;
	 private string ingredientSupplier;

	 public string GetRecipe (int orderAmount)
 	 {
		 if (orderAmount >= loyalCustomerOrderAmount)
		 {
			 return cookieRecipe + " " + secretIngredient;
		 }
		 else
		 {
			 return cookieRecipe;
		 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 54;

4. mySuperChef.secretIngredient = "cardamom";

5. mySuperChef.cookieRecipe = "get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!";

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

216   Chapter 5

class SuperChef
{
	 public string cookieRecipe;
	 private string secretIngredient;
	 private const int loyalCustomerOrderAmount = 60;
	 public int Temperature;
	 private string ingredientSupplier;

	 public string GetRecipe (int orderAmount)
 	 {
		 if (orderAmount >= loyalCustomerOrderAmount)
		 {
			 return cookieRecipe + " " + secretIngredient;
		 }
		 else
		 {
			 return cookieRecipe;
		 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 54;

4. mySuperChef.secretIngredient = "cardamom";

5. mySuperChef.cookieRecipe = "Get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!";

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

leaving something to the imagination

The only way to get the secret
ingredient is to order a whole
lot of cookies. Outside code
can’t access this field directly.

“Get 3 eggs, 2 1/2 cup flour, 1 tsp salt, 1 tsp vanilla and 1.5 cups sugar and mix them together.
Bake for 10 minutes at 375. Yum!”

Here’s a class with some private fields. Circle the statements below
that won’t compile if they’re run from outside the class using an
instance of the object called mySuperChef.

#1 doesn’t compile because you can’t just assign an int to a string.

#2 and #4 don’t compile
because ingredientSupplier and
secretIngredient are private.

Even though you created a local variable called loyalCustomerAmount and set it to 54, that didn’t change the object’s loyalCustomerAmount value, which is still 60—so it won’t print the secret ingredient.

you are here 4   217

encapsulation

Because sometimes you want your class to
hide information from the rest of the program.
A lot of people find encapsulation a little odd the first time
they come across it because the idea of hiding one class’s
fields, properties, or methods from another class is a little
counterintuitive. But there are some very good reasons that
you’ll want to think about what information in your class to
expose to the rest of the program.

Something’s really not right
here. If I make a field private, all that
does is keep my program from compiling
another class that tries to use it. But if
I just change the “private” to “public” my

program builds again! Adding “private”
just broke my program. So why would I

ever want to make a field private?

Encapsulation
means having
one class hide
information
from another.
It helps you
prevent bugs in
your programs.

Encapsulat ion makes your classes…
≥≥ Easy to use

You already know that classes use fields to keep track of their state. And a lot
of them use methods to keep those fields up to date—methods that no other
class will ever call. It’s pretty common to have a class that has fields, methods,
and properties that will never be called by any other class. If you make those
members private, then they won’t pop up in the IntelliSense window later
when you need to use that class.

≥≥ Easy to maintain
Remember that bug in Kathleen’s program? It happened because the form
accessed a field directly rather than using a method to set it. If that field had
been private, you would have avoided that bug.

≥≥ Flexible
A lot of times, you’ll want to go back and add features to a program you
wrote a while ago. If your classes are well encapsulated, then you’ll know
exactly how to use them later on.

How could building a poorly encapsulated class now
make your programs harder to modify later?

218   Chapter 5

mike’s mess

Route

StartPoint
EndPoint
Length

GetRouteLength()
GetStartPoint()
GetEndPoint()
SetStartPoint()
SetEndPoint()
ChangeStartPoint()
ChangeEndPoint()

Remember Mike’s street navigation program from Chapter 3? Mike joined a
geocaching group, and he thinks his navigator will give him an edge. But it’s been a
while since he’s worked on it, and now he’s run into a little trouble. Mike’s navigator
program has a Route class that stores a single route between two points. But he’s
running into all sorts of bugs because he can’t seem to figure out how it’s supposed
to be used! Here’s what happened when Mike tried to go back to his navigator and
modify the code:

≥≥ Mike set the StartPoint property to the GPS coordinates of his home
and the EndPoint property to the coordinates of his office, and checked
the Length property. It said the length was 15.3. When he called the
GetRouteLength() method, it returned 0.

≥≥ He uses the SetStartPoint() property to set the start point to the
coordinates of his home and the SetEndPoint() property to set the end
point to his office. The GetRouteLength() method returned 9.51, and
the Length property contained 5.91.

≥≥ When he tried using the StartPoint property to set the starting point and
the SetEndPoint() method to set the ending point, GetRouteLength()
always returned 0 and the Length property always contained 0.

≥≥ When he tried using the SetStartPoint() method to set the starting point
and the EndPoint property to set the ending point, the Length property
contained 0, and the GetRouteLength() method caused the program to
crash with an error that said something about not being able to divide by zero.

Ugh, I can’t
remember if I

was supposed to set
the StartPoint field

or use the SetStartPoint()
method. I know I had this

all working before!

Mike’s navigator program could use bet ter encapsulat ion
Geocaching is a sport where people use their GPS navigators to hide and seek containers that can be hidden anywhere in the world. Mike is really into GPS stuff, so you can see why he likes it so much.

Here’s the Route object from Mike’s navigator program. Which properties
or methods would you make private in order to make it easier to use?

There are lots of ways to solve this problem, all potentially correct! Write down the one you think is best.

you are here 4   219

encapsulation

Think of an object as a black box

Sometimes you’ll hear a programmer refer to an object as a “black box,”
and that’s a pretty good way of thinking about them. When you call an
object’s methods, you don’t really care how that method works—at least,
not right now. All you care about is that it takes the inputs you gave it and
does the right thing.

Right now, Mike just wants to think
about his Route object as a black box.
He wants to feed his coordinates into it
and get a length out of it. He doesn’t
want to think about how the Route
calculates that length…at least, not
right now.

Route

I know my
Route object works!
What matters to me
now is figuring out
how to use it for my
geocaching project.

Back in Chapter 3, Mike was thinking
about how to build his navigator.
That’s when he really cared about how
the Route object worked. But that
was a while ago.

Since then, he got his navigator working,
and he’s been using it for a long time. He
knows it works well enough to be really
useful for his geocaching team. Now he
wants to reuse his Route object.

If you
encapsulate
your classes
well today,
that makes
them a lot
easier to reuse
tomorrow.

If only Mike had thought about
encapsulation when he originally built
his Route object! If he had, then it
wouldn’t be giving him a headache today!

Start Point

End Point

Length

When you come back to code
that you haven’t looked at in
a long time, it’s easy to forget
how you intended it to be used.
That’s where encapsulation can
make your life a lot easier!

220   Chapter 5

good ideas for easy encapsulation

And just like chess, there are an almost unlimited number
of possible encapsulation strategies!

So a well-encapsulated
class does exactly the same
thing as one that has poor

encapsulation!

Exactly! The difference is that the well-
encapsulated one is built in a way that
prevents bugs and is easier to use.

It’s easy to take a well-encapsulated class and turn it into a poorly
encapsulated class: do a search-and-replace to change every
occurrence of private to public.

And that’s a funny thing about the private keyword: you can
generally take any program and do that search-and-replace, and
it will still compile and work in exactly the same way. That’s one
reason that encapsulation is difficult for some programmers to
understand.

Until now, everything you’ve learned has been about making
programs do things—perform certain behaviors. Encapsulation
is a little different. It doesn’t change the way your program
behaves. It’s more about the “chess game” side of programming:
by hiding certain information in your classes when you design
and build them, you set up a strategy for how they’ll interact later.
The better the strategy, the more flexible and maintainable your
programs will be, and the more bugs you’ll avoid.

you are here 4   221

encapsulation

± Think about ways the fields can be misused.
What can go wrong if they’re not set properly?

± Is everything in your class public?
If your class has nothing but public fields and methods, you probably
need to spend a little more time thinking about encapsulation.

± What fields require some processing or calculation to
happen when they’re set?
Those are prime candidates for encapsulation. If someone writes
a method later that changes the value in any one of them, it could
cause problems for the work your program is trying to do.

A few ideas for encapsulating classes

± Only make fields and methods public if you need to.
If you don’t have a reason to declare something public, don’t. You could
make things really messy for yourself by making all of the fields in your
program public—but don’t just go making everything private, either.
Spending a little time up front thinking about which fields really need to
be public and which don’t can save you a lot of time later.

The cost of
decorations needs to be
figured out first. Once you

know that, you can just add it
up with the cost of the food and

drink to get the total
cost.

222   Chapter 5

Encapsulat ion keeps your data prist ine
Sometimes the value in a field changes as your program does
what it’s supposed to do. If you don’t explicitly tell your program
to reset the value, you can do your calculations using the old
one. When this is the case, you want to have your program
execute some statements any time a field is changed—like
having Kathleen’s program recalculate the cost every time
you change the number of people. We can avoid the problem
by encapsulating the data using private fields. We’ll provide a
method to get the value of the field, and another method to set
the field and do all the necessary calculations.

get it, set it, got it, good

class Farmer
{
	 private int numberOfCows;
}

public const int FeedMultiplier = 30;
public int GetNumberOfCows()
{
	 return numberOfCows;
}

public void SetNumberOfCows(int newNumberOfCows)
{
	 numberOfCows = newNumberOfCows;
	 BagsOfFeed = numberOfCows * FeedMultiplier;
}

When you create a form to let a user enter the number of cows into a numeric field,
you need to be able to change the value in the numberOfCows field. To do that,
you can create a method that returns the value of the field to the form object:

We’d better make this field private
so nobody can change it without also
changing bagsOfFeed—if they get
out of sync, that’ll create bugs!

We’ll add a method to give
other classes a way to get
the number of cows.

And here’s a method to set the
number of cows that makes sure
the BagsOfFeed field is changed
too. Now there’s no way for the
two to get out of sync.

A quick example of encapsulat ion
A Farmer class uses a field to store the number of cows, and
multiplies it by a number to figure out how many bags of cattle
feed are needed to feed the cows:

 T
hese acco

mplish
 the sa

me thing!

numberOfCows is a private
field, so we used camelCase
when we named it.

The farmer
needs 30 bags
of feed for
each cow.

We used camelCase for
the private fields and
PascalCase for the public
ones. PascalCase means
capitalizing the first
letter in every word in the
variable name. camelCase
is similar to PascalCase,
except that the first letter
is lowercase. That makes
the uppercase letters look
like “humps” of a camel.

Your code is easier to read when you use
consistent case when choosing names for fields,
properties, variables, and methods This is a
convention that a lot of programmers follow.

you are here 4   223

encapsulation

private int numberOfCows;

public int NumberOfCows
{

 get
 {
 return numberOfCows;
 }

 set
 {
 numberOfCows = value;
 BagsOfFeed = numberOfCows * FeedMultiplier;
 }

}

You can use properties, which are methods that look just like fields to other
objects. A property can be used to get or set a backing field, which is just a
name for a field set by a property.

Propert ies make encapsulat ion easier

We’ll rename the private field to numberOfCows
(notice the lowercase “n”). This will become the
backing field for the NumberOfCows property.

You’ll often use properties by combining them with a normal field declaration. Here’s the declaration for NumberOfCows.
This is a get accessor. It’s a method that’s run any time
the NumberOfCows property is read. It has a return value
that matches the type of the variable—in this case it
returns the value of the private numberOfCows property.

This is a set accessor that’s called every time the NumberOfCows property is set. Even though the method doesn’t look like it has any parameters, it actually has one called value that contains whatever value the field was set to.

 T
hese acco

mplish
 the sa

me thing!

private void button1_Click(object sender, EventArgs e) {

	 Farmer myFarmer = new Farmer();

	 myFarmer.NumberOfCows = 10;

	 int howManyBags = myFarmer.BagsOfFeed;

	 myFarmer.NumberOfCows = 20;

	 howManyBags = myFarmer.BagsOfFeed;

}

You use get and set accessors exactly like fields. Here’s code for a button that sets the
number of cows and then gets the bags of feed:

When this line sets
NumberOfCows to 10, the
set accessor sets the
private numberOfCows field and then updates the public BagsOfFeed field.

Even though the code treats NumberOfCows like
a field, it runs the set accessor, passing it 20.
And when it queries the BagsOfFeed field it runs
the get accessor, which returns 20*30=600.

Since the NumberOfCows set accessor updated BagsOfFeed, now you can get its value.

224   Chapter 5

Build an applicat ion to test the Farmer class
Create a new Windows Forms application that we can use to test the
Farmer class and see properties in action. The Console.WriteLine()
method will write the results to the Output Window in the IDE.

Do this

Add the Farmer class to your project:

class Farmer {
 public int BagsOfFeed;
 public const int FeedMultiplier = 30;

 private int numberOfCows;
 public int NumberOfCows {
 // (add the get and set accessors from the
 // previous page)
 }
}

1

Here’s the code for the form. It uses Console.WriteLine() to send its output to the Output
window (which you can bring up by selecting “Output” from the Debug→Windows menu). You can
pass several parameters to WriteLine()—the first one is the string to write. If you include “{0}”
inside the string, then WriteLine() replaces it with the first parameter. It replaces “{1}” with the
second parameter, “{2}” with the third, etc.

public partial class Form1 : Form {
 Farmer farmer;
 public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15 };
 }
 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 farmer.NumberOfCows = (int)numericUpDown1.Value;
 }
 private void calculate_Click(object sender, EventArgs e) {
 Console.WriteLine("I need {0} bags of feed for {1} cows",
 farmer.BagsOfFeed, farmer.NumberOfCows);
 }
}

3

Build this form:2

Set the NumericUpDown control’s Value to 15, its Minimum to 5, and its
Maximum to 300.

Name this button “calculate”—it
uses the public Farmer data to
write a line to the output.

WriteLine() replaces “{0}” with the
value in the first parameter, and “{1}”
with the second parameter.

Use the Console.WriteLine()
method to send a line of text
to the IDE’s Output window.

private property (no trespassing)

	 Console output
is displayed in
the Output
window.

When a Windows
Forms application uses the
Console.WriteLine()
method to write output, the
ouptut is displayed in the
Output window in the IDE.
WinForms apps don’t typically
use console output, but we will
use it extensively as a learning
tool.

Don't forget that controls need to be “hooked up” to their event
handlers! Double-click on Button and NumericUpDown in the
designer to make the IDE create their event handler method stubs.

you are here 4   225

encapsulation

Use automatic properties to finish the class
It looks like the Cow Calculator works really well. Give it a shot—run it and click the button. Then change the number
of cows to 30 and click it again. Do the same for 5 cows and then 20 cows. Here’s what your Output window should
look like:

But there’s a problem with the class. Add a button to the form that executes this statement:

	 farmer.BagsOfFeed = 5;

Now run your program again. It works fine until you press the new button. But press that button and then press
the Calculate button again. Now your ouput tells you that you need 5 bags of feed—no matter how many cows you
have! As soon as you change the NumericUpDown, the Calculate button should work again.

Fully encapsulate the Farmer class
The problem is that your class isn’t fully encapsulated. You used properties to encapsulate
NumberOfCows, but BagsOfFeed is still public. This is a common problem. In fact, it’s so common that C#
has a way of automatically fixing it. Just change the public BagsOfFeed field to an automatic property.
And the IDE makes it really easy for you to add automatic properties. Here’s how:

Remove the BagsOfFeed field from the Farmer class. Put your cursor where the field used to
be, and then type prop and press the Tab key twice. The IDE will add this line to your code:

 public int MyProperty { get; set; }

1

Press the Tab key—the cursor jumps to MyProperty. Change its name to BagsOfFeed:

 public int BagsOfFeed { get; set; }

Now you’ve got a property instead of a field. When C# sees this, it works exactly the same as if you had
used a backing field (like the private numberOfCows behind the public NumberOfCows property).

2

That hasn’t fixed our problem yet. But there’s an easy fix—just make it a read-only property:

 public int BagsOfFeed { get; private set; }

Try to rebuild your code—you’ll get an error on the line in the button that sets BagsOfFeed telling
you that the set accessor is inaccessible. You can’t modify BagsOfFeed from outside the
Farmer class—you’ll need to remove that line in order to get your code to compile, so remove the
button and its event handler from the form. Now your Farmer class is better encapsulated!

3

The prop-tab-tab code snippet
adds an automatic property to
your code.

Can you see
how this could
lead you to
accidentally
add a really
irritating bug in
your program?

If you don't see the Output window in the
IDE, use the View menu to display it.

A property is
read-only if it

can’t be set by
another class.
You can make

its set accessor
private.

You can also
leave out the
set accessor

for normal
properties, but
not automatic

properties
(which must

have both
get and set
accessors).

226   Chapter 5

set it up

What if we want to change the feed mult iplier?
We built the Cow Calculator to use a const for the feed multiplier. But what if we
want to use the same Farmer class in different programs that need different feed
multipliers? You’ve seen how poor encapsulation can cause problems when you
make fields in one class too accessible to other classes. That’s why you should only
make fields and methods public if you need to. Since the Cow Calculator
never updates FeedMultiplier, there’s no need to allow any other class to set it.
So let’s change it to a read-only property that uses a backing field.

Remove this line from your Farmer class:

	 public const int FeedMultiplier = 30;

Use prop-tab-tab to add a read-only property. But instead of adding
an automatic property, use a backing field:

	 private int feedMultiplier;
	 public int FeedMultiplier { get { return feedMultiplier; } }

1

Go ahead and make that change to your code. Then run it. Uh oh—something’s wrong!
BagsOfFeed always returns 0 bags.

Wait, that makes sense. FeedMultiplier never got initialized. It starts out with the
default value of zero and never changes. When it’s multiplied by the number of cows,
it still gives you zero. So add an object initializer:

public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15, feedMultiplier = 30 };

Uh oh—the program won’t compile! You should get this error:

2

You can only initialize public fields and properties inside an object initializer.
So how can you make sure your object gets initialized properly if some of
the fields that need to be initialized are private?

Do this!

This property acts just like an int field
,

except instead of storing a value it jus
t

returns the backing field, feedMultiplier.
And since there’s no set accessor, it’s
read-only. It has a public get, which
means any other class can read the value

of FeedMultiplier. But since its set is
private, that makes it read-only— it can
only be set by an instance of Farmer.

Since we changed FeedMultiplier from a public const to a private int field, we changed its name, so it
starts with a lowercase “f.” That’s a pretty standard naming convention you’ll see throughout the book.

Check the Error
List window for

helpful warnings
from the IDE
about things

like forgetting
to initialize a

variable before
using it.

you are here 4   227

encapsulation

Use a constructor to initialize private fields
If you need to initialize your object, but some of the fields that need to be initialized
are private, then an object initializer just won’t do. Luckily, there’s a special method that
you can add to any class called a constructor. If a class has a constructor, then that
constructor is the very first thing that gets executed when the class is created with
the new statement. You can pass parameters to the constructor to give it values that need
to be initialized. But the constructor does not have a return value, because you don’t
actually call it directly. You pass its parameters to the new statement. And you already
know that new returns the object—so there’s no way for a constructor to return anything.

public Farmer(int numberOfCows, int feedMultiplier) {
 this.feedMultiplier = feedMultiplier;
 NumberOfCows = numberOfCows;
}

public Form1() {
 InitializeComponent();
 farmer = new Farmer(15, 30);
}

Add a constructor to your Farmer class.
This constructor only has two lines, but there’s a lot going on here. So let’s take it step by step. We already know
that we need the number of cows and a feed multiplier for the class, so we’ll add them as parameters to the
constructor. Since we changed feedMultiplier from a const to an int, now we need an initial value for
it. So let’s make sure it gets passed into the constructor. We’ll use the constructor to set the number of cows, too.

1

Now change the form so that it uses the constructor.
The only thing you need to do now is change the form so that the new statement that creates the Farmer
object uses the constructor instead of an object initializer. Once you replace the new statement, both errors will
go away, and your code will work!

2

Notice how there’s no “void” or “int” or another type after
“public”. That’s because constructors don’t have a return value.

The first thing we’ll do is set the feed multiplier, because it needs to be set before we can call the NumberOfCows set accessor.If we just set the private numberOfCows field, the NumberOfCows set accessor
would never be called. Setting NumberOfCows makes sure it’s called.

You already know that the form is an
object. Well, it’s got a constructor too!
That’s what this method is—notice how
it’s named Form1 (like the class) and it
doesn’t have a return value.

All you have to do to
add a constructor
to a class is add a
method that has the
same name as the
class and no return
value.

Here’s where the new statement calls the constructor. It looks just like any other new
statement, except that it has parameters that it passes into the constructor method.
When you type it in, watch for the IntelliSense pop up—it looks just like any other method.

This is the error
you’ll get if
your constructor
takes parameters
but your “new”
statement
doesn’t have any.

The “this”
keyword in this.
feedMultiplier tells
C# that you’re
talking about the
field, not the
parameter with the
same name.

228   Chapter 5

Q: Is it possible to have a constructor without any
parameters?

A: Yes. It’s actually very common for a class to have a
constructor without a parameter. In fact, you’ve already seen an
example of it—your form’s constructor. Look inside a newly
added Windows form and find its constructor’s declaration:

public Form1() {
 InitializeComponent();
}

That’s the constructor for your form object. It doesn’t take any
parameters, but it does have to do a lot. Take a minute and open up
Form1.Designer.cs. Find the InitializeComponent()
method by clicking on the plus sign next to “Windows Form
Designer generated code.”

That method initializes all of the controls on the form and sets
all of their properties. If you drag a new control onto your form
in the IDE’s form designer and set some of its properties in the
Properties window, you’ll see those changes reflected inside the
InitializeComponent() method.

The InitializeComponent() method is called inside
the form’s constructor so that the controls all get initialized as soon as
the form object is created. (Remember, every form that gets displayed
is just another object that happens to use methods that the .NET
Framework provides in the System.Windows.Forms
namespace to display windows, buttons, and other controls.)

	 When a method’s parameter
has the same name as a field,
then it masks the field.

The constructor’s feedMultiplier
parameter masks the backing field

behind the FeedMultiplier property because
they have the same name, so the parameter takes
precedence inside the body of the constructor.
If you wanted to use the backing field inside
the constructor, you’d use the this keyword:
feedMultiplier refers to the parameter, and
this.feedMultiplier refers to the private field.

Constructors
 Way Up Close

public Farmer(int numberOfCows, int feedMultiplier) {

 this.feedMultiplier = feedMultiplier;

 NumberOfCows = numberOfCows;

}

Let’s take a closer look at the Farmer constructor so we can get a good sense
of what’s really going on.

This constructor has two parameters, which work just like
ordinary parameters. The first one gives the number of cows,
and the second one is the feed multiplier.

We need to set the feed multiplier first,
because the second statement calls the
NumberOfCows set accessor, which needs
feedMultiplier to have a value in order to
set BagsOfFeed.We need a way to differentiate the field called

feedMultiplier from the parameter with the
same name. That’s where the “this” keyword
comes in really handy.

Constructors don’t
return anything, so

there’s no return type.

Since “this” is always a reference to the current object, this.feedMultiplier
refers to the field. If you leave “this” off, then feedMultiplier refers
to the parameter. So the first line in the constructor sets the private
feedMultiplier field equal to the second parameter of the constructor.

constructors deconstructed

Here’s a helpful way to remember what “this”
does: think of it as short for “this instance.”

you are here 4   229

encapsulation

Q: Why would I need complicated
logic in a get or set accessor? Isn’t it just
a way of creating a field?

A: Because sometimes you know that
every time you set a field, you’ll have to do
some calculation or perform some action.
Think about Kathleen’s problem—she ran
into trouble because the form didn’t run
the method to recalculate the cost of the
decorations after setting the number of
people in the DinnerParty class. If we
replaced the field with a set accessor, then
we could make sure that the set accessor
recalculates the cost of the decorations. (In
fact, you’re about to do exactly that in just a
couple of pages!)

Q: Wait a minute—so what’s the
difference between a method and a get or
set accessor?

A: There is none! Get and set accessors
are a special kind of method—one that looks
just like a field to other objects, and is called
whenever that “field” is set. Get accessors
always return a value that’s the same type
as the field, and set accessors always take
exactly one parameter called value
whose type is the same as the field. Oh,
and by the way, you can just say “property”
instead of “get and set accessor.”

Q: So you can have ANY kind of
statement in a property?

A: Absolutely. Anything you can do in a
method, you can do in a property. They can
call other methods, access other fields, even
create objects and instances. But they only
get called when a property gets accessed,
so it doesn’t make sense to have any
statements in them that don’t have to do with
getting or setting the property.

Q: If a set accessor always takes a
parameter called value, why doesn’t
its declaration have parentheses with the

“int value” parameter in them, like
you’d have with any other method that
takes a parameter called value?

A: Because C# was built to keep you from
having to type in extra information that the
compiler doesn’t need. The parameter gets
declared without you having to explicitly type
it in, which doesn’t sound like much when
you’re only typing one or two—but when you
have to type a few hundred, it can be a real
time saver (not to mention a bug preventer).

Every set accessor always has exactly one
parameter called value, and the type of
that parameter always matches the type of
the property. C# has all the information it
needs about the type and parameter as soon
as you type set {. So there’s no need for
you to type any more, and the C# compiler
isn’t going to make you type more than you
have to.

Q:Wait a sec—is that why I don’t add a
return value to my constructor?

A: Exactly! Your constructor doesn’t have
a return value because every constructor
is always void. It would be redundant to
make you type void at the beginning of
each constructor, so you don’t have to.

Q: Can I have a get without a set or a
set without a get?

A: Yes! When you have a get accessor
but no set, you create a read-only property.
For example, the SecretAgent class
might have public read-only field with a
backing field for the name:

string name = "Dash Martin";
public string RealName {
 get { return name; }
}

And if you create a property with a set
accessor but no get, then your backing
field can only be written, not read. The
SecretAgent class could use that for a
Password property that other spies could
write to, but not see:

public string Password {
 set {
 if (value == secretCode) {
 name = "Herb Jones";
 }
}

Both of those techniques can come in really
handy when you’re doing encapsulation.

Q:I’ve been using objects for a while,
but I haven’t written a constructor. Does
that mean some classes don’t need one?

A: No, it just means that C# automatically
makes a zero-parameter constructor if
there’s none defined. If you define a
constructor, then it doesn’t do that. That’s a
valuable tool for encapsulation, because it
means that you have the option—but not the
requirement—to force anyone instantiating
your class to use your constructor.

Properties (get and
set accessors) are
just another kind
of C# method that’s
only run when the
property value is read
or written.

Here's something useful: the first line of a method that contains

the access modifier, return value, name, and parameters is

called the method's signature. Properties have signatures, too.

230   Chapter 5

Take a look at the get and set accessors here. The form that is using this
class has a new instance of CableBill called thisMonth and calls
the GetThisMonthsBill() method with a button click. Write down
the value of the amountOwed variable after the code below executed.

class CableBill {
 private int rentalFee;
 public CableBill(int rentalFee) {
 this.rentalFee = rentalFee;
 discount = false;
 }

 private int payPerViewDiscount;
 private bool discount;
 public bool Discount {
 set {
 discount = value;
 if (discount)
 payPerViewDiscount = 2;
 else
 payPerViewDiscount = 0;
 }
 }

 public int CalculateAmount(int payPerViewMoviesOrdered) {
 return (rentalFee - payPerViewDiscount) * payPerViewMoviesOrdered;
 }
}

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString()); 	

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());	

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

what’s in a name?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

you are here 4   231

encapsulation

Q: I noticed that you used uppercase
names for some fields but lowercase
ones for others. Does that matter?

A: Yes—it matters to you. But it doesn’t
matter to the compiler. C# doesn’t care what
you name your variables, but if you choose
weird names then it makes your code hard to
read. Sometimes it can get confusing when
you have variables that are named the same,
except one starts with an uppercase letter and
the other starts with a lowercase one.

Case matters in C#. You can have two
different variables called Party and
party in the same method. It’ll be
confusing to read, but your code will compile
just fine. Here are a few tips about variable
names to help you keep it straight. They’re
not hard-and-fast rules—the compiler
doesn’t care whether a variable is uppercase
or lowercase—but they’re good suggestions
to help make your code easier to read.

1. When you declare a private field, it should
be in camelCase and start with a lowercase
letter. (It’s called camelCase because it
starts with a lowercase letter and additional
words are uppercase, so they resemble
humps on a camel.)

2. Properties and methods are in
PascalCase (they start with an uppercase
letter), whether or not they’re public.

3. Parameters to methods should be in
camelCase.

4. Some methods, especially constructors,
will have parameters with the same names
as fields. When this happens, the parameter
masks the field, which means statements
in the method that use the name end up
referring to the parameter, not the field. Use
the this keyword to fix the problem—add
it to the variable to tell the compiler you’re
talking about the field, not the parameter.

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

class GumballMachine {
	 private int gumballs;

	 private int price;
	 public int Price
	 {
	 get
	 {
		 return price;
	 }
	 }

	 public GumballMachine(int gumballs, int price)
	 {
		 gumballs = this.gumballs;
		 price = Price;
	 }

	 public string DispenseOneGumball(int price, int coinsInserted)
	 {
		 if (this.coinsInserted >= price) { // check the field
			 gumballs -= 1;
			 return "Here’s your gumball";
		 } else {
			 return "Please insert more coins";
		 }
	 }
}

232   Chapter 5

v

If we make sure that the cost of the decorations

is recalculated every time the Cost property is
accessed, then all we need to do is set the options

on the DinnerParty object and get its Cost.

Fix the Dinner Party calculator.
To fix the DinnerParty class, we’ll need to make sure the CalculateCostOfDecorations()
method is called every time NumberOfPeople changes. We'll do it by adding a property called Cost.

1

NumberOfPeople = 10;

Cost property returns $650
the next time it’s accessed.

 Form

DinnerParty
ob

je
ct

Use what you’ve learned about properties and constructors to fix Kathleen’s Party Planner program.
This new program will be much simpler and more consistent than the first version.

Use properties to set the number of people and the party options.
You may want to create a new project, because you’re going to overhaul the
DinnerParty class. Start by creating these three automatic properties:

public int NumberOfPeople { get; set; }

public bool FancyDecorations { get; set; }

public bool HealthyOption { get; set; }

You’ll also need a constructor with this signature to set the properties:

public DinnerParty(int numberOfPeople, bool healthyOption,
 bool fancyDecorations)

2

We need to recalculate the decoration cost
every time the number of people changes. We
can do that if the only way to calculate the
cost is to use a property.

Create private methods to calculate the intermediate costs.
Here are signatures for the methods that help calculate the cost. Fill in their calculations:

private decimal CalculateCostOfDecorations() { ... }

private decimal CalculateCostOfBeveragesPerPerson() { ... }

3

Add the read-only Cost property to calculate the cost.
Add a property called Cost that calculates the cost of the dinner party:

public decimal Cost {
 get {
 // Fill in the code to calculate the cost
 }
}

4
Here's a hint. Start with a
decimal variable called totalCost,
then use the compound operators
+= and *= to modify its value
before returning the final cost.

These should be very similar
to the methods you already
wrote at the start of the
chapter.

DinnerParty
NumberOfPeople: int
FancyDecorations: bool
HealthyOption: bool
Cost: decimal

private methods:
 CalculateCostOfDecorations()
 CalculateCostOfBeverages
 PerPerson();

Here's the class
diagram for the new
DinnerParty class.

encapsulation prevents bugs

you are here 4   233

encapsulation

v Update the form to use the properties.
Here’s the complete code for the form. It uses the constructor and the three properties
(NumberOfPeople, FancyDecoration, and HealthyOption) to pass information into
the object, and it uses the Cost property to calculate the cost.

public partial class Form1 : Form
{
 DinnerParty dinnerParty;
 public Form1()
 {
 InitializeComponent();
 dinnerParty = new DinnerParty((int)numericUpDown1.Value,
 healthyBox.Checked, fancyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void fancyBox_CheckedChanged(object sender, EventArgs e)
 {
 dinnerParty.FancyDecorations = fancyBox.Checked;
 DisplayDinnerPartyCost();
 }

 private void healthyBox_CheckedChanged(object sender, EventArgs e)
 {
 dinnerParty.HealthyOption = healthyBox.Checked;
 DisplayDinnerPartyCost();
 }

 private void numericUpDown1_ValueChanged(object sender, EventArgs e)
 {
 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;
 DisplayDinnerPartyCost();
 }

 private void DisplayDinnerPartyCost()
 {
 decimal Cost = dinnerParty.Cost;
 costLabel.Text = Cost.ToString("c");
 }
}

5

This method updates the dinner party cost on the form by accessing the
Cost property every time it updates the form.

The form stores an instance of
DinnerParty and updates its
properties every time the number of
people or party options change.

The form uses the DinnerParty object's constructor
to initialize it with the right values. You'll need to make

sure your DinnerParty class has this constructor.

The form is simpler now because it doesn't need to access the methods that do
the calculations. Those calculations are encapsulated behind the Cost property.

234   Chapter 5

class DinnerParty {
 public const int CostOfFoodPerPerson = 25;

 public int NumberOfPeople { get; set; }

 public bool FancyDecorations { get; set; }

 public bool HealthyOption { get; set; }

 public DinnerParty(int numberOfPeople, bool healthyOption, bool fancyDecorations) {
 NumberOfPeople = numberOfPeople;
 FancyDecorations = fancyDecorations;
 HealthyOption = healthyOption;
 }

 private decimal CalculateCostOfDecorations() {
 decimal costOfDecorations;
 if (FancyDecorations)
 {
 costOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 }
 else
 {
 costOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 return costOfDecorations;
 }

 private decimal CalculateCostOfBeveragesPerPerson() {
 decimal costOfBeveragesPerPerson;
 if (HealthyOption)
 {
 costOfBeveragesPerPerson = 5.00M;
 }
 else
 {
 costOfBeveragesPerPerson = 20.00M;
 }
 return costOfBeveragesPerPerson;
 }

 public decimal Cost {
 get {
 decimal totalCost = CalculateCostOfDecorations();
 totalCost += ((CalculateCostOfBeveragesPerPerson()
 + CostOfFoodPerPerson) * NumberOfPeople);
 if (HealthyOption)
 {
 totalCost *= .95M;
 }
 return totalCost;
 }
 }
}

exercise solution

Now that the calculations are private and encapsulated behind the Cost property, there's no way for the form to recalculate the cost of the decorations that doesn't use the current options. That’ll fix the bug that almost cost Kathleen one of her best clients!

These properties are set in the constructor and updated by the form, and they're used when calculating the cost.

By making this method private,
you made sure that it can't be
accessed from outside of the
class, which will keep it from
being misused.

The private
methods used in the cost
calculation access the properties so that they have the latest information from the form.

Here's the DinnerParty constructor. It
sets the three properties based on the
values passed into it by the form.

You had a SetHealthyOption()
method in the first version of this
program. Now it’s changed to a
property called HealthyOption.

If you have a method that starts
with "Set" that sets a field and
then updates the state of the

object, changing it to a property
could make it more obvious how

you expect it to be used.

That's one way encapsulation
makes your classes easier to
understand and reuse later.

Did you notice how your new form doesn't need to do very much? All it
does is set properties on objects based on user input, and change its
ouput based on those properties. Think about how the code for user

input and output is separated from the code that does the calculation.

This idea is called “separation of concerns,” and it's a good way to think
about your programs. The form concerns itself with the user interface,
while the DinnerParty object concerns itself with the cost calculation.

you are here 4   235

encapsulation

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString()); 	

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());	

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

28

won’t compile

42

	 public GumballMachine(int gumballs, int price)
	 {
		 gumballs = this.gumballs;
		 price = Price;
	 }

	 public string DispenseOneGumball(int price, int coinsInserted)
	 {
		 if (this.coinsInserted >= price) { // check the field
			 gumballs -= 1;
			 return "Here’s your gumball";
		 } else {
			 return "Please insert more coins";
		 }
	 }

The “this” keyword
is on a parameter,
where it doesn’t
belong. It should be
on price, because that
field is masked by a
parameter.

This parameter masks the
private field called Price, and
the comment says the method is
supposed to be checking the value
of the price backing field.

The “this” keyword is on the wrong
“gumballs.” this.gumballs refers to the
property, while gumballs refers to the
parameter.

Lowercase price refers to the parameter to the constructor, not the field. This line sets the PARAMETER to the value returned by the Price get accessor, but Price hasn’t even been set yet! So it doesn’t do anything useful. If you change the constructor’s parameter to uppercase Price, this line will work properly.

Write down the value of the amountOwed variable after the code
below executed.

Take an extra minute or two
and really look at this code.
These are some of the most
common mistakes that new
programmers make when
working with objects, and

avoiding them makes it much
more satisfying to write code.

this is a new chapter   237

inheritance6

Your object’s family tree

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well, that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through with this chapter,

you’ll learn how to subclass an object to get its behavior, but keep the flexibility to

make changes to that behavior. You’ll avoid duplicate code, model the real world

more closely, and end up with code that’s easier to maintain.

So there I was riding my
Bicycle object down Dead

Man’s Curve when I realized
it inherited from TwoWheeler

and I forgot to override the
Brakes() method...long story

short, twenty-six stitches and
Mom said I’m grounded for a

month.

238   Chapter 6

I just got a call
for a birthday party

for 10 people. Can your
program handle that?

Most of the changes have to do with cakes and writing.

Kathleen does birthday part ies, too

Cost Estimate for a Birthday Party

•	 $25 per person.

•	 There are two options for the cost of decorations. If a client

goes with the normal decorations, it’s $7.50 per person with a $30

decorating fee. A client can also upgrade the party decorations

to the “Fancy Decorations”—that costs $15 per person with a $50

one-time decorating fee.

•	 When the party has four people or fewer, use an 8-inch cake ($40),

Otherwise, she uses a 16-inch cake ($75).

•	 Writing on the cake costs $.25 for each letter. The 8-inch cake can

have up to 16 letters of writing, and the 16-inch one can have up

to 40 letters of writing.

The application should handle both types of parties. Use a tab control,

one tab for each kind of party.

Now that you got your program working, Kathleen is using it all the
time. But she doesn’t just handle dinner parties—she does birthdays
too, and they’re priced a little differently. She’ll need you to add
birthdays to her program.

happy birthday baby

These are both the same
as the dinner party.

There’s no healthy option for birthday parties. Can you think of how
this could lead to bugs if you start out a project by copying and
pasting code from the DinnerParty class from the last chapter?

you are here 4   239

inheritance

We need a BirthdayParty class

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
Cost

Create a new class for birthday parties.
Your new class will need to calculate the costs, deal with
decorations, and check the size of the writing on the cake.

1

Modifying your program to calculate the cost of Kathleen’s
birthday parties means adding a new class and changing the
form to let you handle both kinds of parties.

Here’s what we’re going to do:

Add a tab control to your form.
Each tab on the form is a lot like the GroupBox control you used
to choose which guy placed the bet in the Betting Parlor lab. Just
click on the tab you want to display, and drag controls into it.

2

Label the first tab and move the Dinner Party controls into it.
You’ll drag each of the controls that handle the dinner party into the new tab. They’ll work
exactly like before, but they’ll only be displayed when the dinner party tab is selected.

3

Label the second tab and add new Birthday Party controls to it.
You’ll design the interface for handling birthday parties just like you did for the dinner parties.

4

Wire your birthday party class up to the controls.
Now all you need to do is add a BirthdayParty reference to the form’s fields, and
add the code to each of your new controls so that it uses its methods and properties.

5

Q: Why can’t we just create a new instance of
DinnerParty, like Mike did when he wanted to compare
three routes in his navigation program?

A: Because if you created another instance of the DinnerParty
class, you’d only be able to use it to plan extra dinner parties. Two
instances of the same class can be really useful if you need to manage
two different pieces of the same kind of data. But if you need to store
different kinds of data, you’ll need different classes to do it.

Q: How do I know what to put in the new class?

A: Before you can start building a class, you need to know
what problem it’s supposed to solve. That’s why you had to talk to
Kathleen—she’s going to be using the program. Good thing you took
a lot of notes! You can come up with your class’s methods, fields, and
properties by thinking about its behavior (what it needs to do) and its
state (what it needs to know).

You’ll do all this in a
minute—but first you’ll
need to get a sense of
what the job involves.

240   Chapter 6

Add the new BirthdayParty class to your program.
You already know how you’ll handle the NumberOfPeople and
FancyDecorations properties—they’re just like their counterparts in
DinnerParty. We’ll start by creating your new class and adding those,
and then we’ll add the rest of the behavior.

≥≥ Add the CostOfFoodPerPerson constant, and
the NumberOfPeople and FancyDecorations
properties. You’ll also need a private int property called
ActualLength. (Yes, properties can be private, too!)

1

another kind of party

Make sure you use decimal as
the type for the fields and
properties that hold currency.

Do this!

Build the Party Planner version 2.0
Start a new project—we’re going to build Kathleen a new version of her
program that handles birthdays and dinner parties. We’ll start by creating a well-
encapsulated BirthdayParty class to do the actual calculation.

class BirthdayParty
{
 public const int CostOfFoodPerPerson = 25;

 public int NumberOfPeople { get; set; }

 public bool FancyDecorations { get; set; }

 public string CakeWriting { get; set; }

 public BirthdayParty(int numberOfPeople,
 bool fancyDecorations, string cakeWriting)
 {
 NumberOfPeople = numberOfPeople;
 FancyDecorations = fancyDecorations;
 CakeWriting = cakeWriting;
 }

The constructor sets up the
object’s state by setting
the properties so that it
can calculate the cost later.

When the BirthdayParty object
is initialized, it needs to know
the number of people, the kind
of decorations, and the writing
on the cake, so it can start out
with the right cake cost when
the Cost property is accessed.

You’ll add this CakeWriting property
on the next page.

BirthdayParty

NumberOfPeople: int
FancyDecorations: bool
Cost: decimal
CakeWriting: string
CakeWritingTooLong: bool
private ActualLength: int

private methods:
 CalculateCostOfDecorations()
 CakeSize()
 MaxWritingLength()

We made this const
public because we
might want to
display it to the
user in the future.
Was that a good
choice? Would you
make it private?

you are here 4   241

inheritance

 private int ActualLength
 {
 get
 {
 if (CakeWriting.Length > MaxWritingLength())
 return MaxWritingLength();
 else
 return CakeWriting.Length;
 }
 }

 private int CakeSize() {
 if (NumberOfPeople <= 4)
 return 8;
 else
 return 16;
 }

 private int MaxWritingLength()
 {
 if (CakeSize() == 8)
 return 16;
 else
 return 40;
 }

Properties can be
private, too. This
property only has a
get accessor, which
calculates the actual
length of the writing to
use for the calculation.
Private property names
typically start with
a capital letter even
though they're private.

This if/else block checks the
length of the writing and
updates the actualLength field
with the number of letters
that will fit on the cake.

≥≥ The ActualLength property calculates the actual length of the field by
comparing the CakeWriting property against MaxWritingLength(). If the
cake writing is too long, it returns the maximum allowable length for the cake.

≥≥ The program uses the size of the cake (which varies based on the number of
people) and the maximum number of letters that will fit on the cake (based on
the cake size). You’ll add two methods to calculate these things, CakeSize() and
MaxWritingLength().

Did you notice how
we left out some of
the brackets? When
you only have one
statement in a code
block, you don’t need
to add curly brackets
around it.

If the writing is too long
for the cake, the private
ActualLength property
calculates the actual
number of letters that
will fit on the cake.

Curly brackets are optional for single-line blocks
A lot of times you’ll have an if statement or while loop that’s just got a single

statement inside its block. When that happens a lot, you can end up with a whole lot

of curly brackets—and that can be a real eyesore! C# helps you avoid that problem

by letting you drop the curly brackets if th
ere’s just one statement. So this is

perfectly valid syntax for a loop and an if st
atement:

	 for (int i = 0; i < 10; i++) 			 if (myValue == 36)

		 DoTheJob(i);					 myValue *= 5;

We made ActualLength a private read-only
property because we wanted to include an
example of how that would look (including

the PascalCase naming convention). Would
it make more sense as a private method?

That wouldn't change the way the program
functions. But would it make the code easier
to understand? Would someone reading the

code wonder why you used a property for
ActualLength but a method for CakeSize()?
As your code gets more complex, you'll find
that there are an almost unlimited number of
ways that you can solve a problem. Your job
is to make good decisions about your code.

242   Chapter 6

 public bool CakeWritingTooLong
 {
 get
 {
 if (CakeWriting.Length > MaxWritingLength())
 return true;
 else
 return false;
 }
 }

 private decimal CalculateCostOfDecorations()
 {
 decimal costOfDecorations;
 if (FancyDecorations)
 costOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 else
 costOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 return costOfDecorations;
 }

 public decimal Cost
 {
 get
 {
 decimal totalCost = CalculateCostOfDecorations();
 totalCost += CostOfFoodPerPerson * NumberOfPeople;
 decimal cakeCost;
 if (CakeSize() == 8)
 cakeCost = 40M + ActualLength * .25M;
 else
 cakeCost = 75M + ActualLength * .25M;
 return totalCost + cakeCost;
 }
 }

}

This property returns true if the writing is too long for the
cake. We’ll use it to display a “TOO LONG” message to Kathleen.

Flip back a page and take a closer look at
how the CakeWriting property sets the
actualLength field. If the writing is too
long for the cake, it sets actualLength to
the number of letters that actually fit on
the cake. Once the writing hits its maximum
length, the cost stops going up.

This property only has a get
accessor, because it doesn’t change
the state of the object at all. It
just uses the fields and methods
to calculate a bool value.

The BirthdayParty class has
a decimal Cost property, just
like DinnerParty. But it does
a different calculation that
uses the CakeSize() method and
actualLength field (which is set
by the CakeWriting property).

This method is just like the one
in the DinnerParty class.

kathleen’s gonna love this

≥≥ Finish off the BirthdayParty class by adding the Cost property. But instead of
taking the decoration cost and adding the cost of beverages (which is what happens
in DinnerParty), it’ll add the cost of the cake.

Keep on going with the BirthdayParty class…

you are here 4   243

inheritance

Use a TabControl to add tabs to the form.
Drag a TabControl out of the toolbox and onto your form, and
resize it so it takes up the entire form. Change the text of each
tab using the TabPages property: a “…” button shows up in the
Properties window next to the property. When you click it, the IDE
pops up a window that lets you edit the properties of each tab. Set the
Text property of the tabs to “Dinner Party” and “Birthday Party”.

2

Paste the Dinner Party controls onto their tab.
Open up the Party Planner program from Chapter 5 in another
IDE window. Select the controls on the form, copy them, and
paste them into the new Dinner Party tab. You’ll need to
click inside the tab to make sure they get pasted into the right
place (otherwise you’ll get an error about not being able to add a
component to a container of type TabControl).

One thing to keep in mind here: when you copy and paste a control
into a form, you’re only adding the control itself, not the event
handlers for the control. And you’ll need to check to make sure
that (Name) is set correctly in the Properties window for each of
them. Make sure that each control has the same name as it did in
your Chapter 5 project, and then double-click on each control after
you add it to add a new empty event handler.

3

Build the Birthday Party user interface.
The Birthday Party GUI has a NumericUpDown control for the number of people, a
CheckBox control for fancy decorations, and a Label control with a 3D border for the cost.
Then you’ll add a TextBox control for the cake writing.

4

Click on the tabs to
switch between them. Use
the TabPages property to
change the text for each
tab. Click the “…” button
next to it and select each
tab’s Text property.

After you drag the Dinner
Party controls onto the tab,
they’ll only be visible when the
Dinner Party tab is selected.

This tab uses the
NumericUpDown, CheckBox,
and Label controls just like
the Dinner Party tab does.
Name them numberBirthday,
fancyBirthday, and
birthdayCost.

Add a TextBox control called cakeWriting for the writing on the cake (and a label above it so the user knows what it’s for). Use its Text property to give it a default value of “Happy Birthday”.

Click on the Birthday Party
tab and add the new controls.

Add a Label called tooLongLabel that has the text TOO LONG and a red background.

244   Chapter 6

 private void numberBirthday_ValueChanged(object sender, EventArgs e)
 {
 birthdayParty.NumberOfPeople = (int)numberBirthday.Value;
 DisplayBirthdayPartyCost();
 }

 private void fancyBirthday_CheckedChanged(object sender, EventArgs e)
 {
 birthdayParty.FancyDecorations = fancyBirthday.Checked;
 DisplayBirthdayPartyCost();
 }

public partial class Form1 : Form {

 DinnerParty dinnerParty;

 BirthdayParty birthdayParty;

 public Form1() {

 InitializeComponent();

 dinnerParty = new DinnerParty((int)numericUpDown1.Value,

 healthyBox.Checked, fancyBox.Checked);

 DisplayDinnerPartyCost();

 birthdayParty = new BirthdayParty((int)numberBirthday.Value,

 fancyBirthday.Checked, cakeWriting.Text);

 DisplayBirthdayPartyCost();

 }

 // The fancyBox, healthyBox, and numericUpDown1 event handlers and

 // the DisplayPartyDinnerCost() method are identical to the ones in

 // the Dinner Party exercise at the end of Chapter 5.

The BirthdayParty instance is
initialized in the form’s constructor,
just like the instance of DinnerParty.

The CheckBox and NumericUpDown controls’ event
handlers are just like the ones for the dinner party.

finish the form

Put it all together.
All the pieces are there—now it’s just a matter of writing a little code to make the controls work.

≥≥ You’ll need fields in your form that have references to a BirthdayParty object and a
DinnerParty object, and you’ll need to instantiate them in the constructor.

≥≥ You already have code for the dinner party controls’ event handlers—they’re in your
Chapter 5 project. If you haven’t double-clicked on the NumericUpDown and CheckBox
controls in the Dinner Party tab to add the event handlers, do it now. Then copy the
contents of each event handler from the Chapter 5 program and paste them in here. Here’s
the code for the form:

5

Keep on going with the code for the form…

≥≥ Add code to the NumericUpDown control’s event handler method to set the object’s
NumberOfPeople property, and make the Fancy Decorations checkbox work.

The form creates a DinnerParty object, so you'll need
to copy the DinnerParty class into your project. You

can use Add→Existing Item... in the Solution Explorer
to add the DinnerParty.cs file—but make sure you
change the namespace to match your new project.

you are here 4   245

inheritance

 private void DisplayBirthdayPartyCost() {
 tooLongLabel.Visible = birthdayParty.CakeWritingTooLong;
 decimal cost = birthdayParty.Cost;
 birthdayCost.Text = cost.ToString("c");
 }
}

The way that the form
handles the cake writing
can be really simple because
the BirthdayParty class
is well encapsulated. All
the form has to do is use
its controls to set the
properties on the object,
and the object takes care
of the rest.

All the intelligence for dealing with the writing, the
number of people, and the cake size is built into the
NumberOfPeople and CakeWriting set accessors, so the
form just has to set and display the values.

≥≥ Use the Events page in the Properties window to add a new
TextChanged event handler to the cakeWriting TextBox. Click
on the lightning bolt button in the Properties window to switch to the
Events page. Then select the TextBox and scroll down until you find the
TextChanged event. Double-click on it to add a new event handler for it.

 private void cakeWriting_TextChanged(object sender, EventArgs e)
 {
 birthdayParty.CakeWriting = cakeWriting.Text;
 DisplayBirthdayPartyCost();
 }

≥≥ Add a DisplayBirthdayPartyCost() method and add it to
all of the event handlers so the cost label is updated automatically
any time there’s a change.

…and you’re done with the form!

When you select the
cakeWriting TextBox
and double-click on the
TextChanged row in
the Events page of the
Properties window, the
IDE will add a new event
handler that gets fired
every time the text in
the box changes.

Controls have a
Visible property
that causes them
to appear on or
disappear from
the form.

The BirthdayParty class exposes this
property so the form can display a warning.

246   Chapter 6

it lives!

Your program’s done...time to run it!
Make sure the program works the way it’s supposed to. Check that it
pops up a message box if the writing is too long for the cake. Make sure
the price is always right. If it’s working, you’re done!

6

Start up the program and go to
the Dinner Party tab. Make sure
that it works just like your old
Party Planner program.

Click on the Birthday Party tab.
Make sure the cost changes when
you change the number of people
or click the Fancy Decorations
checkbox.

Does the calculation work
correctly? In this case, 10
people means $25 per person
($250) plus $75 for a 16”
cake plus $7.50 per person
($75) for the non-fancy
decorations plus a $30
decorating fee plus $.25 per
letter for 21 letters on the
cake ($5.25).

So $250 + $75 + $75 + $30
+ $5.25 = $435.25. It works!

When you type in the Cake Writing text box, the TextChanged event handler should update the cost every time you add or remove a letter.

If the cake writing is too long
for the cake, the BirthdayParty class sets its CakeWritingTooLong property to true and calculates
the cost with the maximum length. The form doesn’t need to do any calculation at all.

you are here 4   247

inheritance

One more thing…can you add a $100 fee
for part ies over 12?
Kathleen’s gotten so much business using your program that she can afford
to charge a little more for some of her larger clients. So what would it take to
change your program to add in the extra charge?

≥≥ Change the DinnerParty.Cost property to check
NumberOfPeople and add $100 to the return value if it’s over 12.

≥≥ Do the exact same thing for the BirthdayParty.Cost property.

Take a minute and think about how you’d add a fee to both the
DinnerParty and BirthdayParty classes. What code would you write?
Where would it have to go?

Easy enough…but what happens if there are three similar classes? Or four? Or
twelve? And what if you had to maintain that code and make more changes
later? What if you had to make the same exact change to five or six closely
related classes?

Wow, I’d have to write
the same code over

and over again. That’s a
really inefficient way to
work. There’s got to be

a better way!

You’re right! Having the same code repeated in
different classes is inefficient and error-prone.

Lucky for us, C# gives us a better way to build classes that are
related to each other and share behavior: inheritance.

248   Chapter 6

When your classes use inheritance, you only
need to write your code once
It’s no coincidence that your DinnerParty and BirthdayParty classes have
a lot of the same code. When you write C# programs, you often create classes that
represent things in the real world—and those things are usually related to each other.
Your classes have similar code because the things they represent in the real world—a
birthday party and a dinner party—have similar behaviors.

DinnerParty
NumberOfPeople
FancyDecorations
Cost
HealthyOption

CalculateCostOfDecorations()
CalculateCost
 OfBeveragesPerPerson()

BirthdayParty
NumberOfPeople
FancyDecorations
Cost
CakeSize
CakeWriting

CalculateCostOfDecorations()
CakeSize()
MaxWritingLength()

Party
NumberOfPeople
FancyDecorations
Cost

private methods:
 CalculateCostOfDecorations()

BirthdayParty
CakeSize
CakeWriting
Cost

private methods:
 CakeSize()
 MaxWritingLength()

DinnerParty
HealthyOption
Cost

private methods:
 CalculateCost
 OfBeveragesPerPerson()

A birthday party
handles the number
of people and the
cost of decorations
in almost the same
way as a dinner
party.

Kathleen needs
to figure out
the cost of her
parties, no matter
what kind of
parties they are.

Dinner part ies and birthday part ies are both part ies
When you have two classes that are specific cases of something more general,
you can set them up to inherit from the same class. When you do that, each of
them is a subclass of the same base class.

Both kinds of parties
have to keep track of the
number of people and the
cost of decorations, so you
can move that into the
base class.

The way both parties handle the number of people and calculating the total cost is similar but
distinct. We can break up the
behavior for these things so the
similar part is in the base class,
while putting the distinct pieces
in the two subclasses.

Both subclasses
inherit the
decoration
calculation from
the base class, so
they don’t need
to include it.

This arrow in
the class diagram
means the
DinnerParty class
inherits from the
Party class.

no need to use gold when anything shiny will do

you are here 4   249

inheritance

in-her-it, verb.
to derive an attribute from one’s
parents or ancestors. She wanted the
baby to inherit her big brown eyes,
and not her husband’s beady blue ones.

Build up your class model by start ing general
and get t ing more specif ic

General General

Specific Specific

Food

Dairy Product

Cheese

Cheddar

Aged Vermont Cheddar

Animal

Bird

Songbird

Mockingbird

Northern Mockingbird

C# programs use inheritance because it mimics the relationship that the things
they model have in the real world. Real-world things are often in a hierarchy
that goes from more general to more specific, and your programs have their
own class hierarchy that does the same thing. In your class model, classes
further down in the hierarchy inherit from those above it.

If you have a recipe that calls
for cheddar cheese, then you
can use aged Vermont cheddar. But if it specifically needs aged Vermont, then you can’t just
use any cheddar—you need that specific cheese.

Every bird is an
animal, but not every
animal is a bird.

To someone looking for a pet, any songbird might do. But to an ornithologist studying the mimidae bird family, confusing the Northern and Southern mockingbirds would be unacceptable.

In a class model,
Cheese might inherit
from DairyProduct,
which would inherit
from Food.

Something lower on the hierarchy inherits
most or all of the attributes of everything
above it. All animals eat and mate, so
Northern Mockingbirds eat and mate.

250   Chapter 6

How would you design a zoo simulator?
Lions and tigers and bears…oh my! Also, hippos, wolves, and the
occasional cat. Your job is to design a program that simulates a zoo. (Don’t
get too excited—we’re not going to actually build the code, just design the
classes to represent the animals.)

We’ve been given a list of some of the animals that will be in the program,
but not all of them. We know that each animal will be represented by
an object, and that the objects will move around in the simulator, doing
whatever it is that each particular animal is programmed to do.

More importantly, we want the program to be easy for other programmers
to maintain, which means they’ll need to be able to add their own classes
later on if they want to add new animals to the simulator.

So what’s the first step? Well, before we can talk about specific animals,
we need to figure out the general things they have in common—the
abstract characteristics that all animals have. Then we can build those
characteristics into a class that all animal classes can inherit from.

Look for things the animals have in common.

Take a look at these six animals. What do a lion, a hippo, a tiger, a cat, a
wolf, and a dog have in common? How are they related? You’ll need to
figure out their relationships so you can come up with a class model that
includes all of them.

1

it’s a zoo in here

The terms parent,
superclass, and base
class are often used
interchangeably. Also,
the terms extend and
inherit from mean the
same thing. The terms
child and subclass
are also synonymous,
but subclass can also
be used as a verb.

Some people use the term “base
class” to specifically mean the class
at the top of the inheritance
tree...but not the VERY top,
because every class inherits from
Object or a subclass of Object.

you are here 4   251

inheritance

Animal

Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

You already know that duplicate code sucks. It’s hard to maintain, and
always leads to headaches down the road. So let’s choose fields and
methods for an Animal base class that you only have to write once,
and each of the animal subclasses can inherit from them. Let’s start with
the public fields:

≥≥ Picture: an image that you can put into a PictureBox.

≥≥ Food: the type of food this animal eats. Right now, there can be only
two values: meat and grass.

≥≥ Hunger: an int representing the hunger level of the animal. It
changes depending on when (and how much) the animal eats.

≥≥ Boundaries: a reference to a class that stores the height, width, and
location of the pen that the animal will roam around in.

≥≥ Location: the X and Y coordinates where the animal is standing.

In addition, the Animal class has four methods the animals can inherit:

≥≥ MakeNoise(): a method to let the animal make a sound.

≥≥ Eat(): behavior for when the animal encounters its preferred food.

≥≥ Sleep(): a method to make the animal lie down and take a nap.

≥≥ Roam(): the animals like to wander around their pens in the zoo.

Use inheritance to avoid duplicate
code in subclasses Build a base class

to give the animals
everything they have
in common.

The fields, properties, and methods
in the base class will give all of
the animals that inherit from it
a common state and behavior.
They’re all animals, so it makes
sense to call the base class Animal.

2

Choosing a base class is
about making choices. You
could have decided to
use a ZooOccupant class
that defines the feed
and maintenance costs,
or an Attraction class
with methods for how
the animals entertain the
zoo visitors. But we think
Animal makes the most
sense here. Do you agree?

Lion

Hippo
Tiger

Dog

Cat

Wolf

252   Chapter 6

Animal

Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Different animals make different noises
Lions roar, dogs bark, and as far as we know hippos don’t
make any sound at all. Each of the classes that inherit from
Animal will have a MakeNoise() method, but each of those
methods will work a different way and will have different code.
When a subclass changes the behavior of one of the methods
that it inherited, we say that it overrides the method.

Think about what you need to override
Every animal needs to eat. But a dog might take little bites
of meat, while a hippo eats huge mouthfuls of grass. So what
would the code for that behavior look like? Both the dog and
the hippo would override the Eat() method. The hippo’s
method would have it consume, say, 20 pounds of hay each
time it was called. The dog’s Eat() method, on the other
hand, would reduce the zoo’s food supply by one 12-ounce
can of dog food.

Grass is yummy!
I could go for

a good pile of hay
right now.

I beg to differ.

We already know that some animals will override the
MakeNoise() and Eat() methods. Which animals will
override Sleep() or Roam()? Will any of them? What about
the properties—which animals will override some properties?

Figure out what each
animal does that the
Animal class does
differently-or not at all.

What does each type of animal do that
all the other animals don’t? Dogs eat dog
food, so the dog’s Eat() method will need
to override the Animal.Eat() method.
Hippos swim, so a hippo will have a Swim()
method that isn’t in the Animal class at all.

3

Just because a property or a method
is in the Animal base class, that
doesn’t mean every subclass has to use
it the same way…or at all!

So when you’ve got a subclass
that inherits from a base
class, it must inherit all of
the base class’s behaviors…
but you can modify them in
the subclass so they’re not
performed exactly the same
way. That’s what overriding is
all about.

warning: don’t feed the programmers

you are here 4   253

inheritance

Think about how to group the animals
Aged Vermont cheddar is a kind of cheese, which is a dairy product, which is
a kind of food, and a good class model for food would represent that. Lucky
for us, C# gives us an easy way to do it. You can create a chain of classes that
inherit from each other, starting with the topmost base class and working down.
So you could have a Food class, with a subclass called DairyProduct that
serves as the base class for Cheese, which has a subclass called Cheddar,
which is what AgedVermontCheddar inherits from.

Look for classes that
have a lot in common.

Don’t dogs and wolves seem pretty similar?
They’re both canines, and it’s a good bet
that if you look at their behavior they have a
lot in common. They probably eat the same
food and sleep the same way. What about
domestic cats, tigers, and lions? It turns out
all three of them move around their habitats
in exactly the same way. It’s a good bet that
you’ll be able to have a Feline class that
lives between Animal and those three cat
classes that can help prevent duplicate code
between them.

4

Animal

Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Hippo

MakeNoise()
Eat()

Tiger

MakeNoise()
Eat()

Dog

MakeNoise()
Eat()

Cat

MakeNoise()
Eat()

Wolf

MakeNoise()
Eat()

There’s a pretty good chance that we’ll be able to add a Canine class that the dogs and wolves both inherit from. They may have other behaviors in common, like sleeping in dens.

Lion

MakeNoise()
Eat()The subclasses

inherit all four
methods from
Animal, but
so far we’re
only having
them override
MakeNoise() and
Eat().

That’s why we
only show those
two methods in
the class diagrams. What would it look like if we added

a Swim() method to the Hippo class?

254   Chapter 6

Feline

Roam()

Canine

Eat()
Sleep()

Animal

Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Lion

MakeNoise()
Eat()

Hippo

MakeNoise()
Eat()
Swim()

Tiger

MakeNoise()
Eat()

Dog

MakeNoise()
Cat

MakeNoise()
Eat()

Wolf

MakeNoise()

Our wolves and
dogs eat the
same way, so
we moved their
common Eat()
method up to
the Canine class.

The three cats roam the same way, so they share an inherited Roam() method. But each one still eats and makes noise differently, so they’ll all override the Eat() and MakeNoise() methods that they inherited from Animal.

Since Feline overrides Roam(),
anything that inherits from it
gets its new Roam() and not
the one in Animal.

Create the class hierarchy
When you create your classes so that there’s a base class at the top with
subclasses below it, and those subclasses have their own subclasses that
inherit from them, what you’ve built is called a class hierarchy. This is
about more than just avoiding duplicate code, although that is certainly
a great benefit of a sensible hierarchy. But when it comes down to it, the
biggest benefit you’ll get is that your code becomes really easy to understand
and maintain. When you’re looking at the zoo simulator code, when you see
a method or property defined in the Feline class, then you immediately know
that you’re looking at something that all of the cats share. Your hierarchy
becomes a map that helps you find your way through your program.

Finish your class hierarchy.

Now that you know how you’ll organize the animals,
you can add the Feline and Canine classes.

5

extend your objects

Wolf and Dog
objects have
the same eating
and sleeping
behavior, but make
different noises.

you are here 4   255

inheritance

Dog spot = new Dog();

spot.MakeNoise();

spot.Roam();

spot.Eat();

spot.Sleep();

spot.Fetch();

You’re not limited to the methods that a subclass inherits
from its base class…but you already know that! After all,
you’ve been building your own classes all along. When you
add inheritance to a class, what you’re doing is taking the
class you’ve already built and extending it by adding all of
the fields, properties, and methods in the base class. So if you
wanted to add a Fetch() method to Dog, that’s perfectly
normal. It won’t inherit or override anything—only Dog
objects will have that method, and it won’t end up in Wolf,
Canine, Animal, Hippo, or any other class.

makes a new Dog object

calls the version in Dog

calls the version in Animal

calls the version in Canine

calls the version in Canine

calls the version in Dog

C# always calls the most specif ic method
If you tell your dog object to roam, there’s only one method that can
be called—the one in the Animal class. But what about telling your
dog to make noise? Which MakeNoise() is called?

Well, it’s not too hard to figure it out. A method in the Dog class tells
you how dogs do that thing. If it’s in the Canine class, it’s telling you
how all canines do it. And if it’s in Animal, then it’s a description of
that behavior that’s so general that it applies to every single animal. So
if you ask your dog to make a noise, first C# will look inside the Dog
class to find the behavior that applies specifically to dogs. If Dog didn’t
have one, it’d then check Canine, and after that it’d check Animal.

hi-er-ar-chy, noun.
an arrangement or classification

in which groups or things are

ranked one above the other. The

president of Dynamco had worked

his way up from the mailroom to the

top of the corporate hierarchy.

Animal

Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Canine

Eat()
Sleep()

Dog

MakeNoise()
Fetch()

Every subclass extends its
base class

256   Chapter 6

Use a colon to inherit from a base class
When you’re writing a class, you use a colon (:) to have it inherit from
a base class. That makes it a subclass, and gives it all of the fields,
properties, and methods of the class it inherits from.

Bird
Wingspan

Fly()

Vertebrate
NumberOfLegs

Eat()

class Vertebrate
{
	 public int NumberOfLegs;
	 public void Eat() {
		 // code to make it eat
	 }
}

class Bird : Vertebrate
{
	 public double Wingspan;
	 public void Fly() {
		 // code to make the bird fly
	 }
}

public button1_Click(object sender, EventArgs e) {
	 Bird tweety = new Bird();
	 tweety.Wingspan = 7.5;
	 tweety.Fly();
	 tweety.NumberOfLegs = 2;
	 tweety.Eat();
}

tweety is an instance
of Bird, so it’s got
the Bird methods
and fields as usual.

The Bird class uses a colon to inherit from the

Vertebrate class. This means that it inherits all of

the fields, properties, and methods from Vertebrate.

You inherit a class by
adding a colon to the end
of the class declaration,
followed by the base class
to inherit from.

Since the Bird class inherits
from Vertebrate, every instance
of Bird also has the fields
and methods defined in the
Vertebrate class.

When a subclass
inherits from a
base class, all
of the fields,
properties, and
methods in the
base class are
automatically
added to the
subclass.

base: how low can you go?

Q: Why does the arrow point up, from the subclass to the
base class? Wouldn’t the diagram look better with the arrow
pointing down instead?

A: It might look better, but it wouldn’t be as accurate. When you
set up a class to inherit from another one, you build that relationship
into the subclass—the base class remains the same. And that makes
sense when you think about it from the perspective of the base class.

Its behavior is completely unchanged when you add a class that
inherits from it. The base class isn’t even aware of this new class
that inherited from it. Its methods, fields, and properties remain
entirely intact. But the subclass definitely changes its behavior. Every
instance of the subclass automatically gets all of the properties, fields,
and methods from the base class, and it all happens just by adding a
colon. That’s why you draw the arrow on your diagram so that it’s part
of the subclass, and points to the base class that it inherits from.

you are here 4   257

inheritance

Take a look at these class models and declarations, and then
circle the statements that won’t work.

FirePlane
BucketCapacity

FillBucket()

Aircraft
AirSpeed
Altitude

TakeOff()
Land()

class Aircraft {
	 public double AirSpeed;
	 public double Altitude;
	 public void TakeOff() { ... };
	 public void Land() { ... };
}

class FirePlane : Aircraft {
	 public double BucketCapacity;
	 public void FillBucket() { ... };
}

public void FireFightingMission() {
	 FirePlane myFirePlane = new FirePlane();
	 new FirePlane.BucketCapacity = 500;
	 Aircraft.Altitude = 0;
	 myFirePlane.TakeOff();
	 myFirePlane.AirSpeed = 192.5;
	 myFirePlane.FillBucket();
	 Aircraft.Land();
}

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

class Sandwich {
	 public boolean Toasted;
	 public int SlicesOfBread;
	 public int CountCalories() { ... }
}

class BLT : Sandwich {
	 public int SlicesOfBacon;
	 public int AmountOfLettuce;
	 public int AddSideOfFries() { ... }
}

public BLT OrderMyBLT() {
	 BLT mySandwich = new BLT();
	 BLT.Toasted = true;
	 Sandwich.SlicesOfBread = 3;
	 mySandwich.AddSideOfFries();
	 mySandwich.SlicesOfBacon += 5;
	 MessageBox.Show("My sandwich has "
		 + mySandwich.CountCalories + "calories.");
	 return mySandwich;
}

258   Chapter 6

i can think of one way to make a penguin fly…

Take a look at these class models and declarations, and then
circle the statements that won’t work.

FirePlane
BucketCapacity

FillBucket()

Aircraft
AirSpeed
Altitude

TakeOff()
Land()

class Aircraft {
	 public double AirSpeed;
	 public double Altitude;
	 public void TakeOff() { ... };
	 public void Land() { ... };
}

class FirePlane : Aircraft {
	 public double BucketCapacity;
	 public void FillBucket() { ... };
}

public void FireFightingMission() {
	 FirePlane myFirePlane = new FirePlane();
	 new FirePlane.BucketCapacity = 500;
	 Aircraft.Altitude = 0;
	 myFirePlane.TakeOff();
	 myFirePlane.AirSpeed = 192.5;
	 myFirePlane.FillBucket();
	 Aircraft.Land();
}

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

class Sandwich {
	 public boolean Toasted;
	 public int SlicesOfBread;
	 public int CountCalories() { ... }
}

class BLT : Sandwich {
	 public int SlicesOfBacon;
	 public int AmountOfLettuce;
	 public int AddSideOfFries() { ... }
}

public BLT OrderMyBLT() {
	 BLT mySandwich = new BLT();
	 BLT.Toasted = true;
	 Sandwich.SlicesOfBread = 3;
	 mySandwich.AddSideOfFries();
	 mySandwich.SlicesOfBacon += 5;
	 MessageBox.Show("My sandwich has "
		 + mySandwich.CountCalories + "calories.");
	 return mySandwich;
}

These statements all use the

class names instead of the nam
e

of the instance, myFirePlane.

That’s not how you use the “new” keyword.

CountCalories is a method, but this statement doesn’t include the parentheses () after the call to the method.

These properties are part of the
instance, but the statements are
trying to call them incorrectly
using the class names.

you are here 4   259

inheritance

We know that inheritance adds the base class
f ie lds, propert ies, and methods to the subclass…
Inheritance is simple when your subclass
needs to inherit all of the base class
methods, properties, and fields.

Bird
Fly()
LayEggs()
PreenFeathers()

Pigeon
Coo()

…but some birds don’t f ly!
What do you do if your base class has a
method that your subclass needs to modify?

Bird
Fly()
LayEggs()
PreenFeathers()

Pigeon
Coo()

Penguin
Swim()

Pigeons fly, lay eggs, an
d

preen their feathers,
so

there’s no problem with the

Pigeon class inheriting f
rom

Bird.

Penguin objects shouldn’t be able to fly! But if the Penguin class inherits from Bird, then you’ll have penguins flying all over the place. So what do we do?

class Bird {
 public void Fly() {
 // here’s the code to make the bird fly
 }

 public void LayEggs() { ... };

 public void PreenFeathers() { ... };
}

class Pigeon : Bird {
 public void Coo() { ... }
}

class Penguin : Bird {
 public void Swim() { ... }
}

public void BirdSimulator() {

	 Pigeon Harriet = new Pigeon();

	 Penguin Izzy = new Penguin();

	 Harriet.Fly();

	 Harriet.Coo();

	 Izzy.Fly();

}

If this were your Bird Simulator code, what would
you do to keep the penguins from flying?

Izzy is an instance of Penguin. Since it inherited the Fly() method, there’s nothing stopping it from flying.

Both Pigeon and Penguin
inherit from Bird, so
they both get the
Fly(), LayEggs(), and
PreenFeathers() methods.

Pigeon is a
subclass of Bird,
so any fields and
methods in Bird
are automatically
part of Pigeon,
too.

260   Chapter 6

A subclass can override methods to change
or replace methods it inherited
Sometimes you’ve got a subclass that you’d like to inherit
most of the behaviors from the base class, but not all of them.
When you want to change the behaviors that a class has
inherited, you can override the methods.

class Bird {

 public virtual void Fly() {

 // code to make the bird fly

 }

}

class Penguin : Bird {

 public override void Fly() {

 MessageBox.Show("Penguins can’t fly!")

 }
} Use the override keyword to

add a method to your subclass
that replaces one that it
inherited. Before you can
override a method, you need to
mark it virtual in the base class.

Adding the virtual
keyword to the Fly()
method tells C# that
a subclass is allowed to
override it.

Add the virtual keyword to the method in the base class.
A subclass can only override a method if it’s marked with the virtual keyword, which tells C# to
allow the subclass to override methods.

1

Add a method with the same name to the derived class.
You’ll need to have exactly the same signature—meaning the same return value and
parameters—and you’ll need to use the override keyword in the declaration.

2

When you override a method, your new
method needs to have exactly the same
signature as the method in the base
class it’s overriding. In this case, that
means it needs to be called Fly, return
void, and have no parameters.

To override the Fly() method, add an identical method to the subclass and use the override keyword.

manual override

you are here 4   261

inheritance

Any place where you can use a base class, you
can use one of its subclasses instead
One of the most useful things you can do with inheritance is use a subclass in
place of the base class it inherits from. So if your Recipe() method takes a
Cheese object and you’ve got an AgedVermontCheddar class that inherits
from Cheese, then you can pass an instance of AgedVermontCheddar to
the Recipe() method. Recipe() only has access to the fields, properties,
and methods that are part of the Cheese class, though—it doesn’t have access
to anything specific to AgedVermontCheddar.

public void SandwichAnalyzer(Sandwich specimen) {
	 int calories = specimen.CountCalories();
	 UpdateDietPlan(calories);
	 PerformBreadCalculations(specimen.SlicesOfBread, specimen.Toasted);
}

Let’s say we have a method to analyze Sandwich objects:1

You could pass a sandwich to the method—but you could also pass a BLT. Since a BLT is a kind of
sandwich, we set it up so that it inherits from the Sandwich class:

2

public button1_Click(object sender, EventArgs e) {
	 BLT myBLT = new BLT();
	 SandwichAnalyzer(myBLT);
}

You can always move down the class diagram—a reference variable can always be set equal to an
instance of one of its subclasses. But you can’t move up the class diagram.

3

public button2_Click(object sender, EventArgs e) {
	 Sandwich mySandwich = new Sandwich();
	 BLT myBLT = new BLT();
	 Sandwich someRandomSandwich = myBLT;

	 BLT anotherBLT = mySandwich; // <--- THIS WON’T COMPILE!!!
}

You can assign myBLT to any
Sandwich variable because a BLT
is a kind of sandwich.

But you can’t assign mySandwich to a BLT variable, because not every sandwich is a BLT! That’s why this last line will cause an error.

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

We’ll talk about this more
in the next chapter!

262   Chapter 6

 a = 6; 	 56
 b = 5;	 11
 a = 5;	 65

A short C# program is listed below. One block of
the program is missing! Your challenge is to match
the candidate block of code (on the left) with
the output—what’s in the message box that the
program pops up—that you’d see if the block were
inserted. Not all the lines of output will be used,
and some of the lines of output might be used more
than once. Draw lines connecting the candidate
blocks of code with their matching output.

Candidate code
goes here
(three lines)

class A {
 public int ivar = 7;

 public ___________ string m1() {
 return "A's m1, ";
 }
 public string m2() {
 return "A's m2, ";
 }

 public ___________ string m3() {
 return "A's m3, ";
 }
}

class B : A {

 public ___________ string m1() {
 return "B's m1, ";
 }
}

class C : B {

 public ___________ string m3() {
 return "C's m3, " + (ivar + 6);
 }
}

class Mixed5 {
 public static void Main(string[] args) {
 A a = new A();
 B b = new B();
 C c = new C();
 A a2 = new C();
 string q = "";

 System.Windows.Forms.MessageBox.Show(q);
 }
}

Code
candidates:

Output:q += b.m1();
q += c.m2();
q += a.m3();

q += c.m1();
q += c.m2();
q += c.m3();

q += a.m1();
q += b.m2();
q += c.m3();

q += a2.m1();
q += a2.m2();
q += a2.m3();

}

}
}

}

Mixed
Messages

Here’s the entry point for the program—it doesn’t show a form, it just pops up a message box.

Instructions:
 1. Fill in the four blanks in the code.
 2. Match the code candidates to the output.

(Don’t just type this into the IDE—you’ll learn
a lot more if you figure this out on paper!)

get a little practice

Hint: think really hard about what this line really means.

A's m1, A's m2, C's m3, 6

B's m1, A's m2, A's m3,

A's m1, B's m2, C's m3, 6

B's m1, A's m2, C's m3, 13

B's m1, C's m2, A's m3,

A's m1, B's m2, A's m3,

B's m1, A's m2, C's m3, 6

A's m1, A's m2, C's m3, 13

you are here 4   263

inheritance

class TestBoats {

 Main(){
 xyz = "";
 b1 = new Boat();
 Sailboat b2 = new ();
 Rowboat = new Rowboat();
 b2.setLength(32);

 xyz = b1. ();
 xyz += b3. ();
 xyz += .move();
 System.Windows.Forms.MessageBox.Show(xyz);

 }
}

class : Boat {

 public () {
 return " ";
 }
}

OUTPUT:

Rowboat
Sailboat

Boat

subclasses

int length
int b1

override

stroke natasha

Testboats drift
return int len

publicint b2
private

hoist sail

continue

int b2

int b3
break

length

b1

b2 b3
len

move
rowTheBoat

setLength

getLength

string

int
void

static

:

virtual

;

Hint: this is the
entry point for
the program.

Pool Puzzle
Your job is to take code snippets from the pool and place them into
the blank lines in the code. You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled—this one’s harder than it looks.

class Rowboat {
 public rowTheBoat() {
 return "stroke natasha";

 }

}

class {
 private int ;
 void () {
 length = len;

 }

 public int getLength() {

 ;
 }

 public move() {
 return " ";
 }

}

264   Chapter 6

get some practice

q += b.m1();
q += c.m2();
q += a.m3();

q += c.m1();
q += c.m2();
q += c.m3();

q += a.m1();
q += b.m2();
q += c.m3();

q += a2.m1();
q += a2.m2();
q += a2.m3();

A's m1, A's m2, C's m3, 6

B's m1, A's m2, A's m3,

A's m1, B's m2, C's m3, 6

B's m1, A's m2, C's m3, 13

B's m1, C's m2, A's m3,

A's m1, B's m2, A's m3,

B's m1, A's m2, C's m3, 6

A's m1, A's m2, C's m3, 13}

}
}

}

class A {

 public ___________ string m1() {
...

 public ___________ string m3() {
}

virtual
virtual

class B : A {

 public ___________ string m1() {
...
class C : B {

 public ___________ string m3() {

override

override

 a = 6; 	 56
 b = 5;	 11
 a = 5;	 65

Mixed
Messages

Pool Puzzle Solution
class Rowboat: Boat {
 public string rowTheBoat() {
 return "stroke natasha";

 }

}

class Boat {
 private int length ;
 public void setLength (int len) {
 length = len;

 }

 public int getLength() {

 return length ;
 }

 public virtual string move() {
 return " drift ";
 }

}

class TestBoats {

 public static void Main(){
 string xyz = "";
 Boat b1 = new Boat();
 Sailboat b2 = new Sailboat ();
 Rowboat b3 = new Rowboat();
 b2.setLength(32);

 xyz = b1. move ();
 xyz += b3. move ();
 xyz += b2 .move();
 System.Windows.Forms.MessageBox.Show(xyz);

 }
}

class Sailboat : Boat {

 public override string move () {
 return " hoist sail ";
 }
}

You can always substitute a reference to a subclass in place of
a base class. In other words, you can always use something
more specific in place of something more general—so if
you’ve got a line of code that asks for a Canine, you can
send it a reference to a Dog. So this line of code:

A a2 = new C();

means that you’re instantiating a new C object, and then
creating an A reference called a2 and pointing it at that object.
Names like A, a2, and C make for a good puzzle, but they’re
a little hard to understand. Here are a few lines that follow the
same pattern, but have names that you can understand:

Sandwich mySandwich = new BLT();

Cheese ingredient= new AgedVermontCheddar();

Songbird tweety = new NorthernMockingbird();

you are here 4   265

inheritance

Q: About the entry point that you
pointed out in the Pool Puzzle—does this
mean I can have a program that doesn’t
have a Form1 form?

A: Yes. When you create a new Windows
Application project, the IDE creates all
the files for that project for you, including
Program.cs (which contains a static class
with an entry point) and Form1.cs (which
contains an empty form called Form1).

Try this: instead of creating a new Windows
Application project, create an empty project
by selecting Empty Project instead of
Windows Application when you create a
new project in the IDE. Then add a class
file to it in the Solution Explorer and type in
everything in the Pool Puzzle solution. Since
your program uses a message box, you
need to add a reference by right-clicking
on References in the Solution Explorer,
selecting Add Reference, and choosing
System.Windows.Forms. (That’s another
thing the IDE does for you automatically
when you create a Windows Application.)
Finally, select Properties from the Project
menu and choose the Windows Application
output type.

Now run it…you’ll see the results!
Congratulations, you just created a C#
program from scratch.

Q: Can I inherit from the class that
contains the entry point?

A: Yes. The entry point must be a static
method, but that method doesn’t have
to be in a static class. (Remember, the
static keyword means that the class
can’t be instantiated, but that its methods
are available as soon as the program starts.
So in the Pool Puzzle program, you can
call TestBoats.Main() from any
other method without declaring a reference
variable or instantiating an object using a
new statement.)

Q: I still don’t get why they’re called
“virtual” methods—they seem real to me!

A: The name “virtual” has to do with how
.NET handles the virtual methods behind the
scenes. It uses something called a virtual
method table (or vtable). That’s a table that

.NET uses to keep track of which methods
are inherited and which ones have been
overridden. Don’t worry—you don’t need to
know how it works to use virtual methods!

Q: What did you mean by only being
able to move up the class diagram but
not being able to move down?

A: When you’ve got a diagram with one
class that’s above another one, the class
that’s higher up is more abstract than the
one that’s lower down. More specific or
concrete classes (like Shirt or Car)
inherit from more abstract ones (like
Clothing or Vehicle). When you
think about it that way, it’s easy to see how
if all you need is a vehicle, a car or van or
motorcycle will do. But if you need a car, a
motorcycle won’t be useful to you.

Inheritance works exactly the same way. If
you have a method with Vehicle as a
parameter, and if the Motorcycle class
inherits from the Vehicle class, then you
can pass an instance of Motorcycle
to the method. But if the method takes
Motorcycle as a parameter, you can’t
pass any Vehicle object, because it may
be a Van instance. Then C# wouldn’t know
what to do when the method tries to access
the Handlebars property!

You can always
pass an instance
of a subclass to
any method whose
parameters expect a
class that it extends.

Flip back to Chapter 2 if you
need a refresher on Main()
and the entry point!

You can show the Class View page
using the View menu, and it’s yet
another tool the IDE gives you to
help you explore C#. It’s usually
docked in the Solution Explorer

window, and it lets you explore the
classes in your solution—which

can come in very handy.

Click on a class in
the Class View to
see its members.

Use the Base Types
folder in the Class View
to explore a class’s
inheritance hierarchy.

266   Chapter 6

you really do need them

There’s an important reason for virtual and override!

The virtual and override keywords aren’t just for decoration. They

actually make a real difference in how your program works. But don’t take our

word for it—here’s a real example to show you how they work.

Look, I just don’t see why I need to
use those “virtual” and “override” keywords. If I

don’t use them, the IDE just gives me a warning, but the
warning doesn’t actually mean anything...my program

still runs! I mean, I’ll put the keywords in if it’s the
“right” thing to do, but it just seems like I’m jumping

through hoops for no good reason.

Console applications don’t use forms
If you create a console application instead of a Windows Forms application, all the IDE creates for you is a new class called Program with an empty Main() entry point method. When you run it, it pops up a command window to display the output. You’ll get a lot of practice using console applications over the next few chapters.

Create a new console application and add classes.
Right-click on the project in the Solution Explorer and add classes, just like normal. Add the
following five classes: Jewels, Safe, Owner, Locksmith, and JewelThief.

1

Do this!

Instead of creating a Windows Forms
application, you’re going to create a
new console application instead! This
means it won’t have a form.

class Safe {
 private Jewels contents = new Jewels();
 private string safeCombination = "12345";
 public Jewels Open(string combination)
 {
 if (combination == safeCombination)
 return contents;
 else
 return null;
 }
 public void PickLock(Locksmith lockpicker) {
 lockpicker.WriteDownCombination(safeCombination);
 }
}

class Jewels {
 public string Sparkle() {
 return "Sparkle, sparkle!";
 }
}

Add the code for the new classes.
Here’s the code for the five new classes you added:

2

A Safe object keeps a Jewels reference in its contents field. It doesn’t return that reference unless Open() is called with the right combination.

A locksmith can pick the combination
lock and get the combination by calling
the PickLock() method and passing in a
reference to himself. The safe calls his
WriteDownCombination() method with
the combination.

Notice how
the private
keyword
hides the
contents and
combination.

you are here 4   267

inheritanceclass Owner {
 private Jewels returnedContents;
 public void ReceiveContents(Jewels safeContents) {
 returnedContents = safeContents;
 Console.WriteLine("Thank you for returning my jewels! " + returnedContents.Sparkle());
 }
}

class Locksmith {
 public void OpenSafe(Safe safe, Owner owner) {
 safe.PickLock(this);
 Jewels safeContents = safe.Open(writtenDownCombination);
 ReturnContents(safeContents, owner);
 }

 private string writtenDownCombination = null;
 public void WriteDownCombination(string combination) {
 writtenDownCombination = combination;
 }

 public void ReturnContents(Jewels safeContents, Owner owner) {
 owner.ReceiveContents(safeContents);
 }
}

class JewelThief : Locksmith {
 private Jewels stolenJewels = null;
 public void ReturnContents(Jewels safeContents, Owner owner) {
 stolenJewels = safeContents;
 Console.WriteLine("I'm stealing the contents! " + stolenJewels.Sparkle());
 }
}

class Program {
 static void Main(string[] args) {
 Owner owner = new Owner();
 Safe safe = new Safe();
 JewelThief jewelThief = new JewelThief();
 jewelThief.OpenSafe(safe, owner);
 Console.ReadKey();
 }
}

Here’s the Main() method for the Program.
But don’t run it just yet! Before you run the program, try to figure out
what it’s going to print to the console.

4

JewelThief

ReturnContents()

Locksmith

OpenSafe()
WriteDownCombination()
ReturnContents()

The JewelThief class inherits from Locksmith.
Jewel thieves are locksmiths gone bad! They can pick the lock on the safe, but
instead of returning the jewels to the owner, they steal them!

3

A JewelThief object inherits the
OpenSafe() and WriteDownCombination()
methods. But when the OpenSafe()
method calls ReturnContents() to return
the jewels to the owner, the JewelThief
steals them instead!

A Locksmith’s OpenSafe() method picks the lock, opens the safe, and returns the contents to the owner.

Read through the code for your program.
Before you run it, write down what you think it
will print to the console. (Hint: figure out what
JewelThief inherits from Locksmith!)

ReadKey()
waits for the
user to press
a key. It keeps
the program
from ending.

268   Chapter 6

hide and seek

A subclass can hide methods in the superclass
Go ahead and run the JewelThief program. Since it’s a console application, instead
of writing its console output to the Output window, it’ll pop up a command window
and print the output there. Here’s what you should see:

Did you expect the program’s output to be different? Maybe something like this:

I’m stealing the contents! Sparkle, sparkle!

It looks like the JewelThief acted just like a Locksmith! So what happened?

Hiding methods versus overriding methods
The reason the JewelThief object acted like a Locksmith object when its
ReturnContents() method was called was because of the way the JewelThief class
declared its ReturnContents() method. There’s a big hint in that warning message
you got when you compiled your program:

Since the JewelThief class inherits from Locksmith and replaces
the ReturnContents() method with its own method, it looks
like JewelThief is overriding Locksmith’s ReturnContents()
method. But that’s not actually what’s happening. You probably
expected JewelThief to override the method (which we’ll talk about
in a minute), but instead JewelThief is hiding it.

There’s a big difference. When a subclass hides the method, it replaces
(technically, it redeclares) a method in its base class that has the same
name. So now our subclass really has two different methods that share
a name: one that it inherits from its base class, and another brand-new
one that’s defined in its own class.

If a subclass just adds a
method with the same
name as a method in its
superclass, it only hides
the superclass method
instead of overriding it.

you are here 4   269

inheritance

Use different references to call hidden methods
The JewelThief only hides the ReturnContents() method (as opposed to overriding it), and that causes
it to act like a Locksmith object whenever it’s called like a Locksmith object. JewelThief inherits one
version of ReturnContents() from Locksmith, and it defines a second version of it, which means that
there are two different methods with the same name. That means your class needs two different ways to call it.

And, in fact, it has exactly that. If you’ve got an instance of JewelThief, you can use a JewelThief
reference variable to call the new ReturnContents() method. But if you use a Locksmith reference
variable to call it, it’ll call the hidden Locksmith ReturnContents() method.

// The JewelThief subclass hides a method in the Locksmith base class,
// so you can get different behavior from the same object based on the
// reference you use to call it!

// Declaring your JewelThief object as a Locksmith reference causes it to
// call the base class ReturnContents() method
Locksmith calledAsLocksmith = new JewelThief();
calledAsLocksmith.ReturnContents(safeContents, owner);

// Declaring your JewelThief object as a JewelThief reference causes it to
// call the JewelThief's ReturnContents() method instead, because it hides
// the base class's method of the same name.
JewelThief calledAsJewelThief = new JewelThief();
calledAsJewelThief.ReturnContents(safeContents, owner);

Use the new keyword when you’re hiding methods
Take a close look at that warning message. Sure, we never really read most of our warnings, right? But this
time, actually read what it says: To make the current member override that implementation, add
the override keyword. Otherwise add the new keyword.

So go back to your program and add the new keyword.

 new public void ReturnContents(Jewels safeContents, Owner owner) {

As soon as you add new to your JewelThief class’s ReturnContents() method declaration, that
warning message will go away. But your program still won’t act the way you expect it to! It still calls the
ReturnContents() method defined in the Locksmith object. Why? Because the ReturnContents()
method is being called from a method defined by the Locksmith class—specifically, from inside
Locksmith.OpenSafe(), even though it’s being initiated by a JewelThief object. If JewelThief
only hides the ReturnContents() method, its own ReturnContents() will never be called.

Can you figure out how to get JewelThief to override the ReturnContents() method
instead of just hiding it? See if you can do it before turning to the next page!

270   Chapter 6

and that’s why you need those keywords

Use the override and v irtual keywords to inherit behavior
We really want our JewelThief class to always use its own ReturnContents()
method, no matter how it’s called. This is the way we expect inheritance to work most
of the time, and it’s called overriding. And it’s very easy to get your class to do it.
The first thing you need to do is use the override keyword when you declare the
ReturnContents() method, like this:

class JewelThief {
 ...
 override public void ReturnContents
 (Jewels safeContents, Owner owner)

But that’s not everything you need to do. If you just add that override and try to
compile, you’ll get an error that looks like this:

Again, take a really close look and actually read the error. JewelThief can’t override the
inherited member ReturnContents() because it’s not marked virtual, abstract,
or override in Locksmith. Well, that’s an easy error to fix! Just mark Locksmith’s
ReturnContents() with the virtual keyword:

class Locksmith {
 ...
 virtual public void ReturnContents
 (Jewels safeContents, Owner owner)

And that’s the output we were looking for.

Now run your program again. Here’s what you should see:

you are here 4   271

inheritance

If you want to
override a method in
a base class, always
mark it with the
virtual keyword,
and always use the
override keyword
any time you want
to override the
method in a subclass.
If you don’t, you’ll
end up accidentally
hiding methods
instead.

When I come up with my
class hierarchy, I usually
want to override methods

and not hide them. But if I do
hide them, I’ll always use
the new keyword, right?

Exactly. Most of the time you want to
override methods, but hiding them is
an option.

When you’re working with a subclass that extends
a base class, you’re much more likely to use
overriding than you are to use hiding. So when you
see that compiler warning about hiding a method,
pay attention to it! Make sure you really want
to hide the method, and didn’t just forget to use
the virtual and override keywords. If you
always use the virtual, override, and new
keywords correctly, you’ll never run into a problem
like this again!

272   Chapter 6

A subclass can access its base class using the base keyword
Even when you override a method or property in your base class,
sometimes you’ll still want to access it. Luckily, we can use base, which
lets us access any method in the base class.

Chameleon
TongueLength
Color

CatchWithTongue()

Vertebrate
NumberOfLegs

Eat()
Swallow()
Digest()

class Vertebrate {

 public virtual void Eat(Food morsel) {

 Swallow(morsel);

 Digest();

 }

}

class Chameleon : Vertebrate {
 public override void Eat(Food morsel) {
 CatchWithTongue(morsel);
 Swallow(morsel);
 Digest();
 }
}

All animals eat, so the Vertebrate class has an Eat() method that
takes a Food object as its parameter.

1

Chameleons eat by catching food with their tongues. So the Chameleon class inherits
from Vertebrate but overrides Eat().

2

The chameleon needs to swallow and digest the food, just like any other animal. Do we really need to duplicate this code, though?

Instead of duplicating the code, we can use the base keyword to call the method that
was overridden. Now we have access to both the old and the new version of Eat().

3

class Chameleon : Vertebrate {
 public override void Eat(Food morsel) {
 CatchWithTongue(morsel);
 base.Eat(morsel);
 }
}

This line calls the Eat() method in the base

class that Chameleon inherited from.

detour: construction ahead

Now that you’ve had a chance to absorb some of the ideas behind inheritance, here’s something to think
about. While reusing code is a good way to save keystrokes, another valuable part of inheritance is that it
makes it easier to maintain your code later. Can you think of a reason why that’s true?

you are here 4   273

inheritance

When a base class has a constructor, your subclass needs one, too
If your class has constructors that take parameters, then any class that
inherits from it must call one of those constructors. The subclass’s
constructor can have different parameters from the base class constructor.

class Subclass : BaseClass {

 public Subclass(parameter list)

 : base(the base class’s parameter list) {

 // first the base class constructor is executed
 // then any statements here get executed
 }
}

The base class constructor is executed
before the subclass constructor
But don’t take our word for it—see for yourself !

Do this!

Create a base class with a constructor that pops up a message box.
Then add a button to a form that instantiates this base class and shows a message box:
 using System.Windows.Forms;
class MyBaseClass {
 public MyBaseClass(string baseClassNeedsThis) {
 MessageBox.Show("This is the base class: " + baseClassNeedsThis);
 }
}

1

Try adding a subclass, but don’t call the constructor.
Then add a button to a form that instantiates this subclass and shows a message box:
 using System.Windows.Forms;
class MySubclass : MyBaseClass{
 public MySubclass(string baseClassNeedsThis, int anotherValue) {
 MessageBox.Show("This is the subclass: " + baseClassNeedsThis
 + " and " + anotherValue);
 }
}

2

Keep an eye out for
this error. It means
that your subclass
didn’t call the base
constructor.

Add this extra line to the end of your subclass’s constructor declaration to tell C# that it needs to call the base class’s constructor every time the subclass is instantiated.
Here’s the
constructor for
the subclass.

Select Build→Build Solution in the IDE and you’ll get an error from this code.

This is a parameter that the
base class constructor needs.

You can call the new statement
without assigning the result to a

variable. The following statement
creates an instance of MySubclass:

new MySubclass();
It will be garbage-collected quickly
because there’s no reference to it.

Fix the error by making the constructor call the one from the base class.
Then instantiate the subclass and see what order the two message boxes pop up in!
class MySubclass : MyBaseClass{
 public MySubclass(string baseClassNeedsThis, int anotherValue)
 : base(baseClassNeedsThis)
 {
 // the rest of the subclass is the same

3

Add this line to tell C# to call the constructor in

the base class. It has a parameter list that shows

what gets passed to the base class cons
tructor. Then

the error will go away and you can make a button to

see the two message boxes pop up!

This is how
we send the
base class the
parameter its
constructor
needs.

274   Chapter 6

Now you’re ready to f inish the job for Kathleen!
When you last left Kathleen, you’d finished adding birthday parties to
her program. She needs you to charge an extra $100 for parties
over 12. It seemed like you were going to have to write the same
exact code twice, once for each class. Now that you know how to use
inheritance, you can have them inherit from the same base class that
contains all of their shared code, so you only have to write it once.

Think about the new class
model.
The first step to writing a good program
is thinking about its design. We’ll
still have the same DinnerParty and
BirthdayParty classes, but now
they’ll inherit from a single Party
class. We need them to have exactly
the same properties so we don’t have to
make any changes to the form.

1

If we play our cards
right, we should be
able to change the two
classes without making
any changes to the form!

kathleen still needs our help

Add the Party base class.
Create a new Windows Forms application.
Add a class called Party to the program.
Then add the DinnerParty and
BirthdayParty classes from the project at
the beginning of this chapter, and update the
DinnerParty and BirthdayParty classes
so they extend Party.

2

BirthdayParty

NumberOfPeople: int
FancyDecorations: bool
Cost: decimal
CakeWriting: string
CakeWritingTooLong: bool
private ActualLength: int

private methods:
 CalculateCostOfDecorations()
 CakeSize()
 MaxWritingLength()

DinnerParty

NumberOfPeople: int
FancyDecorations: bool
Cost: decimal
HealthyOption: bool

private methods:
 CalculateCostOfDecorations()
 CalculateCostOfBeverages
 PerPerson();

Look at the two classes
side by side. What
methods and properties
do they have in common?

Party

Finish the job for Kathleen by creating a Party base class that has all
of the shared behavior from DinnerParty and BirthdayParty.
You're going to be reusing a lot of code from the previous project, so you
may just want to copy it to another folder to do this exercise.

The first thing you’ll
do is add an empty
Party class, and
modify DinnerParty
and BirthdayParty
so they extend it.
You can already build
your program, because
anything can extend
an empty class.

you are here 4   275

inheritance

Party
NumberOfPeople: int
FancyDecorations: bool
virtual Cost: decimal

private methods:
 CalculateCostOfDecorations()

Both classes use the
NumberOfPeople and
FancyDecorations properties
in exactly the same way. It
makes sense to inherit them
from the Party superclass.

Even though both classes have
different ways of calculating
the cost, they both use the same
CalculateCostOfDecorations()
method. But it’s private, so the
subclasses can’t access it!

Luckily, we can take advantage of
inheritance. We’ll declare Cost as
virtual in the superclass, and then
extend it in the subclasses.

Move shared behavior into the Party superclass.
Cut the CostOfFoodPerPerson constant, the NumberOfPeople and FancyDecorations
properties, and the CalculateCostOfDecorations() method from either the DinnerParty or
BirthdayParty class (they’re identical in both), then paste them into Party. Make sure you delete
them from both subclasses.

Create a Cost property in Party and mark it virtual, and mark the Cost in the subclasses
override.

3

The hardest part of this exercise is figuring out what part of the two Cost properties in the subclasses
should be copied to the Party base class. That’s because you have a lot of choices. You could just create
an automatic Cost property in the Party class, and keep the Cost property in the subclasses the
same. But for this exercise, your job is to look at the Cost properties in the original DinnerParty and
BirthdayParty classes, figure out what they have in common, and move as many lines as you can into
the base class.

Here’s a hint. Both DinnerParty and BirthdayParty Cost properties should start with these lines:

 override public decimal Cost {
 get {
 decimal totalCost = base.Cost;

Don’t forget to add the $100 charge for parties over 12 to the base Cost property in Party.

4

BirthdayParty
CakeWriting: string
CakeWritingTooLong: bool
override Cost: decimal
private ActualLength: int

private methods:
 CakeSize()
 MaxWritingLength()

DinnerParty
HealthyOption: bool
override Cost: decimal

private methods:
 CalculateCostOfBeverages
 PerPerson();

Here’s the extended Cost
property. It’s declared with
the override keyword, and will
call base.Cost.

276   Chapter 6

class BirthdayParty : Party
{
 public BirthdayParty(int numberOfPeople,
 bool fancyDecorations, string cakeWriting)
 {
 NumberOfPeople = numberOfPeople;
 FancyDecorations = fancyDecorations;
 CakeWriting = cakeWriting;
 }

class Party
{
 public const int CostOfFoodPerPerson = 25;

 public int NumberOfPeople { get; set; }

 public bool FancyDecorations { get; set; }

 private decimal CalculateCostOfDecorations()
 {
 decimal costOfDecorations;
 if (FancyDecorations)
 costOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 else
 costOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 return costOfDecorations;
 }

 virtual public decimal Cost
 {
 get {
 decimal totalCost = CalculateCostOfDecorations();
 totalCost += CostOfFoodPerPerson * NumberOfPeople;

 if (NumberOfPeople > 12)
 totalCost += 100;

 return totalCost;
 }
 }
}

Check it out—you changed the DinnerParty and BirthdayParty classes so that
they inherited from the same base class, Party. Then you were able to make the change to
the cost calculation to add the $100 fee, and you didn’t have to change the form at all. Neat!

Now that the birthday and dinner
parties have their own classes that
extend the Party base class, it’s easy to
add the $100 charge for parties over
12. Just add it to the base class, and
the subclasses will inherit the behavior.

exercise solution

These properties and the constant
were identical in DinnerParty and
BirthdayParty, so they were cut
from the subclasses and pasted
straight into the superclass.

This method was also
identical in both
subclasses, so it was
moved to the Party
base class too.

These two lines were identical in
both original DinnerParty and
BirthdayParty classes, so we
moved them to the base Cost
property. We moved as much
behavior as we could into the
Party class.

Don’t
forget to
mark Cost
virtual!

BirtdayParty extends Party.

The BirthdayParty constructor
stays the same, even though it sets
properties that are in the base class.

you are here 4   277

inheritance

Continues on page 278.

 public string CakeWriting { get; set; }

 private int ActualLength
 {
 get
 {
 if (CakeWriting.Length > MaxWritingLength())
 return MaxWritingLength();
 else
 return CakeWriting.Length;

 }
 }

 private int CakeSize() {
 if (NumberOfPeople <= 4)
 return 8;
 else
 return 16;
 }

 private int MaxWritingLength() {
 if (CakeSize() == 8)
 return 16;
 else
 return 40;
 }

 public bool CakeWritingTooLong {
 get {
 if (CakeWriting.Length > MaxWritingLength())
 return true;
 else
 return false;
 }
 }

 override public decimal Cost {
 get {
 decimal totalCost = base.Cost;
 decimal cakeCost;
 if (CakeSize() == 8)
 cakeCost = 40M + ActualLength * .25M;
 else
 cakeCost = 75M + ActualLength * .25M;
 return totalCost + cakeCost;
 }
 }
}

CakeWriting and ActualLength are only
used by BirthdayParty but not Party,
so they stay in BirthdayParty.

The CakeWriting
property,
ActualLength
property, and the
methods that they
use stay in the
BirthdayParty
class. So does the
CakeWritingTooLong
property.

We moved the first two statements of the
Cost property into the base class because
they were identical in both DinnerParty
and BirthdayParty. The first thing the
BirthdayParty’s Cost property does is call
base.Cost to execute those two statements.

278   Chapter 6

continued
from p.277

class DinnerParty : Party {
 public bool HealthyOption { get; set; }

 public DinnerParty(int numberOfPeople, bool healthyOption,
 bool fancyDecorations) {
 NumberOfPeople = numberOfPeople;
 FancyDecorations = fancyDecorations;
 HealthyOption = healthyOption;
 }

 private decimal CalculateCostOfBeveragesPerPerson() {
 decimal costOfBeveragesPerPerson;
 if (HealthyOption)
 costOfBeveragesPerPerson = 5.00M;
 else
 costOfBeveragesPerPerson = 20.00M;
 return costOfBeveragesPerPerson;
 }

 override public decimal Cost {
 get {
 decimal totalCost = base.Cost;
 totalCost += CalculateCostOfBeveragesPerPerson() * NumberOfPeople;
 if (HealthyOption)
 totalCost *= .95M;
 return totalCost;
 }
 }
}

Here’s the last class in Kathleen’s solution.
There’s no change to the form code at all! The HealthyOption property is only

used in dinner parties, not birthday
parties, so it stays in the class.

The CalculatecostOfBeveragesPerPerson()
method and the constructor stay in the
DinnerParty class because they’re not
used by BirthdayParty.

The Cost property works just like in
the BirthdayParty class. It uses base.
Cost to execute the statements in
Party.Cost, and uses the result as a
starting point to finish the calculation.

The program’s perfect. It’s so much
easier to run my business now-thanks so much!

great job!

When your classes overlap as little as possible, that’s an important design
principle called separation of concerns.

When you design your classes well today, they’ll be easier to modify later. It would have been a lot of work to
add that $100 charge for parties over 12 to the separate DinnerParty and BirthdayParty classes. But
after you redesigned your program with inheritance, it just took two lines of code. This was easy because you
moved only the behavior that was shared between the Cost properties in the subclasses into a shared property in the base class.

This is an example of separation of concerns, because each class has only the code that concerns one
specific part of the problem that your program solves. Code for dinner parties goes in DinnerParty, code
for birthday parties goes in BirthdayParty, and code that’s shared between them goes in Party.

Here’s something to think about. We separated the concerns about the user interface into the Form object. It
doesn’t do cost calculations itself—that’s encapsulated behind the Cost properties of the DinnerParty and
BirthdayParty classes. But we decided that converting the decimal cost to a current string is a concern of
the Form, not something that the party classes need to be concerned with. Did we make the right call?

Remember, any program can be written in
many ways, and usually there’s no single “right”
answer. Not even if it’s written in a book!

you are here 4   279

inheritance

Build a beehive management system
A queen bee needs your help! Her hive is out of control, and
she needs a program to help manage it. She’s got a beehive full
of workers, and a whole bunch of jobs that need to be done
around the hive. But somehow she’s lost control of which bee
is doing what, and whether or not she’s got the beepower to do
the jobs that need to be done.

It’s up to you to build a beehive management system to help
her keep track of her workers. Here’s how it’ll work:

The queen assigns jobs
to her workers.
There are six possible jobs that the workers can do. Some
know how to collect nectar and manufacture honey; others
can maintain the hive and patrol for enemies. A few bees can
do every job in the hive. So your program will need to give
her a way to assign a job to any bee that’s available to do it.

1

This drop-down list shows all six jobs that the
workers can do.The queen knows what jobs need
to be done, and she doesn’t really care which bee
does each job. So she just selects which job has to
be done—the program will figure out if there’s a
worker available to do it, and assign the job to him.

The bees work shifts,
and most jobs require
more than one shift.
So the queen enters
the number of shifts
the job will take, and
clicks the “Assign
this job” button.

If there’s a bee
available to do the job,
the program assigns
the job to the bee and
lets the queen know
it’s taken care of.

When the jobs are all assigned, it’s
time to work.
Once the queen’s done assigning the work, she’ll tell the bees
to work the next shift by clicking the “Work the next shift”
button. The program then generates a shift report that tells
her which bees worked that shift, what jobs they did, and
how many more shifts they’ll be working each job.

2

280   Chapter 6

mind your beeswax

How you’l l build the beehive management system
This project is divided into two parts. The first part is a bit of a review, where you’ll create the basic
system to manage the hive. It’s got two classes, Queen and Worker. You’ll build the form for the system,
and hook it up to the two classes. And you’ll make sure the classes are well-encapsulated so they
don’t get in your way when you move on to the second part later.

[0] Nectar collector

[1] Honey manufacturing

string[] arra
y

JOBS

I Can

Do

[0] Hive maintenance

[1] Sting patrol

Worker obje
ct

string[] arra
y

JOBS

I Can

Do

Worker obje
ct

[0] Nectar collector

[1] Honey manufacturing

[2] Egg care

[3] Baby bee tutoring

[4] Hive maintenance

[5] Sting patrol

Worker obje
ct

[0]

[2]

[3]

 Form

Queen objec
t

Worker[] ar

ra
yWor

ker
s

[0] Egg care

[1] Baby bee tutoring

Worker obje
ct

[1]
string[] arra

y
JOBS

I Can

Do

string[] arra
y

JOBS

I Can

Do

queen

This is the object model that you’ll
build. The form has a reference to an
instance of Queen, who keeps track
of her Worker objects using an array
of Worker references.

Not every worker can do every
job. Each Worker object has an
array of strings called jobsICanDo
that it uses to keep track of
which jobs it knows how to do.

The queen has a field
called workers to keep
track of all the Worker
objects in the hive.

She keeps the workers array private
because no other objects should be
able to tell workers what to do, so
she needs to set up the workers in
her constructor.

This worker can do two jobs, egg
care and baby bee tutoring, so his
jobsICanDo array has two elements.

This is a very versatile
worker. He can do six
different jobs!

The form keeps a reference to the Queen object in a field called queen.

you are here 4   281

inheritance
The form creates the array of workers. Then it
creates each worker and adds it to the array.

Worker[] workers = new Worker[4];
workers[0] = new Worker(new string[] { "Nectar collector", "Honey manufacturing" });
workers[1] = new Worker(new string[] { "Egg care", "Baby bee tutoring" });
workers[2] = new Worker(new string[] { "Hive maintenance", "Sting patrol" });
workers[3] = new Worker(new string[] { "Nectar collector", "Honey manufacturing",
 "Egg care", "Baby bee tutoring", "Hive maintenance", "Sting patrol" });
queen = new Queen(workers);

Each Worker object’s constructor takes one
parameter, an array of strings that tell it
what jobs it knows how to do.

The queen can
assign work to
workers and then
tell them to work
the next shift.

Queen objec
t Worker obje

ct

DoThisJob("Hive maintenance", 4)

If the worker is already doing a job, he returns false. Otherwise, he checks his jobsICanDo
array. If he finds the job, he returns true;

otherwise, he returns false.

The queen checks
each worker to see
if he’s available to
do the job.

The form has a field that points to a Queen object, which it initializes by passing the newly created array of Worker objects into the Queen’s constructor.

The Queen is asking a Worker if he can do Hive Maintenance for 4 shifts.

 Form Queen objec
t

AssignWork("Hive maintenance", 4)

When the “assign” button is clicked, the queen’s AssignWork method is called so she can check if workers are available.

The form calls the queen’s
AssignWork() method, which

loops through the workers and calls
each one’s DoThisJob() method
until it finds a worker who can do

the job. If no workers can do the job,
AssignWork() returns false.

The queen’s AssignWork() method goes
through the array of workers, calling
each one’s DoThisJob() method until
she finds one who can do the job.

The queen tells each worker to work a shift, then
compiles the results into a shift report.

 Form
Queen objec

t Worker obje
ct

WorkTheNextShift() DidYouFinish()

If the worker has a current

assignment, he subtracts 1

from the number of shifts left.

The queen adds a line to the
shift report for each worker,

and returns it as a string.

The Worker’s DidYouFinish() method makes him work the next shift, and returns true if he finishes the job.

282   Chapter 6

Queen
private workers: Worker[]
private shiftNumber: int

AssignWork()
WorkTheNextShift()

Worker
CurrentJob: string
ShiftsLeft: int

private jobsICanDo: string[]
private shiftsToWork: int
private shiftsWorked: int

DoThisJob()
DidYouFinish()

String.IsNullOrEmpty()
Each bee stores his current job as a string. So a worker can figure out if he’s currently doing a job by checking his CurrentJob property—it’ll be equal to an empty string if he’s waiting for his next job. C# gives you an easy way to do that: String.IsNullOrEmpty(currentJob) will return true if the currentJob string property is either empty or null, and false otherwise.

Sometimes class diagrams list private fields and types.
The program has one Queen object that manages the work being done.

≥≥ The Queen uses an array of Worker objects to track each of the
worker bees and whether or not those bees have been assigned jobs.
It’s stored in a private Worker[ ] field called workers.

≥≥ The form calls the AssignWork() method, passing a string for the
job that needs to be performed and an int for the number of shifts.
It’ll return true if it finds a worker to assign the job to, or
false if it couldn’t find a worker to do that job.

≥≥ The form’s “Work the next shift” button calls WorkTheNextShift(),
which tells the workers to work and returns a shift report to
display. It tells each Worker object to work one shift, and then checks that
worker’s status so it can add a line to the shift report.

≥≥ Look closely at the screenshot on the facing page to see exactly
what the WorkTheNextShift() method returns. First it creates a
string (“Report for shift #13”). Then it uses a for loop to execute two
if statements for each Worker in the workers[] array. The first if
statement checks if the worker finsished the job (“Worker #2 finished
the job”). The second if statement checks if the Worker is currently
doing a job, and if so, prints how many more shifts he’ll be working.

The queen uses an array of Worker objects to keep track of all of the workers
and what jobs they’re doing.

≥≥ CurrentJob is a read-only property that tells the Queen object what
job the worker’s doing (“Sting patrol,” “Hive maintenance,” etc.). If
the worker isn’t doing any job, it’ll return an empty string.

≥≥ The Queen object attempts to assign a job to a worker using its
DoThisJob() method. If that worker is not already doing the job, and
if it’s a job that he knows how to do, then he’ll accept the assignment
and the method returns true. Otherwise, it returns false.

≥≥ When the DidYouFinish() method is called, the worker works a
shift. He keeps track of how many shifts are left in the current job. If
the job is done, then he resets his current job to an empty string so that
he can take on his next assignment. The method returns true if the
worker finished a job this shift; otherwise, it returns false.

CurrentJob and ShiftsLeft are
read-only properties.

A queen bee needs your help! Use what you’ve learned about classes and objects to build a
beehive management system to help her track her worker bees. In this first part of the project
you’ll design the form, add the Queen and Worker classes, and get the basic system working.

help the queen

you are here 4   283

inheritance

public Form1() {
 InitializeComponent();
 workerBeeJob.SelectedIndex = 0;
 Worker[] workers = new Worker[4];
 workers[0] = new Worker(new string[] { "Nectar collector", "Honey manufacturing" });
 workers[1] = new Worker(new string[] { "Egg care", "Baby bee tutoring" });
 workers[2] = new Worker(new string[] { "Hive maintenance", "Sting patrol" });
 workers[3] = new Worker(new string[] { "Nectar collector", "Honey manufacturing",
 "Egg care", "Baby bee tutoring", "Hive maintenance", "Sting patrol" });
 queen = new Queen(workers);
}

Build the form.
The form is pretty simple—all of the intelligence is in the Queen and Worker classes. The form
has a private Queen field, and two buttons call its AssignWork() and WorkTheNextShift()
methods. You’ll need to add a ComboBox control for the bee jobs (flip back to the screenshot to
see its list items), a NumericUpDown control, two buttons, and a multiline text box for the shift
report. You’ll also need the form’s constructor—it’s below the screenshot.

1

Look closely at this shift
report, which the Queen
object generates. It starts
with a shift number, and
then reports what each
worker is doing. Use the
escape sequences “\r\n” to
add a line break in the
middle of a string. You’ll
need to loop through the
workers array and use if
statements to generate
the text.

The nextShift button
calls the queen’s
WorkTheNextShift()
method, which returns a
string that contains the
shift report.

This is a ComboBox
control named
workerBeeJob. Use
its Items property to
set the list, and set
its DropDownStyle
property to
DropDownList so the
user is only allowed to
choose items from the
list. Click on Items in
the Properties window
to add all six jobs to
the drop-down list
items.

Name this TextBox “report”
and set its MultiLine
property to true.

Build the Worker and Queen classes.
You’ve got almost everything you need to know about the Worker and Queen classes. There are just a couple
more details. Queen.AssignWork() loops through the Queen object’s workers array and attempts to
assign the job to each Worker using its DoThisJob() method. The Worker object checks its jobsICanDo
string array to see if it can do the job. If it can, it sets its private shiftsToWork field to the job duration, its
CurrentJob to the job, and its shiftsWorked to zero. When it works a shift, it increases shiftsWorked
by one. The read-only ShiftsLeft property returns shiftsToWork - shiftsWorked—the queen
uses it to see how many shifts are left on the job.

2

Your form will need a Queen field called queen. You’ll pass that array
of Worker object references to the Queen object’s constructor.

Here’s the complete constructor for the form. It’s
got the code from the previous page. It also has this
additional line that sets the ComboBox to show its
first item (so it’s not blank when the form loads).

This NumericUpDown control is named shifts.

Use a GroupBox
control to draw
a box around the
other controls. Set
the text on top of
the box using its
Text property.

284   Chapter 6

class Worker {
 public Worker(string[] jobsICanDo) {
 this.jobsICanDo = jobsICanDo;
 }

 public int ShiftsLeft {
 get {
 return shiftsToWork - shiftsWorked;
 }
 }

 private string currentJob = "";
 public string CurrentJob {
 get {
 return currentJob;
 }
 }

 private string[] jobsICanDo;
 private int shiftsToWork;
 private int shiftsWorked;

 public bool DoThisJob(string job, int numberOfShifts) {
 if (!String.IsNullOrEmpty(currentJob))
 return false;
 for (int i = 0; i < jobsICanDo.Length; i++)
 if (jobsICanDo[i] == job) {
 currentJob = job;
 this.shiftsToWork = numberOfShifts;
 shiftsWorked = 0;
 return true;
 }
 return false;
 }

 public bool DidYouFinish() {
 if (String.IsNullOrEmpty(currentJob))
 return false;
 shiftsWorked++;
 if (shiftsWorked > shiftsToWork) {
 shiftsWorked = 0;
 shiftsToWork = 0;
 currentJob = "";
 return true;
 }
 else
 return false;
 }
}

CurrentJob is a read-
only property that
tells the queen which
job needs to be done.

The constructor just
sets the jobsICanDo
field, which is a string
array. It’s private
because we want the
queen to ask the worker
to do a job, rather than
make her check whether
he knows how to do it.

The queen uses the worker’s
DoThisJob() method to assign
work to him—he checks his
jobsICanDo field to see if he
knows how to do the job.

The queen uses the worker’s
DidYouFinish() method to
tell him to work the next
shift. The method only
returns true if this is the
very last shift that he’s
doing the job. That way,
the queen can add a line to
the report that the bee will
be done after this shift.

Take a close look at the logic here. First it
checks the currentJob field: if the worker’s
not working on a job, it just returns false,
which stops the method. If not, then it
increments ShiftsWorked, and then checks
to see if the job’s done by comparing it with
ShiftsToWork. If it is, the method returns
true. Otherwise, it returns false.

exercise solution

We used !—the NOT operator—to
check if the string is NOT null or
empty. It’s just like checking to see
if something’s false.

ShiftsLeft is a read-only
property that calculates
how many shifts are left
on the current job.

you are here 4   285

inheritance

class Queen {
 public Queen(Worker[] workers) {
 this.workers = workers;
 }

 private Worker[] workers;
 private int shiftNumber = 0;

 public bool AssignWork(string job, int numberOfShifts) {
 for (int i = 0; i < workers.Length; i++)
 if (workers[i].DoThisJob(job, numberOfShifts))
 return true;
 return false;
 }

 public string WorkTheNextShift() {
 shiftNumber++;
 string report = "Report for shift #" + shiftNumber + "\r\n";
 for (int i = 0; i < workers.Length; i++)
 {
 if (workers[i].DidYouFinish())
 report += "Worker #" + (i + 1) + " finished the job\r\n";
 if (String.IsNullOrEmpty(workers[i].CurrentJob))
 report += "Worker #" + (i + 1) + " is not working\r\n";
 else
 if (workers[i].ShiftsLeft > 0)
 report += "Worker #" + (i + 1) + " is doing ‘" + workers[i].CurrentJob
 + "’ for " + workers[i].ShiftsLeft + " more shifts\r\n";
 else
 report += "Worker #" + (i + 1) + " will be done with ‘"
 + workers[i].CurrentJob + "’ after this shift\r\n";
 }
 return report;
 }
}

private Queen queen;

private void assignJob_Click(object sender, EventArgs e) {
 if (queen.AssignWork(workerBeeJob.Text, (int)shifts.Value) == false)
 MessageBox.Show("No workers are available to do the job ‘"
 + workerBeeJob.Text + "’", "The queen bee says...");
 else
 MessageBox.Show("The job ‘" + workerBeeJob.Text + "’ will be done in "
 + shifts.Value + " shifts", "The queen bee says...");
}

private void nextShift_Click(object sender, EventArgs e) {
 report.Text = queen.WorkTheNextShift();
}

We already gave you the constructor. Here’s the rest of the code for the form:

The queen keeps her array of workers private
because once they’re assigned, no other class
should be able to change them…or even see
them, since she’s the only one who gives them
orders. The constructor sets the field’s value.

When she assigns work to her worker bees, she starts with the first one and tries assigning him the job. If he can’t do it, she moves on to the next. When a bee who can do the job is found, the method returns (which stops the loop).

The queen’s
WorkTheNextShift() method tells each worker to work a
shift and adds a
line to the report depending on the
worker’s status.

The form uses its queen field to
keep a reference to the Queen
object, which in turn has an array
of references to the worker objects.

The assignJob button calls the queen’s AssignWork() method to assign work to a worker,
and displays a message box,
depending on whether or not a worker’s available to do the job.

The nextShift button tells the queen to work the next shift. She

generates a report, which it displays in the report text box.

286   Chapter 6

Inheritancecross
Before you move on to the next part of the exercise,
give your brain a break with a quick crossword.

you’re not done

1

2 3

4

5

6 7

8

9 10

11

Across
5. This method gets the value of a property.
7. This method returns true if you pass it “”.
8. The constructor in a subclass doesn’t need the same
_____ as the constructor in its base class.
9. A control on a form that lets you create tabbed applications.
11. This type of class can't be instantiated.

Down
1. A _______ can override methods from its base class.
2. If you want a subclass to override a method, mark the
method with this keyword in the base class.
3. A method in a class that’s run as soon as it’s instantiated.
4. What a subclass does to replace a method in the base
class.
6. This contains base classes and subclasses.
7. What you’re doing by adding a colon to a class declaration.
10. A subclass uses this keyword to call the members of the
class it inherited from.

1

2 3

4

5

6 7

8

9 10

11

Across
5. This method gets the value of a property.
7. This method returns true if you pass it “”.
8. The constructor in a subclass doesn’t need the same
_____ as the constructor in its base class.
9. A control on a form that lets you create tabbed applications.
11. This type of class can't be instantiated.

Down
1. A _______ can override methods from its base class.
2. If you want a subclass to override a method, mark the
method with this keyword in the base class.
3. A method in a class that’s run as soon as it’s instantiated.
4. What a subclass does to replace a method in the base
class.
6. This contains base classes and subclasses.
7. What you’re doing by adding a colon to a class declaration.
10. A subclass uses this keyword to call the members of the
class it inherited from.

Answers on page 292.

you are here 4   287

inheritance

Add Existing Item
Whenever you have a two-part exercise, it’s always a good idea to start a new project for

the second part. That way, you can always get back to the first solution
 if you need it. An

easy way to do that is to right-click on the project name in the new project’s Solution

Explorer in the IDE, select Add Existing Item from the menu, navigate to the old project’s

folder, and select the files you w
ant to add. The IDE will make new copies of those files in

the new project’s folder, and add them to the project. There are a few things to watch out

for, though. The IDE will NOT change the namespace, so you’ll need to edit each
 class file

and change its namespace line by hand. And if you add a form, make sure to add its designer

(.Designer.cs) and resource (.resx) fi
les—and make sure you change their namespaces, too.

Use inheritance to extend the
bee management system
Now that you have the basic system in place, use inheritance to let it track how much
honey each bee consumes. Different bees consume different amounts of honey, and
the queen consumes the most honey of all. You’ll use what you’ve learned about
inheritance to create a Bee base class that Queen and Worker inherit from.

Queen
private workers: Worker[]
private shiftNumber: int

AssignWork()
WorkTheNextShift()

Worker
CurrentJob: string
ShiftsLeft: int
private jobsICanDo: string[]
private shiftsToWork: int
private shiftsWorked: int
DoThisJob()
DidYouFinish()
override
 HoneyConsumptionRate()

Bee
HoneyUnitsConsumedPerMg:
 const double

HoneyConsumptionRate():
 virtual double

You’ll add a Bee class that
both Queen and Worker extend.
The Bee class will have the
basic members for calculating
honey consumption.

Worker bees use more honey with each
consecutive shift worked on a job.
The Worker class will extend Bee and
override HoneyConsumptionRate().

The queen will need to
extend Bee and call the
HoneyConsumptionRate()
method to add
information about honey
consumed per shift to
the report.

Sometimes we’ll show you return values and private members in class diagrams.

The HoneyConsumptionRate() method calculates how much honey the bee consumes during a shift.

288   Chapter 6

Modify the form to initialize the queen and workers with their weights.
Since you changed the Queen and Worker constructors, you’ll also need to change the form’s
constructor so that when it creates its new Worker and new Queen instances, it passes the additional
weights into their constructors. Worker #1 weighs 175mg, worker #2 weighs 114mg, worker #3 weighs 149mg,
worker #4 weighs 155mg, and the queen weighs 275mg.

(Your code should now compile.)

3

Hint: you can use the “does not contain a constructor” error
message you saw earlier in the chapter to your advantage! Have the
Worker class inherit from Bee, then build your project. When the
IDE displays the error, double-click on it and the IDE will jump
right to the Worker constructor automatically. How convenient!

Create the Bee class and modify Queen and Worker to extend it.
The Bee class has a HoneyConsumptionRate() method that calculates how much honey the
bee uses per shift. Your job will be to modify the Worker and Queen classes to extend it.

class Bee {
 public const double HoneyUnitsConsumedPerMg = .25;

 public double WeightMg { get; private set; }

 public Bee(double weightMg) {
 WeightMg = weightMg;
 }

 virtual public double HoneyConsumptionRate() {
 return WeightMg * HoneyUnitsConsumedPerMg;
 }
}

1

Modify the Queen and Worker classes to extend Bee.
The Queen and Worker classes will inherit the basic honey consumption behavior from
their new parent Bee superclass. You’ll need to set up their constructors to call the base class
constructor.

≥≥ Modify the Queen class to extend Bee. You’ll need to add a double parameter called
weightMg to the constructor that gets passed back to the base constructor.

≥≥ Modify the Worker class to extend Bee, too—you’ll need to make the same modification
to the Worker constructor that you did for the Queen.

2

We’re not done yet! The queen got a call from her accountants, who told her she needs to keep track
of how much honey the hive is spending on its workers. Here’s a perfect chance to use your new
inheritance skills! Add a new Bee superclass and use it to calculate honey consumption for each shift.

we’re all just bees

The Bee constructor takes one parameter, the weight of the bee in milligrams,
which is used in the base
honey consumption calculation.

you are here 4   289

inheritance

Override the Worker’s HoneyConsumptionRate() method
The Queen consumes honey just like the base Bee class. And workers consume the same
amount of honey...but only while they’re idle! When they’re working a shift, they consume .65
additional units for each shift they worked so far.

This means that the Queen can use the base HoneyConsumptionRate() method
that she inherits from her Bee superclass, but the Worker will need to override the
method to add the additional .65 units per shift worked. You can also add a constant called
honeyUnitsPerShiftWorked to make it really clear exactly what this method is doing.

You can use the IDE to get started. Go to the Worker class and type “public override”—
when you add the space, the IDE will automatically list all the methods you can override:

Choose the HoneyConsumptionRate() method from the IntelliSense window. When
you do, the IDE will generate a method stub that just calls the base method. Modify your new
method so that it starts with the output of base.HoneyConsumptionRate() and then
adds the extra .65 units consumed per shift worked.

4

Add honey consumption to the shift report.
You’ll need to modify the Queen’s WorkTheNextShift() method to keep track of the
honey consumed by the Queen object and each of the Worker objects, calling each object’s
HoneyConsumptionRate() method and adding it to a total. Then it should add this line to
the end of the report (replacing XXX with the number of units of honey consumed):

Total honey consumed for the shift: XXX units

5

Since all bees have a HoneyConsumptionRate() method, and
the Queen and Worker are both Bees, shouldn’t there be a single,
consistent way to call that method for any Bee object, no matter what
kind of Bee it is?

You should be able to do this by
adding just three lines of code to
the WorkTheNextShift() method.

290   Chapter 6

public Form1()
{
 InitializeComponent();
 workerBeeJob.SelectedIndex = 0;
 Worker[] workers = new Worker[4];
 workers[0] = new Worker(new string[] { "Nectar collector", "Honey manufacturing" }, 175);
 workers[1] = new Worker(new string[] { "Egg care", "Baby bee tutoring" }, 114);
 workers[2] = new Worker(new string[] { "Hive maintenance", "Sting patrol" }, 149);
 workers[3] = new Worker(new string[] { "Nectar collector", "Honey manufacturing",
 "Egg care", "Baby bee tutoring", "Hive maintenance", "Sting patrol" }, 155);
 queen = new Queen(workers, 275);
}

Inheritance
made it less
work for you
to update your
code and add
the new honey
consumption
behavior to
the Queen and
Worker classes.
It would have
been a lot
harder to make
this change if
you’d had a lot
of duplicated
code.

The only change to the form is that the
weights need to be added to the Worker and
Queen constructors.

Only the form constructor changed—the rest of the form is exactly the same.

exercise solution

class Worker : Bee
{
 public Worker(string[] jobsICanDo, double weightMg)
 : base(weightMg)
 {
 this.jobsICanDo = jobsICanDo;
 }

 const double honeyUnitsPerShiftWorked = .65;

 public override double HoneyConsumptionRate()
 {
 double consumption = base.HoneyConsumptionRate();
 consumption += shiftsWorked * honeyUnitsPerShiftWorked;
 return consumption;
 }

 // The rest of the Worker class is the same
 // ...

}

The constructor gets a new parameter,
which it passes back to the base
constructor. This lets the form initialize
the object with the bee’s weight.

The Worker class overrides the HoneyConsumptionRate()
method to add the additional honey consumption for bees currently doing a job.

you are here 4   291

inheritance

class Queen : Bee
{
 public Queen(Worker[] workers, double weightMg)
 : base(weightMg)
 {
 this.workers = workers;
 }

 private Worker[] workers;
 private int shiftNumber = 0;

 public bool AssignWork(string job, int numberOfShifts)
 {
 for (int i = 0; i < workers.Length; i++)
 if (workers[i].DoThisJob(job, numberOfShifts))
 return true;
 return false;
 }

 public string WorkTheNextShift()
 {
 double honeyConsumed = HoneyConsumptionRate();

 shiftNumber++;
 string report = "Report for shift #" + shiftNumber + "\r\n";
 for (int i = 0; i < workers.Length; i++)
 {
 honeyConsumed += workers[i].HoneyConsumptionRate();

 if (workers[i].DidYouFinish())
 report += "Worker #" + (i + 1) + " finished the job\r\n";
 if (String.IsNullOrEmpty(workers[i].CurrentJob))
 report += "Worker #" + (i + 1) + " is not working\r\n";
 else
 if (workers[i].ShiftsLeft > 0)
 report += "Worker #" + (i + 1) + " is doing ‘" + workers[i].CurrentJob
 + "’ for " + workers[i].ShiftsLeft + " more shifts\r\n";
 else
 report += "Worker #" + (i + 1) + " will be done with ‘"
 + workers[i].CurrentJob + "’ after this shift\r\n";
 }

 report += "Total honey consumed for the shift: " + honeyConsumed + " units\r\n";

 return report;
 }
}

This code is the
same as before.

This code also
stays exactly
the same.

The shift honey calculation needs
to start with the Queen’s current
honey consumption.

As the method loops through each
worker, it adds that worker’s
consumption to the total.

After each worker’s line is added to the report,
the queen just needs to add one last line with
the total honey consumed for the shift.

The Queen's constructor
gets the same modification
as the Worker’s does.

292   Chapter 6

Inheritancecross Solution

crossword solution

S
1

U V
2

C
3

B I O
4

O

A
5

C C E S S O R V N

L T E S

H
6

A I
7

S N U L L O R E M P T Y

I S N A R R

E S H L I U

R E D C

P
8

A R A M E T E R S E T

R I O

C T T
9

A B
10

C O N T R O L

H A

Y S
11

T A T I C

E

Across

5. This method gets the value of a property. [ACCESSOR]
7. This method returns true if you pass it “”.
[ISNULLOREMPTY]
8. The constructor in a subclass class doesn’t need the same
_____ as the constructor in its base class. [PARAMETERS]
9. A control on a form that lets you create tabbed applications.
[TABCONTROL]
11. This type of class can't be instantiated. [STATIC]

Down

1. A _______ can override methods from its base class.
[SUBCLASS]
2. If you want a subclass to override a method, mark the
method with this keyword in the base class. [VIRTUAL]
3. A method in a class that’s run as soon as it’s instantiated.
[CONSTRUCTOR]
4. What a subclass does to replace a method in the base
class. [OVERRIDE]
6. This contains base classes and subclasses [HIERARCHY]
7. What you’re doing when add a colon to a class declaration.
[INHERIT]
10. A subclass uses this keyword to call the members of the
class it inherited from. [BASE]

this is a new chapter   293

OK, OK, I know
I implemented the

BookieCustomer interface,
but I can’t code the

PayMoney() method until
next weekend!

interfaces and abstract classes7

Making classes
keep their promises

Actions speak louder than words.�
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations…or the compiler will break their kneecaps, see?

You’ve got three
days before I send

some Thug objects by to
make sure you implement
the WalksWithALimp()

method.

294   Chapter 7

Let’s get back to bee-sics
The General Bee-namics corporation wants to make the
Beehive Management System you created in the last chapter
into a full‑blown Hive Simulator. Here’s an overview of the
specification for the new version of the program:

General Bee-namics Hive Simulator

To better represent life in the hive, we’ll need to add specialized

capabilities to the worker bees.

•	 All bees consume honey and have a weight.

•	 Queens assign work, monitor shift reports, and tell workers to

work the next shift.

•	 All worker bees work shifts.

•	 Sting patrol bees will need to be able to sharpen their stingers,

look for enemies, and sting them.

•	 Nectar collector bees are responsible for finding flowers,

gathering nectar, and then returning to the hive.

The bees in the new Hive Simulator will still consume honey
in the same way they did before. The queen still needs to be
able to assign work to the workers and see the shift reports
that tell who’s doing what. The workers work shifts just like
they did before, too; it’s just that the jobs they are doing have
been elaborated a little bit.

The Bee and Worker classes don’t look like they’ll change much. We can extend the classes we already have to handle these new features.

Looks like we’ll need to be able to store different data for the worker bees depending on the job they do.

family trees for classes of bees

Lots of things are st i l l the same

you are here 4   295

interfaces and abstract classes

We can use inheritance to create
classes for different types of bees
Here’s a class hierarchy with Worker and Queen classes
that inherit from Bee, and Worker has subclasses
NectarCollector and StingPatrol.

Worker
Job
ShiftsToWork
ShiftsWorked
ShiftsLeft

DoThisJob()
WorkOneShift()

Bee
Weight

HoneyConsumption()

StingPatrol
StingerLength
AlertLevel

SharpenStinger()
LookForEnemies()
Sting()

NectarCollector
Nectar

FindFlowers()
GatherNectar()
ReturnToHive()

Queen
Worker[]
ShiftNum-
ber	

AssignWork()
WorkTheNextShift()
HoneyConsumption()

What happens if you have a bee that
needs to sting and collect nectar?

class StingPatrol : Worker
{ public int AlertLevel { get; private set; }
 public int StingerLength { get; set; }
 public bool SharpenStinger (int Length)
 {...}
 public bool LookForEnemies(){...}
 public void Sting(string Enemy){...}
}

class NectarCollector : Worker
{
 public int Nectar { get; set; }
 public void FindFlowers (){...}
 public void GatherNectar(){...}
 public void ReturnToHive(){...}
}

This is what the new
subclasses will look like.

Here’s where information about weight and honey consumption is stored.

And these classes hold the information particular to each job.

Here’s where all of the information about working shifts is kept.

StingPatrol and NectarCollector inherit from the Worker class.

Remember how the queen needed extra honey? Here’s where we overrode her HoneyConsumption() method.

296   Chapter 7

NectarCollect
or

 o
bj

ec
t

An interface te l ls a class that it must
implement certain methods and propert ies
A class can only inherit from one other class. So creating two separate subclasses for
the StingPatrol and NectarCollector bees won’t help us if we have a bee
that can do both jobs.

You use an
interface to
require a class
to include all
of the methods
and properties
listed inside the
interface—if
it doesn’t, the
compiler will
throw an error.

interfaces for jobs

The queen’s DefendTheHive() method can only tell StingPatrol
objects to keep the hive safe. She’d love to train the other bees to use
their stingers, but she doesn’t have any way to command them to attack:

There are NectarCollector objects that know how to collect nectar from flowers, and instances
of StingPatrol that can sharpen their stingers and patrol for enemies. But even if the queen could
teach the NectarCollector to defend the hive by adding methods like SharpenStinger() and
LookForEnemies() to its class definition, she still couldn’t pass it into her DefendTheHive()
method. She could use two different methods:

I wish you
guys could
help defend
the hive. Queen objec

t
class Queen {
 private void DefendTheHive(StingPatrol patroller) { ... }
}

private void DefendTheHive(StingPatrol patroller);
private void AlternateDefendTheHive(NectarCollector patroller);

Even if the queen adds sting patrol methods
to a NectarCollector object, she still can’t
pass it to her DefendTheHive() method
because it expects a StingPatrol reference.
She can’t just set a StingPatrol reference
equal to a NectarCollector object.

But that’s not a particularly good solution. Both of those methods
would be identical, because they’d call the same methods in the objects
passed to them. The only difference is that one method would take a
StingPatrol, and the other would take a NectarCollector
that happens to have the methods necessary for patrolling the hive. And
you already know how painful it is to maintain two identical methods.

Luckily, C# gives us interfaces to handle situations like that.
Interfaces let you define a bunch of methods that a class must have.

An interface requires that a class has certain methods, and the way
that it does that is by making the compiler throw errors if it
doesn’t find all the methods required by the interface in every class
that implements it. Those methods can be coded directly in the class,
or they can be inherited from a base class. The interface doesn’t care
how the methods or properties get there, as long as they’re there
when the code is compiled.

She could add a second method called
AlternateDefendTheHive() that takes a
NectarCollector reference instead, but that would
be cumbersome and difficult to work with.

Plus, the DefendTheHive() and
AlternateDefendTheHive() methods would be identical
except for the type of the parameter. If she wanted
to teach the BabyBeeCare or Maintenance objects to
defend the hive, she’d need to keep adding new methods.
What a mess!

NectarCollect
or

 o
bj

ec
t

you are here 4   297

interfaces and abstract classes

Queen objec
t

interface IStingPatrol
{
 int AlertLevel { get;}
 int StingerLength { get; set;}
 bool LookForEnemies();
 int SharpenStinger(int length);
}

interface INectarCollector
{
 void FindFlowers();
 void GatherNectar();
 void ReturnToHive();
}

You declare an
interface like this:

Interfaces don’t store data. So they don’t have fields…but they can have properties.

You don’t write the code for t
he

methods in the inter
face, just

their names. You write the code

in the class that im
plements it.

Any class that implements this method must have all of these methods and properties, or the program won’t compile.

Everything in a
public interface
is automatically
public, because
you’ll use it to
define the public
methods and
properties of
any class that
implements it.

Interface names start with I
Whenever you create an interface, you should make
its name start with an uppercase I. There’s no rule

that says you need to do it, but it makes your code

a lot easier to understand. You can see for yourself

just how much easier that can make your life. Just go

into the IDE to any blank line inside any method and

type “I”—IntelliSense shows .NET interfaces.

Use the interface keyword to def ine an interface
Adding an interface to your program is a lot like adding a class,
except you never write any methods. You just define the methods’
return type and parameters, but instead of a block of statements
inside curly brackets, you just end the line with a semicolon.

Interfaces do not store data, so you can’t add any fields. But
you can add definitions for properties. The reason is that get and set
accessors are just methods, and interfaces are all about forcing classes
to have certain methods with specific names, types, and parameters.
So if you’ve got a problem that looks like it could be solved by adding
a field to an interface, try using a property instead—odds are, it’ll
do what you’re looking for.

Any class that implements
this interface will need a
SharpenStinger() method that
takes an int parameter.

Now that I know you can
defend the hive, we’ll all

be a lot safer!

So how does this help the queen? Now she can make one single method that takes any
object that knows how to defend the hive:

private void DefendTheHive(IStingPatrol patroller)

This gives the queen a single method that can take a StingPatrol, NectarCollector,
and any other bee that knows how to defend the hive—it doesn’t matter which class she passes
to the method. As long as it implements IStingPatrol, the DefendTheHive() method
is guaranteed that the object has the methods and properties it needs to defend the hive.

Since this takes an IStingPatrol reference, you can pass it ANY object that implements IStingPatrol.

298   Chapter 7

Q: I still don’t quite get how interfaces improve
the beehive code. You’ll still need to add a
NectarStinger class, and it’ll still have
duplicate code…right?

A: Interfaces aren’t about preventing you from duplicating
code. They’re about letting you use one class in more
than one situation. The goal is to create one worker bee
class that can do two different jobs. You’ll still need to
create classes for them—that’s not the point. The point
of the interfaces is that now you’ve got a way to have
a class that does any number of jobs. Say the Queen
has a PatrolTheHive() method that takes a
StingPatrol object and a CollectNectar()
method that takes a NectarCollector object.
But you don’t want StingPatrol to inherit from
NectarCollector or vice versa—each class has
public methods and properties that the other one shouldn’t
have. Now take a minute and try to think of a way to create
one single class whose instances could be passed to both
methods. Seriously, put the book down, take a minute and try
to think up a way! How do you do it?

Interfaces fix that problem. Now you can create an
IStingPatrol reference—and it can point to any
object that implements IStingPatrol, no matter what
the actual class is. It can point to a StingPatrol, or
a NectarStinger, or even a totally unrelated object.
If you’ve got an IStingPatrol reference pointing to
an object, then you know you can use all of the methods and
properties that are part of the IStingPatrol interface,
regardless of the actual type of the object.

But the interface is only part of the solution. You’ll still need to
create a new class that implements it, since it doesn’t actually
come with any code. Interfaces aren’t about avoiding the
creation of extra classes or avoiding duplicate code. They’re
about making one class that can do more than one job without
relying on inheritance, as inheritance brings a lot of extra
baggage—you’ll have to inherit every method, property, and
field, not just those that have to do with the specific job.

Can you think of ways that you could still avoid duplicating
code while using an interface? You could create a separate
class called Stinger or Proboscis to contain
the code that’s specific to stinging or collecting nectar.
NectarStinger and NectarCollector
could both create a private instance of Proboscis, and
any time they needed to collect nectar, they’d call its methods
and set its properties.

class NectarStinger : Worker, INectarCollector,
IStingPatrol {
 public int AlertLevel
	 { get; private set; }

 public int StingerLength
 { get; set; }

 public int Nectar { get; set; }

 public bool LookForEnemies() {...}
 public int SharpenStinger(int length)

 {...}
 public void FindFlowers() {...}
 public void GatherNectar() {...}
 public void ReturnToHive() {...}
}

You implement an interface with a colon
operator, just like you inherit.

You can use
more than one
interface if you
separate them
with commas.

Every method
in the interface
has a method
in the class.
Otherwise it
wouldn’t compile.

When you create a NectarStinger object,
it will be able to do the job of both a
NectarCollector and a StingPatrol worker bee.

This class inherits from Worker and
implements INectarCollector and
IStingPatrol.

The NectarStinger
implements both
interfaces, so it
needs all of the
methods and
properties from
each of them.

When you’ve got a class that implements an interface, it acts just like
any other class. You can instantiate it with new and use its methods:

 NectarStinger bobTheBee = new NectarStinger();

 bobTheBee.LookForEnemies();

 bobTheBee.FindFlowers();

Now you can create an instance of
NectarSt inger that does both jobs
You use the colon operator to implement an interface, just like
you do for inheritance. It works like this: the first thing after the colon
is the class it inherits from, followed by a list of interfaces—unless it
doesn’t inherit from a class, in which case it’s just a list of interfaces
(in no particular order).

a little bit nectarcollector and a little bit stingpatrol

This is one of the tougher concepts to get into your brain.
If it’s not quite clear yet, keep reading. We’ll have lots of

examples throughout the chapter.

you are here 4   299

interfaces and abstract classes

Classes that implement interfaces have to
include ALL of the interface’s methods
Implementing an interface means that you have to have a method in the class
for each and every property and method that’s declared in the interface—if it
doesn’t have every one of them, it won’t compile. If a class implements more
than one interface, then it needs to include all of the properties and methods in
each of the interfaces it implements. But don’t take our word for it… Do this!

Create a new console application and add a new class file
called IStingPatrol.cs.
The IDE will add a file that has the line class IStingPatrol as usual. Replace that line
with interface IStingPatrol, and type in the IStingPatrol interface from two pages
ago. You’ve now added an interface to your project! Your program should now compile.

1

Add a Bee class to the project.
Don’t add any properties or methods yet. Just have it implement IStingPatrol:

class Bee : IStingPatrol
{
}

2

Try to compile the program.
Select Rebuild from the Build menu. Uh oh—the compiler won’t let you do it:

3

Add the methods and properties to the Bee class.
Add a LookForEnemies() method and a SharpenStinger() method. Make sure that their signatures
match the ones in the interface—so LookForEnemies() has to return a bool, and SharpenStinger()
takes an int parameter (choose any name) and returns an int; they don’t have to do anything for now, so
just return dummy values. Add an int property called AlertLevel with a get accessor (have it return any
number), and an automatic int property called StingerLength with get and set accessors.

One more thing: make sure all the Bee members are marked public. Now the program will compile!

4

You’ll see one of these “does not implement” errors for

every member of IStingPatrol that’s not implemented

in the class. The compiler really wants you to
implement every method in the interface.

300   Chapter 7

class TallGuy {
 public string Name;
 public int Height;
 public void TalkAboutYourself() {
 Console.WriteLine("My name is " + Name + " and I'm "
 + Height + " inches tall.");
 }
}
 static void Main(string[] args) {
 TallGuy tallGuy = new TallGuy() { Height = 74, Name = "Jimmy" };
 tallGuy.TalkAboutYourself();
}

You don’t need to type “public” inside the interface, because it automatically makes every property and method public.

Here’s the TallGuy class, and the code for the Main() method in Program.cs that instantiates it using an
object initializer and calls its TalkAboutYourself() method. Nothing new here—we’ll use it in a minute:

1

You already know that everything inside an interface has to be public, but don’t take our word
for it. Add a new IClown interface to your project, just like you would add a class: right-click on
the project in the Solution Explorer, select Add→New Item... and choose .
Make sure it’s called IClown.cs. The IDE will create an interface that includes this declaration:

interface IClown
{

Now try to declare a private method inside the interface:

private void Honk();

Select Build→Build Solution in the IDE. You’ll see this error:

Now go ahead and delete the private access modifier—the error will go away and your
program will compile just fine.

2

Before you go on to the next page, see if you can create the rest of the IClown interface,
and modify the TallGuy class to implement this interface. Your new IClown interface
should have a void method called Honk that doesn’t take any parameters, and a string
read-only property called FunnyThingIHave that has a get accessor but no set accessor.

3

clowning around

Do this!

Get a li t t le pract ice using interfaces
Interfaces are really easy to use, and the best way to understand them is to start
using them. So create a new Console Application project and get started!

you are here 4   301

interfaces and abstract classes

Here’s the interface—did you get it right?

interface IClown
{
 string FunnyThingIHave { get; }
 void Honk();
}

4

OK, now modify the TallGuy class so that it implements IClown.
Remember, the colon operator is always followed by the base class to inherit
from (if any), and then a list of interfaces to implement, all separated by
commas. Since there’s no base class and only one interface to implement,
the declaration looks like this:

class TallGuy : IClown

Then make sure the rest of the class is the same, including the two fields
and the method. Select Build Solution from the Build menu in the IDE to
compile and build the program. You’ll see two errors, including this one:

‘TallGuy’ does not implement interface
member ‘IClown.Honk()’

X

The errors will go away as soon as you add all of the methods and properties
defined in the interface. So go ahead and implement the interface. Add a read-
only string property called FunnyThingIHave with a get accessor that always
returns the string "big shoes". Then add a Honk() method that writes “Honk
honk!” to the console.

Here’s what it’ll look like:

public string FunnyThingIHave {

 get { return "big shoes"; }

}

public void Honk() {

 Console.WriteLine("Honk honk!");

}

5

Now your code will compile! Update your Main() method so that
it calls the TallGuy object’s Honk() method to print the “Honk
honk!” line to the console.

6

All the interface requi
res is that a class th

at

implements it has a propert
y called FunnyThingIHave

with a get accessor. Yo
u can put any get acc

essor in

there, even one that
just returns the same string every

time. Most get accessors won’t do this, but this
 will

work just fine if it do
es what you need it to do

.

The interface says that you need a public void method called Honk, but it doesn’t say what that method needs to do. It can do anything at all—no matter what it does, the code will compile as long as some method is there with the right signature.

What the IDE is telling
you is that when you said
TallGuy would implement
IClown, you promised to
add all of the properties
and methods in that
interface…and then you
broke that promise!

TallGuy will implement the IClown interface.

Here’s an example of an interface that has a get accessor without a set accessor. Remember, interfaces can’t contain fields, but when you implement this read-only property in a class, it’ll look like a field to other objects.

302   Chapter 7

You can’t instant iate an interface,
but you can reference an interface
Say you had a method that needed an object that could perform
the FindFlowers() method. Any object that implemented the
INectarCollector interface would do. It could be a Worker
object, Robot object, or Dog object, as long as it implements the
INectarCollector interface.

That’s where interface references come in. You can use one
to refer to an object that implements the interface you need
and you’ll always be sure that it has the right methods for your
purpose—even if you don’t know much else about it.

NectarStinger fred = new NectarStinger();
IStingPatrol george = fred;
The first line is an ordinary new statement, creating a reference called
Fred and pointing it to a NectarStinger object.

The second line is where things start to get interesting, because that line of
code creates a new reference variable using IStingPatrol. That
line may look a little odd when you first see it. But look at this:

 NectarStinger ginger = fred;

You know what this third statement does—it creates a new NectarStinger
reference called ginger and points it at whatever object fred is pointing to.
The george statement uses IStingPatrol the same way.

Even though this
object can do
more, when you
use an interface
reference you only
have access to
the methods in
the interface.

IStingPatrol dennis = new IStingPatrol();

If you try to instantiate

an interface, the compiler
will complain.

This won’t work…

…but this will.

You can’t use the new keyword with an interface, which makes sense—the
methods and properties don’t have any implementation. If you could
create an object from an interface, how would it know how to behave?

interfaces don’t make objects

So what happened?

There’s only one new statement, so only one object was created. The
second statement created a reference variable called george that can
point to an instance of any class that implements IStingPatrol.

NectarStinger
 o

bj
ec

t
fred

Remember how you
could pass a BLT
reference into any
class that expects a
Sandwich, because BLT
inherits from Sandwich?
Well, this is the same
thing—you can use a
NectarStinger in any
method or statement
that expects an
IStingPatrol.

george

ginger

You can create an array of IWorker
references, but you can’t instantiate an
interface. But what you can do is point
those references at new instances of classes
that implement IWorker. Now you can have
an array that holds many different kinds of
objects!

you are here 4   303

interfaces and abstract classes

StingPatrol
NectarCollec

to
r

NectarSting
er

StingPatrol NectarCollec
to

r

StingPatrol NectarCollec
to

r

StingPatrol NectarCollec
to

r

Interface references work just like object references
You already know all about how objects live on the heap.
When you work with an interface reference, it’s just another
way to refer to the same objects you’ve already been using.

BERT
HABIFFObjects are created as usual.

Both of these classes implement IStingPatrol.

StingPatrol biff = new StingPatrol();
NectarCollector bertha = new NectarCollector();

1

Add IStingPatrol and INectarCollector
references.
You can use interface references just like you use any other
reference type.

IStingPatrol defender = biff;
INectarCollector cutiePie = bertha;

2

BERT
HA

BIFF

defe
nder

Assign a new instance to an interface
reference.
You don’t actually need an object reference—you can create a new
object and assign it straight to an interface reference variable.

INectarCollector gatherer = new NectarStinger();

4 BERT
HA

defe
nder

gatherer

An interface reference will keep an
object alive.
When there aren’t any references pointing to an object, it
disappears. But there’s no rule that says those references all have
to be the same type! An interface reference is just as good as an
object reference when it comes to keeping track of objects.

biff = null;

3

cutie
Pie

BERT
HAdefe

nder
cutie

Pie

cutie
Pie

This object didn’t disappear,
because Defender is still
pointing to it.

These two statements use interfaces to
create new references to existing objects. You
can only point an interface reference at an
instance of a class that implements it.

Let’s assume that StingPatrol implements the
IStingPatrol interface and NectarCollector
implements the INectarCollector interface.

304   Chapter 7

Worker[] bees = new Worker[3];

bees[0] = new NectarCollector();

bees[1] = new StingPatrol();

bees[2] = new NectarStinger();

for (int i = 0; i < bees.Length; i++)

{

 if (bees[i] is INectarCollector)

 {

 bees[i].DoThisJob("Nectar Collector", 3);

 }

}

You can f ind out if a class implements
a certain interface with “is”
Sometimes you need to find out if a certain class implements an interface. Suppose
we have all our worker bees in an array, called Bees. We can make the array hold
the type Worker, since all worker bees will be Worker classes, or subclasses of
that type.

But which of the worker bees can collect nectar? In other words, we want to know
if the class implements the INectarCollector interface. We can use the is
keyword to find out exactly that.

We’ve got an array of
Worker bees who are all
eligible to go on a nectar

-
collecting mission. So we’ll
loop through the array,
and use “is” to figure out

which ones have the right
methods and properties to

do the job.

Now that we know the bee is a nectar

collector, we can assign it the job of

collecting nectar.

is lets you compare interfaces

AND also other types, too!

If you have some other class that doesn’t inherit from Worker but does implement the
INectarCollector interface, then it’ll be able to do the job, too! But since it doesn’t
inherit from Worker, you can’t get it into an array with other bees. Can you think of a
way to get around the problem and create an array with both bees and this new class?

All the workers are in an array of Workers. We’ll use “is” to sort out which type of worker each bee is.

This is like saying, if this bee implements the INectarCollector interface…do this.

we’re expecting a big inheritance

Q: Wait a minute. When I put a
property in an interface, it looks just
like an automatic property. Does
that mean I can only use automatic
properties when I implement an
interface?

A: No, not at all. It’s true that a
property inside an interface looks very
similar to an automatic property—like
Job and ShiftsLeft in the
IWorker interface on the next page.
But they’re definitely not automatic
properties. You could implement Job
like this:

public Job {
 get; private set;
}

You need that private set, because
automatic properties require you to
have both a set and a get (even if
they’re private). But you could also
implement it like this:

public Job {
 get {
 return "Accountant";
 }
}

and the compiler will be perfectly
happy with that, too. You can also add
a set accessor—the interface requires
a get, but it doesn’t say you can’t have
a set, too. (If you use an automatic
property to implement it, you can
decide for yourself whether you want
the set to be private or public.)

you are here 4   305

interfaces and abstract classes

Interfaces can inherit from other interfaces
When one class inherits from another, it gets all of the methods and
properties from the base class. Interface inheritance is simpler.
Since there’s no actual method body in any interface, you don’t have
to worry about calling base constructors or methods. The inherited
interfaces simply accumulate all of the methods and properties from
the interfaces they inherit from.

(interface)
IWorker

Job
ShiftsLeft

DoThisJob()
WorkOneShift()

interface IWorker

{

 string Job { get; }

 int ShiftsLeft { get; }

 void DoThisJob(string job, int shifts);

 void WorkOneShift();

}

interface IStingPatrol : IWorker
{
 int AlertLevel { get;}
 int StingerLength { get; set;}
 bool LookForEnemies();
 int SharpenStinger(int length);
}

Any class that implements an interface that inherits
from IWorker must implement its methods and properties
When a class implements an interface, it has to include every property and
method in that interface. And if that interface inherits from another one, then all
of those properties and methods need to be implemented, too.

We’ve created a new
IWorker interface that
the other interfaces
inherit from.

Here’s the same IStingPatrol
interface, but now it inherits from the IWorker interface. It looks
like a tiny change, but it makes a huge difference in any class that implements IStingPatrol.

When we draw an
interface on a class
diagram, we’ll show
inheritance using
dashed lines.

(interface)
INectarCollector
Nectar

FindFlowers()
GatherNectar()
ReturnToHive()

(interface)
IStingPatrol

StingerLength
AlertLevel

SharpenStinger()
LookForEnemies()

A class that implements

IStingPatrol must not only

implement these methods…
(interface)

IWorker
Job
ShiftsLeft

DoThisJob()
WorkOneShift()

...but the methods and properties of the IWorker interface this interface inherits from, too.

306   Chapter 7

 class RoboBee : Robot, IWorker
 {
 private int shiftsToWork;
 private int shiftsWorked;
 public int ShiftsLeft
 {get {return shiftsToWork - shiftsWorked;}}
 public string Job { get; private set; }
 public bool DoThisJob(string job, int shiftsToWork){...}
 public void WorkOneShift() {...}
 }

The RoboBee 4000 can do a worker bee’s job
without using valuable honey
Let’s create a new bee, a RoboBee 4000, that runs on gas. We can
have it inherit from the IWorker interface, though, so it can do
everything a normal worker bee can.

 class Robot
 {
 public void ConsumeGas() {...}
 }

The RoboBee class
implements all the
methods from the
IWorker interface.

If RoboBee didn’t implement everything in the IWorker

interface, the code wouldn’t compile.

This is our basic Robot
class, so robots can run
on gasoline.

Any class can implement
ANY interface as long
as it keeps the promise
of implementing the
interface’s methods and
properties.

The RoboBee class inherits from Robot and implements IWorker. That means it’s a robot, but can do the job of a worker bee. Perfect!

RoboBee
ShiftsToWork
ShiftsWorked
ShiftsLeft
Job

DoThisJob()

Remember, for other classes in the application, there’s no
functional difference between a RoboBee and a normal worker
bee. They both implement the interface, so both act like worker
bees as far as the rest of the program is concerned.

But, you could distinguish between the types by using:

if (workerBee is Robot) {
 // now we know workerBee
 // is a Robot object
}

We can see what class
or interface workerBee
subclasses or implements
with “is”.

Icanhascheezburger

you are here 4   307

interfaces and abstract classes

is tells you what an object implements;
as tells the compiler how to treat your object
Sometimes you need to call a method that an object gets from an interface it
implements. But what if you don’t know if that object is the right type? You
use is to find that out. Then, you can use as to treat that object—which
you now know is the right type—as having the method you need to call.

IWorker[] bees = new IWorker[3];
bees[0] = new NectarStinger();
bees[1] = new RoboBee();
bees[2] = new Worker();

for (int i = 0; i < bees.Length; i++) {

 if (bees[i] is INectarCollector) {

 INectarCollector thisCollector;

 thisCollector = bees[i] as INectarCollector;

 thisCollector.GatherNectar();

 ...

All these bees implement IWorker, but we don’t know which ones implement other interfaces, like INectarCollector.

We can’t call
INectarCollector methods
on the bees. They’re of
type IWorker, and don’t
know about INectarCollector
methods.

NOW we can call INectarCollector methods.

Take a look at the array on the left. For each of these statements,
write down which values of i would make it evaluate to true.
Also, two of them won’t compile—cross those lines out.

 IWorker[] Bees = new IWorker[8];
 Bees[0] = new NectarStinger();
 Bees[1] = new RoboBee();
 Bees[2] = new Worker();
 Bees[3] = Bees[0] as IWorker;
 Bees[4] = IStingPatrol;
 Bees[5] = null;
 Bees[6] = Bees[0];
 Bees[7] = new INectarCollector();

1. (Bees[i] is INectarCollector)

2. (Bees[i] is IStingPatrol)

3. (Bees[i] is IWorker)

We’re looping through each bee…

…and checking to
see if it implements
INectarCollector.

We use “as” to say,
treat this object AS
an INectarCollector
implementation.

308   Chapter 7

 IWorker[] Bees = new IWorker[8];
 Bees[0] = new NectarStinger();
 Bees[1] = new RoboBee();
 Bees[2] = new Worker();
 Bees[3] = Bees[0] as IWorker;
 Bees[4] = IStingPatrol;
 Bees[5] = null;
 Bees[6] = Bees[0];
 Bees[7] = new INectarCollector();

1. (Bees[i] is INectarCollector)

2. (Bees[i] is IStingPatrol)

3. (Bees[i] is IWorker)

0, 3, and 6

0, 3, and 6

0, 1, 2, 3, and 6

Take a look at the array on the left. For each of these statements,
write down which values of i would make it evaluate to true.
Also, two of them won’t compile—cross them out.

NectarStinger()
implements the
IStingPatrol
interface.

A CoffeeMaker is also an Appliance
If you’re trying to figure out how to cut down your energy bill each month, you
don’t really care what each of your appliances does. You only really care that they
consume power. So if you were writing a program to monitor your electricity
consumption, you’d probably just write an Appliance class. But if you needed
to be able to distinguish a coffee maker from an oven, you’d have to build a class
hierarchy. So you’d add the methods and properties that are specific to a coffee
maker or oven to some CoffeeMaker and Oven classes, and they’d inherit from
an Appliance class that has their common methods and properties.

it looks like one thing, but it’s really another!

CoffeeMaker
CoffeeLeft

FillWithWater()
MakeCoffee()

Appliance
PluggedIn
Color

ConsumePower()

Oven
Capacity

Preheat()
HeatUp()
Reheat()

public void MonitorPower(Appliance appliance) {

 // code to add data to a household
 // power consumption database

}

 CoffeeMaker misterCoffee = new CoffeeMaker();

 MonitorPower(misterCoffee);

Here’s a method
in the program to
monitor the power
consumption for a
house.

This code would appear later on in the
program to monitor the coffee maker’s
power consumption.

Even though the MonitorPower() method takes a reference to an Appliance object, you can pass it the misterCoffee reference because CoffeeMaker is a subclass of Appliance.

You already saw this
in the last chapter,
when you saw how
you could pass a
BLT reference to
a method that
expected a Sandwich.

you are here 4   309

interfaces and abstract classes

Upcast ing works with both objects and interfaces
When you substitute a subclass for a base class—like substituting a coffee maker for an
appliance, or a BLT for a sandwich—it’s called upcasting. It’s a really powerful tool
that you get when you build class hierarchies. The only drawback to upcasting is that
you can only use the properties and methods of the base class. In other words, when you
treat a coffee maker like an appliance, you can’t tell it to make coffee or fill it with water.
But you can tell whether or not it’s plugged in, since that’s something you can do with
any appliance (which is why the PluggedIn property is part of the Appliance class).

Let’s create some objects.
We can create a CoffeeMaker and Oven class as usual:

 CoffeeMaker misterCoffee = new CoffeeMaker();

 Oven oldToasty = new Oven();

1

What if we want to create an array of appliances?
You can’t put a CoffeeMaker in an Oven[ ] array, and you can’t put an Oven in a
CoffeeMaker[ ] array. But you can put both of them in an Appliance[ ] array:

 Appliance[] kitchenWare = new Appliance[2];

 kitchenWare[0] = misterCoffee;

 kitchenWare[1] = oldToasty;

2

But you can’t treat any appliance like an oven.
When you’ve got an Appliance reference, you can only access the methods and properties
that have to do with appliances. You can’t use the CoffeeMaker methods and properties
through the Appliance reference even if you know it’s really a CoffeeMaker. So these
statements will work just fine, because they treat a CoffeeMaker object like an Appliance:

 Appliance powerConsumer = new CoffeeMaker();

 powerConsumer.ConsumePower();

But as soon as you try to use it like a CoffeeMaker:

 powerConsumer.MakeCoffee();

your code won’t compile, and the IDE will display an error:

because once you upcast from a subclass to a base class, then you can only access the
methods and properties that match the reference that you’re using to access the object.

3

'Appliance' does not contain a
definition for 'MakeCoffee'

X CoffeeMaker o
bj

ec
tpowe

r

cons
umer

This line won’t compile because powerConsumer is an Appliance reference, so it can only be used to do Appliance things.

You can use upcasting to c
reate an

array of appliances that
can hold

both coffee makers and ovens.

We’ll start by instantiating
an Oven object and a
CoffeeMaker object as usual.

powerConsumer
is an Appliance
reference
pointing to a
CoffeeMaker
object.

310   Chapter 7

When downcast ing fails, as returns null
So what happens if you try to use as to convert an Oven object into a
CoffeeMaker? It returns null—and if you try to use it, .NET will cause
your program to break.

 if (powerConsumer is CoffeeMaker) {

 Oven foodWarmer = powerConsumer as Oven;

 foodWarmer.Preheat();

 }

Downcast ing le ts you turn your
appliance back into a coffee maker
Upcasting is a great tool, because it lets you use a coffee maker or an oven
anywhere you just need an appliance. But it’s got a big drawback—if you’re
using an Appliance reference that points to a CoffeeMaker object, you
can only use the methods and properties that belong to Appliance. And that’s
where downcasting comes in: that’s how you take your previously upcast
reference and change it back. You can figure out if your Appliance is really a
CoffeeMaker using the is keyword. And once you know that, you can convert
the Appliance back to a CoffeeMaker using the as keyword.

We’ll start with the CoffeeMaker we already upcast.
Here’s the code that we used:

 Appliance powerConsumer = new CoffeeMaker();

 powerConsumer.ConsumePower();

1

CoffeeMaker o
bj

ec
tpowe

r

cons
umer

But what if we want to turn the Appliance back into a CoffeeMaker?
The first step in downcasting is using the is keyword to check if it’s even an option.

 if (powerConsumer is CoffeeMaker)

 // then we can downcast!

2

Now that we know it’s a CoffeeMaker, let’s use it like one.
The is keyword is the first step. Once you know that you’ve got an Appliance reference
that’s pointing to a CoffeeMaker object, you can use as to downcast it. And that lets you
use the CoffeeMaker class’s methods and properties. And since CoffeeMaker inherits
from Appliance, it still has its Appliance methods and properties.

 if (powerConsumer is CoffeeMaker) {

 CoffeeMaker javaJoe = powerConsumer as CoffeeMaker;

 javaJoe.MakeCoffee();

 }

3

CoffeeMaker o
bj

ec
tpowe

r

cons
umer

javaJ
oe

Here’s our Appliance
reference that points
to a CoffeeMaker
object from the last
page.

The javaJoe reference
points to the
same CoffeeMaker
object as
powerConsumer. But
it’s a CoffeeMaker
reference, so it can
call the MakeCoffee()
method.

powerConsumer is NOT an Oven object. So
when you try to downcast it with “as”, the
foodWarmer reference ends up set to null.
And when you try to use a null reference,
this happens when you run the program...

Uh oh, these
don’t match!

you are here 4   311

interfaces and abstract classes

Upcast ing and downcast ing work with interfaces, too
You already know that is and as work with interfaces. Well, so do all of the upcasting
and downcasting tricks. Let’s add an ICooksFood interface for any class that can heat
up food. And we’ll add a Microwave class—both Microwave and Oven implement
the ICooksFood interface. Now there are three different ways that you can access an
Oven object. And the IDE’s IntelliSense can help you figure out exactly what you can
and can’t do with each of them:

(interface)
ICooksFood

Capacity

HeatUp()
Reheat()

Oven
Capacity

Preheat()
HeatUp()
Reheat()

Microwave
Capacity

HeatUp()
Reheat()
MakePopcorn()

Any class that
implements
ICooksFood is
an appliance
that can heat
up food.

Three different
references that
point to the same
object can access
different methods
and properties,
depending on the
reference’s type.

ICooksFood cooker;

if (misterToasty is ICooksFood)

 cooker = misterToasty as ICooksFood;

 cooker.

Appliance powerConsumer;

if (misterToasty is Appliance)

 powerConsumer = misterToasty;

 powerConsumer.

Oven misterToasty = new Oven();

misterToasty.

misterToasty is an Oven reference pointing to an Oven object, so it can access all of the methods and properties…but it’s the least general type, so you can only point it at Oven objects.

cooker is an ICooksFood reference
pointing to that same Oven object. It
can only access ICooksFood members,
but it can also point to a Microwave
object.

powerConsumer is an
Appliance reference. It
only lets you get to the
public fields, methods, and
properties in Appliance.
You can also point it at
a CoffeeMaker object if
you want.

As soon as you
type the dot,
the IntelliSense
window will pop
up with a list
of all of the
members you can
use.

312   Chapter 7

Q:So back up—you told me that I
can always upcast but I can’t always
downcast. Why?

A:Because the compiler can warn you
if your upcast is wrong. The only time an
upcast won’t work is if you’re trying to set an
object equal to a class that it doesn’t inherit
from or an interface that it doesn’t implement.
And the compiler can figure out immediately
that you didn’t upcast properly, and will give
you an error.

On the other hand, the compiler doesn’t
know how to check if you’re downcasting
from an object or interface reference to a
reference that’s not valid. That’s because it’s
perfectly legal to put any class or interface
name on the righthand side of the as
keyword. If the downcast is illegal, then the
as statement will just return null. And
it’s a good thing that the compiler doesn’t
stop you from doing that, because there are
plenty of times when you’d want to do it.

Q:Someone told me that an interface
is like a contract, but I don’t really get
why. What does that mean?

A:Yes, we’ve heard that too—a lot
of people like to say that an interface is
like a contract. (That’s a really common
question on job interviews.) And it’s true, to
some extent. When you make your class
implement an interface, you’re telling the
compiler that you promise to put certain
methods into it. The compiler will hold you to
that promise.

But we think that it’s easier to remember
how interfaces work if you think of an
interface as a kind of checklist. The compiler
runs through the checklist to make sure that
you actually put all of the methods from the
interface into your class. If you didn’t, it’ll
bomb out and not let you compile.

Q:What if I want to put a method body
into my interface? Is that OK?

A:No, the compiler won’t let you do that. An
interface isn’t allowed to have any statements
in it at all. Even though you use the colon
operator to implement an interface, it’s not
the same thing as inheriting from a class.
Implementing an interface doesn’t add any
behavior to your class at all, or make any
changes to it. All it does is tell the compiler
to make sure that your class has all of the
methods that the interface says it should have.

Q:Then why would I want to use an
interface? It seems like it’s just adding
restrictions, without actually changing
my class at all.

A:Because when your class implements
an interface, then an interface reference can
point to any instance of that class. And that’s
really useful to you—it lets you create one
reference type that can work with a whole
bunch of different kinds of objects.

Here’s a quick example. A horse, an ox, a
mule, and a steer can all pull a cart. But in
our zoo simulator, Horse, Ox, Mule,
and Steer would all be different classes.
Let’s say you had a cart-pulling ride in your
zoo, and you wanted to create an array of
any animal that could pull carts around. Uh-
oh—you can’t just create an array that will
hold all of those. If they all inherited from the
same base class, then you could create an
array of those. But it turns out that they don’t.
So what’ll you do?

That’s where interfaces come in handy. You
can create an IPuller interface that has
methods for pulling carts around. Now you
could declare your array like this:

IPuller[] pullerArray;

Now you can put a reference to any
animal you want in that array, as long as it
implements the IPuller interface.

Q:Is there an easier way to implement
interfaces? It’s a lot of typing!

A: Why, yes, there is! The IDE gives you
a very powerful shortcut that automatically
implements an interface for you. Just start
typing your class:

class
 Microwave : ICooksFood
 { }

Click on ICooksFood—you’ll see a
small bar appear underneath the “I”. Hover over
it and you’ll see an icon appear underneath it:

Click on the icon and choose “Implement
Interface ‘ICooksFood’” from the menu. It’ll
automatically add any members that you
haven’t implemented yet. Each one has a
single throw statement in it—they’ll cause
your program to halt, as a reminder in case
you forget to implement one of them. (You’ll
learn about throw in Chapter 10.)

An interface is like
a checklist that the
compiler runs through
to make sure your
class implemented a
certain set of methods.

no dumb questions

Sometimes it’s hard to click
on the icon, but Ctrl-period
will work, too.

you are here 4   313

interfaces and abstract classes

Start with the IClown interface from the last “Do this!” on page 300:
 interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

1

Extend the IClown interface and use classes that implement it by
adding more code to the Console application you created earlier.

Extend IClown by creating a new interface, IScaryClown, that
inherits from IClown. It should have an additional string
property called ScaryThingIHave with a get accessor but no set
accessor, and a void method called ScareLittleChildren().

2

Create these classes:

≥≥ A funny clown class called FunnyFunny that uses a private string
variable to store a funny thing. Use a constructor that takes a
parameter called funnyThingIHave and uses it to set the private
field. The Honk()method should print: “Hi kids! I have a ” followed
by the funny thing it has. The FunnyThingIHave get accessor
should return the same thing.

≥≥ A scary clown class called ScaryScary that uses a private variable to
store an integer that was passed to it by its constructor in a parameter
called numberOfScaryThings. The ScaryThingIHave get
accessor should return a string consisting of the number from the
constructor followed by “spiders”. The ScareLittleChildren()
prints a message that says, “Boo! Gotcha!”

3

Here’s new code for the Main() method—but it’s not working. Can you figure out how to fix it?

static void Main(string[] args) {
 ScaryScary fingersTheClown = new ScaryScary("big shoes", 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryClown = someFunnyClown;
 someOtherScaryClown.Honk();
 Console.ReadKey();
}

4

You better get
this one right…

or else!Fingers the Clown is scary.

IClown
(interface)

FunnyThingIHave

Honk()

ScaryScary
ScaryThingIHave

ScareLittleChildren()

FunnyFunny
FunnyThingIHave

Honk()

IScaryClown
(interface)

ScaryThingIHave

ScareLittleChildren()

314   Chapter 7

Extend the IClown interface and use classes that implement it.

interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}
 interface IScaryClown : IClown {
 string ScaryThingIHave { get; }
 void ScareLittleChildren();
}
 class FunnyFunny : IClown {
 public FunnyFunny(string funnyThingIHave) {
 this.funnyThingIHave = funnyThingIHave;
 }
 private string funnyThingIHave;
 public string FunnyThingIHave {
 get { return "Hi kids! I have " + funnyThingIHave; }
 }
 public void Honk() {
 Console.WriteLine(this.FunnyThingIHave);
 }
}

class ScaryScary : FunnyFunny, IScaryClown {
 public ScaryScary(string funnyThingIHave, int numberOfScaryThings)
 : base(funnyThingIHave) {
 this.numberOfScaryThings = numberOfScaryThings;
 }
 private int numberOfScaryThings;
 public string ScaryThingIHave {
 get { return "I have " + numberOfScaryThings + " spiders"; }
 }
 public void ScareLittleChildren() {
 Console.WriteLine("Boo! Gotcha!");
 }
}
 static void Main(string[] args) {
 ScaryScary fingersTheClown = new ScaryScary("big shoes", 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryClown = someFunnyClown as ScaryScary;
 someOtherScaryClown.Honk();
 Console.ReadKey();
}

Since ScaryScary is a subclass of FunnyFunny and FunnyFunny implements IClown, ScaryScary implements IClown too.

You can set a FunnyFunny reference equal to a ScaryScary object because ScaryScary inherits from FunnyFunny. But you can’t set any IScaryClown reference to just any clown, because you don’t know if that clown is scary. That’s why you need to use the as keyword.

no no! nooo! noo! no more scary clowns!

You could have
implemented the
IClown method and
property again, but
why not just inherit
from FunnyFunny?

The Honk()
method just uses
this get accessor
to display its
message—no need
to have the same
code twice.

You can also use the someOtherScaryClown reference to call
ScareLittleChildren()—but you can’t get to it from the
someFunnyClown reference.

you are here 4   315

interfaces and abstract classes

There’s more than just public and pri vate
You already know how important the private keyword is, how you use it, and
how it’s different from public. C# has a name for these keywords: they’re
called access modifiers. The name makes sense, because when you change
an access modifier on a property, field, or method of a class—its members—or
the entire class, you change the way other classes can access it. There are a few
more access modifiers that you’ll use, but we’ll start with the ones you know:

public means that anyone can access it.
When you mark a class or class member public, you’re telling C# that any instance of any
other class can access it. It’s the least restrictive access modifier. And you’ve already seen how
it can get you in trouble—only mark class members public if you have a reason. That’s how
you make sure your classes are well encapsulated.

≥

We call a class’s methods, fields, and properties its members. Any member can be marked with the public or private access modifier.

private means that only other members can access it.
When you mark a class member private, then it can only be accessed from other members
inside that class or other instances of that class. You can’t mark a class private—
unless that class lives inside another class, in which case it’s only available to instances
of its container class. Then it’s private by default, and if you want it to be public you need to
mark it public.

≥

protected means public to subclasses, private to everyone else.
You’ve already seen how a subclass can’t access the private fields in its base class—it has
to use the base keyword to get to the private members of the base object. Wouldn’t it
be convenient if the subclass could access those private fields? That’s why you have the
protected access modifier. Any class member marked protected can be accessed by
any other member of its class, and any member of a subclass of its class.

≥

internal means public only to other classes in an assembly.
The built-in .NET Framework classes and all of the code in your projects are in
assemblies—libraries of classes that are in your project’s list of references. You can see a
list of assemblies by right-clicking on References in the Solution Explorer and choosing “Add
Reference…”—when you create a new Windows Forms application, the IDE automatically
includes the references you need to build a Windows application. When you build an assembly,
you can use the internal keyword to keep classes private to that assembly, so you can only
expose the classes you want. You can combine this with protected—anything you mark
protected internal can only be accessed from within the assembly or from a subclass.

≥

sealed says that this class can’t be subclassed.
There are some classes that you just can’t inherit from. A lot of the .NET Framework classes
are like this—go ahead, try to make a class that inherits from String (that’s the class whose
IsEmptyOrNull() method you used in the last chapter). What happens? The compiler
won’t let you build your code—it gives you the error “cannot derive from sealed type ‘string’”.
You can do that with your own classes—just add sealed after the access modifier.

≥

If you leave off
the access modifier
when you declare
a class member, it
defaults to private.

If you leave off the access
modifier when you declare
a class or an interface,
then by default it’s set to
internal. And that’s just
fine for most classes—it
means that any other class
in the assembly can read it.
If you’re not using multiple
assemblies, internal will
work just as well as public
for classes and interfaces.
Give it a shot—go to an
old project, change some
of the classes to internal,
and see what happens.

Sealed is a modifier,
but it’s not an access
modifier. That’s
because it only affects
inheritance—it doesn’t
change the way the class
can be accessed.

(as long as they can access the declaring class)

There’s a little more to all of these definitions. Take a peek at
leftover #3 in the appendix to learn more about them.

316   Chapter 7

class FunnyFunny : IClown {
 public FunnyFunny(string funnyThingIHave) {
 this.funnyThingIHave = funnyThingIHave;
 }
 protected string funnyThingIHave;
 public string FunnyThingIHave {
 get { return "Hi kids! I have " + funnyThingIHave; }
 }

 public void Honk() {
 Console.WriteLine(this.FunnyThingIHave);
 }
}

Access modif iers change v isibi li t y
Let’s take a closer look at the access modifers and how they affect the scope of the
various class members. We'll make two changes: the funnyThingIHave backing
field will be protected, and we'll change the ScareLittleChildren()
method so that it uses the funnyThingIHave field:

interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

interface IScaryClown : IClown {
 string ScaryThingIHave { get; }
 void ScareLittleChildren();
}

This is a really common way to
use “this”, since the parameter
and backing field have the same
name. funnyThingIHave refers
to the parameter, while this.
funnyThingIHave is the backing field.

Make these two changes to your own exercise solution. Then change the protected access modifier back to private and see what errors you get.

By adding
“this”, we told
C# that we’re
talking about
the backing
field, not the
parameter that
has the same
name.

The “this” keyword also changes what variable
you’re referring to. It says to C#, “Look
at the current instance of the class to find
whatever I’m connected to—even if that
matches a parameter or local variable.”

When you use “this” with a property, it
tells C# to execute the set or get
accessor.

We changed FunnyThingIHave
to protected. Look and see
how it affects the ScaryScary.
ScareLittleChildren() method.

Here are two interfaces. IClown defines a clown who honks his
horn and has a funny thing. IScaryClown inherits from clown. A
scary clown does everything a clown does, plus he has a scary thing
and scares little children. (These haven’t changed from earlier.)

1

The FunnyFunny class implements the IClown interface. We changed the funnyThingIHave
field to protected so that it can be accessed by any instance of a subclass of FunnyFunny.

2

you are here 4   317

interfaces and abstract classes

static void Main(string[] args) {
 ScaryScary fingersTheClown = new ScaryScary("big shoes", 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryClown = someFunnyClown as ScaryScary;
 someOtherScaryClown.Honk();
 Console.WriteLine(someOtherScaryClown.ScaryThingIHave);
 someOtherScaryClown.ScareLittleChildren();
 Console.ReadKey();
}

class ScaryScary : FunnyFunny, IScaryClown {
 public ScaryScary(string funnyThingIHave,
 int numberOfScaryThings)
 : base(funnyThingIHave) {
 this.numberOfScaryThings = numberOfScaryThings;
 }

 private int numberOfScaryThings;
 public string ScaryThingIHave {
 get { return "I have " + numberOfScaryThings + " spiders"; }
 }

 public void ScareLittleChildren() {
 Console.WriteLine("You can’t have my "
 + base.funnyThingIHave);
 }
}

The protected keyword
tells C# to make something
private to everyone except
instances of a subclass.

If we’d left funnyThingIHave private, this would cause the compiler to give you an error. But when we changed it to protected, that made it visible to any subclass of FunnyFunny.

Since the Main() method isn’t part of FunnyFunny
or ScaryScary, it can’t access the protected
funnyThingIHave field. It’s outside of both classes, so the statements

inside it only have access to the public members
of any FunnyFunny or ScaryScary objects.

The “base” keyword tells C# to use the value from the base class. But we could also use “this” in this case. Can you figure out why?

Access Modifiers
Up Close

numberOfScaryThings
is private, which is
typical of a backing
field. So only another
instance of ScaryScary
would be able to see it.

The ScaryScary class implements the IScaryClown
interface. It also inherits from FunnyFunny, and since
FunnyFunny implements IClown, that means ScaryScary
does, too. Take a look at how the ScareLittleChildren()
method accesses the funnyThingIHave backing field—it can
do that because we used the protected access modifier. If we’d
made it private instead, then this code wouldn’t compile.

3

Here’s a Main() method that instantiates FunnyFunny and ScaryScary. Take a look at how it uses as
to downcast someFunnyClown to an IScaryClown reference.

4

We put in some extra steps to
show you that you could upcast

ScaryScary to FunnyFunny,
and then downcast that to

IScaryClown. But all three of
those lines could be collapsed

into a single line. Can you
figure out how?

318   Chapter 7

Q: Why would I want to use an
interface instead of just writing all of the
methods I need directly into my class?

A: You might end up with a lot of different
classes as you write more and more
complex programs. Interfaces let you group
those classes by the kind of work they do.
They help you be sure that every class that’s
going to do a certain kind of work does it
using the same methods. The class can do
the work however it needs to, and because
of the interface, you don’t need to worry
about how it does it to get the job done.

Here’s an example: you can have a Truck
class and a Sailboat class that
implement ICarryPassenger. Say
the ICarryPassenger interface
stipulates that any class that implements
it has to have a ConsumeEnergy()
method. Your program could use
them both to carry passengers even
though the Sailboat class’s
ConsumeEnergy() method uses wind
power and the Truck class’s method uses
diesel fuel.

Imagine if you didn’t have the
ICarryPassenger interface. Then it
would be tough to tell your program which
vehicles could carry people and which
couldn’t. You would have to look through
each class that your program might use
and figure out whether or not there was a
method for carrying people from one place to
another. Then you’d have to call each of the
vehicles your program was going to use with
whatever method was defined for carrying
passengers. And since there’s no standard
interface, they could be named all sorts of
things or buried inside other methods. You
can see how that’ll get confusing pretty fast.

Q:Why do I need to use a property?
Can’t I just include a field?

A: Good question. An interface only defines
the way a class should do a specific kind of job.
It’s not an object by itself, so you can’t instantiate
it and it can’t store information. If you added a
field that was just a variable declaration, then C#
would have to store that data somewhere—and
an interface can’t store data by itself. A property
is a way to make something that looks like a field
to other objects, but since it’s really a method, it
doesn’t actually store any data.

Q:What’s the difference between a
regular object reference and an interface
reference?

A: You already know how a regular,
everyday object reference works. If you
create an instance of Skateboard
called vertBoard, and then a new
reference to it called halfPipeBoard,
they both point to the same thing. But if
Skateboard implements the interface
IStreetTricks and you create an
interface reference to Skateboard called
streetBoard, it will only know the
methods in the Skateboard class that are
also in the IStreetTricks interface.

 All three references are actually pointing to the
same object. If you call the object using the
halfPipeBoard or vertBoard
references, you’ll be able to access any
method or property in the object. If you call
it using the streetBoard reference,
you’ll only have access to the methods and
properties in the interface.

Q: Then why would I ever want to use
an interface reference, if it limits what I
can do with the object?

A: Interface references give you a way
of working with a bunch of different kinds
of objects that do the same thing. You
can create an array using the interface
reference type that will let you pass
information to and from the methods in
ICarryPassenger whether you’re
working with a truck object, a horse
object, a unicycle object, or a car
object. The way each of those objects does
the job is probably a little different, but with
interface references, you know that they all
have the same methods that take the same
parameters and have the same return types.
So, you can call them and pass information
to them in exactly the same way.

Q: Why would I make something
protected instead of private or public?

A: Because it helps you encapsulate your
classes better. There are a lot of times that a
subclass needs access to some internal part
of its base class. For example, if you need
to override a property, it’s pretty common to
use the backing field in the base class in the
get accessor, so that it returns some sort of
variation of it. But when you build classes,
you should only make something public
if you have a reason to do it. Using the
protected access modifier lets you expose it
only to the subclass that needs it, and keep
it private from everyone else.

Interface references
only know about
the methods and
properties that
are defined in the
interface.

eww, duplicate code!

you are here 4   319

interfaces and abstract classes

Some classes should never be instant iated

Let’s start with a basic class for a student shopping at the student bookstore.

class Shopper {

 public void ShopTillYouDrop() {

 while (TotalSpent < CreditLimit)

 BuyFavoriteStuff();

 }

 public virtual void BuyFavoriteStuff () {

 // No implementation here - we don’t know

 // what our student likes to buy!

 }

}

Here’s the ArtStudent class—it subclasses Shopper:

class ArtStudent : Shopper {

 public override void BuyFavoriteStuff () {

 BuyArtSupplies();

 BuyBlackTurtlenecks();

 BuyDepressingMusic();

 }

}

And the EngineeringStudent class also inherits from Shopper:

class EngineeringStudent : Shopper {

 public override void BuyFavoriteStuff () {

 BuyPencils();

 BuyGraphingCalculator();

 BuyPocketProtector();

 }

}

Remember our zoo simulator class hierarchy? You’ll definitely end up
instantiating a bunch of hippos, dogs, and lions. But what about the
Canine and Feline classes? How about the Animal class? It turns out
that there are some classes that just don’t need to be instantiated…and, in
fact, don’t make any sense if they are. Here’s an example.

Shopper
TotalSpent
CreditLimit

ShopTillYouDrop()
BuyFavoriteStuff()

ArtStudent

BuyFavoriteStuff()

Engineering
Student

BuyFavoriteStuff()

The ArtStudent and
EngineeringStudent
classes both override
the BuyFavoriteStuff()
method, but they buy
very different things.

So what happens when you instantiate Shopper? Does it ever make sense to do it?

320   Chapter 7

A method that has a declaration but no statements or method body is called an abstract method. Inheriting classes must implement all abstract methods, just like when they inherit from an interface.

An abstract class is like a cross
bet ween a class and an interface
Suppose you need something like an interface, that requires classes to
implement certain methods and properties. But you need to include some
code in that interface, so that certain methods don’t have to be implemented
in each inheriting class. What you want is an abstract class. You get the
features of an interface, but you can write code in it like a normal class.

Only abstract classes can have abstract methods. If you put an abstract method into a class, then you’ll have to mark that class abstract or it won’t compile. You’ll learn more about how to mark a class abstract in a minute.

An abstract class is like a normal
class.
You define an abstract class just like a normal one. It has fields and
methods, and you can inherit from other classes, too, exactly like with
a normal class. There’s almost nothing new to learn here, because
you already know everything that an abstract class does!

≥

An abstract class is like an interface.
When you create a class that implements an interface, you agree to
implement all of the properties and methods defined in that interface.
An abstract class works the same way—it can include declarations
of properties and methods that, just like in an interface, must be
implemented by inheriting classes.

≥

But an abstract class can’t be
instantiated.
The biggest difference between an abstract class and a concrete
class is that you can’t use new to create an instance of an abstract
class. If you do, C# will give you an error when you try to compile
your code.

≥

The opposite of abstract
is concrete. A concrete
method is one that has a
body, and all the classes
you’ve been working with so
far are concrete classes.

This error is because you have abstract methods without any code! The compiler won’t let you instantiate a class with missing code, just like it wouldn’t let you instantiate an interface.

Cannot create an instance of the
abstract class or interface 'MyClass'

X

i can’t believe it’s not an interface!

you are here 4   321

interfaces and abstract classes

Because you want to provide some code, but
still require that subclasses fill in the rest of the code.

Sometimes bad things happen when you create objects that should never be
created. The class at the top of your class diagram usually has some fields that it
expects its subclasses to set. An Animal class may have a calculation that depends on
a Boolean called HasTail or Vertebrate, but there’s no way for it to set that itself.

Here’s an example…

class Venus : PlanetMission {
 public Venus() {
 MilesToPlanet = 40000000;
 RocketFuelPerMile = 100000;
 RocketSpeedMPH = 25000;
 }
}
 class Mars : PlanetMission {
 public Mars() {
 MilesToPlanet = 75000000;
 RocketFuelPerMile = 100000;
 RocketSpeedMPH = 25000;
 }
}

class PlanetMission {
 public long RocketFuelPerMile;
 public long RocketSpeedMPH;
 public int MilesToPlanet;
 public long UnitsOfFuelNeeded() {
 return MilesToPlanet * RocketFuelPerMile;
 }
 public int TimeNeeded() {
 return MilesToPlanet / (int) RocketSpeedMPH;
 }
 public string FuelNeeded() {
 return "You’ll need "
 + MilesToPlanet * RocketFuelPerMile
 + " units of fuel to get there. It’ll take "
 + TimeNeeded() + " hours.";
 }
}

private void button3_Click(object s, EventArgs e) {
 PlanetMission planet = new PlanetMission();
 MessageBox.Show(planet.FuelNeeded());
}

Wait, what? A class that I can’t
instantiate? Why would I even want

something like that?

private void button1_Click(object s, EventArgs e) {
 Mars mars = new Mars();
 MessageBox.Show(mars.FuelNeeded());
}

private void button2_Click(object s, EventArgs e) {
 Venus venus = new Venus();
 MessageBox.Show(venus.FuelNeeded());
}

Before you flip the page, try to
figure out what will happen when
the user clicks the third button...

The constructors for the Mars and Venus
subclasses set the three fields they inherited from
PlanetMission. But those fields won’t get set if
you instantiate PlanetMission directly. So what
happens when FuelNeeded() tries to use them?

It doesn’t make sense to
set these fields in the
base class, because we
don’t know what rocket
or planet we’ll be using.

Here’s a class that the Objectville
Astrophysics Club uses to send
their rockets to different planets.

The astrophysicists have two missions—one to Mars, and one to Venus.

322   Chapter 7

private void button3_Click(object s, EventArgs e) {
 PlanetMission planet = new PlanetMission();
 MessageBox.Show(planet.FuelNeeded());
}

Like we said, some classes should never be instant iated
The problems all start when you create an instance of the
PlanetMission class. Its FuelNeeded() method
expects the fields to be set by the subclass. But when they
aren’t, they get their default values—zero. And when C#
tries to divide a number by zero…

When the FuelNeeded()
method tried to divide
by RocketSpeedMPH,
it was zero. And when
you divide by zero, this
happens.

The PlanetMission class wasn’t written to be instantiated. We were only supposed to inherit from it. But we did instantiate it, and that’s where the problems started.

Solut ion: use an abstract class
When you mark a class abstract, C# won’t let you write
code to instantiate it. It’s a lot like an interface—it acts like a
template for the classes that inherit from it.

abstract class PlanetMission {
 public long RocketFuelPerMile;
 public long RocketSpeedMPH;
 public int MilesToPlanet;

 public long UnitsOfFuelNeeded() {
 return MilesToPlanet * RocketFuelPerMile;
 }

 // the rest of the class is defined here
}

Now C# will
refuse to compile
our program until
we remove the
line that creates
an instance of
PlanetMission.

Adding the abstract keyword to the
class declaration tells C# this is an
abstract class, and can’t be instantiated.

abstract classes avoid this mess

Flip back to the solution to Kathleen’s party planning program in
the previous chapter, and take another look at the class hierarchy.
Would it ever make sense to instantiate Party, or would it make
more sense to mark it as abstract to prevent that?

you are here 4   323

interfaces and abstract classes

abstract class PlanetMission {

	 public abstract void SetMissionInfo(
		 int milesToPlanet, int rocketFuelPerMile,
		 long rocketSpeedMPH);

	 // the rest of the class...

It really stinks
to be an abstract
method. You don’t

have a body.

An abstract method doesn’t have a body
You know how an interface only has declarations for methods and properties, but
it doesn’t actually have any method bodies? That’s because every method in an
interface is an abstract method. So let’s implement it! Once we do, the error
will go away. Any time you extend an abstract class, you need to make sure that
you override all of its abstract methods. Luckily, the IDE makes this job easier.
Just type “public override”—as soon as you press space, the IDE will display
a drop-down box with a list of any methods that you can override. Select the
SetMissionInfo() method and fill it in:

This abstract method is just like what you’d see in an interface—it

doesn’t have a body, but any clas
s that inherits from PlanetMission has

to implement the SetMissionInfo() method or the program won’t compile.

‘VenusMission’ does not implement inherited abstract
member ‘PlanetMission.SetMissionInfo(int, int, long)’

X

If we add that method in and try to build
the program, the IDE gives us an error:

So let’s implement it! Once we do, the error will go away.

class Venus : PlanetMission {
 public Venus() {
 SetMissionInfo(40000000, 100000, 25000);
 }
 public override void SetMissionInfo(int milesToPlanet, int rocketFuelPerMile,
 long rocketSpeedMPH) {
 this.MilesToPlanet = milesToPlanet;
 this.RocketFuelPerMile = rocketFuelPerMile;
 this.RocketSpeedMPH = rocketSpeedMPH;
 }
}

Every method in an interface
is automatically abstract,
so you don’t need to use
the abstract keyword in an
interface, just in an abstract
class. Abstract classes can
have abstract methods, but
they can have concrete
methods too.

When you inherit
from an abstract
class, you need to
override all of its
abstract methods.

The Mars class looks just like Venus, except with different numbers.
What do you think about this class hierarchy?
Does it really make sense to make SetMissionInfo() abstract?
Should it be a concrete method in the PlanetMission class instead?

324   Chapter 7

Given:

interface Foo { }

class Bar : Foo { }

interface Vinn { }

abstract class Vout : Vinn { }

abstract class Muffie : Whuffie { }

class Fluffie : Muffie { }

interface Whuffie { }

class Zoop { }

class Boop : Zoop { }

class Goop : Boop { }

class Gamma : Delta, Epsilon { }

interface Epsilon { }

interface Beta { }

class Alpha : Gamma,Beta { }

class Delta { }

What’s the picture ?
(interface)

Foo

Bar

1)

2)

3)

4)

5)

Here’s your chance to demonstrate your artistic abilities. On the left you’ll find sets
of class and interface declarations. Your job is to draw the associated class diagrams
on the right. We did the first one for you. Don’t forget to use a dashed line for
implementing an interface and a solid line for inheriting from a class.

1)

3)

4)

5)

you are here 4   325

interfaces and abstract classes

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta

Alpha

Delta

1

2

3

4

5

Given:
What’s the declarat ion ?

1)

2)

3)

4)

5)

public class Click { }
public class Clack : Click { }

On the left you’ll find sets of class diagrams. Your job is to turn
these into valid C# declarations. We did number 1 for you.

Clack

Clack

Clack

extends

implements

class

interface

abstract class

 KEY

326   Chapter 7

What’s the picture ?

(interface)
Vinn2)

Vout

3)

Fluffie

(interface)
Whuffie

Muffie

4)

Boop

Goop

Zoop 5) (interface)
Epsilon

(interface)
Beta

Alpha

Delta

Gamma

Tonight’s talk: An abstract class and an interface butt heads
over the pressing question, “Who’s more important?”

Abstract Class:

I think it’s obvious who’s more important between the
two of us. Programmers need me to get their jobs done.
Let’s face it. You don’t even come close.

You can’t really think you’re more important than
me. You don’t even use real inheritance—you only get
implemented.

Better? You’re nuts. I’m much more flexible than you.
I can have abstract methods or concrete ones. I can
even have virtual methods if I want. Sure, I can’t be
instantiated—but then, neither can you. And I can do
pretty much anything else a regular class does.

Interface:

Nice. This oughta be good.

Great, here we go again. Interfaces don’t use real
inheritance. Interfaces only implement. That’s just plain
ignorant. Implementation is as good as inheritance. In
fact, it’s better!

Yeah? What if you want a class that inherits from
you and your buddy? You can’t inherit from two
classes. You have to choose which class to inherit from.
And that’s just plain rude! There’s no limit to the number
of interfaces a class can implement. Talk about flexible!
With me, a programmer can make a class do anything.

you are here 4   327

interfaces and abstract classes

What’s the declarat ion ?

abstract class Top { }
class Tip : Top { }

2) abstract class Fee { }
abstract class Fi : Fee { }

3)

interface Foo { }
class Bar : Foo { }
class Baz : Bar { }

4) interface Zeta { }
class Alpha : Zeta { }
interface Beta { }
class Delta : Alpha, Beta { }

5)

Abstract Class:

You might be overstating your power a little bit.

That’s exactly the kind of drivel I’d expect from an
interface. Code is extremely important! It’s what
makes your programs run.

Really? I doubt that—programmers always care
what’s in their properties and methods.

Yeah, sure, tell a coder he can’t code.

Interface:

You think that just because you can contain code,
you’re the greatest thing since sliced bread. But
you can’t change the fact that a program can only
inherit from one class at a time. So you’re a little
limited. Sure, I can’t include any code. But really,
code is overrated.

Nine times out of ten, a programmer wants to make
sure an object has certain properties and methods,
but doesn’t really care how they’re implemented.

OK, sure. Eventually. But think about how many
times you’ve seen a programmer write a method
that takes an object that just needs to have a certain
method, and it doesn’t really matter right at that
very moment exactly how the method’s built. Just
that it’s there. So bang! The programmer just needs
to write an interface. Problem solved!

Whatever!

Delta inherits
from Alpha and
implements Beta.

328   Chapter 7

I’m still hung up on not being able
to inherit from two classes. I can’t

inherit from more than one class, so I
have to use interfaces. That’s a pretty big

limitation of C#, right?

It’s not a limitation, it’s a protection.

If C# let you inherit from more than one base class, it would
open up a whole can of worms. When a language lets one
subclass inherit from two base classes, it’s called multiple
inheritance. And by giving you interfaces instead, C# saves
you from a big fat mess that we like to call…

The Deadly Diamond of Death!

Television

ShowAMovie()

MovieTheater

MoviePlayer
int ScreenWidth

ShowAMovie()

ShowAMovie()

HomeTheater

?

Which ShowAMovie() method runs when you call ShowAMovie() on the HomeTheater object?

Imagine that the Scree
nWidth

property is used by b
oth Television and

MovieTheater, with different values.

What happens if HomeTheater needs to

use both values of Sc
reenWidth—say,

to show both made-for-TV movies and

feature films?

A language that allows the Deadly Diamond of Death can lead to some
pretty ugly situations, because you need special rules to deal with this kind
of ambiguous situation…which means extra work for you when you’re
building your program! C# protects you from having to deal with this by
giving you interfaces. If Television and MovieTheater are interfaces
instead of classes, then the same ShowAMovie() method can satisfy both
of them. All the interface cares about is that there’s some method called
ShowAMovie().

Television and MovieTheater both inherit
from MoviePlayer, and both override the
ShowAMovie() method. Both inherit the
ScreenWidth property, too.

multiple inheritance stinks

Avoid ambiguity!

you are here 4   329

interfaces and abstract classes

class : {
 public Acts() : base("Acts") { }
 public override {
 return 5;
 }
}

class : {
 public override string Face {
 get { return "Of76"; } }
 public static void Main(string[] args) {
 string result = "";
 INose[] i = new INose[3];
 i[0] = new Acts();
 i[1] = new Clowns();
 i[2] = new Of76();
 for (int x = 0; x < 3; x++) {
 result += (+ " "
 +) + "\n";
 }
 Console.WriteLine(result);
 Console.ReadKey();
 }
}

 INose {
 ;
 string Face { get; }
}

abstract class : {
 public virtual int Ear()
 {
 return 7;
 }
 public Picasso(string face)
 {
 = face;
 }
 public virtual string Face {
 { ; }
 }
 string face;
}

class : {
 public Clowns() : base("Clowns") { }
}

Note: each snippet
from the pool can
be used more than
once!

int Ear()
this
this.
face
this.face

:
;
class
abstract
interface

Acts();
INose();
Of76();
Clowns();
Picasso(); Acts

INose
Of76
Clowns
Picasso

i
i()
i(x)
i[x]

i.Ear(x)
i[x].Ear()
i[x].Ear(
i[x].Face

Of76 [] i = new INose[3];
Of76 [3] i;
INose [] i = new INose();
INose [] i = new INose[3];

class
5 class
7 class
7 public class

Here’s the entry point—this is a complete C# program.

get
set
return

Output

Answers on page 348.

Pool Puzzle
Your job is to take code snippets from the pool and place them
into the blank lines in the code and output. You may use the
same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make a set of classes that will compile
and run and produce the output listed.

330   Chapter 7

OK, I think
I’ve got a pretty
good handle on

objects now!

You’re an object-oriented programmer.

There’s a name for what you’ve been doing. It’s called
object-oriented programming, or OOP. Before
languages like C# came along, people didn’t use
objects and methods when writing their code. They
just used functions (which is what they call methods in
a non-OOP program) that were all in one place—as
if each program were just one big static class that only
had static methods. It made it a lot harder to create
programs that modeled the problems they were solving.
Luckily, you’ll never have to write programs without
OOP, because it’s a core part of C#.

The four principles of object-oriented programming
When programmers talk about OOP, they’re referring to four important principles.
They should seem very familiar to you by now because you’ve been working
with every one of them. You’ll recognize the first three principles just from their
names: inheritance, abstraction, and encapsulation. The last one’s called
polymorphism. It sounds a little odd, but it turns out that you already know all
about it too.

Polymorphism

EncapsulationInheritance

Abstraction

Encapsulation means creating an object that keeps track of its state internally using private fields, and uses public properties and methods to let other classes work with only the part of the internal data that they need to see.

You’re using abstraction when you
create a class model that starts with
more general—or abstract—classes,
and then has more specific classes
that inherit from it.

The word “polymorphism”
literally means “many
forms." Can you think of
a time when an object
has taken on many forms
in your code?

This just means having one
class or interface that
inherits from another.

The idea that you could combine your data and your code into classes and objects was a revolutionary one when it was first introduced—but that’s how you’ve been building all your C# programs so far, so you can think of it as just plain programming.

form of…a bucket of eagles!

you are here 4   331

interfaces and abstract classes

Polymorphism means that one object
can take many different forms
Any time you use a mockingbird in place of an animal or aged
Vermont cheddar in a recipe that just calls for cheese, you’re using
polymorphism. That’s what you’re doing any time you upcast or
downcast. It’s taking an object and using it in a method or a statement
that expects something else.

Keep your eyes open for polymorphism in the next
exercise!
You’re about to do a really big exercise—the biggest one you’ve seen so
far—and you’ll be using a lot of polymorphism in it, so keep your eyes
open. Here’s a list of four typical ways that you’ll use polymorphism. We
gave you an example of each of them (you won’t see these particular lines
in the exercise, though). As soon as you see similar code in what you write
for the exercise, check it off the following list:

Taking any reference variable that uses one class and setting it
equal to an instance of a different class.

NectarStinger bertha = new NectarStinger();

INectarCollector gatherer = bertha;

You’re using
polymorphism
when you take an
instance of one
class and use it
in a statement or
a method that
expects a different
type, like a
parent class or an
interface that the
class implements.

Upcasting by using a subclass in a statement or method that expects its
base class.

spot = new Dog();

zooKeeper.FeedAnAnimal(spot);

Creating a reference variable whose type is an interface and
pointing it to an object that implements that interface.

IStingPatrol defender = new StingPatrol();

Downcasting using the as keyword.

void MaintainTheHive(IWorker worker) {

 if (worker is HiveMaintainer) {

 HiveMaintainer maintainer = worker as HiveMaintainer;

 ...

If FeedAnAnimal() expects an Animal object, and Dog inherits from Animal, then you can pass Dog to FeedAnAnimal().

The MaintainTheHive() method takes any
IWorker as a parameter. It uses “as" to
point a HiveMaintainer reference to the
worker.

This is upcasting, too!

332   Chapter 7

Let’s build a house! Create a model of a house using classes to represent the
rooms and locations, and an interface for any place that has a door.

Location
Name
Exits
Description

Start with this class model.
Every room or location in your house will be represented by its own
object. The interior rooms all inherit from Room, and the outside
places inherit from Outside, and both subclass the same base
class, Location. The Name property is the name of the location
(“Kitchen”). The Exits field is an array of Location objects
that the current location connects to. So diningRoom.Name will
be equal to "Dining Room", and diningRoom.Exits will be
equal to the array { LivingRoom, Kitchen }.

 Create a Windows Forms Application project and add
Location, Room, and Outside classes to it.

1

You can move
between the back
yard and the front
yard, and both of
them connect to the
garden.

Living Room
Dining
Room

Kitchen
Front Yard

Back Yard

Garden

You’ll need the blueprint for the house.
This house has three rooms, a front yard, a back yard, and
a garden. There are two doors: the front door connects the
living room to the front yard, and the back door connects
the kitchen to the back yard.

2

Room
decoration:
private string
field

Outside
hot: private
bool field

The living room
connects to
the dining room,
which also
connects to
the kitchen.

IHasExteriorDoor
DoorDescription
DoorLocation

Use the IHasExteriorDoor interface for rooms with an exterior door.
There are two exterior doors in the house, the front door and the back door. Every
location that has one (the front yard, back yard, living room, and kitchen) should
implement IHasExteriorDoor. The DoorDescription read-only property
contains a description of the door (the front door is “an oak door with a brass knob,”
and the back door is “a screen door”). The DoorLocation property contains a
reference to the Location where the door leads (kitchen).

3

Inside locations each have
some kind of a decoration
in a private field.

This symbol is an exterior door
between the front yard and the living
room. There’s also an exterior door
between the kitchen and back yard.

let’s get started

Outside locations can
be hot, so the Outside
class has a private
Boolean field called Hot.

Location is an
abstract class.
That’s why
we shaded it
darker in the
class diagram.

All rooms have doors, but only a few
rooms have an exterior door that
leads inside or outside the house.

you are here 4   333

interfaces and abstract classes

abstract class Location {
 public Location(string name) {
 Name = name;
 }

 public Location[] Exits;

 public string Name { get; private set; }

 public virtual string Description {
 get {
 string description = "You’re standing in the " + Name
 + ". You see exits to the following places: ";
 for (int i = 0; i < Exits.Length; i++) {
 description += " " + Exits[i].Name;
 if (i != Exits.Length - 1)
 description += ",";
 }
 description += ".";
 return description;
 }
 }
}

Here’s the Location class.
To get you started, here’s the Location class:

4

Remember, Location is an abstract class—you can inherit from it and declare reference variables of type Location, but you can’t instantiate it.

We’re not done yet—flip the page!

The constructor sets the name field, which is the read-only Name property.

The Room
class will
override
and extend
Description
to add the
decoration,
and Outside
will add the
temperature.

Create the classes.
First create the Room and Outside classes based on the class model. Then
create two more classes: OutsideWithDoor, which inherits from Outside
and implements IHasExteriorDoor, and RoomWithDoor, which subclasses
Room and implements IHasExteriorDoor.

Here are the class declarations to give you a leg up:

5

class OutsideWithDoor : Outside, IHasExteriorDoor
{
 // The DoorLocation property goes here
 // The read-only DoorDescription property goes here
}

class RoomWithDoor : Room, IHasExteriorDoor
{
 // The DoorLocation property goes here
 // The read-only DoorDescription property goes here
}

The base Description
property returns a string
that describes the room,
including the name and a list
of all of the locations it
connects to (which it finds
in the Exits[] field). Its
subclasses will need to change
the description slightly, so
they’ll override it.

The public Exits field is an array of
Location references that keeps track
of all of the other places that this
location connects to.

This one’s going
to be a pretty big
exercise…but we
promise it’s a lot
of fun! And you’ll
definitely know this
stuff once you get
through it.

Description
is a virtual
property.
You’ll need to
override it.

Get the classes started now—we’ll give you more details about them on the next page.

334   Chapter 7

RoomWithDoo
r o

bj
ec

t

OutsideWith

Doo
r

ob
je

ct

Room object

Outside obje
ct

 (continued)
Now that you’ve got the class model, you can create the objects for all of the parts of the
house, and add a form to explore it.

Finish building the classes, and instantiate their instances.
You’ve got all the classes—now it’s time to finish them and build your objects.

≥≥ You’ll need to make sure that the constructor for the Outside class sets the private hot fieldand overrides
the Description property to add the text “It’s very hot here.” if hot is true. It’s hot in the back yard,
but not the front yard or garden.

≥≥ The constructor for Room needs to set the Decoration, and should override the Description property
to add, “You see (the decoration).” The living room has an antique carpet, the dining room has a crystal
chandelier, and the kitchen has stainless steel appliances and a screen door that leads to the back yard.

≥≥ Your form needs to create each of the objects and keep a reference to each one. So add a method to the
form called CreateObjects() and call it from the form’s constructor.

≥≥ Instantiate each of the objects for the six locations in the house. Here’s one of those lines:

RoomWithDoor livingRoom = new RoomWithDoor("Living Room",
 "an antique carpet" , "an oak door with a brass knob");

≥≥ Your CreateObjects() method needs to populate the Exits[] field in each object:

frontYard.Exits = new Location[] { backYard, garden };

7

Here's how your house objects work.
Here’s the architecture for two of your objects, frontYard and livingRoom. Since each of
them has a door, they both need to be instances of a class that implements IHasExteriorDoor.
The DoorLocation property keeps a reference to the location on the other side of the door.

6

Exits[]Exits[]

DoorLocation

LivingRoom

DoorLocation

Garden BackYard

FrontYard

DiningRoom

FrontYard is an
OutsideWithDoor
object, which is a
subclass of Outside
that implements
IHasExteriorDoor.

LivingRoom is an instance of
RoomWithDoor, which inherits
from Room and implements
IHasExteriorDoor.

Exits is an
array of
Location
references,
so this line
creates one that has
two references in it.

You started building the IHasExteriorDoor
interface and added these two classes that
implement it. One inherits from Room; the other is
a subclass of Outside. Now it’s time to finish them.

These are
curly brackets.
Anything else will
cause an error.

watch your objects do stuff!

Exits is an array of Location
references. LivingRoom has
one exit, so its Exits array
has a length of 1.

Every location
will have its
own field in
the form class.

OutsideWith

Doo
r

ob
je

ct

you are here 4   335

interfaces and abstract classes

Build a form to explore the house.
Build a simple form to let you explore the house. It’ll have a big multiline text box called
description to show the description of the current room. A ComboBox called exits lists
all of the exits in the current room. It’s got two buttons: goHere moves to the room selected in
the ComboBox, and goThroughTheDoor is only visible when there’s an exterior door.

8

This is a multiline TextBox that
displays the Description() of
the current location. Its name is
description.

This is a ComboBox

Click the goHere
button to move to another location.

This button is only visible
when you’re in a room with
an exterior door. You can
make it visible or invisible by
setting its Visible property
to true or false. It’s called
goThroughTheDoor.

The ComboBox contains a
list of all of the exits, so
name it exits. Make sure
its DropDownStyle is set
to DropDownList.

Make the form work!
You’ve got all the pieces; now you just need to put them together.

≥≥ You’ll need a field in your form called currentLocation to keep track of your current location.

≥≥ Add a MoveToANewLocation() method that has a Location as its parameter. This
method should first set currentLocation to the new location. Then it’ll clear the combo
box using its Items.Clear() method, and then add the name of each location in the
Exits[ ] array using the combo box’s Items.Add() method. Finally, reset the combo box
so it displays the first item in the list by setting its SelectedIndex property to zero.

≥≥ Set the text box so that it has the description of the current location.

≥≥ Use the is keyword to check if the current location has a door. If it does, make the “Go
through the door” button visible using its Visible property. If not, make it invisible.

≥≥ If the “Go here:” button is clicked, move to the location selected in the combo box.

≥≥ If the “Go through the door” button is clicked, move to the location that the door connects to.

9

Hint: when you choose an item in the combo box, its
selected index in the combo box will be the same as the
index of the corresponding location in the Exits[] array.

Another hint: your form’s currentLocation field is a Location reference. So even though it’s pointing to an object that implements IHasExteriorDoor, you can’t just type “currentLocation.DoorLocation” because DoorLocation isn’t a field in Location. You’ll need to downcast if you want to get the door location out of the object.

Here’s where you’ll
set up what populates
the ComboBox.

336   Chapter 7

interface IHasExteriorDoor {
 string DoorDescription { get; }
 Location DoorLocation { get; set; }
}

class Room : Location {
 private string decoration;

 public Room(string name, string decoration)
 : base(name) {
 this.decoration = decoration;
 }

 public override string Description {
 get {
 return base.Description + " You see " + decoration + ".";
 }
 }
}

class RoomWithDoor : Room, IHasExteriorDoor {
 public RoomWithDoor(string name, string decoration, string doorDescription)
 : base(name, decoration)
 {
 DoorDescription = doorDescription;
 }

 public string DoorDescription { get; private set; }

 public Location DoorLocation { get; set; }
}

Here’s the code to model the house. We used classes to represent the rooms
and locations, and an interface for any place that has a door.

Here’s the IHasExteriorDoor interface.

The Room class inherits from Location and adds a private field for the decoration. Its constructor sets the field.

The RoomWithDoor class inherits
from Room and implements
IHasExteriorDoor. It does everything
that the room does, but it adds a
description of the exterior door
to the constructor. It also adds
DoorLocation, a reference to the
location that the door leads to.
DoorDescription and DoorLocation
are required by IHasExteriorDoor.

exercise solution

Did you use backing fields instead
of automatic properties? That’s a
perfectly valid solution, too.

you are here 4   337

interfaces and abstract classes

class Outside : Location {
 private bool hot;

 public Outside(string name, bool hot)
 : base(name)
 {
 this.hot = hot;
 }

 public override string Description {
 get {
 string newDescription = base.Description;
 if (hot)
 newDescription += " It’s very hot.";
 return newDescription;
 }
 }
}

class OutsideWithDoor : Outside, IHasExteriorDoor {
 public OutsideWithDoor(string name, bool hot, string doorDescription)
 : base(name, hot)
 {
 this.DoorDescription = doorDescription;
 }

 public string DoorDescription { get; private set; }

 public Location DoorLocation { get; set; }

 public override string Description {
 get {
 return base.Description + " You see " + DoorDescription + ".";
 }
 }
}

Outside is a lot like Room—it
inherits from Location, and adds a
private field for the Hot property,
which is used in the Description()
method extended from the base
class.

OutsideWithDoor inherits from Outside and implements IHasExteriorDoor, and it looks a lot like RoomWithDoor.

We’re not done yet—flip the page!

The base class’s Description property
fills in whether or not the location
is hot. And that relies on the original
Location class’s Description property
to add the main description and exits.

338   Chapter 7

public partial class Form1 : Form
{
 Location currentLocation;

 RoomWithDoor livingRoom;
 Room diningRoom;
 RoomWithDoor kitchen;

 OutsideWithDoor frontYard;
 OutsideWithDoor backYard;
 Outside garden;

 public Form1() {
 InitializeComponent();
 CreateObjects();
 MoveToANewLocation(livingRoom);
 }

 private void CreateObjects() {
 livingRoom = new RoomWithDoor("Living Room", "an antique carpet",
 "an oak door with a brass knob");
 diningRoom = new Room("Dining Room", "a crystal chandelier");
 kitchen = new RoomWithDoor("Kitchen", "stainless steel appliances", "a screen door");

 frontYard = new OutsideWithDoor("Front Yard", false, "an oak door with a brass knob");
 backYard = new OutsideWithDoor("Back Yard", true, "a screen door");
 garden = new Outside("Garden", false);

 diningRoom.Exits = new Location[] { livingRoom, kitchen };
 livingRoom.Exits = new Location[] { diningRoom };
 kitchen.Exits = new Location[] { diningRoom };
 frontYard.Exits = new Location[] { backYard, garden };
 backYard.Exits = new Location[] { frontYard, garden };
 garden.Exits = new Location[] { backYard, frontYard };

 livingRoom.DoorLocation = frontYard;
 frontYard.DoorLocation = livingRoom;

 kitchen.DoorLocation = backYard;
 backYard.DoorLocation = kitchen;
 }

The form uses these reference variables to keep track of each of the rooms in the house.

This is how the form keeps track
of which room is being displayed.

The form’s constructor creates
the objects and then uses the
MoveToANewLocation method. When the form creates the objects, first it needs to instantiate the classes and pass the right information to each one’s constructor.

Here’s where the Exits[] array
for each instance is populated.
We need to wait to do this
until after all the instances are
created, because otherwise we
wouldn’t have anything to put into
each array!For the IHasExteriorDoor objects, we need to set their door locations.

Here’s where we pass
the door description to
the OutsideWithDoor
constructors.

Here’s the code for the form. It’s all in the Form1.cs file, inside the Form1 declaration.

exercise solution

 (continued)

We made Exits a public
string array field in the
Location class. This is
not a great example of

encapsulation! Another
object could easily

modify the Exits array.
In the next chapter, you’ll
learn about a better way
to expose a sequence of
strings or other objects.

you are here 4   339

interfaces and abstract classes

 private void MoveToANewLocation(Location newLocation) {
 currentLocation = newLocation;

 exits.Items.Clear();
 for (int i = 0; i < currentLocation.Exits.Length; i++)
 exits.Items.Add(currentLocation.Exits[i].Name);
 exits.SelectedIndex = 0;

 description.Text = currentLocation.Description;

 if (currentLocation is IHasExteriorDoor)
 goThroughTheDoor.Visible = true;
 else
 goThroughTheDoor.Visible = false;
 }

 private void goHere_Click(object sender, EventArgs e) {
 MoveToANewLocation(currentLocation.Exits[exits.SelectedIndex]);
 }

 private void goThroughTheDoor_Click(object sender, EventArgs e) {
 IHasExteriorDoor hasDoor = currentLocation as IHasExteriorDoor;
 MoveToANewLocation(hasDoor.DoorLocation);
 }
}

But we’re not done yet !
It’s fine to create a model of a house, but wouldn’t it be cool to turn it into a game?
Let’s do it! You’ll play Hide and Seek against the computer. We’ll need to add an
Opponent class and have him hide in a room. And we’ll need to make the house a
lot bigger. Oh, and he’ll need someplace to hide! We’ll add a new interface so that
some rooms can have a hiding place. Finally, we’ll update the form to let you check
the hiding places, and keep track of how many moves you’ve made trying to find
your opponent. Sound fun? Definitely!

First we need to clear the combo
box, and then we can add each of the
locations’ names to it. Finally, we set
its selected index (or which line is
highlighted) to zero so it shows the
first item in the list. Don’t forget to
set the ComboBox’s DropDownStyle
property to DropDownList—that
way, the user won’t be able to type
anything into the combo box.

The MoveToANewLocation() method displays a new location in the form.

This makes the “Go through the door” button invisible if the
current location doesn’t implement IHasExteriorDoor.

When the user clicks
the “Go here:” button,
it moves to the
location selected in
the combo box.

We need to use the as keyword in order
to downcast currentLocation to an
IHasExteriorDoor so we can get access to
the DoorLocation field.

Let’s get started!

340   Chapter 7

Time for hide and seek! Build on your original house program to add more rooms, hiding
places, and an opponent who hides from you.

Add an IHidingPlace interface.
We don’t need to do anything fancy here. Any Location subclass that
implements IHidingPlace has a place for the opponent to hide. It just needs a
string to store the name of the hiding place (“in the closet”, “under the bed”, etc.).
Give it a get accessor, but no set accessor—we’ll set this in the constructor, since
once a room has a hiding place we won’t ever need to change it.

1

Add classes that implement IHidingPlace.
You’ll need two more classes: OutsideWithHidingPlace (which inherits
from Outside) and RoomWithHidingPlace (which inherits from Room).
Also, let’s make any room with a door have a hiding place, so it’ll have to inherit
from RoomWithHidingPlace instead of Room.

2

Add a class for your opponent.
The Opponent object will find a random hiding place in the house, and it’s your job to find him.

≥≥ He’ll need a private Location field (myLocation) so he can keep track of where he is,
and a private Random field (random) to use when he moves to a random hiding place.

≥≥ The constructor takes the starting location and sets myLocation to it, and sets random
to a new instance of Random. He starts in the front yard (that’ll be passed in by the form),
and moves from hiding place to hiding place randomly. He moves 10 times when the game
starts. When he encounters an exterior door, he flips a coin to figure out whether or not to go
through it.

≥≥ Add a Move() method that moves the opponent from his current location to a new location.
First, if he’s in a room with a door, then he flips a coin to decide whether or not to go through
the door, so if random.Next(2) is equal to 1, he goes through it. Then he chooses one of
the exits from his current location at random and goes through it. If that location doesn’t have
a hiding place, then he’ll do it again—he’ll choose a random exit from his current location
and go there, and he’ll keep doing it over and over until he finds a place to hide.

≥≥ Add a Check() method that takes a location as a parameter and returns true if he’s hiding
in that location, or false otherwise.

3

Add more rooms to the house.
Update your CreateObjects() method to add more rooms:

≥≥ Add stairs with a wooden bannister that connect the living room to the upstairs hallway,
which has a picture of a dog and a closet to hide in.

≥≥ The upstairs hallway connects to three rooms: a master bedroom with a large bed, a
second bedroom with a small bed, and a bathroom with a sink and a toilet. Someone
could hide under the bed in either bedroom or in the shower.

≥≥ The front yard and back yard both connect to the driveway, where someone could hide in
the garage. Also, someone could hide in the shed in the garden.

4

build your opponent

Create a new project, and use the IDE’s Add Existing Item

feature to add the classes from the first part of the exercise.

So every room with an exterior door will
also have a hiding place: the kitchen has a
cabinet, and the living room has a closet.

Here’s the biggest challenge we’ve given you so far. Read the instructions
carefully! It’s not cheating to peek at the solution.

We didn’t give you
a class diagram
this time, so you

should grab a piece
of paper and draw
it yourself. That will

help you understand
the program you

need to build.

you are here 4   341

interfaces and abstract classes

OK, it's time to update the form.
You’ll need to add a few buttons to the form. And we’ll get a little more intricate with
making them visible or invisible, depending on the state of the game.

5

When the game first starts, the hide button is the only one displayed. When you click it, the form counts to 10 in the text box, and calls the opponent’s Move() method 10 times. Then it makes this button invisible.

You use the top two buttons and the

combo box exactly the same way as

before, except that they’re on
ly visible

while the game is running.
This is the button you’ll use to
check the room’s hiding place. It’s
only visible if you’re in a room that
has a place to hide. When it’s shown,
the Text property is changed
from “check” to the word “Check”
followed by the name of the hiding
place—so for a room with a hiding
place under the bed, the button w

ill
say, “Check under the bed”.

Add a method to redraw the form, and another one to reset the game.
Add a RedrawForm() method that puts the right text in the description text box, makes the buttons
visible or invisible, and puts the correct label on the middle button. Then add a ResetGame()
method that’s run when you find your opponent. It resets the opponent object so that he starts in the
front yard again—he’ll hide when you click the “Hide!” button. It should leave the form with nothing
but the text box and “Hide!” button visible. The text box should say where you found the opponent,
and how many moves it took.

7

Make the buttons work.
There are two new buttons to add to the form.

≥≥ The middle button checks the hiding place in the current room and is only visible when
you’re in a room with a place to hide using the opponent’s Check() method. If you found
him, then it resets the game.

≥≥ The bottom button is how you start the game. It counts to 10 by showing “1…”, waiting 200
milliseconds, then showing “2…”, then “3…”, etc., in the text box. After each number, it tells
the opponent to move by calling his Move() method. Then it shows, “Ready or not, here I
come!” for half a second, and then the game starts.

6

Make it look right when you start the program.
When you first start the program, all you should see is an empty text box
and the “Hide!” button. When you click the button, the fun begins!

9

Keep track of how many moves the player made.
Make sure the text box displays the number of times you checked a
hiding place or moved between rooms. When you find the opponent,
he should pop up a message box that says, “You found me in X
moves!”

8

The middle button’s called check. You
don’t need to set its Text propert

y.

Flip back to
Chapter 2 for
a refresher on
DoEvents() and
Sleep()—they’ll
come in handy.

Don’t forget that there are many ways to solve any programming problem.
If your solution is different than ours but it works, that’s great!

342   Chapter 7

Build on your original house program to add more rooms, hiding places, and an opponent who
hides from you.

interface IHidingPlace {
 string HidingPlaceName { get; }
}

class RoomWithHidingPlace : Room, IHidingPlace {
 public RoomWithHidingPlace(string name, string decoration, string hidingPlaceName)
 : base(name, decoration)
 {
 HidingPlaceName = hidingPlaceName;
 }

 public string HidingPlaceName { get; private set; }
 public override string Description {
 get {
 return base.Description + " Someone could hide " + HidingPlaceName + ".";
 }
 } }

class RoomWithDoor : RoomWithHidingPlace, IHasExteriorDoor {
 public RoomWithDoor(string name, string decoration,
 string hidingPlaceName, string doorDescription)
 : base(name, decoration, hidingPlaceName)
 {
 DoorDescription = doorDescription;
 }

 public string DoorDescription { get; private set; }

 public Location DoorLocation { get; set; }
}

Here’s the new IHidingPlace interface. It just has one string field with a get accessor that returns the name of the hiding place.

The RoomWithHidingPlace class inherits
from Room and implements IHidingPlace by
adding the HidingPlaceName property. The
constructor sets its value.

Since we decided every room with a door also needed a hiding place, we made RoomWithDoor inherit from RoomWithHidingPlace. The only change to it is that its constructor takes a hiding place name and sends it on to the RoomWithHidingPlace constructor.

exercise solution

You’ll also need the OutsideWithDoor
class, which is identical to the version
from the “Explore the House” program.

you are here 4   343

interfaces and abstract classes

class OutsideWithHidingPlace : Outside, IHidingPlace {
 public OutsideWithHidingPlace(string name, bool hot, string hidingPlaceName)
 : base(name, hot)
 {
 HidingPlaceName = hidingPlaceName;
 }

 public string HidingPlaceName { get; private set; }

 public override string Description {
 get {
 return base.Description + " Someone could hide " + HidingPlaceName + ".";
 }
 }
}

class Opponent {
 private Random random;
 private Location myLocation;
 public Opponent(Location startingLocation) {
 myLocation = startingLocation;
 random = new Random();
 }
 public void Move() {
 bool hidden = false;
 while (!hidden) {
 if (myLocation is IHasExteriorDoor) {
 IHasExteriorDoor locationWithDoor =
 myLocation as IHasExteriorDoor;
 if (random.Next(2) == 1)
 myLocation = locationWithDoor.DoorLocation;
 }
 int rand = random.Next(myLocation.Exits.Length);
 myLocation = myLocation.Exits[rand];
 if (myLocation is IHidingPlace)
 hidden = true;
 }
 }
 public bool Check(Location locationToCheck) {
 if (locationToCheck != myLocation)
 return false;
 else
 return true;
 }
}

The Opponent class constructor takes a
starting location. It creates a new instance
of Random, which it uses to move randomly
between rooms.

The Move() method first checks if the current
room has a door using the is keyword—if so, it
has a 50% chance of going through it. Then it
moves to a random location, and keeps moving
until it finds a hiding place.

The guts of the Move()
method is this while
loop. It keeps looping
until the variable hidden
is true—and it sets it
to true when it finds a
room with a hiding place.

The Check() method just checks the
opponent’s location against the location
that was passed to it using a Location
reference. If they point to the same
object, then he’s been found!

The OutsideWithHidingPlace class inherits
from Outside and implements IHidingPlace
just like RoomWithHidingPlace does.

We’re not done yet—flip the page!

344   Chapter 7

int Moves;

Location currentLocation;

RoomWithDoor livingRoom;
RoomWithHidingPlace diningRoom;
RoomWithDoor kitchen;
Room stairs;
RoomWithHidingPlace hallway;
RoomWithHidingPlace bathroom;
RoomWithHidingPlace masterBedroom;
RoomWithHidingPlace secondBedroom;

OutsideWithDoor frontYard;
OutsideWithDoor backYard;
OutsideWithHidingPlace garden;
OutsideWithHidingPlace driveway;

Opponent opponent;

private void MoveToANewLocation(Location newLocation) {
 Moves++;
 currentLocation = newLocation;
 RedrawForm();
}

private void RedrawForm() {
 exits.Items.Clear();
 for (int i = 0; i < currentLocation.Exits.Length; i++)
 exits.Items.Add(currentLocation.Exits[i].Name);
 exits.SelectedIndex = 0;
 description.Text = currentLocation.Description + "\r\n(move #" + Moves + ")";
 if (currentLocation is IHidingPlace) {
 IHidingPlace hidingPlace = currentLocation as IHidingPlace;
 check.Text = "Check " + hidingPlace.HidingPlaceName;
 check.Visible = true;
 }
 else
 check.Visible = false;
 if (currentLocation is IHasExteriorDoor)
 goThroughTheDoor.Visible = true;
 else
 goThroughTheDoor.Visible = false;
}

public Form1() {
 InitializeComponent();
 CreateObjects();
 opponent = new Opponent(frontYard);
 ResetGame(false);
}

Here are all the fields in the Form1
class. It uses them to keep track of
the locations, the opponent, and the
number of moves the player has made.

The Form1 constructor creates the objects, sets up the opponent, and then resets the game. We added a Boolean parameter to ResetGame() so that it only displays its message when you win, not when you first start up the program.

The MoveToANewLocation() method sets the
new location and then redraws the form.

RedrawForm() populates the combo box list, sets the
text (adding the number of moves), and then makes
the buttons visible or invisible depending on whether
or not there’s a door or the room has a hiding place.

We need the hiding place
name, but we’ve only got the CurrentLocation object, which doesn’t have a HidingPlaceName property. So we can use as to copy the reference to an IHidingPlace variable.

exercise solution

 (continued)

Here’s all the code for the form. The only things
that stay the same are the goHere_Click()
and goThroughTheDoor_Click()
methods.

you are here 4   345

interfaces and abstract classes

private void CreateObjects() {
 livingRoom = new RoomWithDoor("Living Room", "an antique carpet",
 "inside the closet", "an oak door with a brass handle");
 diningRoom = new RoomWithHidingPlace("Dining Room", "a crystal chandelier",
 "in the tall armoire");
 kitchen = new RoomWithDoor("Kitchen", "stainless steel appliances",
 "in the cabinet", "a screen door");
 stairs = new Room("Stairs", "a wooden bannister");
 hallway = new RoomWithHidingPlace("Upstairs Hallway", "a picture of a dog",
 "in the closet");
 bathroom = new RoomWithHidingPlace("Bathroom", "a sink and a toilet",
 "in the shower");
 masterBedroom = new RoomWithHidingPlace("Master Bedroom", "a large bed",
 "under the bed");
 secondBedroom = new RoomWithHidingPlace("Second Bedroom", "a small bed",
 "under the bed");

 frontYard = new OutsideWithDoor("Front Yard", false, "a heavy-looking oak door");
 backYard = new OutsideWithDoor("Back Yard", true, "a screen door");
 garden = new OutsideWithHidingPlace("Garden", false, "inside the shed");
 driveway = new OutsideWithHidingPlace("Driveway", true, "in the garage");

 diningRoom.Exits = new Location[] { livingRoom, kitchen };
 livingRoom.Exits = new Location[] { diningRoom, stairs };
 kitchen.Exits = new Location[] { diningRoom };
 stairs.Exits = new Location[] { livingRoom, hallway };
 hallway.Exits = new Location[] { stairs, bathroom, masterBedroom, secondBedroom };
 bathroom.Exits = new Location[] { hallway };
 masterBedroom.Exits = new Location[] { hallway };
 secondBedroom.Exits = new Location[] { hallway };
 frontYard.Exits = new Location[] { backYard, garden, driveway };
 backYard.Exits = new Location[] { frontYard, garden, driveway };
 garden.Exits = new Location[] { backYard, frontYard };
 driveway.Exits = new Location[] { backYard, frontYard };

 livingRoom.DoorLocation = frontYard;
 frontYard.DoorLocation = livingRoom;

 kitchen.DoorLocation = backYard;
 backYard.DoorLocation = kitchen;
}

The new CreateObjects() method
creates all the objects to build the
house. It’s a lot like the old one, but it
has a whole lot more places to go.

Wow—you could add an entire wing onto the house just
by adding a couple of lines! That’s why well-encapsulated
classes and objects are really useful.

We’re still not done—flip the page!

346   Chapter 7

private void ResetGame(bool displayMessage) {
 if (displayMessage) {
 MessageBox.Show("You found me in " + Moves + " moves!");
 IHidingPlace foundLocation = currentLocation as IHidingPlace;
 description.Text = "You found your opponent in " + Moves
 + " moves! He was hiding " + foundLocation.HidingPlaceName + ".";
 }
 Moves = 0;
 hide.Visible = true;
 goHere.Visible = false;
 check.Visible = false;
 goThroughTheDoor.Visible = false;
 exits.Visible = false;
}

private void check_Click(object sender, EventArgs e) {
 Moves++;
 if (opponent.Check(currentLocation))
 ResetGame(true);
 else
 RedrawForm();
}

private void hide_Click(object sender, EventArgs e) {
 hide.Visible = false;

 for (int i = 1; i <= 10; i++) {
 opponent.Move();
 description.Text = i + "... ";
 Application.DoEvents();
 System.Threading.Thread.Sleep(200);
 }

 description.Text = "Ready or not, here I come!";
 Application.DoEvents();
 System.Threading.Thread.Sleep(500);

 goHere.Visible = true;
 exits.Visible = true;
 MoveToANewLocation(livingRoom);
}

When you click the check
button, it checks whether or
not the opponent is hiding in
the current room. If he is, it
resets the game. If not, it
redraws the form (to update
the number of moves).

The hide button is the one that starts the
game. The first thing it does is make itself
invisible. Then it counts to 10 and tells the
opponent to move. Finally, it makes the first
button and the combo box visible, and then
starts off the player in the living room.
The MoveToANewLocation() method calls
RedrawForm().

The ResetGame() method resets the game. It displays the final message, then makes all the buttons except the “Hide!” one invisible.

We want to display the name of the hiding place, but CurrentLocation is a Location reference, so it doesn’t give us access to the HidingPlaceName field. Luckily, we can use the as keyword to downcast it to an IHidingPlace reference that points to the same object.

exercise solution

 (continued)

Here’s the rest of the code for the form. The goHere and
goThroughTheDoor button event handlers are identical to
the ones in the first part of this exercise, so flip back a few
pages to see them.

Remember DoEvents() from FlashyThing in Chapter 2? Without it, the text box doesn’t refresh itself and the program looks frozen.

you are here 4   347

interfaces and abstract classes

OOPcross
1

2

3 4 5

6 7

8

9

10

11 12

13

14

15 16

17

18

Across
3. What an abstract method doesn't have
4. C# doesn't allow _____________ inheritance
6. When you subclass to a method that expects its
base class, you're using this OOP principle
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to
10. One of the four principles of OOP that you implement using
the colon operator
14. Every method in an interface is automatically ___________
15. If your class implements an interface that __________
from another interface, then you need to implement all of its
members, too
17. An access modifier that's not valid for anything inside an
interface
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects

Down
1. When you move common methods from specific classes to
a more general class that they all inherit from, you're using this
OOP principle
2. If a class that implements an interface doesn't implement all
of its methods, getters, and setters, then the project won't

5. Everything in an interface is automatically ___________
7. An abstract class can include both abstract and
____________ methods
9. You can't ____________ an abstract class
11. A class that implements this must include all of the methods,
getters, and setters that it defines
12. What you do with an interface
13. The is keyword returns true if an __________ implements
an interface
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside

pass a

1

2

3 4 5

6 7

8

9

10

11 12

13

14

15 16

17

18

Across
3. What an abstract method doesn't have
4. C# doesn't allow _____________ inheritance
6. When you subclass to a method that expects its
base class, you're using this OOP principle
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to
10. One of the four principles of OOP that you implement using
the colon operator
14. Every method in an interface is automatically ___________
15. If your class implements an interface that __________
from another interface, then you need to implement all of its
members, too
17. An access modifier that's not valid for anything inside an
interface
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects

Down
1. When you move common methods from specific classes to
a more general class that they all inherit from, you're using this
OOP principle
2. If a class that implements an interface doesn't implement all
of its methods, getters, and setters, then the project won't

5. Everything in an interface is automatically ___________
7. An abstract class can include both abstract and
____________ methods
9. You can't ____________ an abstract class
11. A class that implements this must include all of the methods,
getters, and setters that it defines
12. What you do with an interface
13. The is keyword returns true if an __________ implements
an interface
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside

pass a

348   Chapter 7

class Acts : Picasso {
 public Acts() : base("Acts") { }
 public override int Ear() {
 return 5;
 }
}

class Of76 : Clowns {
 public override string Face {
 get { return "Of76"; } }
 public static void Main(string[] args) {
 string result = "";
 INose[] i = new INose[3];
 i[0] = new Acts();
 i[1] = new Clowns();
 i[2] = new Of76();
 for (int x = 0; x < 3; x++) {
 result += (i[x].Ear() + " "
 + i[x].Face) + "\n";
 }
 Console.WriteLine(result);
 Console.ReadKey();
 }
}

 interface INose {
 int Ear() ;
 string Face { get; }
}

abstract class Picasso : INose {
 public virtual int Ear()
 {
 return 7;
 }
 public Picasso(string face)
 {
 this.face = face;
 }
 public virtual string Face {
 get { return face ; }
 }
 string face;
}

class Clowns : Picasso {
 public Clowns() : base("Clowns") { }
}

exercise solutions

Here’s where the Acts class calls the constructor in Picasso, which it inherits from. It passes “Acts” into the constructor, which gets stored in the face property.

Properties can
appear anywhere in
the class! It’s easier
to read your code if
they’re at the top,
but it’s perfectly
valid to have the
face property at
the bottom of the
Picasso class.

Face is a get accessor that returns the value of the face property. Both of them are defined in Picasso and inherited into the subclasses.

Pool Puzzle Solution from page 329
Your job is to take code snippets from the pool and place them
into the blank lines in the code and output. You may use the
same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make a set of classes that will compile
and run and produce the output listed.

Output

you are here 4   349

interfaces and abstract classes

A
1

C
2

B

B
3

O D Y S M
4

U L T I P
5

L E

M T U

P
6

O L Y M O R P H I S M B C
7

I A L O

L E
8

N C A P S U L A T I O N

E I
9

T C C

I
10

N H E R I T A N C E R

S O E

T N I
11

I
12

T

A O
13

N M E

N A
14

B S T R A C T P

T J E L

I
15

N H E R I T S R E F
16

A C F M I

T T P
17

R I V A T E E

E C N L

O
18

R I E N T E D

Across

3. What an abstract method doesn't have [BODY]
4. C# doesn't allow _____________ inheritance. [MULTIPLE]
6. When you use a pass subclass to a method that expects its
base class, you're using this OOP principle. [POLYMORPHISM]
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to. [ENCAPSULATION]
10. One of the four principles of OOP that you implement using
the colon operator [INHERITANCE]
14. Every method in an interface is automatically ___________.
[ABSTRACT]
15. Your class that implements an interface that __________
from another interface, then you need to implement all of its
members too. [INHERITS]
17. An access modifier that's not valid for anything inside an
interface. [PRIVATE]
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects. [ORIENTED]

Down

1. When you move common methods from specific classes to
more a general class that they all inherit from, you're using this
OOP principle. [ABSTRACTION]
2. If a class that implements an interface doesn't implement all
of its methods, getters and setters, then the project won't
___________. [COMPILE]
5. Everything in an interface is automatically [PUBLIC]
7. An abstract class can include both abstract and
____________ methods. [CONCRETE]
9. You can't ____________ an abstract class. [INSTANTIATE]
11. A class that implements this must include all of the methods,
getters and setters that it defines. [INTERFACE]
12. What you do with an interface [IMPLEMENT]
13. The is keyword returns true if an ____________ implements
an interface. [OBJECT]
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside. [FIELD]

OOPcross solution

this is a new chapter   351

enums and collections8

Storing lots of data

When it rains, it pours.�
In the real world, you don’t get to handle your data in tiny little bits and

pieces. No, your data’s going to come at you in loads, piles, and bunches.

You’ll need some pretty powerful tools to organize all of it, and that’s where

collections come in. They let you store, sort, and manage all the data that

your programs need to pore through. That way, you can think about writing

programs to work with your data, and let the collections worry about keeping

track of it for you.

Finally, a way
to organize
my Boyfriend

objects!

352   Chapter 8

Strings don’t always work for
storing categories of data
Suppose you have several worker bees, all represented by
Worker classes. How would you write a constructor that took
a job as a parameter? If you use a string for the job name, you
might end up with code that looks like this:

Worker buzz = new Worker("Attorney General");
Worker clover = new Worker("Dog Walker");
Worker gladys = new Worker("Newscaster");

You could probably add code to the Worker constructor to check each
string and make sure it’s a valid bee job. However, if you add new jobs
that bees can do, you’ve got to change this code and recompile the
Worker class. That’s a pretty short-sighted solution. What if you have
other classes that need to check for the types of worker bees they can be?
Now you’ve got to duplicate code, and that’s a bad path to go down.

What we need is a way to say, “Hey, there are only certain values that are
allowed here.” We need to enumerate the values that are OK to use.

Our code would allow these values to be passed
in a constructor even though the program only
supports Sting Patrol, Nectar Collector, and
other jobs that a bee does.

This code compiles, no problem. But these jobs don’t make any sense for a bee. The Worker class really shouldn’t allow these types as valid data.

Our bee management software kept track
of each worker’s job using a string like
“Sting Patrol” or “Nectar Collector”.

nurse sharks and carpenter ants

you are here 4   353

enums and collections

Enums le t you work with a set
of valid values
An enum is a data type that only allows certain values for that piece
of data. So we could define an enum called Job, and define the
allowed jobs:

enum Job {
 NectarCollector,
 StingPatrol,
 HiveMaintenance,
 BabyBeeTutoring,
 EggCare,
 HoneyManufacturing,
}

private void button1_Click(object sender EventArgs e)
{
	 Worker buzz = new Worker(Job.AttorneyGeneral);
}

This is the nam
e of the enu

m.

'Job' does not contain a definition for
'AttorneyGeneral'

X

Each of these is a valid job. Any can be used as a Jobs value.

Separate each value
with a comma, and end
the whole thing with a
curly brace.

Now, you can reference these with types like this:

Worker nanny = new Worker(Job.EggCare);

This is the
name of the
enum.

Finally, the value you want from the enum.

But you can’t just make up a new value for the enum! If you do,
the program won’t compile.

We’ve changed the Worker constructor

to accept Worker.Jobs as its

parameter type.

Here’s the error you get
from the compiler.

The last enumerator
doesn’t have to end
with a comma, but
using one makes it
easier to rearrange
them using cut and
paste.

The stuff inside the brackets is
called the enumerator list, and
each item is an enumerator. The
whole thing together is called an
enumeration.

But most people just
call them enums.

354   Chapter 8

You can cast the enum as a number and do calculations with it, or you can use the
ToString() method to treat the name as a string. If you don’t assign any number
to a name, the items in the list will be given values by default. The first item will be
assigned a 0 value, the second a 1, etc.

But what happens if you want to use really big numbers for one of the enumerators?
The default type for the numbers in an enum is int, so you’ll need to specify the type
you need using the : operator, like this:

 enum TrickScore : long {
 Sit = 7,
 Beg = 2500000000025

 }

enum TrickScore {
 Sit = 7,
 Beg = 25,
 RollOver = 50,
 Fetch = 10,
 ComeHere = 5,
 Speak = 30,
}

int value = (int)TrickScore.Fetch * 3;
MessageBox.Show(value.ToString());
TrickScore score = (TrickScore)value;
MessageBox.Show(score.ToString());

Enums le t you represent numbers with names
Sometimes it’s easier to work with numbers if you have names for them. You can assign
numbers to the values in an enum and use the names to refer to them. That way, you don’t
have a bunch of unexplained numbers floating around in your code. Here’s an enum to keep
track of the scores for tricks at a dog competition:

These don’t
have to be in
any particular
order, and
you can give
multiple names
to the same
number.

The (int) cast tells the compiler to turn this into the
number it represents. So since TrickScore.Fetch has a
value of 10, (int)TrickScore.Fetch turns it into the
int value 10.

You can cast an int back to
a TrickScore. Since value is
equal to 30, score gets set
to TrickScore.Speak. So when
you call score.ToString(), it
returns “Speak”.

Supply a name, then “=”, then the number that name stands in for.

Since Fetch has a value of 10, this statement sets the value to 30.

This tells the compiler to treat values in the TrickScore enum as longs, not ints.

names are better than numbers

You can cast an int
to an enum, and
you can cast an
(int-based) enum
back to an int.

Here’s an excerpt from a method that uses the
TrickScore enum by casting it to and from an int.

Some enums use a different type,
like byte or long—like the one at
the bottom of this page—and you
can cast those back to their type.

If you tried to compile this code without specifying long as the type, you’d get this message:
Cannot implicitly convert type 'long' to 'int'.

you are here 4   355

enums and collections

Q: Hold on a second. When I was typing in that code, I
noticed that an IntelliSense window popped up that said
something about “3 of 3” when I used that Random.Next()
method. What was that about?

A: What you saw was a method that was overloaded. When a
class has a method that you can call more than one way, it’s called
overloading. When you’re using a class with an overloaded method,
the IDE lets you know all of the options that you have. In this case,
the Random class has three possible Next() methods. As

soon as you type “random.Next(” into the code window, the IDE pops
up its IntelliSense box that shows the parameters for the different
overloaded methods. The up and down arrows next to the “3 of 3” let
you scroll between them. That’s really useful when you’re dealing
with a method that has dozens of overloaded definitions. So when
you’re doing it, make sure you choose the right overloaded Next()
method! But don’t worry too much now—we’ll talk a lot about
overloading later on in the chapter.

v
Use what you’ve learned about enums to build a class that holds a playing card.

Create a new project and add a Card class.
You’ll need two public properties: Suit (which will be Spades, Clubs, Diamonds,
or Hearts) and Value (Ace, Two, Three…Ten, Jack, Queen, King). And you’ll
need a read-only property, Name (Ace of Spades, Five of Diamonds).

1

Use two enums to define the suits and values.
Use the familiar Add→Class feature in the IDE to add them, replacing the word class
with enum in the newly added files. Make sure that (int)Suits.Spades is equal
to 0, followed by Clubs (equal to 1), Diamonds (2), and Hearts (3). Make the values
equal to their face values: (int)Values.Ace should equal 1, Two should be 2, Three
should be 3, etc. Jack should equal 11, Queen should be 12, and King should be 13.

2

Add a property for the name of the card.
Name should be a read-only property. The get accessor should return a string that describes the card.
This code will run in a form that calls the Name property from the card class and displays it:

	 Card card = new Card(Suits.Spades, Values.Ace);
	 string cardName = card.Name;

The value of cardName should be Ace of Spades.

3

Card
Suit
Value
Name

Add a form button that pops up the name of a random card.
You can get your program to create a card with a random suit and value by casting a random number
between 0 and 3 as a Suits and another random number between 1 and 13 as a Values. To do this,
you can take advantage of a feature of the built-in Random class that gives it three different ways to call
its Next() method:

	 Random random = new Random();
	 int numberBetween0and3 = random.Next(4);
	 int numberBetween1and13 = random.Next(1, 14);
	 int anyRandomInteger = random.Next();

4

To make this work, your Card
class will need a constructor
that takes two parameters.

This tells Random to return a value at least 1 but under 14.

When you’ve got more than one way to call a method, it’s called overloading. More on that later....

356   Chapter 8

enum Suits {
 Spades,
 Clubs,
 Diamonds,
 Hearts
}
 enum Values {
 Ace = 1,
 Two = 2,
 Three = 3,
 Four = 4,
 Five = 5,
 Six = 6,
 Seven = 7,
 Eight = 8,
 Nine = 9,
 Ten = 10,
 Jack = 11,
 Queen = 12,
 King = 13
}

class Card {
 public Suits Suit { get; set; }
 public Values Value { get; set; }

 public Card(Suits suit, Values value) {
 this.Suit = suit;
 this.Value = value;
 }
 public string Name {
 get { return Value.ToString() + " of " + Suit.ToString(); }
 }
}

Random random = new Random();
private void button1_Click(object sender, EventArgs e) {
 Card card = new Card((Suits)random.Next(4), (Values)random.Next(1, 14));
 MessageBox.Show(card.Name);
}

When you don’t specify values, the first item in the list is equal to 0, the second is 1, the third is 2, etc.

Here’s where we set the value of
Values.Ace to 1.

The Card class has a Suit property of type Suits, and a Value property of type Values.

The get accessor for the Name property
can take advantage of the way an enum’s
ToString() method returns its name
converted to a string.

Here’s where we use theoverloaded Random.Next()method to generate arandom number that wecast to the enum.

Here’s the code for the button that pops
up the name of a random card.

A deck of cards is a great example of where limiting values is important. Nobody
wants to turn over their cards and be faced with a Joker of Clubs, or a 13 of
Hearts. Here’s how we wrote the Card class.

arrays…who needs ’em?

We chose the names Suits
and Values for the enums,

while the properties in the Card
class that use those enums

for types are called Suit and
Value. What do you think

about these names? Look at
the names of other enums that
you’ll see throughout the book.
Would Suit and Value make
better names for these enums?

you are here 4   357

enums and collections

We could use an array to create a deck of cards…
What if you want to create a class to represent a deck of cards? It would need a
way to keep track of every card in the deck, and it’d need to know what order they
were in. A Card array would do the trick—the top card in the deck would be at
value 0, the next card at value 1, etc. Here’s a starting point—a Deck that starts
out with a full deck of 52 cards.

How would you add a Shuffle() method to the Deck class that
rearranges the cards in random order? What about a method to deal the
first card off the top of the deck? How would you add a card to the deck?

class Deck {
 private Card[] cards = {
 new Card(Suits.Spades, Values.Ace),
 new Card(Suits.Spades, Values.Two),
 new Card(Suits.Spades, Values.Three),
 // ...
 new Card(Suits.Diamonds, Values.Queen),
 new Card(Suits.Diamonds, Values.King),
 };

 public void PrintCards() {
 for (int i = 0; i < cards.Length; i++)
 Console.WriteLine(cards[i].Name());
 }
}

This array declaration would continue all the way through the deck. It’s just abbreviated here to save space.

…but what if you wanted to do more?
Think of everything you might need to do with a deck of cards, though. If
you’re playing a card game, you routinely need to change the order of the
cards, and add and remove cards from the deck. You just can’t do that with
an array very easily.

358   Chapter 8

Arrays are hard to work with
An array is fine for storing a fixed list of values or references. But once you need
to move array elements around, or add more elements than the array can hold,
things start to get a little sticky.

Every array has a length, and you need to know the length to work with it. You could use
null references to keep some array elements empty:

1

But now things get complicated. It’s easy enough to add a Peek() method that just returns a
reference to the top card—so you can peek at the top of the deck. But what if you want to add
a card? If topCard is less than the array’s Length, you can just put your card in the array at
that index and add 1 to topCard. But if the array’s full, you’ll need to create a new, bigger array
and copy the existing cards to it. Removing a card is easy enough—but after you subtract 1 from
topCard, you’ll need to make sure to set the removed card’s array index back to null. And what
if you need to remove a card from the middle of the list? If you remove card 4, you’ll need to
move card 5 back to replace it, and then move 6 back, then 7 back…wow, what a mess!

3

Card objectCard object

Card object

You’d need to keep track of how many cards are being held. So you’d need an int field,
which we could call topCard, that would hold the index of the last card in the array. So
our three-card array would have a Length of 7, but we’d set topCard equal to 3.

2

This array has a Length of 7,
but it’s only storing 3 cards.

Indexes 3, 4, 5, and 6 are equal to null, so they’re not holding any cards.

We’ll add a topCard field to keep track of how many cards are in the array. Any index above topCard has a null Card reference.

There’s actually an Array.Resize()
method built into the .NET
Framework that does exactly that.

fine collectibles

you are here 4   359

enums and collections

Lists make it easy to store col lect ions of…anything
The .NET Framework has a bunch of collection classes that handle all of those
nasty issues that come up when you add and remove array elements. The most
common sort of collection is a List<T>. Once you create a List<T> object, it’s
easy to add an item, remove an item from any location in the list, peek at an item,
and even move an item from one place in the list to another. Here’s how a list works:

Card object

First you create a new instance of List<T>.
Every array has a type—you don’t just have an array, you have an int array, a Card
array, etc. Lists are the same way. You need to specify the type of object or value that the
list will hold by putting it in angle brackets <> when you use the new keyword to create it.

List<Card> cards = new List<Card>();

1

Now you can add to your List<T>.
Once you’ve got a List<T> object, you can add as many items to it as you want (as long as they’re
polymorphic with whatever type you specified when you created your new List<T>).

cards.Add(new Card(Suits.Diamonds, Values.King));

cards.Add(new Card(Suits.Clubs, Values.Three));

cards.Add(new Card(Suits.Hearts, Values.Ace));

2

List<Card> ob
je

ct

You specified <Card> when you
created the list, so now this
list only holds references to
Card objects.

Card object

List<Card> ob
je

ct

Card object

King of
Diamonds

3 of
Clubs

Ace of
Hearts

You can add as many
cards as you want to the
List-just call its Add()
method. It’ll make sure
it’s got enough “slots”
for the items. If it
starts to run out, it’ll
automatically resize itself.

A list keeps its elements
in order, just like an
array. King of Diamonds
is first, 3 of Clubs
is second, and Ace of
Hearts is third.

The <T> at the end
of List<T> means
it’s generic.

The T gets replaced with a type—so
List<int> just means a List of
ints.You’ll get plenty of practice with
generics over the next few pages.

Which means
they’re
assignable
to the type:
interfaces,
abstract classes,
base classes, etc.

We’ll sometimes
leave the <T> off
because it can
make the book a
little hard to read.
When you see List,
think List<T>!

360   Chapter 8

Lists are more f lexible than arrays
The List class is built into the .NET Framework, and it lets you do a lot of
things with objects that you can’t do with a plain old array. Check out some
of the things you can do with a List<T>.

You can make one.
 List<Egg> myCarton = new List<Egg>();

1

Add something to it.
 Egg x = new Egg();
 myCarton.Add(x);

2

Add something else to it.
 Egg y = new Egg();

 myCarton.Add(y);

3

Find out how many things are in it.
 int theSize = myCarton.Count;

4

Figure out where that thing is.
 int idx = myCarton.IndexOf(y);

6

Take something out of it.
 myCarton.Remove(y);

7

Find out if it has something in particular in it.
 bool isIn = myCarton.Contains(x);

5

A new List object is

created on the h
eap. But

there’s nothing i
n it yet.

Now the List expands to hold
the Egg object…

…and expands again to hold the second Egg object.

Now you can search for any Egg inside the list. This would definitely come back true.

When we removed y, we left only x in
the List, so it shrank! And eventually
it will get garbage-collected.

The index for x would be 0 and the
index for y would be 1.

x

x

poof!

wow, what an improvement!

x
y

you are here 4   361

enums and collections

List<String> myList =
 new List <String>();

String [] myList = new String[2];

String a = "Yay!"; String a = “Yay!”;
myList.Add(a);

String b = "Bummer"; String b = “Bummer”;
myList.Add(b);

int theSize = myList.Count;

Guy o = guys[1];

bool isIn = myList.Contains(b);

List Regular array

Fill in the rest of the table below by looking at the List code on
the left and putting in what you think the code might be if it were
using a regular array instead. We don’t expect you to get all of
them exactly right, so just make your best guess.

Hint: you’ll need more than one
line of code here.

We filled in a couple for you....

Here are a few lines from the middle of a
program. Assume these statements are all
executed in order, one after another, and
that variables were previously declared.

362   Chapter 8

List Regular array

Lists are objects that use methods just like every
other class you’ve used so far. You can see the list
of methods available from within the IDE just by
typing a . next to the List name, and you pass
parameters to them just the same as you would for
a class you created yourself.

With arrays you’re a lot more limited. You need
to set the size of the array when you create it, and
any logic that’ll need to be performed on it will
need to be written on your own.

Your job was to fill in the rest of the table by looking at the List code
on the left and putting in what you think the code might be if it were
using a regular array instead.

one size fits all

List<String> myList =
 new List <String>();

String[] myList = new String[2];

String a = "Yay!" String a = "Yay!";
myList.Add(a); myList[0] = a;

String b = "Bummer"; String b = "Bummer";
myList.Add(b); myList[1] = b;

int theSize = myList.Count; int theSize = myList.Length;

Guy o = guys[1]; Guy o = guys[1];

bool isIn = myList.Contains(b); bool isIn = false;
 for (int i = 0; i < myList.
 Length; i++) {
 if (b == myList[i]) {
 isIn = true;
 }
 }

The .NET Framework does have an
Array class, which makes some of these
things a little easier to do, but we’re
concentrating on List objects because
they’re a lot easier to use.

you are here 4   363

enums and collections

List<Shoe> shoeCloset = new List<Shoe>();

shoeCloset.Add(new Shoe()

 { Style = Style.Sneakers, Color = "Black" });

shoeCloset.Add(new Shoe()

 { Style = Style.Clogs, Color = "Brown" });

shoeCloset.Add(new Shoe()

 { Style = Style.Wingtips, Color = "Black" });

shoeCloset.Add(new Shoe()

 { Style = Style.Loafers, Color = "White" });

shoeCloset.Add(new Shoe()

 { Style = Style.Loafers, Color = "Red" });

shoeCloset.Add(new Shoe()

 { Style = Style.Sneakers, Color = "Green" });

int numberOfShoes = shoeCloset.Count;

foreach (Shoe shoe in shoeCloset) {

 shoe.Style = Style.Flipflops;

 shoe.Color = "Orange";

}

shoeCloset.RemoveAt(4);

Shoe thirdShoe = shoeCloset[2];

Shoe secondShoe = shoeCloset[1];

shoeCloset.Clear();

shoeCloset.Add(thirdShoe);

if (shoeCloset.Contains(secondShoe))

 Console.WriteLine("That’s surprising.");

Lists shrink and grow dynamically

class Shoe {

 public Style Style;

 public string Color;

}

enum Style {

 Sneakers,

 Loafers,

 Sandals,

 Flipflops,

 Wingtips,

 Clogs,

}

We’re declaring a List of Shoe objects called ShoeCloset.

This returns the
total number of
Shoe objects in
the List.

foreach is a special kind of
loop for Lists. It will execute
a statement for each object in
the List. This loop creates an
identifier called shoe. As the
loop goes through the items,
it sets shoe equal to the first
item in the list, then the
second, then the third, until
the loop is done.

The Remove() method will
remove the object by its
reference; RemoveAt() does
it by index number.

The Clear() method
removes all of the
objects in a List.

The great thing about a List is that you don’t need to know how long it’ll be when you
create it. A List automatically grows and shrinks to fit its contents. Here’s an example
of a few of the methods that make working with Lists a lot easier than arrays. Create
a new Console Application and add this code to the Main() method. It won’t print
anything—use the debugger to step through the code and see what’s going on.

This foreach loop goes
through each of the
shoes in the closet.

Here’s the Shoe class we’re using,
and the Style enum it uses.

foreach loops work on arrays, too! In
fact, they work on any collection.

You can use a new statement inside
the List.Add() method.

We saved references
to two shoes before
we cleared the list. We
added one back, but
the other’s still missing.

This line will never run, because Contains() will return false. We
only added thirdShoe into the cleared list, not secondShoe.

Do this!

364   Chapter 8

Generics can store any type
You’ve already seen that a List can store strings or Shoes.
You could also make Lists of integers or any other object
you can create. That makes a List a generic collection.
When you create a new List object, you tie it to a specific
type: you can have a List of ints, or strings, or Shoe objects.
That makes working with Lists easy—once you’ve created
your list, you always know the type of data that’s inside it.

List<T> name = new List<T>();

The .NET Framework comes with some generic
interfaces that let the collections you’re building work
with any and all types. The List class implement those
interfaces, and that’s why you could create a List of
integers and work with it in pretty much the same way
that you would work with a List of Shoe objects.

Check it out for yourself. Type the word List into
the IDE, and then right-click on it and select Go To
Definition. That will take you to the declaration for the
List class. It implements a few interfaces:

This doesn’t actually mean that you add the letter T. It’s a
notation that you’ll see whenever a class or interface works
with all types. The <T> part means you can put a type in
there, like List<Shoe>, which limits its members to that type.

¢¢ List is a class in the .NET Framework.

¢¢ A List resizes dynamically to whatever
size is needed. It’s got a certain capacity—
once you add enough data to the list, it’ll grow
to accommodate it.

¢¢ To put something into a List, use Add().
To remove something from a List, use
Remove().

¢¢ You can remove objects using their index
number using RemoveAt().

¢¢ You declare the type of the List using a
type argument, which is a type name in
angle brackets. Example: List<Frog>
means the List will be able to hold only
objects of type Frog.

¢¢ To find out where something is (and if it is) in
a List, use IndexOf().

¢¢ To get the number of elements in a List,
use the Count property.

¢¢ You can use the Contains() method to
find out if a particular object is in a List.

¢¢ foreach is a special kind of loop that will
iterate through all of the elements in a List
and execute code on it. The syntax for a
foreach loop is foreach (string s in
StringList). You don’t have to tell the
foreach loop to increment by one; it will go
through the entire List all on its own.

This is where Add(), Clear(),
CopyTo(), and Remove()
come from. It’s the basis
for all generic collections.

This interface lets you us
e

foreach, among other things.

This is where RemoveAt(), IndexOf(), and Insert() come from.

Lists can be either very flexible (allow
ing any

type) or very restrictive. So they do
 what arrays

do, and then quite a few things more.

membership has its privileges

class List<T> : IList<T>,
ICollection<T>, IEnumerable<T>, IList,
ICollection, IEnumerable

.

	 You can’t modify a
collection while
you’re using foreach
to iterate through it!

If you do, it will cause an error. Luckily,
you can always make a copy of it.
Every IEnumerable has a ToList()
method that you can use to make a
copy of it to safely iterate through.

you are here 4   365

enums and collections

Code Magnets
Can you reconstruct the code snippets to make
a working Windows Form that will pop up the
message box below when you click a button?

private void button1_Click(object sender,
EventArgs e){

string result = "";

}

a.RemoveAt(2);

List<string> a = new List<string>(
);

 public void printL (List<string> a){

a.Add(zilch);

a.Add(first);

a.Add(second);

a.Add(third);

if (a.Contains("two
")) {

 a.Add(twopointtw
o);

}

if (a.Contains("three")){

 a.Add("four");
 }

foreach (string element in a) {
 result += "\n" + element; }

MessageBox.Show(result);

}

}

if (a.IndexOf("four") != 4) { 	 a.Add(fourth);		 }

printL(a);

string zilch = "zero";

string first = "one";

string second = "two";

string third = "three";

string fourth = "4.2";

string twopointtwo = "2.2";

366   Chapter 8

lists have types

Code Magnets Solution

string result = "";

}

a.RemoveAt(2);

List<string> a = new List<string>(
);

 public void printL (List<string> a){

a.Add(zilch);

a.Add(first);

a.Add(second);

a.Add(third);

if (a.Contains("two
")) {

 a.Add(twopointtw
o);

}

if (a.Contains("three")){

 a.Add("four");
 }

foreach (string element in a) {
 result += "\n" + element; }

MessageBox.Show(result);

}

if (a.IndexOf("four") != 4) {
	 a.Add(fourth);		
}

printL(a);

string zilch = "zero";

string first = "one";

string second = "two";

string third = "three";

string fourth = "4.2";

string twopointtwo = "2.2";

Can you figure out why “2.2” never gets added to the list, even though it’s
declared here?

RemoveAt() removes
the element at
index #2—which is
the third element in
the list.

The foreach loop goes
through all of the
elements in the list
and prints them.

The printL() method uses a
foreach loop to go through a
list of strings, add each of
them to one big string, and
then show it in a message box.

private void button1_Click(object sender, EventArgs e)

{

}

Remember how we talked about using
intuitive names back in Chapter 3? Well,
that may make for good code, but it makes
these puzzles way too easy. Just don’t use
cryptic names like printL() in real life!

you are here 4   367

enums and collections

Q: So why would I ever use an enum
instead of a List? Don’t they solve the
same problem?

A: Enums are a little different than
Lists. First and foremost, enums are
types, while Lists are objects.

You can think of enums as a handy way to
store lists of constants so you can refer
to them by name. They’re great for keeping
your code readable and making sure that
you are always using the right variable
names to access values that you use really
frequently.

A List can store just about anything.
Since it’s a list of objects, each element in a
list can have its own methods and properties.
Enums, on the other hand, have to be
assigned one of the value types in C# (like
the ones on the first page of Chapter 4). So
you can’t store reference variables in them.

Enums can’t dynamically change their size
either. They can’t implement interfaces or
have methods, and you’ll have to cast them
to another type to store a value from an
enum in another variable. Add all of that up
and you’ve got some pretty big differences
between the two ways of storing data. But
both are really useful in their own right.

Q: OK, it sounds like Lists are
pretty powerful. So why would I ever want
to use an array?

A: If you know that you have a fixed
number of items to work with, or if you want

a fixed sequence of values with a fixed
length, then an array is perfect. Luckily, you
can easily convert any list to an array using
the ToArray() method…and you can
convert an array to a list using one of the
overloaded constructors for the List<T>
object.

Q: I don’t get the name “generic.” Why
is it called a generic collection? Why isn’t
an array generic?

A: A generic collection is a collection
object (or a built-in object that lets you store
and manage a bunch of other objects) that’s
been set up to store only one type (or more
than one type, which you’ll see in a minute).

Q: OK, that explains the “collection”
part. But what makes it “generic”?

A: Supermarkets used to carry generic
items that were packaged in big white
packages with black type that just said the
name of what was inside (“Potato Chips,”

“Cola,” “Soap,” etc.). The generic brand was
all about what was inside the bag, and not
about how it was displayed.

The same thing happens with generic data
types. Your List<T> will work exactly the
same with whatever happens to be inside
it. A list of Shoe objects, Card objects,
ints, longs, or even other lists will still act at
the container level. So you can always add,
remove, insert, etc., no matter what’s inside
the list itself.

Q: Can I have a list that doesn’t have
a type?

A: No. Every list—in fact, every generic
collection (and you’ll learn about the other
generic collections in just a minute)—must
have a type connected to it. C# does have
nongeneric lists called ArrayLists
that can store any kind of object. If you
want to use an ArrayList, you
need to include a using System.
Collections; line in your code. But
you really shouldn’t ever need to do this,
because a List<object> will work
just fine!

When you create
a new List object,
you always supply
a type—that tells
C# what type of
data it’ll store. A
list can store a
value type (like int,
bool, or decimal) or
a class.

Arrays also take up less memory
and CPU time for your programs,
but that only accounts for a tiny
performance boost. If you have to
do the same thing, say, millions of
times a second, you might want to
use an array and not a list. But if
your program is running slowly, it’s
pretty unlikely that switching from
lists to arrays will fix the problem.

The term “generic” refers to the
fact that even though a specific
instance of List can only store
one specific type, the List class in
general works with any type.

That’s what the <T> stuff is all about. It’s the way that you tie
a specific instance of a List to one type. But the List class as a
whole is generic enough to work with ANY type. That’s why generic
collections are different from anything you’ve seen so far.

368   Chapter 8

initial here

Collect ion init ializers are similar to object init ializers

List<Shoe> shoeCloset = new List<Shoe>();
shoeCloset.Add(new Shoe() { Style = Style.Sneakers, Color = "Black" });
shoeCloset.Add(new Shoe() { Style = Style.Clogs, Color = "Brown" });
shoeCloset.Add(new Shoe() { Style = Style.Wingtips, Color = "Black" });
shoeCloset.Add(new Shoe() { Style = Style.Loafers, Color = "White" });
shoeCloset.Add(new Shoe() { Style = Style.Loafers, Color = "Red" });
shoeCloset.Add(new Shoe() { Style = Style.Sneakers, Color = "Green" });

List<Shoe> shoeCloset = new List<Shoe>() {
 new Shoe() { Style = Style.Sneakers, Color = "Black" },
 new Shoe() { Style = Style.Clogs, Color = "Brown" },
 new Shoe() { Style = Style.Wingtips, Color = "Black" },
 new Shoe() { Style = Style.Loafers, Color = "White" },
 new Shoe() { Style = Style.Loafers, Color = "Red" },
 new Shoe() { Style = Style.Sneakers, Color = "Green" },
};

C# gives you a nice bit of shorthand to cut down on typing when you need to
create a list and immediately add a bunch of items to it. When you create a
new List object, you can use a collection initializer to give it a starting list
of items. It’ll add them as soon as the list is created.

The same code rewritten using a collection initializer

You saw this code a few
pages ago—it creates a new
List<Shoe> and fills it with
new Shoe objects.

The statement to create
the list is followed by
curly brackets that
contain separate “new"
statements, separated by
commas.

You’re not limited
to using “new"
statements in the
initializer—you can
include variables, too.

A collection initializer makes your code more
compact by letting you combine creating a
list with adding an initial set of items.

You can create a collection
initializer by taking each item
that was being added using Add()
and adding it to the statement
that creates the list.

Notice how each Shoe object is
initialized with its own object
initializer? You can nest them inside
a collection initializer, just like this.

you are here 4   369

enums and collections

Duck
Size
Kind

Quack()
Swim()
Eat()
Walk()

List<Duck> ducks = new List<Duck>() {

 new Duck() { Kind = KindOfDuck.Mallard, Size = 17 },

 new Duck() { Kind = KindOfDuck.Muscovy, Size = 18 },

 new Duck() { Kind = KindOfDuck.Decoy, Size = 14 },

 new Duck() { Kind = KindOfDuck.Muscovy, Size = 11 },

 new Duck() { Kind = KindOfDuck.Mallard, Size = 14 },

 new Duck() { Kind = KindOfDuck.Decoy, Size = 13 },

};

// This keeps the output from disappearing before you can read it
Console.ReadKey();

Let’s create a List of Ducks
Here’s a Duck class that keeps track of your extensive
duck collection. (You do collect ducks, don’t you?) Create
a new Console Application and add a new Duck class
and KindOfDuck enum.

Each duck has a size—this
one is 17 inches long.

You’ve got some
Muscovy ducks.

Some of the ducks
are mallards.

And you’ve got a few
wooden decoys.

class Duck {

 public int Size;

 public KindOfDuck Kind;

}

enum KindOfDuck {

 Mallard,

 Muscovy,

 Decoy,

}

Here’s the init ializer for your List of Ducks
We’ve got six ducks, so we’ll create a List<Duck> that has a
collection initializer with six statements. Each statement in the
initializer creates a new duck, using an object initializer to set
each Duck object’s Size and Kind field. Add this code to
your Main() method in Program.cs:

We’ll use an enum
called KindOfDuck to
keep track of what
sort of ducks are in
your collection.

The class has two public
fields. It’s also got some
methods, which we’re not
showing here.

Do this!

Add Duck and
KindOfDuck to
your project.

You’ll be adding code to your Main() method to print to the console. Make sure you keep this line at the end so the program stays open until you hit a key.

370   Chapter 8

Lists are easy, but SORTING can be tr icky
It’s not hard to think about ways to sort numbers or letters. But what do you
sort two objects on, especially if they have multiple fields? In some cases you
might want to order objects by the value in the name field, while in other
cases it might make sense to order objects based on height or date of birth.
There are lots of ways you can order things, and lists support any of them.

You could sort a list of ducks by size…

…or by kind.

Sorted smallest to biggest....

Sorted by kind of duck....

getting your ducks in a row

Lists know how to sort themselves
Every list comes with a Sort() method that rearranges all of the items
in the list to put them in order. Lists already know how to sort most
built-in types and classes, and it’s easy to teach them how to sort your own
classes.

Duck object

Duck object

List<Duck> ob
je

ct

Duck object

17” duck

11” duck

14” duck

Sort()

List<Duck> ob
je

ct

Duck object

Duck object

11” duck

Duck object

14” duck

17” duck

After the list of ducks is
sorted, it’s got the same
items in it—but they’re in
a different order.

Technically, it’s not the List<T> that
knows how to sort itself. It depends on
an IComparer<T> object, which you’ll
learn about in a minute.

you are here 4   371

enums and collections

IComparable<Duck> helps your list sort its ducks
The List.Sort() method knows how to sort any type or class that implements the
IComparable<T> interface. That interface has just one member—a method called
CompareTo(). Sort() uses an object’s CompareTo() method to compare it with
other objects, and uses its return value (an int) to determine which comes first.

But sometimes you need to sort a list of objects that don’t implement IComparable<T>,
and .NET has another interface to help with that. You can pass Sort() an instance of a
class that implements IComparer<T>. That interface also has one method. The List
object’s Sort() method uses the comparer object’s Compare() method to compare pairs
of objects, in order to figure out which one comes first in the sorted list.

An object’s CompareTo() method compares it to another object
One way to give our List object the ability to sort is to modify the Duck class to
implement IComparable<Duck>. To do that, we’d add a CompareTo() method
that takes a Duck reference as a parameter. If the duck to compare should come after the
current duck in the sorted list, CompareTo() returns a positive number.

Update your project’s Duck class by implementing IComparable<Duck> so that it sorts
itself based on duck size:

class Duck : IComparable<Duck> {
 public int Size;
 public KindOfDuck Kind;

 public int CompareTo(Duck duckToCompare) {
 if (this.Size > duckToCompare.Size)
 return 1;
 else if (this.Size < duckToCompare.Size)
 return -1;
 else
 return 0;
 }
}

You can make
any class
work with the
List’s built-in
Sort() method
by having it
implement
IComparable<T>
and adding a
CompareTo()
method.

When you implement IComparable<T>, you
specify the type being compared when you
have the class implement the interface.

Most CompareTo() methods
look a lot like this. This
method first compares the
Size field against the other
duck’s Size field. If this
duck is bigger, it returns 1.
If it’s smaller, it returns -1.
And if they’re the same size,
it returns zero.

If you want to sort your list from smallest
to biggest, have CompareTo() return a
positive number if it’s comparing to a
smaller duck, and a negative number if it’s
comparing to a bigger one.

Add this code to the end of your Main() method above the call to Console.ReadKey() to tell
your list of ducks to sort itself. Use the debugger to see this at work by putting a breakpoint in the
CompareTo() method.

ducks.Sort();

372   Chapter 8

Your List will
sort differently
depending on how
you implement
IComparer<T>.

class DuckComparerBySize : IComparer<Duck>

{
 public int Compare(Duck x, Duck y)

 {
 if (x.Size < y.Size)

 return -1;

 if (x.Size > y.Size)

 return 1;

 return 0;

 }
}

This class implements IComparer, and specifies the type of object it can sort: Duck objects.

Lists have a special interface built into the .NET Framework that lets
you build a separate class to help the List<T> sort out its members.
By implementing the IComparer<T> interface, you can tell
your List exactly how you want it to sort your objects. You do that by
implementing the Compare() method in the IComparer<T> interface.
It takes two object parameters, x and y, and returns an int. If x is less than
y, it should return a negative value. If they’re equal, it should return zero.
And if x is greater than y, it should return a positive value.

Here’s an example of how you’d declare a comparer class to compare
Duck objects by size. Add it to your project as a new class:

Use IComparer to te l l your List how to sort

The Compare() method returns an

int, and has two parameters: both

of the type you’re s
orting.

These will always match: the same type in each.

You can do whatever types of comparisons you want in the method. Any negative number means
object x should go before
object y. x is “less than” y.Any positive value means object x should go after object y. x is “greater than” y.0 means that these two

objects should be treat
ed

as the same (using this
comparison calculation).

sort it out amongst yourselves

public static void PrintDucks(List<Duck> ducks)
{
 foreach (Duck duck in ducks)
 Console.WriteLine(duck.Size.ToString() + "-inch " + duck.Kind.ToString());
 Console.WriteLine("End of ducks!");
}

Here’s a method to print the
ducks in a List<Duck>.

Add this PrintDucks method to
your Program class in your project
so you can print the ducks in a list.

Update your Main() method to call
it before and after you sort the
list so you can see the results!

you are here 4   373

enums and collections

Create an instance of your comparer object
When you want to sort using IComparer<T>, you need to create a new
instance of the class that implements it. That object exists for one reason—
to help List.Sort() figure out how to sort the array. But like any other
(nonstatic) class, you need to instantiate it before you use it.

Mult iple IComparer implementat ions, mult iple ways
to sort your objects
You can create multiple IComparer<Duck> classes with different sorting
logic to sort the ducks in different ways. Then you can use the comparer
you want when you need to sort in that particular way. Here’s another duck
comparer implementation to add to your project:

class DuckComparerByKind : IComparer<Duck> {
 public int Compare(Duck x, Duck y) {
 if (x.Kind < y.Kind)
 return -1;
 if (x.Kind > y.Kind)
 return 1;
 else
 return 0;
 }
}

DuckComparerByKind kindComparer = new DuckComparerByKind();
ducks.Sort(kindComparer);
PrintDucks(ducks);

We compared the ducks’ Kind
properties, so the ducks are sorted
based on the index value of the
Kind property, a KindOfDuck enum.

This comparer sorts by duck type. Remember, when you compare the enum Kind, you’re comparing their index values.

Notice how “greater than” and “less than” have a different meaning here. We used < and > to compare enum index values, which lets us put the ducks in order.

Here’s an example of how enums

and Lists work together. Enums

stand in for numbers, and are used

in sorting of lists
.

DuckComparerBySize sizeComparer = new DuckComparerBySize();
ducks.Sort(sizeComparer);
PrintDucks(ducks);

We left out the code you already
saw a few pages ago to initialize
the list. Make sure you initialize
your list before you try to sort
it! If you don’t, you’ll get a null
pointer exception.

You’ll pass Sort() a reference to the
new DuckComparerBySize object as its
parameter.

Sorted smallest to biggest....

Sorted by kind of duck...

So Mallard comes before Muscovy, which comes before Decoy.

Add this code to your program’s Main() method to see how the ducks get sorted.

More duck sorting
code for your
Main() method.

374   Chapter 8

pick a card, any card

IComparer can do complex comparisons
One advantage to creating a separate class for sorting your ducks is
that you can build more complex logic into that class—and you can
add members that help determine how the list gets sorted.

enum SortCriteria {
 SizeThenKind,
 KindThenSize,
}

class DuckComparer : IComparer<Duck> {
 public SortCriteria SortBy = SortCriteria.SizeThenKind;

 public int Compare(Duck x, Duck y) {
 if (SortBy == SortCriteria.SizeThenKind)
 if (x.Size > y.Size)
 return 1;
 else if (x.Size < y.Size)
 return -1;
 else
 if (x.Kind > y.Kind)
 return 1;
 else if (x.Kind < y.Kind)
 return -1;
 else
 return 0;
 else
 if (x.Kind > y.Kind)
 return 1;
 else if (x.Kind < y.Kind)
 return -1;
 else
 if (x.Size > y.Size)
 return 1;
 else if (x.Size < y.Size)
 return -1;
 else
 return 0;
 }
}

DuckComparer comparer = new DuckComparer();

comparer.SortBy = SortCriteria.KindThenSize;
ducks.Sort(comparer);
PrintDucks(ducks);

comparer.SortBy = SortCriteria.SizeThenKind;
ducks.Sort(comparer);
PrintDucks(ducks);

Here’s a more complex class to
compare ducks. Its Compare() method
takes the same parameters, but it
looks at the public SortBy field to
determine how to sort the ducks.

This enum tells the object which way to sort the ducks.

This if statement checks the SortBy
field. If it’s set to SizeThenKind,
then it first sorts the ducks by size,
and then within each size it’ll sort
the ducks by their kind.

Instead of just returning 0 if the two
ducks are the same size, the comparer
checks their kind, and only returns 0
if the two ducks are both the same
size and the same kind.

If SortBy isn’t set to SizeThenKind,
then the comparer first sorts by the
kind of duck. If the two ducks are the
same kind, then it compares their size.

Here’s how we’d use this comparer object.

First we’d instantiate it as usual. Then
we can set the object’s SortBy field
before calling ducks.Sort(). Now you
can change the way the list sorts its
ducks just by changing one field in t

he
object. Add this code to the end of
your Main() method. Now it sorts and
re-sorts the list a bunch of times!

If you don’t provide Sort() with
an IComparer<T> object , it uses

a default one that can sort value
types or compare references. Flip to
Leftover #6 in the Appendix to learn a
little more about comparing objects.

you are here 4   375

enums and collections

vv Create five random cards and then sort them.

Create code to make a jumbled set of cards.
Create a new Console Application and add code to the Main() method that creates five random
Card objects. After you create each object, use the built-in Console.WriteLine() method to
write its name to the output. Use Console.ReadKey() at the end of the program to keep your
window from disappearing when the program finishes.

1

Create a class that implements IComparer<Card> to sort the cards.
Here’s a good chance to use that IDE shortcut to implement an interface:

 class CardComparer_byValue : IComparer<Card>

Then click on IComparer<Card> and hover over the I. You’ll see a box appear underneath it.
When you click on the box, the IDE pops up its “Implement interface” window:

Click on “Implement interface IComparer<Card>” in the box to tell the IDE to automatically fill
in all of the methods and properties that you need to implement. In this case, it creates an empty
Compare() method to compare two cards, x and y. Write the method so that it returns 1 if x is
bigger than y, –1 if it’s smaller, and 0 if they’re the same card. In this case, make sure that any King
comes after any Jack, which comes after any 4, which comes after any Ace.

2

Make sure the output looks right.
Here’s what your output window should look like after you click the button.

3

When you use the built‑in Console.WriteLine()
method, it adds a line
to this output. Console.
ReadKey() waits for you to press a key before the program ends.

Your IComparer
object needs to sort
the cards by value,
so the cards with
the lowest values are
first in the list.

Sometimes it’s a little hard to
get this box to pop up, so the
IDE has a useful shortcut.: just
press Ctrl-period.

376   Chapter 8

class CardComparer_byValue : IComparer<Card> {
 public int Compare(Card x, Card y) {
 if (x.Value < y.Value) {
 return -1;
 }
 if (x.Value > y.Value) {
 return 1;
 }
 if (x.Suit < y.Suit) {
 return -1;
 }
 if (x.Suit > y.Suit) {
 return 1;
 }
 return 0;
 }
}

static void Main(string[] args)
{
 Random random = new Random();
 Console.WriteLine("Five random cards:");
 List<Card> cards = new List<Card>();
 for (int i = 0; i < 5; i++)
 {
 cards.Add(new Card((Suits)random.Next(4),
 (Values)random.Next(1, 14)));
 Console.WriteLine(cards[i].Name);
 }

 Console.WriteLine();
 Console.WriteLine("Those same cards, sorted:");
 cards.Sort(new CardComparer_byValue());
 foreach (Card card in cards)
 {
 Console.WriteLine(card.Name);
 }
 Console.ReadKey();
}

Create five random cards and then sort them.
Here’s the “guts” of the card sorting, which uses the built-in List.Sort() method. Sort() takes an IComparer object, which has one method: Compare(). This implementation takes two cards and first compares their values, then their suits.

If none of the other four return statements were hit, the cards must be the same—so return zero.

If x has a bigger value, return 1. If x’s value is smaller, return -1. Remember, both return statements end the method immediately. These statements only get
executed if x and y have the
same value—that means the
first two return statements
weren’t executed.

Here’s a generic List
of Card objects to
store the cards. Once
they’re in the list, it’s
easy to sort them
using an IComparer.

look it up

We’re using Console.ReadKey() to keep
console applications from exiting after they finish.
This is great for learning, but not so great if you
want to write real command-line applications. If
you use Ctrl-F5 to start your program, the IDE
runs it without debugging. When it finishes, it

prints “Press any key to continue…” and waits for
a keypress. But it doesn’t debug your program

(because it’s running without debugging), so your
breakpoints and watches won’t work.

you are here 4   377

enums and collections

Every .NET object has a method called ToString() that converts it to a string. By default, it just returns the name
of your class (MyProject.Duck). The method is inherited from Object (remember, that’s the base class for every object).
This is a really useful method, and it’s used a lot. For example, the + operator to concatenate strings automatically calls
an object’s ToString() method. And Console.WriteLine() or String.Format() will automatically call it
when you pass objects to them, which can really come in handy when you want to turn an object into a string.

Go back to your duck sorting program. Put a breakpoint in the Main() method anywhere after the list is initialized and
debug your program. Then hover over any ducks variable so it shows the value in a window. Any time you look at
a variable in the debugger that’s got a reference to a List, you can explore the contents of it by clicking the + button:

Luckily, ToString() is a virtual method on Object, the base class of every object. So all you need to do is
override the ToString() method—and when you do, you’ll see the results immediately in the IDE’s Watch
window! Open up your Duck class and start adding a new method by typing override. As soon as you press space,
the IDE will show you the methods you can override:

Click on ToString() to tell the IDE to add a new ToString() method. Replace the contents so it looks like this:

public override string ToString()
{
 return "A " + Size + " inch " + Kind.ToString();
}

Run your program and look at the list again. Now the IDE shows you the contents of your Duck objects!

Hmm, that’s not as useful as we’d hoped. You can see that there are six Duck objects in the list
(“MyProject” is the namespace we used). If you click the + button next to a duck, you can see
its Kind and Size values. But wouldn’t it be easier if you could see all of them at once?

When the IDE’s debugger shows
you an object, it calls the
object’s ToString() method and
shows you its contents.

So instead of
passing a value to
Console.WriteLine(),
String.Format(),
etc., you can pass
an object—its
ToString() method is
called automatically.
That also works with
value types like ints
and enums, too!

Overriding a ToString() method le ts an object describe itse lf

The IDE calls the ToString() method when it displays
an object in its Watch window. But the ToString()
method that Duck inherited from Object just returns
its class name. It would be really useful if we could
make ToString() more informative.

378   Chapter 8

foreach loopy

Update your foreach loops to le t your
Ducks and Cards print themselves
You’ve seen two different examples of programs looping through a list of objects and calling Console.
WriteLine() to print a line to the console for each object—like this foreach loop that prints every card
in a List<Card>:

 foreach (Card card in cards)
 {
 Console.WriteLine(card.Name);
 }

The PrintDucks() method did something similar for Duck objects in a List:

This is a pretty common thing to do with objects. But now that your Duck has a ToString() method,
your PrintDucks() method should take advantage of it:

 public static void PrintDucks(List<Duck> ducks) {
 foreach (Duck duck in ducks) {
 Console.WriteLine(duck);
 }
 Console.WriteLine("End of ducks!");
 }

Add this to your Ducks program and run it again. It prints the same output. And now if you want to add, say,
a Gender property to your Duck object, you just have to update the ToString() method, and everything
that uses it (including the PrintDucks() method) will reflect that change.

Add a ToString() method to your Card object, too
Your Card object already has a Name property that returns the name of the card:

 public string Name
 {
 get { return Value.ToString() + " of " + Suit.ToString(); }
 }

That’s exactly what its ToString() method should do. So add a ToString() method to the Card class:

 public override string ToString()
 {
 return Name;
 }

Now your programs that use Card objects will be easier to debug.

 foreach (Duck duck in ducks)
 {
 Console.WriteLine(duck.Size.ToString() + "-inch " + duck.Kind.ToString());
 }

If you pass Console.WriteLine()
a reference to an object, it will
call that object’s ToString()
method automatically.

ToString() is useful for a lot more than just
making your objects easier to identify in the IDE.
Keep your eyes open over the next few chapters,
and you’ll see how useful it is for every object to
have a way to convert itself to a string. That’s
why every object has a ToString() method.

You can also leave off “.ToString()” and the + operator will call it
automatically.

You’re still allowed to call
ToString() like this, but now
you know it’s not necessary in
this case, because + calls it
automatically.

you are here 4   379

enums and collections

When you write a foreach loop,
you’re using IEnumerable<T>
Go to the IDE, find a List<Duck> variable, and use IntelliSense to take a look at its
GetEnumerator() method. Start typing “.GetEnumerator” and see what comes up:

Add a line to create a new array of Duck objects:

 Duck[] duckArray = new Duck[6];

Then type duckArray.GetEnumerator—the array also has a GetEnumerator() method.
That’s because all Lists, and arrays implement an interface called IEnumerable<T>, which
contains one method. That method, GetEnumerator(), returns an Enumerator object.

It’s the Enumerator object that provides the machinery that lets you loop through a list in order.
Here’s a foreach loop that loops through a List<Duck> with a variable called duck:

 foreach (Duck duck in ducks) {
 Console.WriteLine(duck);
 }
And here’s what that loop is actually doing behind the scenes:

 IEnumerator<Duck> enumerator = ducks.GetEnumerator();
 while (enumerator.MoveNext()) {
 Duck duck = enumerator.Current;
 Console.WriteLine(duck);
 }
 IDisposable disposable = enumerator as IDisposable;
 if (disposable != null) disposable.Dispose();

(Don’t worry about the last two lines for now. You’ll learn about IDisposable in Chapter 9.)

Those two loops print out the same ducks. You can see this for yourself by running both of them;
they’ll both have the same output.

Here’s what’s going on. When you’re looping through a list or array (or any other collection),
the MoveNext() method returns true if there’s another element in the list, or false if the
enumerator has reached the end of the list. The Current property always returns a reference to
the current element. Add it all together, and you get a foreach loop!

What do you think would happen during a foreach loop if your ToString()
method changes one of the object’s fields?

When a collection
implements
IEnumerable<T>,
it’s giving you a way
to write a loop that
goes through its
contents in order.

foreach Loops
Up Close

Try experimenting with this by changing your Duck’s ToString() to increment the Size property. Debug your program
and hover over a Duck. Then do it again. Remember, each time you do it, the IDE calls its ToString() method.

Collection initializers work with ANY IEnumerable<T> class—as long as it also has a method called Add().

Technically, there’s a
little more than this,
but you get the idea....

380   Chapter 8

nobody here but us ducks

You can upcast an ent ire list using IEnumerable
Remember how you can upcast any object to its superclass? Well, when you’ve got a
List of objects, you can upcast the entire list at once. It’s called covariance, and all
you need for it is an IEnumerable<T> interface reference.

Create a Console Application and add a base class, Bird (for Duck to extend), and a
Penguin class. We’ll use the ToString() method to make it easy to see which class is which.

Bird
Name

Fly()

PenguinDuck
Size
Kind

class Bird {
 public string Name { get; set; }
 public virtual void Fly() {
 Console.WriteLine("Flap, flap");
 }
 public override string ToString() {
 return "A bird named " + Name;
 }
}

class Penguin : Bird {
 public override void Fly() {
 Console.WriteLine("Penguins can’t fly!");
 }
 public override string ToString() {
 return "A penguin named " + base.Name;
 }
}

class Duck : Bird, IComparable<Duck> {
 // The rest of the class is the same
}

Here’s a Bird class, and a Penguin class that inherits
from it. Add them to a new Console Application project,
then copy your existing Duck class into it. Just change
its declaration so that it extends Bird.

Here are the first few lines of your Main() method to initialize your list and then upcast it.

List<Duck> ducks = new List<Duck>() { /* initialize your list as usual */ }
IEnumerable<Bird> upcastDucks = ducks;

Take a close look at that last line of code. You’re taking a reference to your List<Duck> and assigning it to an
IEnumerable<Bird> interface variable. Debug through it, and you’ll see it’s pointing to the same object.

Combine your birds into a single list
Covariance is really useful when you want to take a collection of objects and add them to a more general list. Here’s an
example: if you have a list of Bird obects, you can add your Duck collection to it in one easy step. Here’s an example
that uses the List.AddRange() method, which you can use to add the contents of one list into another.

Next, change birds to a List<Object> variable—you’ll also need to change Bird to
Object in the List constructor and the foreach loop. Now you can any type of object to your
list! See if you can figure out how to get your program to match this screenshot.
You’ll need to add the Shoe class and Style enum from earlier in the chapter and override the Shoe.ToString() method.

List<Bird> birds = new List<Bird>();

birds.Add(new Bird() { Name = "Feathers" });
birds.AddRange(ducks);
birds.Add(new Penguin() { Name = "George" });

foreach (Bird bird in birds) {
 Console.WriteLine(bird);
}

Copy the same collection
initializer you’ve been
using to initialize your
List of ducks.

Do
this!

you are here 4   381

enums and collections

You can build your own overloaded methods
You’ve been using overloaded methods and even an overloaded constructor
that were part of the built-in .NET Framework classes and objects, so you can
already see how useful they are. Wouldn’t it be cool if you could build overloaded
methods into your own classes? Well, you can—and it’s easy! All you need to do is
write two or more methods that have the same name but take different parameters. Do this!

Create a new Console Application project and add the Card class to it.
You can do this easily by right-clicking on the project in the Solution Explorer and selecting Existing
Item from the Add menu. The IDE will make a copy of the class and add it to the project. The file
will still have the namespace from the old project, so go to the top of the Card.cs file and
change the namespace line to match the name of the new project you created. Then do the same
for the Values and Suits enums.

1

Add some new overloaded methods to the Card class.
Create two static DoesCardMatch() methods. The first one should check a card’s suit. The
second should check its value. Both return true only if the card matches.

 public static bool DoesCardMatch(Card cardToCheck, Suits suit) {
 if (cardToCheck.Suit == suit) {
 return true;
 } else {
 return false;
 }
 }
 public static bool DoesCardMatch(Card cardToCheck, Values value) {
 if (cardToCheck.Value == value) {
 return true;
 } else {
 return false;
 }
 }

2

Overloaded methods don’t have to be static, but it’s good
to get a little more practice
writing static methods.

Add code to Main() to use the new methods.
Add this code to the Main() method in Program.cs:

 Card cardToCheck = new Card(Suits.Clubs, Values.Three);
 bool doesItMatch = Card.DoesCardMatch(cardToCheck, Suits.Hearts);
 Console.WriteLine(doesItMatch);

As soon as you type DoesCardMatch(the IDE will show you that you really did build an
overloaded method:

Take a minute and play around with the two methods so you can get used to overloading.

3

If you don’t do this, you’ll only be able

to access the Card class by specifying its
namespace (like oldnamespace.Card).

You can also use a using statement instead of changing the namespace. If you want to learn more about namespaces, take a minute and flip to Leftover #3 in the appendix.

382   Chapter 8

v

Build a form that lets you move cards between two decks.

You’ve built a Card class already. Now it’s time to build a class to hold any number of cards, which we’ll call
Deck. A real-life deck has 52 cards, but the Deck class can hold any number of cards—or no cards at all.

�Then you’ll build a form that shows you the contents of two Deck objects. When you first start the program,
deck #1 has up to 10 random cards, and deck #2 is a complete deck of 52 cards, both sorted by suit and
then value—and you can reset either deck to its initial state using two Reset buttons. The form also has
buttons (labeled “<<” and “>>”) to move cards between the decks.

1

These buttons are named moveToDeck2 (top) and moveToDeck1
(bottom). They move cards from one deck to the other.

The reset1 and reset2 buttons first call the ResetDeck() method and then the RedrawDeck() method.

These buttons are
named shuffle1 and
shuffle2. They call
the appropriate Deck.
Shuffle() method, and
then redraw the deck.

Use two ListBox controls to show the two decks. When the moveToDeck1 button is clicked, it moves the selected card from deck #2 to deck #1.

Remember, you can use a
control’s Name property to
give it a name to make your
code easier to read. Then
when you double-click on
the button, its event handler
is given a matching name.

In addition to the event handlers for the six buttons, you’ll need to add two methods for the form. First add a
ResetDeck() method, which resets a deck to its initial state. It takes an int as a parameter: if it’s passed 1, it
resets the first Deck object by reinitializing it to an empty deck and a random number of up to 10 random cards;
if it’s passed 2, it resets the second Deck object so that it contains a full 52-card deck. Then add this method:

private void RedrawDeck(int DeckNumber) {
 if (DeckNumber == 1) {
 listBox1.Items.Clear();
 foreach (string cardName in deck1.GetCardNames())
 listBox1.Items.Add(cardName);
 label1.Text = "Deck #1 (" + deck1.Count + " cards)";
 } else {
 listBox2.Items.Clear();
 foreach (string cardName in deck2.GetCardNames())
 listBox2.Items.Add(cardName);
 label2.Text = "Deck #2 (" + deck2.Count + " cards)";
 }
}

The RedrawDeck() method shuffles the deck, draws random cards from it, and updates the two listbox controls with whatever happens to be in the two Deck objects.

Take a look at
how we used the
foreach loop to
add each of the
cards in the
deck to the
listbox.

all hands on deck

Get some practice using Lists by building a class to store a deck of cards,
along with a form that uses it.

you are here 4   383

enums and collections

v

class Deck {
 private List<Card> cards;
 private Random random = new Random();

 public Deck() {
 cards = new List<Card>();
 for (int suit = 0; suit <= 3; suit++)
 for (int value = 1; value <= 13; value++)
 cards.Add(new Card((Suits)suit, (Values)value));
 }

 public Deck(IEnumerable<Card> initialCards) {
 cards = new List<Card>(initialCards);
 }

 public int Count { get { return cards.Count; } }

 public void Add(Card cardToAdd) {
 cards.Add(cardToAdd);
 }

 public Card Deal(int index) {
 Card CardToDeal = cards[index];
 cards.RemoveAt(index);
 return CardToDeal;
 }

 public void Shuffle() {
 // this method shuffles the cards by rearranging them in a random order
 }

 public IEnumerable<string> GetCardNames() {
 // this method returns a string array that contains each card's name
 }

 public void Sort() {
 cards.Sort(new CardComparer_bySuit());
 }
}

Hint: the ListBox
control’s SelectedIndex
property will be the
same as the index of
the card in the list.
You can pass it directly
to the Deal() method.
If no card is selected,
it’ll be less than zero.
In that case, the
moveToDeck button
should do nothing.

Another hint: the form makes it really easy to test your Shuffle() method.Keep clicking the “Reset Deck #1” button until you get a three-card deck.That’ll make it easy to see if your shuffling code works.

Deck
Count

Add()
Deal()
GetCardNames()
Shuffle()
Sort()

Build the Deck class.

Here’s the skeleton for the Deck class. We’ve filled in several of the methods for you. You’ll need to finish it
by writing the Shuffle() and GetCardNames() methods, and you’ll have to get the Sort() method
to work. We also added two useful overloaded constructors: one that creates a complete deck of 52
cards, and another that takes an array of Card objects and loads them into the deck.

2 When you have the declarations for a class
without the implementation, it’s called a “skeleton.”

If you don’t pass parameters
into the constructor, it creates
a complete deck of 52 cards.

This overloaded constructor takes one
parameter—an array of cards, which
it loads as the initial deck.

The Deck stores its cards in a List—but it keeps
it private to make sure it’s well encapsulated.

The Deal method deals one card out of the deck—it removes the Card object from the deck and returns a reference to it. You can deal from the top of the deck by passing it 0, or deal from the middle by passing it the index of the card to deal.

You’ll need to write the Shuffle()
method and the GetCardNames()
method, and add a class that
implements IComparer to make the
Sort() method work. And you’ll
need to add the Card class you
already wrote. If you use Add
Existing Item to add it, don’t
forget to change its namespace.

The parameter
has the type
IEnumerable<Card>,
which lets you pass
any collection into
the constructor,
not just a List<T>
or an array.

Again, even though
GetCardNames()
returns an
array, we expose
IEnumerable<string>.

384   Chapter 8

class Deck {
 private List<Card> cards;
 private Random random = new Random();
 public Deck() {
 cards = new List<Card>();
 for (int suit = 0; suit <= 3; suit++)
 for (int value = 1; value <= 13; value++)
 cards.Add(new Card((Suits)suit, (Values)value));
 }
 public Deck(IEnumerable<Card> initialCards) {
 cards = new List<Card>(initialCards);
 }
 public int Count { get { return cards.Count; } }
 public void Add(Card cardToAdd) {
 cards.Add(cardToAdd);
 }
 public Card Deal(int index) {
 Card CardToDeal = cards[index];
 cards.RemoveAt(index);
 return CardToDeal;
 }
 public void Shuffle() {
 List<Card> newCards = new List<Card>();
 while (cards.Count > 0) {
 int CardToMove = random.Next(cards.Count);
 newCards.Add(cards[CardToMove]);
 cards.RemoveAt(CardToMove);
 }
 cards = newCards;
 }
 public IEnumerable<string> GetCardNames() {
 string[] CardNames = new string[cards.Count];
 for (int i = 0; i < cards.Count; i++)
 CardNames[i] = cards[i].Name;
 return CardNames;
 }
 public void Sort() {
 cards.Sort(new CardComparer_bySuit());
 }
}

Build a class to store a deck of cards, along with a form that uses it.

Here’s the constructor that creates a complete deck of 52 cards. It uses a nested for loop. The outside one loops through the four suits. That means the inside loop that goes through the 13 values runs four separate times, once per suit.

Here’s the other constructor—this class
has two overloaded constructors, each
with different parameters.

The Add and Deal methods are pretty straightforward—they use the methods for the Cards list. The Deal method removes a card from the list, and the Add method adds a card to the list.

Your GetCardNames() method needs to
create an array that’s big enough to

hold all the card names. This one uses a
for loop, but it could also use foreac

h.

The Shuffle() method creates a new instance of List<Card> called newCards. Then it pulls random cards out of the cards field and sticks them in newCards until cards is empty. Once it’s done, it resets the cards field to point to the new instance. The old instance won’t have any more references pointing to it, so it’ll get collected by the garbage collector.

exercise solution

you are here 4   385

enums and collections

class CardComparer_bySuit : IComparer<Card>
{
 public int Compare(Card x, Card y)
 {
 if (x.Suit > y.Suit)
 return 1;
 if (x.Suit < y.Suit)
 return -1;
 if (x.Value > y.Value)
 return 1;
 if (x.Value < y.Value)
 return -1;
 return 0;
 }
}

public partial class Form1 : Form
{
 Deck deck1;
 Deck deck2;
 Random random = new Random();

 public Form1() {
 InitializeComponent();
 ResetDeck(1);
 ResetDeck(2);
 RedrawDeck(1);
 RedrawDeck(2);
 }

 private void ResetDeck(int deckNumber) {
 if (deckNumber == 1) {
 int numberOfCards = random.Next(1, 11);
 deck1 = new Deck(new Card[] { });
 for (int i = 0; i < numberOfCards; i++)
 deck1.Add(new Card((Suits)random.Next(4),
 (Values)random.Next(1, 14)));
 deck1.Sort();
 } else
 deck2 = new Deck();
 }

To reset deck #1, this method first uses random.Next() to pick how many cards will go into the deck, and then creates a new empty deck. It uses a for loop to add that many random cards. It finishes off by sorting the deck. Resetting deck #2 is easy—just create a new instance of Deck().

The form’s constructor
needs to reset the two
decks, and then it draws
them.

Sorting by suit is a lot like
sorting by value. The only
difference is that in this
case the suits are compared
first, and then the values
are compared only if the
suits match.

We’re not done yet—flip the page!

Instead of using if/else
if, we used a series of if
statements. This works
because each if statement
only executes if the previous
one didn’t—otherwise, the
previous one would have
returned.

You’ve already got the form's
RedrawDeck() method from
the exercise instructions.

386   Chapter 8

 private void reset1_Click(object sender, EventArgs e) {
 ResetDeck(1);
 RedrawDeck(1);
 }

 private void reset2_Click(object sender, EventArgs e) {
 ResetDeck(2);
 RedrawDeck(2);
 }

 private void shuffle1_Click(object sender, EventArgs e) {
 deck1.Shuffle();
 RedrawDeck(1);
 }

 private void shuffle2_Click(object sender, EventArgs e) {
 deck2.Shuffle();
 RedrawDeck(2);
 }

 private void moveToDeck1_Click(object sender, EventArgs e) {
 if (listBox2.SelectedIndex >= 0)
 if (deck2.Count > 0) {
 deck1.Add(deck2.Deal(listBox2.SelectedIndex));
 }
 RedrawDeck(1);
 RedrawDeck(2);
 }

 private void moveToDeck2_Click(object sender, EventArgs e) {
 if (listBox1.SelectedIndex >= 0)
 if (deck1.Count > 0)
 deck2.Add(deck1.Deal(listBox1.SelectedIndex));
 RedrawDeck(1);
 RedrawDeck(2);
 }
}

Here’s the rest of the code for the form.

These buttons are pretty simple—first reset or shuffle the deck, then redraw it.

Naming your controls makes it a lot easier to read
your code. If these were called button1_Click,
button2_Click, etc., you wouldn’t know which
button’s code you were looking at!

You can use the ListBox
control’s SelectedIndex property
to figure out which card the
user selected and then move it
from one deck to the other. (If
it’s less than zero, no card was
selected, so the button does
nothing.) Once the card’s moved,
both decks need to be redrawn.

you can look it up

 (continued)

you are here 4   387

enums and collections

Use a dict ionary to store keys and values
A list is like a big long page full of names. But what if you also want, for each name, an
address? Or for every car in the garage list, you want details about that car? You need a
dictionary. A dictionary lets you take a special value—the key—and associate that key
with a bunch of data—the value. And one more thing: a specific key can only appear
once in any dictionary.

dic•tion•ar•y
A book that lists the words of a language in
alphabetical order and gives their meaning.

This is the key. It’s how you look up a definition in a dictionary.

This is the value. It’s the data
associated with a particular key.

private void button1_Click(object sender, EventArgs e)
{
 Dictionary<string, string> wordDefinition =
 new Dictionary<string, string>();

 wordDefinition.Add ("Dictionary", "A book that lists the words of a "
 + "language in alphabetical order and gives their meaning");
 wordDefinition.Add ("Key", "A thing that provides a means of gaining access to "
 + "our understanding something.");
 wordDefinition.Add ("Value", "A quantity, number, string, or reference.");

 if (wordDefinition.ContainsKey("Key")){
 MessageBox.Show(wordDefinition["Key"]);
 }

}
Here’s how you get the value for

a key.

It looks kind of like an
 array index-get

the value for the key a
t this index.

This dictionary has string values for keys, and strings as the value. It’s like a real dictionary: term, and definition.

ContainsKey() tells you if a key
is in

the dictionary. Handy, huh?

The Add()
method is how
you add keys
and values to
the dictionary.

Dictionary <Tkey, TValue> kv = new Dictionary <TKey, TValue>();

These are like List<T>. The <T> means
a type goes in there. So you can declare
one type for the key, and another type
for the value.

These represent types. The first type in the angle brackets is always the key, and the second is always the data.

Here’s how you declare a Dictionary in C#:

And here’s a Dictionary in action:

Add() takes a
key, and then
the value.

388   Chapter 8

The dict ionary funct ionality rundown
Dictionaries are a lot like lists. Both types are flexible in letting you work with lots of data types,
and also come with lots of built-in functionality. Here are the basic Dictionary methods:

keys and values

± Add an item.
You can add an item to a dictionary by passing a key and a value to its Add() method.

	 Dictionary<string, string> myDictionary = new Dictionary<string, string>();

	 myDictionary.Add("some key", "some value");

± Look up a value using its key.
The most important thing you’ll do with a dictionary is look up values—which makes
sense, because you stored those values in a dictionary so you could look them up using
their unique keys. For this Dictionary<string, string>, you’ll look up values using a
string key, and it’ll return a string.

		 string lookupValue = myDictionary["some key"];

± Remove an item.
Just like a List, you can remove an item from a dictionary using the Remove() method.
All you need to pass to the Remove method is the Key value to have both the key and the
value removed.

		 myDictionary.Remove("some key");

± Get a list of keys.
You can get a list of all of the keys in a dictionary using its Keys property and loop
through it using a foreach loop. Here’s what that would look like:

		 foreach (string key in myDictionary.Keys) { ... };

± Count the pairs in the dictionary.
The Count property returns the number of key-value pairs that are in the dictionary:

		 int howMany = myDictionary.Count;

Your key and value can be different types
Dictionaries are really versatile and can hold just about anything, from strings to numbers and even objects.
Here’s an example of a dictionary that’s storing an integer as a key and a Duck object reference as a value.

		 Dictionary<int, Duck> duckDictionary = new Dictionary<int, Duck>();

		 duckDictionary.Add(376, new Duck()
 { Kind = KindOfDuck.Mallard, Size = 15 });

Keys is a property of your dictionary object. This particular
dictionary has string keys, so Keys is a collection of strings.

Keys are unique in a Dictionary; any key appears exactly once. Values can appear any number of times—two keys can have the same value. That way, when you look up or remove a key, the Dictionary knows what to remove.

It’s common to see a
dictionary that maps
integers to objects when
you’re assigning unique ID
numbers to objects.

you are here 4   389

enums and collections

Build a program that uses a dict ionary
Here’s a quick program that any New York baseball fan will like. When an
important player retires, the team retires the player’s jersey number. Let’s
build a program that looks up who wore famous numbers and when those
numbers were retired. Here’s a class to keep track of a jersey number:

Do this!

class JerseyNumber {
 public string Player { get; private set; }
 public int YearRetired { get; private set; }

 public JerseyNumber(string player, int numberRetired) {
 Player = player;
 YearRetired = numberRetired;
 }
}

public partial class Form1 : Form {
 Dictionary<int, JerseyNumber> retiredNumbers = new Dictionary<int, JerseyNumber>() {
 {3, new JerseyNumber("Babe Ruth", 1948)},
 {4, new JerseyNumber("Lou Gehrig", 1939)},
 {5, new JerseyNumber("Joe DiMaggio", 1952)},
 {7, new JerseyNumber("Mickey Mantle", 1969)},
 {8, new JerseyNumber("Yogi Berra", 1972)},
 {10, new JerseyNumber("Phil Rizzuto", 1985)},
 {23, new JerseyNumber("Don Mattingly", 1997)},
 {42, new JerseyNumber("Jackie Robinson", 1993)},
 {44, new JerseyNumber("Reggie Jackson", 1993)},
 };

 public Form1() {
 InitializeComponent();

 foreach (int key in retiredNumbers.Keys) {
 number.Items.Add(key);
 }
 }

 private void number_SelectedIndexChanged(object sender, EventArgs e) {
 JerseyNumber jerseyNumber = retiredNumbers[(int)number.SelectedItem];
 nameLabel.Text = jerseyNumber.Player;
 yearLabel.Text = jerseyNumber.YearRetired.ToString();
 }
}

Use a collection
initializer to populate
your Dictionary with
JerseyNumber objects.

Add each key from
the dictionary to the
ComboBox’s Items
collection.

Use the ComboBox’s SelectedIndexChanged event to update the two labels on the form with the values from the JerseyNumber object retrieved from the Dictionary.

The ComboBox’s SelectedItem
property is an Object. Since the
Dictionary key is an int, we need
to cast it to an int value before
doing the lookup in the Dictionary.

Here’s the form:

And here’s all of the code for the form:

Yogi Berra was #8 for one
team and Cal Ripken, Jr.,

was #8 for another. But in a
dictionary only one key can

map to a single value, so
we’ll only include numbers
from one team here. Can

you think of a way to
store retired numbers for

multiple teams?

390   Chapter 8

Build a game of Go Fish! that you can play against the computer.

This exercise is a little different....
There’s a good chance that you’re learning C# because you want a job as a professional developer. That’s
why we modeled this exercise after a professional assignment. When you’re working as a programmer on a
team, you don’t usually build a complete program from start to finish. Instead, you’ll build a piece of a bigger
program. So we’re going to give you a puzzle that’s got some of the pieces already filled in. The code for the
form is given to you in step #3. You just have to type it in—which may seem like a great head start, but it
means that your classes have to work with that code. And that can be a challenge!

Start with the spec.

Many professional software projects start with a specification, and this one is no
exception. You’ll be building a game of the classic card game Go Fish! Different people
play the game by slightly different rules, so here’s a recap of the rules you’ll be using:

≥≥ The game starts with a deck of 52 cards. Five cards are dealt to each player.
The pile of cards that’s left after everyone’s dealt a hand is called the stock.
Each player takes turns asking for a value (“Do you have any sevens?”). Any
other player holding cards with that value must hand them over. If nobody has
a card with that value, then the player must “go fish” by taking a card from the
stock.

≥≥ The goal of the game is to make books, where a book is the complete set of all
four cards that have the same value. The player with the most books at the end
of the game is the winner. As soon as a player collects a book, he places it face-
up on the table so all the other players can see what books everyone else has.

≥≥ When placing a book on the table causes a player to run out of cards, then he
has to draw five more cards from the stock. If there are fewer than five cards
left in the stock, he takes all of them. The game is over as soon as the stock is
out of cards. The winner is then chosen based on whoever has the most books.

≥≥ For this computer version of Go Fish, there are two computer players and one
human player. Every round starts with the human player selecting one of the
cards in his hand, which is displayed at all times. He does this by choosing one
of the cards and indicating that he will ask for a card. Then the two computer
players will ask for their cards. The results of each round will be displayed.
This will repeat until there’s a winner.

≥≥ The game will take care of all of the trading of cards and pulling out of books
automatically. Once there’s a winner, the game is over. The game displays
the name of the winner (or winners, in case of a tie). No other action can be
taken—the player will have to restart the program in order to start a new game.

1
If you
don’t know
what you’re
building
before you
start, then
how would
you know
when you’re
done?
That’s
why many
professional
software
projects
start with a
specification
that tells
you what
you’re going
to build.

go fish!

you are here 4   391

enums and collections

Set the ReadOnly property of the two TextBox controls to true—that will make them read-only text boxes, and set the Multiline property to true.

Set this button’s Name property to buttonAsk, and set its Enabled
property to false. That will disable it, which means it can’t be
pressed. The form will enable it as soon as the game starts.

Set this button’s Name property to buttonStart. It’s disabled in this screenshot, but it starts out enabled. It’ll get disabled once the game is started.

This TextBox control should have its
Name property set to textName. In this
screenshot, it’s disabled, but it should be
enabled when the program starts.

These are
TextBox
controls named
textProgress
and textBooks.

The player’s
current hand
is displayed
in a ListBox
control called
listHand. You
can set its name
using the Name
property. Disable
it by setting its
Enabled property
to False.

Build the form.
Build the form for the Go Fish! game. It should have a ListBox control for the player’s
hand, two TextBox controls for the progress of the game, and a button to let the
player ask for a card. To play the game, the user will select one of the cards from the
hand and click the button to ask the computer players if they have that card.

2

We’re not done yet—flip the page!

Set the ScrollBars
property to Veritcal to
display a scroll bar when
the window fills up.

392   Chapter 8

 (continued)

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }

 private Game game;

 private void buttonStart_Click(object sender, EventArgs e) {
 if (String.IsNullOrEmpty(textName.Text)){
 MessageBox.Show("Please enter your name", "Can't start the game yet");
 return;
 }
 game = new Game(textName.Text, new List<string> { "Joe", "Bob" }, textProgress);
 buttonStart.Enabled = false;
 textName.Enabled = false;
 buttonAsk.Enabled = true;
 listHand.Enabled = true;
 UpdateForm();
 }

 private void UpdateForm() {
 listHand.Items.Clear();
 foreach (String cardName in game.GetPlayerCardNames())
 listHand.Items.Add(cardName);
 textBooks.Text = game.DescribeBooks();
 textProgress.Text += game.DescribePlayerHands();
 textProgress.SelectionStart = textProgress.Text.Length;
 textProgress.ScrollToCaret();
 }

 private void buttonAsk_Click(object sender, EventArgs e) {
 textProgress.Text = "";
 if (listHand.SelectedIndex < 0) {
 MessageBox.Show("Please select a card");
 return;
 }
 if (game.PlayOneRound(listHand.SelectedIndex)) {
 textProgress.Text += "The winner is... " + game.GetWinnerName();
 textBooks.Text = game.DescribeBooks();
 buttonAsk.Enabled = false;
 listHand.Enabled = false;
 } else
 UpdateForm();
 }
}

Here’s the code for the form.
Enter it exactly like you see here. The rest of the code that you write will have to work with it.

3

This is the only class that the form
interacts with. It runs the whole game.

When you start a new game, it creates a new instance of the Game class, enables the Ask button, disables the Start Game button, and then redraws the form.

This method
clears and
repopulates
the ListBox
that holds
the player’s
hand, and then
updates the
text boxes.

Using SelectionStart and ScrollToCaret() like this scrolls the text box to the end, so if there’s too much text to display at once it scrolls down to the bottom.

The player selects one of the cards and clicks the Ask button to see if any of the other players have a card that matches its value. The Game class plays a round using the PlayOneRound() method.

The Enabled
property enables
or disables a
control on the
form.

here’s the form code

The SelectionStart line moves the flashing text box cursor to the end, and once it’s moved, the ScrollToCaret() method scrolls the text box down to the cursor.

you are here 4   393

enums and collections

You’ll need this code, too.
You’ll need the code you wrote before for the Card class, the Suits and Values enums, the Deck
class, and the CardComparer_byValue class. But you’ll need to add a few more methods to the
Deck class…and you’ll need to understand them in order to use them.

4

public Card Peek(int cardNumber) {
 return cards[cardNumber];
}

public Card Deal() {
 return Deal(0);
}

public bool ContainsValue(Values value) {
 foreach (Card card in cards)
 if (card.Value == value)
 return true;
 return false;
}

public Deck PullOutValues(Values value) {
 Deck deckToReturn = new Deck(new Card[] { });
 for (int i = cards.Count - 1; i >= 0; i--)
 if (cards[i].Value == value)
 deckToReturn.Add(Deal(i));
 return deckToReturn;
}

public bool HasBook(Values value) {
 int NumberOfCards = 0;
 foreach (Card card in cards)
 if (card.Value == value)
 NumberOfCards++;
 if (NumberOfCards == 4)
 return true;
 else
 return false;
}

public void SortByValue() {
 cards.Sort(new CardComparer_byValue());
}

The Peek() method lets you take a peek at one of the cards in the deck without dealing it.

Someone overloaded Deal() to make it a little easier
to read. If you don’t pass it any parameters, it deals
a card off the top of the deck.

The ContainsValue() method searches through
the entire deck for cards with a certain value,
and returns true if it finds any. Can you
guess how you’ll use this in the Go Fish game?

You’ll use the PullOutValues() method when you build the code to get a book of cards from the deck. It looks for any cards that match a value, pulls them out of the deck, and returns a new deck with those cards in it.

The HasBook() method checks a
deck to see if it contains a book
of four cards of whatever value
was passed as the parameter. It
returns true if there’s a book in
the deck, false otherwise.

The SortByValue() method sorts the deck using a CardComparer_byValue object.

Still not done—flip the page!

394   Chapter 8

 (continued)

Now comes the HARD part: Build the Player class.
There’s an instance of the Player class for each of the three players in the game. They
get created by the buttonStart button’s event handler.

5

class Player
{
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private TextBox textBoxOnForm;
 public Player(String name, Random random, TextBox textBoxOnForm) {
	 // The constructor for the Player class initializes four private fields, and then
	 // adds a line to the TextBox control on the form that says, "Joe has just
	 // joined the game"—but use the name in the private field, and don't forget to
	 // add a line break at the end of every line you add to the TextBox.
 }
 public IEnumerable<Values> PullOutBooks() { } // see the facing page for the code
 public Values GetRandomValue() {
	 // This method gets a random value—but it has to be a value that's in the deck!
 }
 public Deck DoYouHaveAny(Values value) {
	 // This is where an opponent asks if I have any cards of a certain value
	 // Use Deck.PullOutValues() to pull out the values. Add a line to the TextBox
	 // that says, "Joe has 3 sixes"—use the new Card.Plural() static method
 }
 public void AskForACard(List<Player> players, int myIndex, Deck stock) {
	 // Here's an overloaded version of AskForACard()—choose a random value
	 // from the deck using GetRandomValue() and ask for it using AskForACard()
 }

 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
	 // Ask the other players for a value. First add a line to the TextBox: "Joe asks
	 // if anyone has a Queen". Then go through the list of players that was passed in
	 // as a parameter and ask each player if he has any of the value (using his
	 // DoYouHaveAny() method). He'll pass you a deck of cards—add them to my deck.
	 // Keep track of how many cards were added. If there weren't any, you'll need
	 // to deal yourself a card from the stock (which was also passed as a parameter),
	 // and you'll have to add a line to the TextBox: "Joe had to draw from the stock"
 }

 // Here's a property and a few short methods that were already written for you
 public int CardCount { get { return cards.Count; } }
 public void TakeCard(Card card) { cards.Add(card); }
 public IEnumerable<string> GetCardNames() { return cards.GetCardNames(); }
 public Card Peek(int cardNumber) { return cards.Peek(cardNumber); }
 public void SortHand() { cards.SortByValue(); }
}

Look closely at each of the comments—they tell you what the methods are supposed to do. Your job is to fill in the methods.

go get ’em tiger!

There’s a rare case when an opponent’s last card was taken by another player, so he has no
cards left when AskForACard() is called. Can you figure out how to deal with this case?

you are here 4   395

enums and collections

You’ll need to add this method to the Card class.
It’s a static method to take a value and return its plural—that way a 10 will return

“Tens” but a 6 will return “Sixes” (with “es” on the end). Since it’s static, you call it with
the class name—Card.Plural()—and not from an instance.

public partial class Card {
 public static string Plural(Values value) {
 if (value == Values.Six)
 return "Sixes";
 else
 return value.ToString() + "s";
 }
}

7

Nearly there—keep flipping!

That Peek() method we added
to the Deck class will come
in handy. It lets the program
look at one of the cards in
the deck by giving its index
number, but unlike Deal() it
doesn’t remove the card.

And you’ll have to build TWO overloaded versions of theAskForACard() method. The first one is used by the opponents when they ask for cards—it’ll look through their hands and find a card to ask for. The second one is used when the player asks for the card. Both of them ask EVERY other player (both computer and human) for any cards that match the value.

We used a partial class to add this
static method to Card to make it
easy for you to see what’s going
on. But you don’t need to use a
partial class—if you want, you
can just add it straight into the
existing Card class.

You’ll need to add this method to the Player class.
Here’s the PullOutBooks() method for the Player class. It loops through each
of the 13 card values. For each of the values, it counts all of the cards in the player’s
cards field that match the value. If the player has all four cards with that value,
that’s a complete book—it adds the value to the books variable to be returned, and it
removes the book from the player’s cards.

public IEnumerable<Values> PullOutBooks() {
 List<Values> books = new List<Values>();
 for (int i = 1; i <= 13; i++) {
 Values value = (Values)i;
 int howMany = 0;
 for (int card = 0; card < cards.Count; card++)
 if (cards.Peek(card).Value == value)
 howMany++;
 if (howMany == 4) {
 books.Add(value);
 cards.PullOutValues(value);
 }
 }
 return books;
}

6
A couple more
things to
think about

Once you build the
“Ask for a card”
button’s event
handler, you can also
hook the ListBox’s
DoubleClick event
up to it so you can
also double-click on
a card to ask for it.

396   Chapter 8

 (continued)
The rest of the job: Build the Game class.
The form keeps one instance of Game. It manages the game play. Look
closely at how it’s used in the form.

8

class Game {
 private List<Player> players;
 private Dictionary<Values, Player> books;
 private Deck stock;
 private TextBox textBoxOnForm;
 public Game(string playerName, IEnumerable<string> opponentNames, TextBox textBoxOnForm) {
 Random random = new Random();
 this.textBoxOnForm = textBoxOnForm;
 players = new List<Player>();
 players.Add(new Player(playerName, random, textBoxOnForm));
 foreach (string player in opponentNames)
 players.Add(new Player(player, random, textBoxOnForm));
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Deal();
 players[0].SortHand();
 }
 private void Deal() {
	 // This is where the game starts—this method's only called at the beginning
	 // of the game. Shuffle the stock, deal five cards to each player, then use a
	 // foreach loop to call each player's PullOutBooks() method.
 }
 public bool PlayOneRound(int selectedPlayerCard) {
	 // Play one round of the game. The parameter is the card the player selected
	 // from his hand—get its value. Then go through all of the players and call
	 // each one's AskForACard() methods, starting with the human player (who's
	 // at index zero in the Players list—make sure he asks for the selected
	 // card's value). Then call PullOutBooks()—if it returns true, then the
	 // player ran out of cards and needs to draw a new hand. After all the players
	 // have gone, sort the human player's hand (so it looks nice in the form).
	 // Then check the stock to see if it's out of cards. If it is, reset the
	 // TextBox on the form to say, "The stock is out of cards. Game over!" and return
	 // true. Otherwise, the game isn't over yet, so return false.
 }
 public bool PullOutBooks(Player player) {
	 // Pull out a player's books. Return true if the player ran out of cards, otherwise
	 // return false. Each book is added to the Books dictionary. A player runs out of
	 // cards when he’'s used all of his cards to make books—and he wins the game.
 }
 public string DescribeBooks() {
	 // Return a long string that describes everyone's books by looking at the Books
	 // dictionary: "Joe has a book of sixes. (line break) Ed has a book of Aces."
 }
}

book ’em danno

Using IEnumerable<T>
in public class members is
a great way to make your
classes more flexible, and
that’s something you need
to think about when your
code needs to be reused.

Now someone else can use a
string[], List<string>,
or something else entirely to

instantiate the Game class.

It’s great for encapsulation, too. If
you expose an IEnumerable<T> instead
of, say, a List<T>, then you can’t
accidentally write code that modifies it.

The Player and Game classes both use a reference to
the multiline TextBox on the form to print messages
for the user to read. Make sure you add “using
System.Windows.Forms;” to the top of their files.

you are here 4   397

enums and collections

public string GetWinnerName() {
	 // This method is called at the end of the game. It uses its own dictionary
	 // (Dictionary<string, int> winners) to keep track of how many books each player
	 // ended up with in the books dictionary. First it uses a foreach loop
	 // on books.Keys—foreach (Values value in books.Keys)—to populate
	 // its winners dictionary with the number of books each player ended up with.
	 // Then it loops through that dictionary to find the largest number of books
	 // any winner has. And finally it makes one last pass through winners to come
	 // up with a list of winners in a string ("Joe and Ed"). If there's one winner,
	 // it returns a string like this: "Ed with 3 books". Otherwise, it returns a
	 // string like this: "A tie between Joe and Bob with 2 books."
}

// Here are a couple of short methods that were already written for you:

public IEnumerable<string> GetPlayerCardNames() {
 return players[0].GetCardNames();
}

public string DescribePlayerHands() {
 string description = "";
 for (int i = 0; i < players.Count; i++) {
 description += players[i].Name + " has " + players[i].CardCount;
 if (players[i].CardCount == 1)
 description += " card." + Environment.NewLine;
 else
 description += " cards." + Environment.NewLine;
 }
 description += "The stock has " + stock.Count + " cards left.";
 return description;
}

Here’s a hint for writing the GetWinnerName() method: you’ll need to create a new Dictionary<string, int> calledwinners at the top of the method. The winners dictionary will let you use each player’s name to look up the numberof books he made during the game. First you’ll use a foreach loop to go through the books that the players made andbuild the dictionary. Then you’ll use another foreach loop to find the highest number of books associated with anyplayer. But there might be a tie—more than one player might have the most books! So you’ll need one more foreachloop to look for all the players in winners that have the number of books that you found in the second loop and build astring that says who won.

Use Environment.NewLine to add line breaks
You’ve been using \n throughout the book to add line breaks to message boxes. .NET also gives you a convenient constant for adding line breaks: Environment.NewLine. It always contains the constant value “\r\n”. If you actually look at the characters that make up a Windows-formatted text file, at the end of every line you’ll see two characters: ‘\r’ and ‘\n’. Other operating systems (like Unix) only use a ‘\n’ to indicate the end of each line. The MessageBox.Show() method is smart enough to automatically convert ‘\n’ characters to line breaks, but your code can be easier to read if you use Environment.NewLine instead of escape characters. Also, Environment.NewLine is what gets appended to the end of each line when you use Console.WriteLine().

Go to the Watch
window and type
(int)’\r’ to cast the
character \r to a
number. It turns into
13. ‘\n’ turns into 10.
Every char turns into
its own unique number
called its Unicode
value. You’ll learn
more about that in
the next chapter.

398   Chapter 8

 private void Deal() {
 stock.Shuffle();
 for (int i = 0; i < 5; i++)
 foreach (Player player in players)
 player.TakeCard(stock.Deal());
 foreach (Player player in players)
 PullOutBooks(player);
 }

 public bool PlayOneRound(int selectedPlayerCard) {
 Values cardToAskFor = players[0].Peek(selectedPlayerCard).Value;
 for (int i = 0; i < players.Count; i++) {
 if (i == 0)
 players[0].AskForACard(players, 0, stock, cardToAskFor);
 else
 players[i].AskForACard(players, i, stock);
 if (PullOutBooks(players[i])) {
 textBoxOnForm.Text += players[i].Name
 + " drew a new hand" + Environment.NewLine;
 int card = 1;
 while (card <= 5 && stock.Count > 0) {
 players[i].TakeCard(stock.Deal());
 card++;
 }
 }
 players[0].SortHand();
 if (stock.Count == 0) {
 textBoxOnForm.Text =
 "The stock is out of cards. Game over!" + Environment.NewLine;
 return true;
 }
 }
 return false;
 }

 public bool PullOutBooks(Player player)
 {
 IEnumerable<Values> booksPulled = player.PullOutBooks();
 foreach (Values value in booksPulled)
 books.Add(value, player);
 if (player.CardCount == 0)
 return true;
 return false;
 }

Here are the filled-in methods in the Game class.

exercise solution

The Deal() method gets called when the
game first starts—it shuffles the deck and
then deals five cards to each player. Then
it pulls out any books that the players
happened to have been dealt.

As soon as the player clicks the “Ask
for a card” button, the game calls
AskForACard() with that card. Then
it calls AskForACard() for each
opponent.

After the player oropponent asks for acard, the game pullsout any books that hemade. If a player’s outof cards, he draws anew hand by dealing upto 5 cards from thestock.

After the round is played, the game sorts the player’s hand to make sure it’s displayed in order on the form. Then it checks to see if the game’s over. If it is, PlayOneRound() returns true.

PullOutBooks() looks through a player’s cards to see
if he’s got four cards with the same value. If he
does, they get added to his books dictionary. And if
he’s got no cards left afterward, it returns true.

you are here 4   399

enums and collections

 public string DescribeBooks() {
 string whoHasWhichBooks = "";
 foreach (Values value in books.Keys)
 whoHasWhichBooks += books[value].Name + " has a book of "
 + Card.Plural(value) + Environment.NewLine;
 return whoHasWhichBooks;
 }

 public string GetWinnerName() {
 Dictionary<string, int> winners = new Dictionary<string, int>();
 foreach (Values value in books.Keys) {
 string name = books[value].Name;
 if (winners.ContainsKey(name))
 winners[name]++;
 else
 winners.Add(name, 1);
 }
 int mostBooks = 0;
 foreach (string name in winners.Keys)
 if (winners[name] > mostBooks)
 mostBooks = winners[name];
 bool tie = false;
 string winnerList = "";
 foreach (string name in winners.Keys)
 if (winners[name] == mostBooks)
 {
 if (!String.IsNullOrEmpty(winnerList))
 {
 winnerList += " and ";
 tie = true;
 }
 winnerList += name;
 }
 winnerList += " with " + mostBooks + " books";
 if (tie)
 return "A tie between " + winnerList;
 else
 return winnerList;
 }

We’re not done yet—flip the page!

The form needs to display a list of books, so it uses DescribeBooks() to turn the player’s books dictionary into words.

Once the last card’s been picked up, the
game needs to figure out who won. That’s
what the GetWinnerName() does. And
it’ll use a dictionary called winners to
do it. Each player’s name is a key in the
dictionary; its value is the number of books
that player got during the game.

Next the game looks through the dictionary
to figure the number of books that the
player with the most books has. It puts that
value in a variable called mostBooks.

Now that we know which player
has the most books, the method
can come up with a string that
lists the winner (or winners).

Bonus mini-exercise: When the game is done, the Start button stays disabled
and the player just sees the results of the game. Can you figure out how to re-

enable the Start button when the game is over and have it start up a new game?

400   Chapter 8

 (continued)

public Player(String name, Random random, TextBox textBoxOnForm) {
 this.name = name;
 this.random = random;
 this.textBoxOnForm = textBoxOnForm;
 this.cards = new Deck(new Card[] {});
 textBoxOnForm.Text += name +
 " has just joined the game" + Environment.NewLine;
}

public Values GetRandomValue() {
 Card randomCard = cards.Peek(random.Next(cards.Count));
 return randomCard.Value;
}

public Deck DoYouHaveAny(Values value) {
 Deck cardsIHave = cards.PullOutValues(value);
 textBoxOnForm.Text += Name + " has " + cardsIHave.Count + " "
 + Card.Plural(value) + Environment.NewLine;
 return cardsIHave;
}

public void AskForACard(List<Player> players, int myIndex, Deck stock) {
 if (stock.Count > 0) {
 if (cards.Count == 0)
 cards.Add(stock.Deal());
 Values randomValue = GetRandomValue();
 AskForACard(players, myIndex, stock, randomValue);
 if (stock.Count > 0 && players[0].CardCount == 0)
 players[0].cards.Add(stock.Deal());
 }
}

public void AskForACard(List<Player> players, int myIndex,
 Deck stock, Values value) {
 textBoxOnForm.Text += Name + " asks if anyone has a "
 + value + Environment.NewLine;
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0 && stock.Count > 0) {
 textBoxOnForm.Text += Name +
 " must draw from the stock." + Environment.NewLine;
 cards.Add(stock.Deal());
 }
}

Here are the filled-in methods in the Player class.

exercise solution

Here’s the constructor for the Player class.
It sets its private fields and adds a line to
the progress text box saying who joined.

The GetRandomValue() method uses Peek() to
look at a random card in the player’s hand.

DoYouHaveAny() uses
the PullOutValues()
method to pull out and
return all cards that
match the parameter.

There are two overloaded
AskForACard() methods.
The first one is used by
the opponents—it gets a
random card from the
hand and calls the other
AskForACard().

This AskForACard() method
looks through every player
(except for the one asking),
calls its DoYouHaveAny()
method, and adds any cards
handed over to the hand.

If no cards were handed over,
the player draws from the
stock using its Deal() method.

Bonus mini-exercise: Can you figure out a way to improve encapsulation and design
in your Player class by replacing List<Player> with IEnumerable<Player>

in the two AskForACard() methods without changing the way the software
works? Flip to Leftover #8 in the Appendix for a useful tool to help with that.

If an opponent gave up his last card, GetRandomValue()
will try to call Deal() on an empty deck. These if
statements prevent that from happening.

This handles an edge case where the human
player's last card is taken by an opponent.

you are here 4   401

enums and collections

And yet MORE collect ion types…
List and Dictionary objects are two of the built-in generic collections that are
part of the .NET Framework. Lists and dictionaries are very flexible—you can access any
of the data in them in any order. But sometimes you need to restrict how your program
works with the data because the thing that you’re representing inside your program works
like that in the real world. For situations like this, you’ll use a Queue or a Stack. Those
are generic collections like List<T>, but they’re especially good at making sure that your
data is processed in a certain order.

Generic col lect ions are an important part of
the .NET Framework
They’re really useful—so much that the IDE automatically adds
this statement to the top of every class you add to your project:

 using System.Collections.Generic;

Almost every large project that you’ll work on will include some
sort of generic collection, because your programs need to store
data. And when you’re dealing with groups of similar things in
the real world, they almost always naturally fall into a category
that corresponds pretty well to one of these kinds of collections.

Use a Queue when the first
object you store will be the first
one you’ll use, like:

≥≥ Cars moving down a one-way street

≥≥ People standing in line

≥≥ Customers on hold for a customer
service support line

≥≥ Anything else that’s handled on a
first-come, first-served basis

Use a Stack when you always want
to use the object you stored most
recently, like:

≥≥ Furniture loaded into the back of a
moving truck

≥≥ A stack of books where you want to
read the most recently added one first

≥≥ People boarding or leaving a plane

≥≥ A pyramid of cheerleaders, where the
ones on top have to dismount first…
imagine the mess if the one on the
bottom walked away first!

The stack is last-in, first-out: the first object
that goes into the stack is the last one that
comes out of it.

A queue is first-in first-out, which means that the first object that you put into the queue is the first one you pull out of it to use.

A queue is like a list
that lets you put
objects on the end of
the list and use the
ones in the front. A
stack only lets you
access the last object
you put into it.You can, however, use foreach to

enumerate through a stack or queue,
because they implement IEnumerable!

There are other types o
f

collections, too—but these

are the ones that you’
re

most likely to come in
contact with.

402   Chapter 8

A queue is FIFO—First In, First Out
A queue is a lot like a list, except that you can’t just add or remove items at any
index. To add an object to a queue, you enqueue it. That adds the object to the
end of the queue. You can dequeue the first object from the front of the queue.
When you do that, the object is removed from the queue, and the rest of the objects
in the queue move up a position.

Queue<string> myQueue = new Queue<string>();
myQueue.Enqueue("first in line");
myQueue.Enqueue("second in line");
myQueue.Enqueue("third in line");
myQueue.Enqueue("last in line");
string takeALook = myQueue.Peek();
string getFirst = myQueue.Dequeue();
string getNext = myQueue.Dequeue();
int howMany = myQueue.Count;
myQueue.Clear();
MessageBox.Show("Peek() returned: " + takeALook + "\n"
 + "The first Dequeue() returned: " + getFirst + "\n"
 + "The second Dequeue() returned: " + getNext + "\n"
 + "Count before Clear() was " + howMany + "\n"
 + "Count after Clear() is now " + myQueue.Count);

1

2

3

5

4

1

2

3

5

4

The Clear()
method
removes all
objects from
the queue.

Create a
new queue
of strings.

Peek() lets
you take
a “look” at
the first
item in the
queue without
removing it.

Here’s where we add four
items to the queue. When we
pull them out of the queue,
they’ll come out in the same
order they went in.

The first Dequeue() pulls the first item out of the queue. Then the second one shifts up into the first place—the next call to Dequeue() pulls that one out next.

The queue’s Count property returns the number of items in the queue.

Objects in a
queue need to
wait their turn.
The first one in
the queue is the
first one to come
out of it.

don’t you hate waiting in line?

you are here 4   403

enums and collections

A stack is LIFO—Last In, First Out
A stack is really similar to a queue—with one big difference. You push each item
onto a stack, and when you want to take an item from the stack, you pop one off
of it. When you pop an item off of a stack, you end up with the most recent item
that you pushed onto it. It’s just like a stack of plates, magazines, or anything else—
you can drop something onto the top of the stack, but you need to take it off before
you can get to whatever’s underneath it.

Stack<string> myStack = new Stack<string>();
myStack.Push("first in line");
myStack.Push("second in line");
myStack.Push("third in line");
myStack.Push("last in line");
string takeALook = myStack.Peek();
string getFirst = myStack.Pop();
string getNext = myStack.Pop();
int howMany = myStack.Count;
myStack.Clear();
MessageBox.Show("Peek() returned: " + takeALook + "\n"
 + "The first Pop() returned: " + getFirst + "\n"
 + "The second Pop() returned: " + getNext + "\n"
 + "Count before Clear() was " + howMany + "\n"
 + "Count after Clear() is now " + myStack.Count);

4

5

3

2
1

4

5

3

2

1

Creating a stack is just
like creating any other
generic collection.When you push

an item onto a
stack, it pushes
the other items
back one notch
and sits on top.

When you pop an item
off the stack, you get
the most recent item
that was added.

The last object you put
on a stack is the first
object that you pull
off of it.

You can
also use
Environment.
NewLine
instead of \n
here, but we
wanted the
code to be
easier to read.

404   Chapter 8

Wait a minute, something’s bugging me. You

haven’t shown me anything I can do with a stack or

a queue that I can’t do with a list-they just save me a

couple of lines of code. But I can’t get at the items

in the middle of a stack or a queue. I can do that with

a list pretty easily! So why would I give that up

just for a little convenience?

Don’t worry—you don’t give up anything when you use a
queue or a stack.

It’s really easy to copy a Queue object to a List object. And it’s just as
easy to copy a List to a Queue, a Queue to a Stack…in fact, you can
create a List, Queue, or Stack from any other object that implements the
IEnumerable interface. All you have to do is use the overloaded constructor
that lets you pass the collection you want to copy from as a parameter. That
means you have the flexibility and convenience of representing your data with
the collection that best matches the way you need it to be used. (But remember,
you’re making a copy, which means you’re creating a whole new object and
adding it to the heap.)

Stack<string> myStack = new Stack<string>();
myStack.Push("first in line");
myStack.Push("second in line");
myStack.Push("third in line");
myStack.Push("last in line");

Queue<string> myQueue = new Queue<string>(myStack);
List<string> myList = new List<string>(myQueue);
Stack<string> anotherStack = new Stack<string>(myList);
MessageBox.Show("myQueue has " + myQueue.Count + " items\n"
 + "myList has " + myList.Count + " items\n"
 + "anotherStack has " + anotherStack.Count + " items\n");

Let’s set up a stack with four items—in this case, a stack of strings.

It’s easy to convert that stack
to a queue, then copy the queue
to a list, and then copy the list
to another stack.

All four items were
copied into the new
collections.

…and you can always use
a foreach loop to access
all of the members in a
stack or a queue!

flapjacks and lumberjacks

you are here 4   405

enums and collections

private void addFlapjacks_Click(...) {
 if (breakfastLine.Count == 0) return;
 Flapjack food;
 if (crispy.Checked == true)
 food = Flapjack.Crispy;
 else if (soggy.Checked == true)
 food = Flapjack.Soggy;
 else if (browned.Checked == true)
 food = Flapjack.Browned;
 else
 food = Flapjack.Banana;

 Lumberjack currentLumberjack = breakfastLine.Peek();
 currentLumberjack.TakeFlapjacks(food,
 (int)howMany.Value);
 RedrawList();
}

enum Flapjack {
 Crispy,
 Soggy,
 Browned,
 Banana
}

class Lumberjack {
 private string name;
 public string Name { get { return name; } }
 private Stack<Flapjack> meal;
 public Lumberjack(string name) {
 this.name = name;
 meal = new Stack<Flapjack>();
 }
 public int FlapjackCount { get { // return the count } }
 public void TakeFlapjacks(Flapjack food, int howMany) {
 // Add some number of flapjacks to the Meal stack
 }
 public void EatFlapjacks() {
 // Write this output to the console
 } }

Write a program to help a cafeteria full of lumberjacks eat some flapjacks. Start with the Lumberjack
class, filling in the missing code. Then design the form, and add the button event handlers to it.

Here’s the Lumberjack class. Fill in the get accessor for FlapjackCount
and the TakeFlapjacks and EatFlapjacks methods.

1

Build this form. It lets you enter the names of lumberjacks into a text box so they get in the breakfast
line. You can give the lumberjack at the front of the line a plate of flapjacks, and then tell him to move
on to eat them using the “Next lumberjack” button. We’ve given you the click event handler for the “Add
flapjacks” button. Use a queue called breakfastLine to keep track of the lumberjacks.

2

You’ll need to add a RedrawList() method
to update the list box with the contents
of the queue. All three buttons will call it.
Here’s a hint: it uses a foreach loop.

When the user clicks “Add lumberjack”, add the name in
the name text box to the breakfastLine queue.

When you drag these RadioButton controls into the
group box, the form automatically links them and
only allows the user to check one of them at a time.
Look at the addFlapjacks_Click method to figure
out what they should be named.

Peek() returns a reference to
the first lumberjack in the
queue.

This button should dequeue the next lumberjack,
call his EatFlapjacks(), then redraw the list box.

Note the special
“else if” syntax.

This
listbox
is named
line.

The NumericUpDown control is called
howMany, and the label is called nextInLine.

Notice how the Flapjack
enum uses uppercase

letters (“Soggy”), but the
output has lowercase letters

(“soggy”)? Here’s a hint to
help you get the output right.
ToString() returns a

string object, and one of its
public members is a method

called ToLower() that
returns a lowercase version

of the string.

This program just prints lines to the console, so you need
to open the Output window in the IDE to see the output.

406   Chapter 8

A
private Queue<Lumberjack> breakfastLine = new Queue<Lumberjack>();
 private void addLumberjack_Click(object sender, EventArgs e) {
 if (String.IsNullOrEmpty(name.Text)) return;
 breakfastLine.Enqueue(new Lumberjack(name.Text));
 name.Text = "";
 RedrawList();
}
 private void RedrawList() {
 int number = 1;
 line.Items.Clear();
 foreach (Lumberjack lumberjack in breakfastLine) {
 line.Items.Add(number + ". " + lumberjack.Name);
 number++;
 }
 if (breakfastLine.Count == 0) {
 groupBox1.Enabled = false;
 nextInLine.Text = "";
 } else {
 groupBox1.Enabled = true;
 Lumberjack currentLumberjack = breakfastLine.Peek();
 nextInLine.Text = currentLumberjack.Name + " has "
 + currentLumberjack.FlapjackCount + " flapjacks";
 } }
 private void nextLumberjack_Click(object sender, EventArgs e) {
 if (breakfastLine.Count == 0) return;
 Lumberjack nextLumberjack = breakfastLine.Dequeue();
 nextLumberjack.EatFlapjacks();
 nextInLine.Text = "";
 RedrawList();
}

class Lumberjack {
 private string name;
 public string Name { get { return name; } }
 private Stack<Flapjack> meal;

 public Lumberjack(string name) {
 this.name = name;
 meal = new Stack<Flapjack>();
 }

 public int FlapjackCount { get { return meal.Count; } }

 public void TakeFlapjacks(Flapjack food, int howMany) {
 for (int i = 0; i < howMany; i++) {
 meal.Push(food);
 } }

 public void EatFlapjacks() {
 Console.WriteLine(name + "’s eating flapjacks");
 while (meal.Count > 0) {
 Console.WriteLine(name + " ate a "
 + meal.Pop().ToString().ToLower() + " flapjack");

 }
 }
}

The RedrawList() method uses a foreach loop to pull the lumberjacks out of their queue and add each of them to the list box.

We called the list box “line”, and the label between the two buttons “nextInLine”.

This if statement updates the
label with information about the
first lumberjack in the queue.

The TakeFlapjacks
method updates the
meal stack.

The EatFlapjacks method uses a while loop to print out the lumberjack’s meal.

exercise solution

meal.Pop() returns an enum, whose ToString() method is called to return a string object, whose ToLower() method is called to return another string object.

Here’s where the Flapjack enum is
made lowercase. Take a minute and
figure out what’s going on.

you are here 4   407

enums and collections

Collectioncross
1 2

3 4 5

6 7

8 9

10 11 12

13

14

15

16

17 18 19

20

21

Across

3. An instance of a ______________ collection only
works with one specific type.
6. A special kind of loop that only works on collections
9. The name of the method you use to send a string to
the output
10. How you remove something from a stack
11. An object that's like an array but more flexible
13. Two methods in a class with the same name but
different parameters are...
15. A method to figure out if a certain object is in a
collection
19. An easy way to keep track of categories
20. All generic collections implement this interface
21. How you remove something from a queue

Down

1. The generic collection that lets you map keys to
values
2. This collection is first-in, first-out
4. The built-in class that lets your program write text
to the output
5. A method to find out how many things are in a
collection
7. The only method in the IComparable interface
8. Most professional projects start with this
12. An object that implements this interface helps
your list sort its contents
14. How you add something to a queue
16. This collection is first-in, last-out
17. How you add something to a stack
18. This method returns the next object to come off of
a stack or queue

Across
3. An instance of a ______________ collection only works with
one specific type
6. A special kind of loop that works on IEnumerable<T>
9. The name of the method you use to send a string to the
output
10. How you remove something from a stack
11. An object that’s like an array but more flexible
13. Two methods in a class with the same name but different
parameters are ______________
15. A method to figure out if a certain object is in a collection
19. An easy way to keep track of categories
20. All generic collections implement this interface
21. How you remove something from a queue

Down
1. The generic collection that lets you map keys to values
2. This collection is first-in, first-out
4. The built-in class that lets your program write text to the
output
5. A method to find out how many things are in a collection
7. The only method in the IComparable interface
8. Most professional projects start with this
12. An object that implements this interface helps your list sort
its contents
14. How you add something to a queue
16. This collection is first-in, last-out
17. How you add something to a stack
18. This method returns the next object to come off of a stack or
queue

408   Chapter 8

Collectioncross solution

crossword solution

D
1

Q
2

G
3

E N E R I C C
4

C
5

U

C O F
6

O R E A C
7

H

S
8

W
9

R I T E L I N E U U O

P I S N E M

E P
10

O P O L
11

I
12

S T P

C N L C A

I A O
13

V E R L O A D E D R

F R M E

I Y E
14

P T

C C
15

O N T A I N S O

A S
16

Q R

T P
17

P
18

T U E
19

N U M

I
20

E N U M E R A B L E R

O S E C U

N H K K D
21

E Q U E U E

Across

3. An instance of a ______________ collection only
works with one specific type. [generic]
6. A special kind of loop that only works on collections
[foreach]
9. The name of the method you use to send a string to
the output [writeline]
10. How you remove something from a stack [pop]
11. An object that's like an array but more flexible
[list]
13. Two methods in a class with the same name but
different parameters are... [overloaded]
15. A method to figure out if a certain object is in a
collection [contains]
19. An easy way to keep track of categories [enum]
20. All generic collections implement this interface
[ienumerable]
21. How you remove something from a queue [dequeue]

Down

1. The generic collection that lets you map keys to
values [dictionary]
2. This collection is first-in, first-out [queue]
4. The built-in class that lets your program write text
to the output [console]
5. A method to find out how many things are in a
collection [count]
7. The only method in the IComparable interface
[CompareTo]
8. Most professional projects start with this
[specification]
12. An object that implements this interface helps
your list sort its contents [icomparer]
14. How you add something to a queue [enqueue]
16. This collection is first-in, last-out [stack]
17. How you add something to a stack [push]
18. This method returns the next object to come off of
a stack or queue [peek]

this is a new chapter   409

OK, go ahead
with our shopping

list…chicken wire…
tequila…grape

jelly…bandages…
yes, dear, I am

writing this down.

reading and writing files9

Save the last byte for me!

Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

410   Chapter 9

    bytes read from the file

Stream objec
tMain form

Stream objec
tMain form

.NET uses streams to read and write data
A stream is the .NET Framework’s way of getting data in and out of
your program. Any time your program reads or writes a file, connects
to another computer over a network, or generally does anything
where it sends or receives bytes from one place to another, you’re
using streams.

input = stream.Read(...);

input contains data read
from the stream

bytes written to the file

stream.Write(...);

output contains data to
write to the stream

Whenever you
want to read
data from a
file or write
data to a file,
you’ll use a
Stream object.Let’s say you have a simple program—a form

with an event handler that needs to read data
from a file. You’ll use a Stream object to do it.

And if your program needs to write data out
to the file, it can use another Stream object.

islands in the stream

You use a
Stream object…

…and the stream works with the file directly.

You can use a different Stream object, but the process is the same.

you are here 4   411

reading and writing files

Things you can do with a stream:

Write to the stream.
You can write your data to a stream through a stream’s Write()
method.

1

Read from the stream.
You can use the Read() method to get data from a file, or a network, or
memory, or just about anything else, using a stream. You can even read
data from really big files, even if they’re too big to fit into memory.

2

Change your position within the stream.
Most streams support a Seek() method that lets you find a position within
the stream so you can read or insert data at a specific place.

3

Stream

Close()
Read()
Seek()
Write()

Streams let you
read and write
data. Use the
right kind of
stream for the
data you’re
working with.

A FileStream
object lets you
read from and
write to files.

A MemoryStream
object lets you read
from and write
data to chunks of
memory.

A NetworkStream
object lets you read
and write data to
other computers or
devices on a network.

A GZipStream
object lets you
compress data so
that it takes up less
space and is easier to
download and store.

These are just some
of the methods in the
Stream class.

Stream is an abstract class, so you can’t instantiate it on its own.

FileStream

Close()
Read()
Seek()
Write()

MemoryStream

Close()
Read()
Seek()
Write()

NetworkStream

Close()
Read()
Seek()
Write()

GZipStream

Close()
Read()
Seek()
Write()

Different streams read and write different things
Every stream is a subclass of the abstract Stream class, and there are a bunch
of built-in stream classes to do different things. We’ll be concentrating on reading
and writing regular files, but everything you learn in this chapter will just as easily
apply to compressed or encrypted files, or network streams that don’t use files at all.

Each subclass adds methods and properties specific to that class’s functionality.

412   Chapter 9

A FileStream reads and writes bytes to a f i le
When your program needs to write a few lines of text
to a file, there are a lot of things that have to happen:

The FileStream attaches itself to a file.2

Streams write bytes to files, so you’ll need to convert the string that you
want to write to an array of bytes.

3

Call the stream’s Write() method and pass it the byte array.4

Close the stream so other programs can access the file.5

Create a new FileStream object and tell it to write to the file.1

Eureka!
69 117 114 101 107 97 33

so much easier

Make sure you add using System.IO; to any
program that uses streams.

A FileStream can only be attached to one file at a time.

Forgetting to close a
 stream is a

big deal. Otherwise, the file will be

locked, and other pro
grams won’t

be able to use it unti
l you close your

stream.

69 117 114 101 107 97 33

This is called encoding, and we’ll
talk more about it later on…

FileStream obje
ct

FileStream obje
ct

FileStream obje
ct

FileStream obje
ct

you are here 4   413

reading and writing files

Write text to a f i le in three simple steps
C# comes with a convenient class called StreamWriter that does all of those
things in one easy step. All you have to do is create a new StreamWriter
object and give it a filename. It automatically creates a FileStream
and opens the file. Then you can use the StreamWriter’s Write() and
WriteLine() methods to write everything to the file you want.

Use the StreamWriter’s constructor to open or create a file.
You can pass a filename to the StreamWriter() constructor. When you do, the writer automatically
opens the file. StreamWriter also has an overloaded constructor that lets you specify its append
mode: passing it true tells it to add data to the end of an existing file (or append), while false tells
the stream to delete the existing file and create a new file with the same name.

StreamWriter writer = new StreamWriter(@"C:\newfiles\toaster oven.txt", true);

1

Use the Write() and WriteLine() methods to write to the file.
These methods work just like the ones in the Console class: Write() writes text, and WriteLine()
writes text and adds a line break to the end. If you include “{0}”, “{1}”, “{2}”, etc., inside the string
you’re writing, the methods include parameters in the strings being written: “{0}” is replaced with the
first parameter after the string being written, “{1}” is replaced with the second, etc.

writer.WriteLine("The {0} is set to {1} degrees.", appliance, temp);

2

Call the Close() method to release the file.
If you leave the stream open and attached to a file, then it’ll keep the file locked open
and no other program will be able to use it. So make sure you always close your files!

writer.Close();

3

The toaster oven…
…is set to 350 degrees.

Putting @ in front of the
filename tells C# to treat
this as a literal string without
escape characters like \t for
tab or \n for newline.

S
treamWriter obj

ec
t FileStream obje

ct

S
treamWriter obj

ec
t FileStream obj

ec
t

StreamWriter
creates and
manages a
FileStream
object for you
automatically.

414   Chapter 9

StreamWriter sw = new StreamWriter(@"C:\secret_plan.txt");

sw.WriteLine("How I’ll defeat Captain Amazing");

sw.WriteLine("Another genius secret plan by The Swindler");

sw.Write("I’ll create an army of clones and ");

sw.WriteLine("unleash them upon the citizens of Objectville.");

string location = "the mall";

for (int number = 0; number <= 6; number++){

 sw.WriteLine("Clone #{0} attacks {1}", number, location);

 if (location == "the mall") { location = "downtown"; }

 else { location = "the mall"; }

}

sw.Close();

This line creates the StreamWriter object and
tells it where the file will be.

The path starts with an @ sign so that the StreamWriter doesn’t interpret the “\” as the start of an escape sequence.

WriteLine()
adds a new line
after writing.
Write() sends
just the text,
with no extra
line feeds at
the end.

Close() frees up any connections to the
file and any resources the StreamWriter is
using. The text doesn’t get written if you
don’t close the stream.

You can use the {}
within the text to
pass in variables to the
string being written.
{0} is replaced by the
first parameter after
the string, {1} by the
second, and so on.This is what the above code produces.

Can you figure out what’s going on with the location variable in this code?

The Swindler launches another diabolical plan
The citizens of Objectville have long lived in fear of the Swindler.
Now he’s using a StreamWriter to implement another evil
plan. Let’s take a look at what’s going on. Create a new Console
Application and add this to the Main() method:

write it down

StreamWriter is
in the System.IO
namespace, so
make sure you add
using System.IO;
to the top of your
program.

It’s probably not a
good idea to write to your root folder, and your OS might not even let you do it. So pick another directory you want to write to.

T
h

is
 is

 im
p

o
rt

a
n

t!

you are here 4   415

reading and writing files

StreamWriter Magnets
Suppose you have the code for button1_Click() shown
below. Your job is to use the magnets to build code for the
Flobbo class so that when the event handler is called, it produces
the output shown at the bottom of the page. Good luck!

static void Main(string[] args) {
 Flobbo f = new Flobbo("blue yellow");
 StreamWriter sw = f.Snobbo();
 f.Blobbo(f.Blobbo(f.Blobbo(sw), sw), sw);
}

Output:

class Flobbo {

private string zap;

public Flobbo(string zap) {
 this.zap = zap;
}

}

public bool Blobbo(Strea
mWriter sw) {

sw.WriteLine(zap);
zap = "green purple";
return false;

if (Already) {

} else {

}

sw.WriteLine(zap);

zap = "red orange";

return true;

}
}

}

public StreamWriter Snobbo() {

return new

 StreamWriter("maca
w.txt");

public bool Blobbo
 (bool Already, StreamWriter sw) {

sw.WriteLine(zap);

sw.Close();
return false;

Assume all code files have
using System.IO;

at the top.

416   Chapter 9

StreamWriter Magnets Solution
Your job was to construct the Flobbo class from the
magnets to create the desired output.

class Flobbo {

private string zap;

public Flobbo(string zap) {
 this.zap = zap;
}

}

public bool Blobbo(StreamWriter sw) {

public bool Blobbo
 (bool Already, StreamWriter sw) {

sw.WriteLine(zap);
sw.Close();
return false;

sw.WriteLine(zap);
zap = "green purple";
return false;

if (Already) {

} else {

}

sw.WriteLine(zap);
zap = "red orange";
return true;

}

}

public StreamWriter Snobbo() {

return new
 StreamWriter("macaw.txt");

static void Main(string[] args) {
 Flobbo f = new Flobbo("blue yellow");
 StreamWriter sw = f.Snobbo();
 f.Blobbo(f.Blobbo(f.Blobbo(sw), sw), sw);
}

Output:

The Blobbo() method
is overloaded—it’s got
two declarations with
different parameters.

Make sure you close
files when you’re done
with them.

read it in

Just a reminder: we picked
intentionally weird variable
names and methods in these
puzzles because if we used
really good names, the
puzzle would be too easy!
Don’t use names like this in
your code, OK?

Assume all code files have
using System.IO;

at the top.

}

If you type this into the IDE,
macaw.txt will be written
to the bin\Debug folder
inside your project folder,
because that's where the
executable is running.

If you run this code
from the IDE, it
creates macaw.txt
in the bin\Debug
folder.

you are here 4   417

reading and writing files

Reading and writ ing using t wo objects
Let’s read Swindler’s secret plans with a StreamReader.
StreamReader works just like StreamWriter, except instead
of writing a file you give the reader the name of the file to read in its
constructor. The ReadLine() method returns a string that contains the
next line from the file. You can write a loop that reads lines from it until its
EndOfStream field is true—that’s when it runs out of lines to read:

string folder =

 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

StreamReader reader =

 new StreamReader(folder + @"\secret_plan.txt");

StreamWriter writer =

 new StreamWriter(folder + @"\emailToCaptainAmazing.txt");

writer.WriteLine("To: CaptainAmazing@objectville.net");

writer.WriteLine("From: Commissioner@objectville.net");

writer.WriteLine("Subject: Can you save the day... again?");

writer.WriteLine();

writer.WriteLine("We’ve discovered the Swindler’s plan:");

while (!reader.EndOfStream) {

 string lineFromThePlan = reader.ReadLine();

 writer.WriteLine("The plan -> " + lineFromThePlan);

}

writer.WriteLine();

writer.WriteLine("Can you help us?");

writer.Close();

reader.Close();

An empty WriteLine() method
writes a blank line.

This loop reads a line from
the reader and writes it
out to the writer.

This program uses a StreamReader to read the Swindler’s plan, and a StreamWriter to write a file that will get emailed to Captain Amazing.

Make sure to close every
stream that you open, even if
you’re just reading a file.

Pass the file you want to read from
into the StreamReader’s constructor.
This time we’re not writing to the C:\
folder! (Obviously, this file needs to
exist in the My Documents folder.)

EndOfStream is the property

that tells you if ther
e’s no

data left unread in th
e file.

Sometimes people play a little fast and loose
with the word “stream.” A StreamReader

(which inherits from TextReader) is a class
that reads characters from streams. It’s not
a stream itself. When you pass a filename
into its constructor, it creates a stream for

you, and closes it when you call its Close()
method. It’s also got an overloaded

constructor that takes a Stream. See how
that works?

The StreamReader and StreamWriter
opened up their own streams when
you instantiated them. Calling their
Close() methods tells them to close
those streams.

This returns the path of the user’s My Documents folder. Check out the SpecialFolder enum to see what other folders you can find.

418   Chapter 9

Stream

Close()
Read()
Seek()
Write()

CryptoStream

Close()
Read()
Seek()
Write()

Data can go through more than one stream
One big advantage to working with streams in .NET is that you can have your data
go through more than one stream on its way to its final destination. One of the many
types of streams that .NET ships with is the CryptoStream class. This lets you
encrypt your data before you do anything else with it:

I’ll create an army of Clones and

*3yd4ÿÖndfr56dì¢L1═

Using a normal FileStream, your data
gets written directly to a file as text.

You write normal text to a CryptoStream.

Now your FileStream writes the encrypted text to the file.

CryptoStream inherits
from the abstract
Stream class, just
like the other stream
classes.

*3yd4ÿÖndfr56dì¢L1═

This CryptoStream is
connected to a FileStream,
and gives that FileStream
your text, but encrypted.

You can CHAIN streams. One stream
can write to another stream, which
writes to another stream…often
ending with a network or file stream.

CryptoStream ob
je

ct

FileStream obj
ec

t

FileStream obj
ec

t

you are here 4   419

reading and writing files

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the program. You
can use the same snippet more
than once, and you won’t need
to use all the snippets. Your goal
is to make the program produce

the output shown to the right.

Note: each snippet
from the pool can
be used more than
once!

Stream
reader
writer
StreamReader
StreamWriter
Open
Close

Fargo
Utah
Idaho
Dakota
Pineapple

HowMany
HowMuch
HowBig
HowSmall

int
long
string
enum
class

public
private
this
class
static

 =
 >=
 <=
 !=
 ==
 ++
 --

for
while
foreach

class Pizza {

 private ____________ _______;
 public Pizza(__________ _______) {
 ______.writer = writer;
 }

 public void ______(______.Fargo f) {
 writer._________(f);
 writer.__________();
 }

}

class Party {

 private ____________ reader;
 public Party(____________ reader) {
 __________.reader = reader;
 }

 public void HowMuch(__________ q) {
 q._________(reader._________());
 reader.__________();
 }

}

class Pineapple {

 const ______ d = "delivery.txt";
 public _____ ______
 { North, South, East, West, Flamingo }

 public static void Main(string[] args) {

 __________ o = new ____________("order.txt");
 Pizza pz = new Pizza(new __________(d, true));
 pz.________(Fargo.Flamingo);
 for (_____ w = 3; w >= 0; w--) {
 Pizza i = new Pizza

 (new ___________(d, false));
 i.Idaho((Fargo)w);

 Party p = new Party(new __________(d));
 p.___________(o);
 }

 o.___________("That’s all folks!");
 o.__________();
 }

}

ReadLine
WriteLine

420   Chapter 9

class Pineapple {
 const string d = "delivery.txt";
 public enum Fargo { North, South, East, West, Flamingo }
 public static void Main(string[] args) {
 StreamWriter o = new StreamWriter("order.txt");
 Pizza pz = new Pizza(new StreamWriter(d, true));
 pz.Idaho(Fargo.Flamingo);
 for (int w = 3; w >= 0; w--) {
 Pizza i = new Pizza(new StreamWriter(d, false));
 i.Idaho((Fargo)w);
 Party p = new Party(new StreamReader(d));
 p.HowMuch(o);
 }
 o.WriteLine("That’s all folks!");
 o.Close();
 }
}

class Pizza {
 private StreamWriter writer;
 public Pizza(StreamWriter writer) {
 this.writer = writer;
 }
 public void Idaho(Pineapple.Fargo f) {
 writer.WriteLine(f);
 writer.Close();
 }
}

class Party {
 private StreamReader reader;
 public Party(StreamReader reader) {
 this.reader = reader;
 }
 public void HowMuch(StreamWriter q) {
 q.WriteLine(reader.ReadLine());
 reader.Close();
 }
}

Pool Puzzle Solution

The Pizza class keeps a

StreamWriter as a private

field, and its Idah
o() method

writes Fargo enums to the

file using their To
String()

methods, which WriteLine()

calls automatically.

Here’s the entry point for
the program. It creates a
StreamWriter that it passes to

the Party class. Then it loops
through the Fargo members,
passing each of them to the
Pizza.Idaho() method to print.

This enum (specifically, its ToString() method) is used to print a lot of the output.

The Party class has a
StreamReader field, and
its HowMuch() method
reads a line from that
StreamReader and writes
it to a StreamWriter.

a serious dialog

you are here 4   421

reading and writing files

Use built-in objects to pop up standard dialog boxes
When you’re working on a program that reads and writes files, there’s
a good chance that you’ll need to pop up a dialog box at some point to
prompt the user for a filename. That’s why .NET for Windows Desktop
includes objects to pop up the standard desktop file dialog boxes.

ShowDialog() pops up a dialog box
Displaying a dialog box is easy. Here’s all you
need to do:

Create an instance of the dialog box object. You can do this in code
using new, or you can drag it out of the toolbox and onto your form.

1

Set the dialog box object’s properties. A few useful ones include Title (which
sets the text in the title bar), InitialDirectory (which tells it which
directory to open first), and FileName (for Open and Save dialog boxes).

2

Call the object’s ShowDialog() method. That pops up the dialog
box, and doesn’t return until the user clicks the OK or Cancel button,
or closes the window.

3

The ShowDialog() method returns a DialogResult, which is an enum.
Some of its members are OK (which means the user clicked OK), Cancel, Yes,
and No (for Yes/No dialog boxes).

4

.NET has dialog boxes built in, like this OpenFileDialog for selecting a file to open.

This is the
FolderBrowseDialog
dialog box.

We’ll walk you through these steps in a minute.

422   Chapter 9

Dialog boxes are just another WinForms control
You can add Windows standard file dialog boxes to your program by dragging them to
your form—just drag an OpenFileDialog control out of the toolbox and drop
it onto your form. Instead of it showing up as a visual control, you’ll see it appear in
the space below your form. That’s because it’s a component, which is a special kind
of nonvisual toolbox control that doesn’t appear directly on the
form, but which you can still use in your form’s code just like you
use any other control.

When you drag a
component out of
the toolbox and
onto your form,
the IDE displays
it in the space
underneath the
form editor.

openFileDialog1.InitialDirectory = @"c:\MyFolder\Default\";

openFileDialog1.Filter = "Text Files (*.txt)|*.txt|"

 + "Comma-Delimited Files (*.csv)|*.csv|All Files (*.*)|*.*";

openFileDialog1.FileName = "default_file.txt";

openFileDialog1.CheckFileExists = true;

openFileDialog1.CheckPathExists = false;

DialogResult result = openFileDialog1.ShowDialog();

if (result == DialogResult.OK){

 OpenSomeFile(openFileDialog1.FileName);

}

The InitialDirectory property changes the folder
that’s first displayed when the dialog opens.

These properties tell the dialog box
to display an error message if the
user tries to open up a file or path
that doesn’t exist on the drive.

Display the dialog box using its ShowDialog() method, which returns a DialogResult. That’s an enum that you can use to check whether or not the user hit the OK button. It’ll be set to DialogResult.OK if the user clicked OK, and DialogResult.Cancel if he hit Cancel.

dialog boxes are objects too

The Filter
property lets you change the filters that show up on the bottom of the dialog box, such as what types of files to show.

“Nonvisual” just means it doesn’t appear on your form when you drag it out of the toolbox.

you are here 4   423

reading and writing files

Dialog boxes are objects, too
An OpenFileDialog object shows the standard Windows Open window,
and the SaveFileDialog shows the Save window. You can display them
by creating a new instance, setting the properties on the object, and calling
its ShowDialog() method. The ShowDialog() method returns a
DialogResult enum (because some dialog boxes have more than two
buttons or results, so a simple bool wouldn’t be enough).

The Title property lets
you change this text.

Change the “Save as
type” list using the
Filter property.

The DialogResult
returned by the
ShowDialog() method
lets you figure out
which button the
user clicked.

The ShowDialog() method pops up the dialog box and opens the folder specified in the InitialDirectory property.

When the user chooses a file, its full path is saved in the FileName property.

The SaveFileDialog
object pops up the
standard Windows

“Save as…” dialog box.

saveFileDialog1 = new SaveFileDialog();

saveFileDialog1.InitialDirectory = @"c:\MyFolder\Default\";

saveFileDialog1.Filter = "Text Files (*.txt)|*.txt|"

 + "Comma-Delimited Files (*.csv)|*.csv|All Files (*.*)|*.*";

DialogResult result = saveFileDialog1.ShowDialog();

if (result == DialogResult.OK){

 SaveTheFile(saveFileDialog1.FileName);

}

The ShowDialog() and FileName
properties work exactly the same

as on the OpenFileDialog object.

When you drag a save dialog object out
of the toolbox and onto your form, the
IDE just adds a line like this to your
form’s InitializeComponent() method.

The Filter property
isn’t hard to figure out.
Just compare what’s
between the | characters
in the string with what
shows up in the window.

This assumes that there’s a
method in the program called
SaveTheFile() that takes a
filename as a parameter.

424   Chapter 9

Use the built-in File and Directory classes
to work with f i les and directories
Like StreamWriter, the File class creates streams that let you work with files behind
the scenes. You can use its methods to do most common actions without having to create the
FileStreams first. Directory objects let you work with whole directories full of files.

Things you can do with File:

Find out if the file exists.
You can check to see if a file exists using the
Exists() method. It’ll return true if it does,
and false if it doesn’t.

1

Read from and write to the file.
You can use the OpenRead() method to get data from
a file, or the Create() or OpenWrite() method to
write to the file.

2

Append text to the file.
The AppendAllText() method lets you append
text to an already created file. It even creates the file
if it’s not there when the method runs.

3

Things you can do with Directory:

Create a new directory.
Create a directory using the CreateDirectory() method. All you
have to do is supply the path; this method does the rest.

1

Get a list of the files in a directory.
You can create an array of files in a directory using the
GetFiles() method; just tell the method which directory you
want to know about, and it will do the rest.

2

Delete a directory.
Deleting a directory is really simple too. Just use the Delete() method.

3

Get information about the file.
The GetLastAccessTime() and
GetLastWriteTime() methods return the date
and time when the file was last accessed and modified.

4

FileInfo works just like File
If you’re going to be doing a lot of work with a file, you might want to create an instance of the FileInfo class instead of using the File class’s static methods.
The FileInfo class does just about everything the File class does, except you have to instantiate it to use it. You can create a new instance of FileInfo and access its Exists() method or its OpenRead() method in just the same way.
The only difference is that the File class is faster for a small number of actions, and FileInfo is better suited for big jobs.

directory assistance

File is a static class, so
it’s just a set of methods
that let you work with
files. FileInfo is an object
that you instantiate, and
its methods are the same as
the ones you see on File.

you are here 4   425

reading and writing files

Q:I still don’t get that {0} and {1} thing that was part of the
StreamWriter.

A:When you’re printing strings to a file, you’ll often find yourself in
the position of having to print the contents of a bunch of variables. For
example, you might have to write something like this:

writer.WriteLine("My name is " + name +
 "and my age is " + age);

It gets really tedious and somewhat error-prone to have to keep using +
to combine strings. It’s easier to take advantage of {0} and {1}:

writer.WriteLine(
 "My name is {0} and my age is {1}",
 name, age);

It’s a lot easier to read that code, especially when many variables are
included in the same line.

Q:Why did you put an @ in front of the string that contained the
filename?

A:When you add a string literal to your program, the compiler
converts escape sequences like \n and \r to special characters.
That makes it difficult to type filenames, which have a lot of backslash
characters in them. If you put @ in front of a string, it tells C# not to
interpret escape sequences. It also tells C# to include line breaks in
your string, so you can hit Enter halfway through the string and it’ll
include that as a line break in the output:

string twoLine = @"this is a string
that spans two lines.";

Q:And what do \n and \t mean again?

A:Those are escape sequences. \n is a line feed and \t is a
tab. \r is a return character, or half of a Windows return—in Windows
text files, lines have to end with \r\n (like we talked about when we
introduced Environment.NewLine from Chapter 8). If you want
to use an actual backslash in your string and not have C# interpret it as the
beginning of an escape sequence, just do a double backslash: \\.

Q:What was that in the beginning about converting a string to a
byte array? How would that even work?

A:You’ve probably heard many times that files on a disk are
represented as bits and bytes. What that means is that when you write
a file to a disk, the operating system treats it as one long sequence
of bytes. The StreamReader and StreamWriter are
converting from bytes to characters for you—that’s called encoding and
decoding. Remember from Chapter 4 how a byte variable can store
any number between 0 and 255? Every file on your hard drive is one
long sequence of numbers between 0 and 255. It’s up to the programs
that read and write those files to interpret those bytes as meaningful
data. When you open a file in Notepad, it converts each individual byte
to a character—for example, E is 69 and a is 97 (but this depends on
the encoding…you’ll learn more about encodings in just a minute). And
when you type text into Notepad and save it, Notepad converts each of
the characters back into a byte and saves it to disk. If you want to write
a string to a stream, you’ll need to do the same.

Q:If I’m just using a StreamWriter to write to a file, why
do I really care if it’s creating a FileStream for me?

A:If you’re only reading or writing lines to or from a text file in order,
then all you need are StreamReader and StreamWriter.
But as soon as you need to do anything more complex than that,
you’ll need to start working with other streams. If you ever need to
write data like numbers, arrays, collections, or objects to a file, a
StreamWriter just won’t do. But don’t worry, we’ll go into a lot
more detail about how that will work in just a minute.

Q:What if I want to create my own dialog boxes? Can I do that?

A:Yes, you definitely can. You can add a new form to your
project and design it to look exactly how you want. Then you
can create a new instance of it with new (just like you created
an OpenFileDialog object). Then you can add a public
ShowDialog() method, and it’ll work just like any other dialog
box.

Q:Why do I need to worry about closing streams after I’m done
with them?

A:Have you ever had a word processor tell you it couldn’t open a file
because it was “busy”? When one program uses a file, Windows locks
it and prevents other programs from using it. And it’ll do that for your
program when it opens a file. If you don’t call the Close() method,
then it’s possible for your program to keep a file locked open until it
ends.

426   Chapter 9

.NET has two built-in classes with a bunch of static methods for working
with files and folders. The File class gives you methods to work with
files, and the Directory class lets you work with directories. Write
down what you think each of these lines of code does.

Code What the code does

if (!Directory.Exists(@"C:\SYP")) {
 Directory.CreateDirectory(@"C:\SYP");
}

if (Directory.Exists(@"C:\SYP\Bonk")) {
 Directory.Delete(@"C:\SYP\Bonk");
}

Directory.CreateDirectory(@"C:\SYP\Bonk");

Directory.SetCreationTime(@"C:\SYP\Bonk",
 new DateTime(1976, 09, 25));

string[] files = Directory.GetFiles(@"C:\Windows\",
 "*.log", SearchOption.AllDirectories);

File.WriteAllText(@"C:\SYP\Bonk\weirdo.txt",
 @"This is the first line
and this is the second line
and this is the last line");

File.Encrypt(@"C:\SYP\Bonk\weirdo.txt");

File.Copy(@"C:\SYP\Bonk\weirdo.txt",
 @"C:\SYP\copy.txt");

DateTime myTime =
 Directory.GetCreationTime(@"C:\SYP\Bonk");

File.SetLastWriteTime(@"C:\SYP\copy.txt", myTime);

File.Delete(@"C:\SYP\Bonk\weirdo.txt");

do it yourself notepad

See if you can guess what this one
does—you haven’t seen it yet.

you are here 4   427

reading and writing files

Use f i le dialogs to open and save f i les
(al l with just a few lines of code)
You can build a program that opens a text file. It’ll let you make
changes to the file and save your changes, with very little code,
all using standard .NET controls. Here’s how:

Do this
Build a simple form.
All you need is a TextBox and two Buttons. Drop the
OpenFileDialog and SaveFileDialog controls onto
the form, too. Double-click on the buttons to create their event
handlers and add a private string field called name to
the form. Don’t forget to put a using statement up top for
the System.IO namespace.

1

Hook the Open button up to the OpenFileDialog object.
The Open button shows an OpenFileDialog and then uses File.
ReadAllText() to read the file into the textbox:

private void open_Click(object sender, EventArgs e) {
 if (openFileDialog1.ShowDialog() == DialogResult.OK) {
 name = openFileDialog1.FileName;
 textBox1.Clear();
 textBox1.Text = File.ReadAllText(name);
 }
}

2

Now, hook up the Save button.
The Save button uses the File.WriteAllText() method to save the file:

private void save_Click(object sender, EventArgs e) {
 if (saveFileDialog1.ShowDialog() == DialogResult.OK) {
 string name = saveFileDialog1.FileName;
 File.WriteAllText(name, textBox1.Text);
 }
}

3

Play with the other properties of the dialog boxes.
± Use the Title property of the SaveFileDialog to change the

text in the title bar.

± Set the InitialDirectory property to have the
OpenFileDialog start in a specified directory.

± Filter the OpenFileDialog so it will only show text files using the
Filter property.

4

Clicking Open shows the OpenFileDialog control.

The ReadAllText() and
WriteAllText() methods are
part of the File class. That’s
coming up on the next page.
We’ll look at them in more
detail in just a few pages.

This is a TextBox with Multiline set to true and Dock set to Fill.

If you don’t add a filter, then
the drop-down lists at the bottom
of the open and save dialog boxes
will be empty. Try using this filter:
“Text Files (*.txt)|*.txt”.

Here’s a trick to make your TextBox fill up the form.
Drag a TableLayoutPanel from the toolbox (in
Containers) onto the form, set its Dock property
to Fill, and use its Rows and Columns property
editors to give it two rows and one column. Drag
the TextBox into the top cell and set its Dock
property to Fill. Then drag a FlowLayoutPanel
out of the toolbox into the bottom cell, set its Dock
to Fill, set its FlowDirection property
to RightToLeft, and drag the two buttons
onto it. Set the size of the bottom row in the
TableLayoutPanel to AutoSize and the top row
to 100%, and resize the bottom row so that the two
buttons just fit. Now your editor will resize smoothly!

428   Chapter 9

Code What the code does

if (!Directory.Exists(@"C:\SYP")) {
 Directory.CreateDirectory(@"C:\SYP");
}

Check if the C:\SYP folder exists. If it
doesn’t, create it.

if (Directory.Exists(@"C:\SYP\Bonk")) {
 Directory.Delete(@"C:\SYP\Bonk");
}

Check if the C:\SYP\Bonk folder exists. If
it does, delete it.

Directory.CreateDirectory(@"C:\SYP\Bonk"); Create the directory C:\SYP\Bonk.

Directory.SetCreationTime(@"C:\SYP\Bonk",
 new DateTime(1976, 09, 25));

Set the creation time for the C:\SYP\Bonk
folder to September 25, 1976.

string[] files = Directory.GetFiles(@"C:\Windows\",
 "*.log", SearchOption.AllDirectories);

Get a list of all files in C:\Windows that
match the *.log pattern, including all
matching files in any subdirectory.

File.WriteAllText(@"C:\SYP\Bonk\weirdo.txt",
 @"This is the first line
and this is the second line
and this is the last line");

Create a file called “weirdo.txt” (if it
doesn‘t already exist) in the C:\SYP\Bonk
folder and write three lines of text to it.

File.Encrypt(@"C:\SYP\Bonk\weirdo.txt"); Take advantage of built-in Windows
encryption to encrypt the file “weirdo.txt”
using the logged-in account’s credentials.

File.Copy(@"C:\SYP\Bonk\weirdo.txt",
 @"C:\SYP\copy.txt");

Copy the C:\SYP\Bonk\weirdo.txt file to
C:\SYP\Copy.txt.

DateTime myTime =
 Directory.GetCreationTime(@"C:\SYP\Bonk");

Declare the myTime variable and set it equal
to the creation time of the C:\SYP\Bonk
folder.

File.SetLastWriteTime(@"C:\SYP\copy.txt", myTime); Alter the last write time of the copy.txt
file in C:\SYP\ so it’s equal to whatever
time is stored in the myTime variable.

File.Delete(@"C:\SYP\Bonk\weirdo.txt"); Delete the C:\SYP\Bonk\weirdo.txt file.

.NET has two built-in classes with a bunch of static methods for working
with files and folders. The File class gives you methods to work with
files, and the Directory class lets you work with directories. Your job
was to write down what each bit of code did.

This is an alternative to using
a CryptoStream.

dispose in the proper receptacle

you are here 4   429

reading and writing files

IDisposable makes sure your objects are disposed of properly
A lot of .NET classes implement a particularly useful interface called IDisposable.
It has only one member: a method called Dispose(). Whenever a class
implements IDisposable, it’s telling you that there are important things that it needs
to do in order to shut itself down, usually because it’s allocated resources that
it won’t give back until you tell it to. The Dispose() method is how you tell the
object to release those resources.

You can use the “Go To Definition” feature in the IDE to show you the official C#
definition of IDisposable. Go to your project and type IDisposable anywhere
inside a class. Then right-click on it and select “Go To Definition” from the menu.
It’ll open a new tab with code in it. Expand all of the code and this is what you’ll see:

namespace System

{

 // Summary:

 // Defines a method to release allocated resources.

 public interface IDisposable

 {

 // Summary:

 // Performs application-defined tasks

 // associated with freeing, releasing, or

 // resetting unmanaged resources.

 void Dispose();

 }

}

A lot of classes allocate important resources, like
memory, files, and other objects. That means they
take them over, and don’t give them back until
you tell them you’re done with those resources.

al-lo-cate, verb.
to distribute resources
or duties for a particular
purpose. The programming
team was irritated at their project
manager because he allocated
all of the conference rooms for a
useless management seminar.

Any class that implements IDisposable will immediately
release any resources that it took over as soon as you
call its Dispose() method. It’s almost always the last
thing you do before you’re done with the object.

Declare an
object in a using
block and that
object’s Dispose()
method is called
automatically.

Go To Definition
There’s a handy feature in the IDE that lets you automatically jump to the

definition for any variable, object, or method. Just right-click on it and

select “Go To Definition,” and the IDE will automatically jump right to the

code that defines it. You can also press F12 instead of using the menu.

430   Chapter 9

Avoid f i lesystem errors with using statements
We’ve been telling you all chapter that you need to close your streams. That’s
because some of the most common bugs that programmers run across when they
deal with files are caused when streams aren’t closed properly. Luckily, C# gives
you a great tool to make sure that never happens to you: IDisposable and
the Dispose() method. When you wrap your stream code in a using
statement, it automatically closes your streams for you. All you need to do is
declare your stream reference with a using statement, followed by a block
of code (inside curly brackets) that uses that reference. When you do that, the
using statement automatically calls the stream’s Dispose() method
as soon as it finishes running the block of code. Here’s how it works:

A using statement is always
followed by an object declaration…

using (StreamWriter sw = new StreamWriter("secret_plan.txt")) {

 sw.WriteLine("How I’ll defeat Captain Amazing");

 sw.WriteLine("Another genius secret plan");

 sw.WriteLine("by The Swindler");

}

…and then a block of code within curly braces.

When the using statement ends,the Dispose() method of theobject being used is run. In this case, the object bein
g

used is pointed to by sw—which

was declared in the using
statement—so the Dispose()
method of the Stream class is

run…which closes the stream.

These statements can use the object created in the using statement above like any normal object.

These “using” statements are different from the ones at the top of your code.

that’s a lot of vet appointments

Use mult iple using statements for mult iple objects
You can pile using statements on top of each other—you don’t need extra sets of curly
brackets or indents.

using (StreamReader reader = new StreamReader("secret_plan.txt"))

using (StreamWriter writer = new StreamWriter("email.txt"))

{

 // statements that use reader and writer

}

All streams
implement
IDisposable, so
any time you
use a stream,
you should
ALWAYS
declare it
inside a using
statement. That
makes sure it’s
always closed!

Every stream has a Dispose()
method that closes the stream. So
if you declare your stream in a using
statement, it will always close itself!

You don’t need to call Close() on the
streams now, because the using statement
will close them automatically.

you are here 4   431

reading and writing files

Trouble at work
Meet Brian. He likes his job as a C# developer, but he loves taking
the occasional day off. His boss hates when people take vacation
days, so Brian’s got to come up with a good excuse.

Sorry I’ve
gotta leave

early, boss. My
cat’s got a vet
appointment.

That’s the ninth vet
appointment you’ve had
since March, son. If I

find out you’re lying to
me, you’d better start

looking for a new job!

You can help Brian out by building a program
to manage his excuses
Use what you know about reading and writing files to build an
Excuse Manager that Brian can use to keep track of which excuses
he’s used recently and how well they went over with the boss.

Save an excuse

Sometimes Brian’s too
lazy to think up an
excuse. Let’s add a
button to load up a
random excuse from his
excuse folder.

The folder contains one text
file for each excuse. When
Brian clicks the Save button,
the current excuse is saved out
to the folder. The Open button
lets him open a saved excuse.

Brian wants to keep
all of his excuses in
one place, so let’s let
him select a folder to
store all of them.

432   Chapter 9

Create an Excuse class and store an instance of it in the form.
Now add a currentExcuse field to the form to hold the current excuse. You’ll need three overloaded
constructors: one for when the form’s first loaded, one for opening up a file, and one for a random excuse.
Add methods OpenFile() to open an excuse (for the constructors to use), and Save() to save the excuse.
Then add this UpdateForm() method to update the controls (it’ll give you some hints about the class):
 private void UpdateForm(bool changed) {
 if (!changed) {
 this.description.Text = currentExcuse.Description;
 this.results.Text = currentExcuse.Results;
 this.lastUsed.Value = currentExcuse.LastUsed;
 if (!String.IsNullOrEmpty(currentExcuse.ExcusePath))
 fileDate.Text = File.GetLastWriteTime(currentExcuse.ExcusePath).ToString();
 this.Text = "Excuse Manager";
 }
 else
 this.Text = "Excuse Manager*";
 this.formChanged = changed;
}
And make sure you initialize the excuse’s LastUsed value in the form’s constructor:
public Form1() {
 InitializeComponent();
 currentExcuse.LastUsed = lastUsed.Value;
}

2

Build the form.
This form has a few special features:

≥≥ When the form’s first loaded, only the Folder button should be enabled—
disable the other three buttons until the user selects a folder.

≥≥ When the form opens or saves an excuse, it displays the file date for the excuse file using
a Label control with AutoSize set to False and BorderStyle set to Fixed3D.

≥≥ After an excuse is saved, the form pops up an “Excuse Written” message box.
≥≥ The Folder button brings up a folder browser dialog box. If the user selects a folder,

it enables the Save, Open, and Random buttons.
≥≥ The form knows when there are unsaved changes. When there are no unsaved

changes, the text on the form’s title bar is “Excuse Manager”. But when the user
has changed any of the three fields, the form adds an asterisk (*) to the title bar.
The asterisk goes away when the data is saved or a new excuse is opened.

≥≥ The form will need to keep track of the current folder and whether or not the
current excuse has been saved. You can figure out when the excuse hasn’t been
saved by using the Changed event handlers for the three input controls.

1

This parameter indicates whether or not the form has changed. You’ll need a field in your form to keep track of this status.

Make the Folder button open a folder browser.
When the user clicks on the Folder button, the form should pop up a “Browse for Folder” dialog
box. The form will need to store the folder in a field so that the other dialog boxes can use it.
When the form first loads, the Save, Open, and Random Excuse buttons are disabled, but if
the user selects a folder, then the Folder button enables them.

3

Build the Excuse Manager so Brian can manage his excuses at work.

Double-click on the input controls so the IDE builds
Changed event handlers for you. The event handlers for
the three input controls will first change the Excuse
instance and then call UpdateForm(true)—then it’s up to
you to change the fields on your form.

When you drag
a textbox to a
form and double-click on it, you
create a Changedevent handler forthat field.

Excuse
Description: string
Results: string
LastUsed: DateTime
ExcusePath: string

OpenFile(string)
Save(string)

Remember, the !
means NOT—so
this checks if
the excuse path
is NOT null or
empty.

brian needs excuses

you are here 4   433

reading and writing files

Make the Save button save the current excuse to a file.
Clicking the Save button should bring up the Save As dialog box.

≥≥ Each excuse is saved to a separate text file. The first line of the file is the excuse, the second is the
result, and the third is the date last used (using the DateTimePicker’s ToString() method).
The Excuse class should have a Save() method to save an excuse out to a specified file.

≥≥ When the Save As dialog box is opened, its folder should be set to the folder that the user
selected using the Folder button, and the filename should be set to the excuse plus a .txt
extension.

≥≥ The dialog box should have two filters: Text Files (*.txt) and All Files (*.*). If the user tries to save
the current excuse but has left either the excuse or the result blank, the form should pop up a
warning dialog box:

4

You can display this Exclamation icon by
using the overloaded MessageBox.Show()
method that allows you to specify a
MessageBoxIcon parameter.

Make the Open button open a saved excuse.
Clicking the Open button should bring up the Open dialog box.

≥≥ When the Open dialog box is opened, its folder should be set to the folder that the user
selected using the Folder button.

≥≥ Add an Open() method to the Excuse class to open an excuse from a given file.

≥≥ Use Convert.ToDateTime() to load the saved date into the DateTimePicker control.

≥≥ If the user tries to open a saved excuse but the current excuse hasn’t been saved, it pops up this
dialog box:

5

Show a Yes/No dialog box by using
the overloaded MessageBox.Show()
method that lets you specify the
MessageBoxButtons.YesNo parameter. If the user clicks No, then Show() returns DialogResult.No.

Finally, make the Random Excuse button load a
random excuse.
When the user clicks the Random Excuse button, it looks in the excuse folder, chooses one of
the excuses at random, and opens it.

≥≥ The form will need to save a Random object in a field and pass it to one of the
overloaded constructors of the Excuse object.

≥≥ If the current excuse hasn’t been saved, the button should pop up the same warning
dialog box as the Open button.

6

434   Chapter 9

private Excuse currentExcuse = new Excuse();
private string selectedFolder = "";
private bool formChanged = false;
Random random = new Random();

private void folder_Click(object sender, EventArgs e) {
 folderBrowserDialog1.SelectedPath = selectedFolder;
 DialogResult result = folderBrowserDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 selectedFolder = folderBrowserDialog1.SelectedPath;
 save.Enabled = true;
 open.Enabled = true;
 randomExcuse.Enabled = true;
 }
}

private void save_Click(object sender, EventArgs e) {
 if (String.IsNullOrEmpty(description.Text) || String.IsNullOrEmpty(results.Text)) {
 MessageBox.Show("Please specify an excuse and a result",
 "Unable to save", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
 }
 saveFileDialog1.InitialDirectory = selectedFolder;
 saveFileDialog1.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*";
 saveFileDialog1.FileName = description.Text + ".txt";
 DialogResult result = saveFileDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 currentExcuse.Save(saveFileDialog1.FileName);
 UpdateForm(false);
 MessageBox.Show("Excuse written");
 }
}

private void open_Click(object sender, EventArgs e) {
 if (CheckChanged()) {
 openFileDialog1.InitialDirectory = selectedFolder;
 openFileDialog1.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*";
 openFileDialog1.FileName = description.Text + ".txt";
 DialogResult result = openFileDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 currentExcuse = new Excuse(openFileDialog1.FileName);
 UpdateForm(false);
 }
 }
}

private void randomExcuse_Click(object sender, EventArgs e) {
 if (CheckChanged()) {
 currentExcuse = new Excuse(random, selectedFolder);
 UpdateForm(false);
 }
}

Build the Excuse Manager so Brian can manage his excuses at work.

The form uses fields to store the current Excuse
object to the selected folder and remember whether
or not the current excuse has changed, and to keep a
Random object for the Random Excuse button.

Here’s where the filters are set for the Save As dialog.

Use the DialogResult enum
returned by the Open and Save
dialog boxes to make sure you only
open or save if the user clicked
OK, and not Cancel.

If the user selected
 a folder,

the form saves the folder na
me

and then enables th
e other three

buttons.

This will cause two rows to show up in the “Files of Type” drop-down at the bottom of the Save dialog box: one for Text Files (*.txt), and one for All Files (*.*).

exercise solution

The two vertical bars mean OR—this is true if
description is empty OR results is empty.

There’s at a bug somewhere in this exercise solution! Can you spot it?

you are here 4   435

reading and writing files

private bool CheckChanged() {
 if (formChanged) {
 DialogResult result = MessageBox.Show(
 "The current excuse has not been saved. Continue?",
 "Warning", MessageBoxButtons.YesNo, MessageBoxIcon.Warning);
 if (result == DialogResult.No)
 return false;
 }
 return true;
}

private void description_TextChanged(object sender, EventArgs e) {
 currentExcuse.Description = description.Text;
 UpdateForm(true);
}

private void results_TextChanged(object sender, EventArgs e) {
 currentExcuse.Results = results.Text;
 UpdateForm(true);
}

private void lastUsed_ValueChanged(object sender, EventArgs e) {
 currentExcuse.LastUsed = lastUsed.Value;
 UpdateForm(true);
}

class Excuse {
 public string Description { get; set; }
 public string Results { get; set; }
 public DateTime LastUsed { get; set; }
 public string ExcusePath { get; set; }
 public Excuse() {
 ExcusePath = "";
 }
 public Excuse(string excusePath) {
 OpenFile(excusePath);
 }
 public Excuse(Random random, string folder) {
 string[] fileNames = Directory.GetFiles(folder, "*.txt");
 OpenFile(fileNames[random.Next(fileNames.Length)]);
 }
 private void OpenFile(string excusePath) {
 this.ExcusePath = excusePath;
 using (StreamReader reader = new StreamReader(excusePath)) {
 Description = reader.ReadLine();
 Results = reader.ReadLine();
 LastUsed = Convert.ToDateTime(reader.ReadLine());
 }
 }
 public void Save(string fileName) {
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine(Description);
 writer.WriteLine(Results);
 writer.WriteLine(LastUsed);
 } } }

MessageBox.Show() also returns a
DialogResult enum that we can check.

We made sure to use a using
statement every time we
opened a stream. That way
our files will always be closed.

The Random Excuse button uses Directory.GetFiles() to read all of the text files in the selected folder into an array, and then chooses a random array index to open.

Here are the three
Changed event handlers
for the three input
fields on the form. If any
of them are triggered,
that means the excuse
has changed, so first
we update the Excuse
instance and then we
call UpdateForm(), add
the asterisk to the
form’s title bar, and set
Changed to true.

Here’s where the using
statement comes in. We
declared the StreamWriter
inside a using statement, so
its Close() method is called
for us automatically!

Passing true to UpdateForm() tells it
to just mark the form as changed, but
not update the input controls.

Did you call LastUsed.ToString()? Remember, WriteLine() calls it automatically!

436   Chapter 9

Writ ing f i les usually involves
making a lot of decisions
You’ll write lots of programs that take a single input, maybe from a
file, and have to decide what to do based on that input. Here’s code
that uses one long if statement—it’s pretty typical. It checks the
part variable and prints different lines to the file based on which
enum it uses. There are lots of choices, so lots of else ifs:

enum BodyPart {

 Head,

 Shoulders,

 Knees,

 Toes

}

private void WritePartInfo(BodyPart part, StreamWriter writer) {

 if (part == BodyPart.Head)

 writer.WriteLine("the head is hairy");

 else if (part == BodyPart.Shoulders)

 writer.WriteLine("the shoulders are broad");

 else if (part == BodyPart.Knees)

 writer.WriteLine("the knees are knobby");

 else if (part == BodyPart.Toes)

 writer.WriteLine("the toes are teeny");

 else

 writer.WriteLine("some unknown part is unknown");

}

Here’s an enum—we’ll want to compare
a variable against each of the four
members and write a different line to the
StreamWriter depending on which one it
matches. We’ll also write something different
if none of them match.

If we use a series of if/else
statements, then we end
up writing this “if (part
==[option])” over and over.

We’ve got a final else in case we didn’t find a match.

i’m the decider

What sort of things can go wrong when you write code that
has this many if/else statements? Think about typos and
bugs caused by brackets, a single equals sign, etc.

you are here 4   437

reading and writing files

Use a switch statement to
choose the r ight opt ion
Comparing one variable against a bunch of different values is
a really common pattern that you’ll see over and over again.
It’s especially common when you’re reading and writing
files. It’s so common, in fact, that C# has a special kind of
statement designed specifically for this situation.

A switch statement lets you compare one variable against
many values in a way that’s compact and easy to read. Here’s
a switch statement that does exactly the same thing as the
series of if/else statements on the opposite page:

A switch
statement
compares ONE
variable against
MULTIPLE
possible values.

There’s nothing about a switch
statement that’s specifically
related to files. It’s just a useful
C# tool that we can use here.

private void WritePartInfo(BodyPart part, StreamWriter writer)
{
 switch (part) {
 case BodyPart.Head:
 writer.WriteLine("the head is hairy");
 break;
 case BodyPart.Shoulders:
 writer.WriteLine("the shoulders are broad");
 break;
 case BodyPart.Knees:
 writer.WriteLine("the knees are knobby");
 break;
 case BodyPart.Toes:
 writer.WriteLine("the toes are teeny");
 break;
 default:
 writer.WriteLine("some unknown part is unknown");
 break;
 }
} Switch statements can end with a “default:” block that gets executed if none of the other cases are matched.

You’ll start with the switch keyword followed
by the variable that’s going to be compared
against a bunch of different possible values.

The body of the switch statement is a series of cases that compare whatever follows the switch keyword against a particular value.

Each of these cases consists of the case keyword
followed by the value to compare and a colon.
After that is a series of statements followed
by “break;”. Those statements will be executed if
the case matches the comparison value.

Every case ends
with “break;” so
C# knows where
one case ends and
the next begins.

You can also end a
case with “return”–
the program will
compile as long as
there’s no way for
one case to “fall
through” to the
next one.

438   Chapter 9

Use a switch statement to le t your deck of
cards read from a f i le or write itse lf out to one
Writing a card out to a file is straightforward—just make a loop that writes the name
of each card out to a file. Here’s a method you can add to the Deck object that does
exactly that:

 public void WriteCards(string filename) {
 using (StreamWriter writer = new StreamWriter(filename)) {
 for (int i = 0; i < cards.Count; i++) {
 writer.WriteLine(cards[i].Name);
 }
 }

 }

But what about reading the file in? It’s not quite so simple. That’s where the switch
statement can come in handy.

Suits suit;
switch (suitString) (
	 case "Spades":
		 suit = Suits.Spades;
		 break;
	 case "Clubs":
		 suit = Suits.Clubs;
		 break;
	 case "Hearts":
		 suit = Suits.Hearts;
		 break;
	 case "Diamonds":
		 suit = Suits.Diamonds;
		 break;
	 default:
		 MessageBox.Show(suitString + " isn’t a valid suit!");
}

The switch statement starts with a value to compare against. This switch statement is called from a method that has a suit stored in a string.

Each of these case lines compares
some value against the value in
the switch line. If they match,
it executes all of the following
statements until it hits a break.

The default line comes at the end.
If none of the cases match, the
statements after the default get
executed instead.

The switch
statement lets
you test one
value against a
bunch of cases
and execute
different
statements
depending on
which one it
matches.

asleep at the switch

you are here 4   439

reading and writing files

public Deck(string filename) {
 cards = new List<Card>();
 using (StreamReader reader = new StreamReader(filename)) {
 while (!reader.EndOfStream) {
 bool invalidCard = false;
 string nextCard = reader.ReadLine();
 string[] cardParts = nextCard.Split(new char[] { ' ' });
 Values value = Values.Ace;
 switch (cardParts[0]) {
 case "Ace": value = Values.Ace; break;
 case "Two": value = Values.Two; break;
 case "Three": value = Values.Three; break;
 case "Four": value = Values.Four; break;
 case "Five": value = Values.Five; break;
 case "Six": value = Values.Six; break;
 case "Seven": value = Values.Seven; break;
 case "Eight": value = Values.Eight; break;
 case "Nine": value = Values.Nine; break;
 case "Ten": value = Values.Ten; break;
 case "Jack": value = Values.Jack; break;
 case "Queen": value = Values.Queen; break;
 case "King": value = Values.King; break;
 default: invalidCard = true; break;
 }
 Suits suit = Suits.Clubs;
 switch (cardParts[2]) {
 case "Spades": suit = Suits.Spades; break;
 case "Clubs": suit = Suits.Clubs; break;
 case "Hearts": suit = Suits.Hearts; break;
 case "Diamonds": suit = Suits.Diamonds; break;
 default: invalidCard = true; break;
 }
 if (!invalidCard) {
 cards.Add(new Card(suit, value));
 }
 }
 }
}

You can use a switch statement to build a new constructor for the Deck
class that you wrote in the last chapter. This constructor reads in a file and
checks each line for a card. Any valid card gets added to the deck.

There’s a method that you can find on every string that’ll come in handy:
Split(). It lets you split the string into an array of substrings by passing it
a char[] array of separator characters that it’ll use to split up the string.

This switch statement checks the first word in the line to see if it matches a value. If it does, the right value is assigned to the
value variable.

We do the same thing for
the third word in the line,
except we convert this
one to a suit.

Add an overloaded Deck() constructor that
reads a deck of cards in from a f i le

This line tells C# to split the
nextCard string using a space
as a separator character.
That splits the string “Six
of Diamonds” into the array
{“Six”, “of”, “Diamonds”}.

440   Chapter 9

All that code just to read in
one simple card? That’s way too much

work! What if my object has a whole bunch
of fields and values? Are you telling me I
need to write a switch statement for each

of them?

There’s an easier way to store your objects in
files. It’s called serialization.

Instead of painstakingly writing out each field and value to
a file line by line, you can save your object the easy way by
serializing it out to a stream. Serializing an object is like
flattening it out so you can slip it into a file. And on the
other end, you can deserialize it, which is like taking it out
of the file and inflating it again.

OK, just to come clean here: there’s also a method called
Enum.Parse()—you’ll learn about it in Chapter 14—that will
convert the string “Spades” to the enum value Suits.Spades.
But serialization still makes a lot more sense here. You’ll find
out more about that shortly....

you are here 4   441

reading and writing files

When you create an instance of an
object, it has a state. Everything
that an object “knows” is what makes
one instance of a class different from
another instance of the same class.

What happens to an object when it’s serialized?

1 Object on the heap 2 Object serialized

001
001

01

Width

010
001

10

Height

00100101

01000110

When C# serializes an object, it saves
the complete state of the object, so
that an identical instance (object) can be
brought back to life on the heap later.

The instance variable values for width and height are saved to the file.dat file, along with a little more info that the CLR needs to restore the object later (like the type of the object and each of its fields).file.dat

This object h
as two byte

fields, width and he
ight.

It seems like something mysterious has to happen to an object in order to copy
it off of the heap and put it into a file, but it’s actually pretty straightforward.

3 And later on…

Later—maybe days later, and in a
different program—you can go back to
the file and deserialize it. That pulls
the original class back out of the file
and restores it exactly as it was, with
all of its fields and values intact.

Object on the heap again

442   Chapter 9

But what exact ly IS an object’s
state? What needs to be saved?
We already know that an object stores its state in its fields. So when an
object is serialized, every one of those fields needs to be saved to the file.

Serialization starts to get interesting when you have more complicated objects.
Chars, ints, doubles, and other value types have bytes that can just be written
out to a file as is. But what if an object has an instance variable that’s an object
reference? What about an object that has five instance variables that are object
references? What if those object instance variables themselves have instance
variables?

Think about it for a minute. What part of an object is potentially unique? Imagine
what needs to be restored in order to get an object that’s identical to the one that
was saved. Somehow everything on the heap has to be written to the file.

What has to happen for this Car object to be saved so
that it gets restored back to its original state? Let’s say
the car has three passengers and a 3-liter engine and
all-weather radial tires…aren’t those things all part of the
Car object’s state? What should happen to them?

The Car object has
references

to an Engine object, a
n array

of Tire objects, an
d a List<>

of Passenger o
bjects. Those are

part of its st
ate, too—what

happens to th
em?

Each of the passenger
objects has its own
references to other
objects. Do those need
to be saved, too?

The Engine object is
private. Should it be
saved, too?

save the cheerleader

Engine object

Tire [] array o
bj

ec
t

List<Passengers>
 o

bj
ec

t

Car object

you are here 4   443

reading and writing files

DoggyID obje
ct

DoggyID obje
ct

Dog object

List<Dog> object

Kennel object

“Fido”

“Spike”

When an object is serialized, al l of the
objects it refers to get serialized, too…

…and all of the objects they refer to, and all of the objects those other objects refer to,
and so on and so on. But don’t worry—it may sound complicated, but it all happens
automatically. C# starts with the object you want to serialize and looks through its
fields for other objects. Then it does the same for each of them. Every single object
gets written out to the file, along with all the information C# needs to reconstitute it
all when the object gets deserialized.

When you ask C# to serialize

the Kennel object, it looks fo
r

any field that has a re
ference

to another object.

One of the fields of
the Kennel object is
this List<Dog> that
contains two Dog
objects, so C# will
need to serialize
them, too. Each of the two Dog objects

has references to a DoggyID
object and a Collar object.
They’ll need to get serialized
along with each Dog.

DoggyID and Collar are the end

of the line—they don’t have

references to any other
 objects.

Breed.Mutt
6 years old
18 pounds

11” tall

Breed.Beagle
4 years old
32 pounds

14” tall

Dog object

Collar object
Collar object

This whole group of
connected objects is
sometimes referred

to as a graph.

444   Chapter 9

Serializat ion le ts you read or write a
whole object graph all at once
You’re not just limited to reading and writing lines of text to your files. You can
use serialization to let your programs copy entire objects to files and read
them back in…all in just a few lines of code! There’s a tiny amount of prep work
you need to do—add one [Serializable] line to the top of the class to
serialize—but once you do that, everything’s ready to write.

It’s quick to copy
an object out to
a file or read it
in from one. You
can serialize or
deserialize it.

using (Stream output = File.Create(filenameString)) {
 formatter.Serialize(output, objectToSerialize);
}

You’l l need a BinaryFormatter object
If you want to serialize an object graph, the first thing you do is create an instance
of BinaryFormatter. It’s really straightforward to do—and all it takes is one
line of code (and an extra using line at the top of the class file).

Now just create a stream and read or write your objects
Use the Serialize() method from the BinaryFormatter object to write any
object out to a stream.

And once you’ve got an object serialized out to a file, use the BinaryFormatter
object’s Deserialize() method to read it back in. The method returns a
reference, so you need to cast the output so that it matches the type of the reference
variable you’re copying it to.

The Serialize() method takes an
object and writes it out to a
stream. That’s a whole lot easier
than building a method to write it
out yourself!

When you use Deserialize() to read an
object back from a stream, don’t forget
to cast the return value to match the
type of object you’re reading.

The File.Create() method creates a new file. You can open an existing one using File.OpenWrite().

 using System.Runtime.Serialization.Formatters.Binary;
 ...
 BinaryFormatter formatter = new BinaryFormatter();

using (Stream input = File.OpenRead(filenameString)) {
 SomeObj obj = (SomeObj)formatter.Deserialize(input);
}

you are here 4   445

reading and writing files

If you want your class to be serializable, mark
it with the [Serializable] at tribute
An attribute is a special tag that you can add to the top of any C# class. It’s how C# stores
metadata about your code, or information about how the code should be used or treated. When
you add [Serializable] to the top of a class just above the class declaration, you’re
telling C# that your class is safe for serialization. And you only use it with classes that include fields
that are either value types (like an int, decimal, or enum) or other serializable classes. If you
don’t add the attribute to the class you want to serialize, or if you include a field with a type that
isn’t serializable, then your program will have an error when you try to run it. See for yourself…

Do this
Create a class and serialize it.
Let’s serialize Joe so we can keep a file that knows how much money he’s got in his pocket even after you
close your program. Open the “Fun with Joe and Bob” project from Chapter 3 and update the Guy class:
 [Serializable]
 class Guy {

Next, add a “Save Joe” button and a “Load Joe” button to the form. Here’s code for their event handler
methods to serialize the Joe object to a file called Guy_file.dat and read it back:

 using System.IO;
 using System.Runtime.Serialization.Formatters.Binary;

 ...

 private void saveJoe_Click(object sender, EventArgs e)
 {
 using (Stream output = File.Create("Guy_File.dat")) {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(output, joe);
 }
 }
 private void loadJoe_Click(object sender, EventArgs e)
 {
 using (Stream input = File.OpenRead("Guy_File.dat")) {
 BinaryFormatter formatter = new BinaryFormatter();
 joe = (Guy)formatter.Deserialize(input);
 }
 UpdateForm();
 }

1

Run the program and play around with it.
If Joe had two hundred dollars saved up from his transactions with Bob during your time running the
program, it would be a pain to lose all that money just because you needed to exit. Now your program can
save Joe out to a file and restore him whenever you want.

What happens if you delete Guy_File.dat from the bin/Debug folder and then click Load Joe?

2

You’ll need these two using
lines. The first one is
for the file and stream
methods, and the second
is for serialization.

You need to add this attribute to the topof any class in order to serialize it.

Attributes are
a way to add

information to your
class or member
declaration. The

[Serializable]
attribute is in
the System
namespace.

446   Chapter 9

Let’s serialize and deserialize a deck of cards
Take a deck of cards and write it out to a file. C# makes
serializing objects really easy. All you need to do is
create a stream and write out your objects.

Create a new project and add the Deck and Card classes.
Right-click on the project in the Solution Explorer and choose Add→Existing Item, and add the
Card and Deck classes (and the Suits and Values enums and CardComparer_bySuit and
CardComparer_byValue interfaces) you used in Go Fish! in Chapter 8. You’ll also need to add the two
card comparer classes, since Deck uses them. The IDE will copy the files into the new project—make sure
you change the namespace line at the top of each class file to match your new project’s namespace.

1

Mark the classes serializable.
Add the [Serializable] attribute to both classes you added to the
project.

2

Add a couple of useful methods to the form.
The RandomDeck method creates a random deck of cards, and the
DealCards method deals all of the cards and prints them to the console.

Random random = new Random();
private Deck RandomDeck(int number) {
 Deck myDeck = new Deck(new Card[] { });
 for (int i = 0; i < number; i++)
 {
 myDeck.Add(new Card(
 (Suits)random.Next(4),
 (Values)random.Next(1, 14)));
 }
 return myDeck;
}

private void DealCards(Deck deckToDeal, string title) {
 Console.WriteLine(title);
 while (deckToDeal.Count > 0)
 {
 Card nextCard = deckToDeal.Deal(0);
 Console.WriteLine(nextCard.Name);
 }
 Console.WriteLine("------------------");
}

3

If you don’t do
this, C# won’t let
you serialize the
classes to a file.

Do this

The DealCards() method deals each of the cards off of the deck and prints it to the console.

This creates an empty
deck and then adds some
random cards to it using
the Card class from the
last chapter.

i like milk on my serial

Don't forget to open the IDE's Ouptut window to
view the console output from a WinForms program.

Don’t forget the using statements!

using System.IO;

using System.Runtime.
Serialization.Formatters.Binary;

you are here 4   447

reading and writing files
OK, prep work’s done...now serialize that deck.
Start by adding buttons to serialize a random deck to a file and read it back. Check the
console output to make sure the deck you wrote out is the same as the deck you read.

private void button1_Click(object sender, EventArgs e) {
 Deck deckToWrite = RandomDeck(5);
 using (Stream output = File.Create("Deck1.dat")) {
 BinaryFormatter bf = new BinaryFormatter();
 bf.Serialize(output, deckToWrite);
 }
 DealCards(deckToWrite, "What I just wrote to the file");
}

private void button2_Click(object sender, EventArgs e) {
 using (Stream input = File.OpenRead("Deck1.dat")) {
 BinaryFormatter bf = new BinaryFormatter();
 Deck deckFromFile = (Deck)bf.Deserialize(input);
 DealCards(deckFromFile, "What I read from the file");
 }
}

4

The BinaryFormatter object
takes any object marked with
the Serializable attribute—in
this case a Deck object—and
writes it out to a stream using
its Serialize() method.

The BinaryFormatter’s
Deserialize() method returns
an Object, which is just the
general type that every C#
object inherits from—which is
why we need to cast it to a
Deck object.

Now serialize a bunch of decks to the same file.
Once you open a stream, you can write as much as you want to it. You can serialize as
many objects as you need into the same file. So now add two more buttons to write out a
random number of decks to the file. Check the output to make sure everything looks good.

private void button3_Click(object sender, EventArgs e) {
 using (Stream output = File.Create("Deck2.dat")) {
 BinaryFormatter bf = new BinaryFormatter();
 for (int i = 1; i <= 5; i++) {
 Deck deckToWrite = RandomDeck(random.Next(1,10));
 bf.Serialize(output, deckToWrite);
 DealCards(deckToWrite, "Deck #" + i + " written");
 }
 }
}
 private void button4_Click(object sender, EventArgs e) {
 using (Stream input = File.OpenRead("Deck2.dat")) {
 BinaryFormatter bf = new BinaryFormatter();
 for (int i = 1; i <= 5; i++) {
 Deck deckToRead = (Deck)bf.Deserialize(input);
 DealCards(deckToRead, "Deck #" + i + " read");
 }
 }
}

5

You can serialize
one object after
another to the
same stream.

As long as you cast the
objects you read off
the stream to the right
type, you can serialize or
deserialize a while bunch of
objects, one after another.

Take a look at the file you wrote.
Open up Deck1.dat in Notepad (File.Create() created it in the bin\Debug folder under
your project folder). It may not be something you’d read on the beach, but it’s got all the
information to restore your whole deck of cards.

6

Notice how the line that
reads a single deck from
the file uses (Deck) to cast
the output of Deserialize()
to a Deck. That’s because
Deserialize() returns an
object, but doesn’t necessarily
know what type of object.

Flip back a
page to see
the using
statements
to add to
the form.

448   Chapter 9

When you serialize objects out to a file, they’re written in a binary format.

But that doesn’t mean it’s indecipherable—just compact. That’s why you can recognize the strings
when you open up a file with serialized objects in it: that’s the most compact way C# can write
strings to a file—as strings. But writing out a number as a string would be really wasteful. Any int
can be stored in four bytes. Storing the number 49,369,144 as an 8-character string that you could
read takes 8 characters (10 if you include commas), but a binary formatted int only takes 4 bytes.

Later in the book you’ll learn about a less compact, more human-readable (and editable!) serialization format.

Wait a minute. I’m not sure I
like all this writing objects out to some weird

file that looks like garbage when I open it up. When
I wrote the deck of cards as strings, I could open

up the output in Notepad and see everything in it. Isn’t
C# supposed to make it easy for me to understand

everything I’m doing?

.NET uses Unicode to encode a char or string into bytes. Luckily, Windows has a useful
little tool to help us figure out how Unicode works. Open up the Character Map (use the
Search charm on the Start page to find it, or press Windows-R and type “charmap.exe”).

Behind
the Scenes

When you look at all the letters and symbols that are used in languages all around the world, you realize just how
many different things need to be written to a file just to store text. That’s why .NET encodes all of its strings and
characters in a format called Unicode. Encoding just means taking the logical data (like the letter H) and turning it
into bytes (the number 72). It needs to do that because letters, numbers, enums, and other data all end up in bytes
on disk or in memory. And that’s why Character Map is useful—it shows you how letters are encoded into numbers.

Select the Segoe UI font
and scroll down until you
reach the Hebrew letters.
Find the letter Shin and
click on it.

As soon as you click on the
letter, its Unicode number
shows up in the status bar. The
Hebrew letter Shin is number
05E9. That’s a hexadecimal
number—“hex” for short.

You can convert it to decimal
using the Windows desktop
calculator: open it up, put it in
Scientific mode, click the “Hex”
radio button, enter “05E9”,
and then click “Dec”—it’s 1,513.

Unicode is an
industry standard
developed by a
nonprofit group
called the Unicode
Consortium, and
it works across
programs and
different computer
platforms. Take a
minute and look
at their website:
http://unicode.org/

builds character

you are here 4   449

reading and writing files

.NET uses Unicode to store characters and text
The two C# types for storing text and characters—string and char—keep their data in
memory as Unicode. When that data’s written out as bytes to a file, each of those Unicode
numbers is written out to the file. So start a new project and drag three buttons onto a form,
and we’ll use the File.WriteAllBytes() and ReadAllBytes() methods to get a
sense of exactly how Unicode data is written out to a file.

Write a normal string out to a file and read it back.
Use the same WriteAllText() method that you used in the text editor to have the first
button write the string “Eureka!” out to a file called eureka.txt. Then create a new byte array
called eurekaBytes, read the file into it, and then print out all of the bytes read:

File.WriteAllText("eureka.txt", "Eureka!");

byte[] eurekaBytes = File.ReadAllBytes("eureka.txt");

foreach (byte b in eurekaBytes)

 Console.Write("{0} ", b);

Console.WriteLine();

You’ll see these bytes written to the output: 69 117 114 101 107 97 33. Now open up the
file in the Simple Text Editor that you wrote earlier in the chapter. It says “Eureka!”

1

The ReadAllBytes() method returns a reference
to a new array of bytes that contains all of the
bytes that were read in from the file.

Do this!

Make the second button display the bytes as hex numbers.
It’s not just Character Map that shows numbers in hex. Almost anything you read that has to do with
encoding data will show that data in hex, so it’s useful to know how to work with it. Make the code for the
second button’s event handler in your program identical to the first one, except change the Console.
Write() line so it looks like this instead:

 Console.Write("{0:x2} ", b);

That tells Write() to print parameter 0 (the first one after the string to print) as a two-character hex
code. So it writes the same seven bytes in hex instead of decimal: 45 75 72 65 6b 61 21

2

Hex uses the numbers 0 through 9 and letters A through F to represent numbers in base 16, so 6B is equal to 107.

Make the third button write out Hebrew letters.
Go back to Character Map and double-click on the Shin character (or click the Select button). It’ll add it to
the “Characters to copy” box. Then do the same for the rest of the letters in “Shalom”: Lamed (U+05DC),
Vav (U+05D5), and Final Mem (U+05DD). Now add the code for the third button’s event handler. It’ll
look exactly like button 2, except for one change. Click the Copy button in Character Map, and then paste
the letters over “Eureka!” and add the Encoding.Unicode parameter, so it looks like this:

File.WriteAllText("eureka.txt", "שלום", Encoding.Unicode);

Did you notice that the IDE pasted the letters in backward? That’s because it knows that Hebrew is
read right-to-left, so any time it encounters Hebrew Unicode letters, it displays them right-to-left. Put
your cursor in the middle of the letters—the left and right arrow keys reversed! That makes it a lot easier
if you need to type in Hebrew. Now run the code, and look closely at the output: ff fe e9 05 dc 05
d5 05 dd 05. The first two characters are “FF FE”, which is the Unicode way of saying that we’re
going to have a string of two-byte characters. The rest of the bytes are the Hebrew letters—but they’re
reversed, so U+05E9 appears as e9 05. Now open the file up in your simple text editor—it looks right!

3

450   Chapter 9

Since all your data ends up encoded as bytes, it makes sense to
think of a file as one big byte array. And you already know
how to read and write byte arrays.

C# can use byte arrays to move data around

byte[] greeting;

greeting = File.ReadAllBytes(filename);Hello!!

7 byte variables

 72 101 108 108 111 33 33

7 byte variables

 33 33 111 108 108 101 72

!!olleH

Array.Reverse(greeting);

File.WriteAllBytes(filename, greeting);

Here’s the code to create a byt
e array,

open an input stream, and read the

text ‘Hello!!’ into bytes 0 through 6 of

the array.

This is a static method for
Arrays that reverses the
order of the bytes. We’re
just using it to show that the
changes you make to the byte
array get written out to the
file exactly.

Now the bytes are in
reverse order.

When the program writes the
byte array out to a file, the
text is in reverse order too.

These numbers are the Unicode numbers for the characters in “Hello!!”

take a byte out of crime

Reversing the bytes in “Hello!!” only works because each of those
characters is one byte long. Can you figure out why this won’t work
for שלום?

you are here 4   451

reading and writing files

Use a BinaryWriter to write binary data
You could encode all of your strings, chars, ints, and floats into byte arrays before writing them
out to files, but that would get pretty tedious. That’s why .NET gives you a very useful class called
BinaryWriter that automatically encodes your data and writes it to a file. All you need to do
is create a FileStream and pass it into the BinaryWriter’s constructor (they’re in the System.IO
namespace, so you’ll need using System.IO;). Then you can call its methods to write out your
data. So let’s create a new Console Application that uses BinaryWriter to write binary data to a file.

__ - ___ bytes

Start by creating a Console Application and setting up some data to write to a file.

 int intValue = 48769414;
 string stringValue = "Hello!";
 byte[] byteArray = { 47, 129, 0, 116 };
 float floatValue = 491.695F;
 char charValue = 'E';

1

Do this!

To use a BinaryWriter, first you need to open a new stream with File.Create():

 using (FileStream output = File.Create("binarydata.dat"))

 using (BinaryWriter writer = new BinaryWriter(output)) {

2

Now just call its Write() method. Each time you do, it adds new bytes onto the end of the
file that contain an encoded version of whatever data you passed it as a parameter.

 writer.Write(intValue);

 writer.Write(stringValue);

 writer.Write(byteArray);

 writer.Write(floatValue);

 writer.Write(charValue);

 }

3

Each Write() statement encodes one
value into bytes, and then sends those
bytes to the FileStream object. You
can pass it any value type, and it’ll
encode it automatically.

Here’s a hint: strings can be different lengths, so the string has to start with a number to tell .NET how
long it is. Also, you can look up the string and char Unicode values using Character Map.

If you use File.Create(), it’ll start a new file—if there’s one there already, it’ll blow it away and start a brand-new one. There’s also the File.OpenWrite() method, which opens the existing one and starts overwriting it from the beginning.

Now use the same code you used before to read in the file you just wrote.

 byte[] dataWritten = File.ReadAllBytes("binarydata.dat");

 foreach (byte b in dataWritten)

 Console.Write("{0:x2} ", b);

 Console.WriteLine(" - {0} bytes", dataWritten.Length);

 Console.ReadKey();

Write down the output in the blanks below. Can you figure out what bytes
correspond to each of the five Write() statements? Mark each group of bytes with
the name of the variable.

4

The FileStream
writes the bytes to
the end of the file.

StreamWriter also encodes your data. It just specializes in text and text encoding.

452   Chapter 9

86 29 e8 02 06 48 65 6c 6c 6f 21 2f 81 00 74 f6 d8 f5 43 45 20__ - ___ bytes

intValue stringValue byteArray charValue
char holds a Unicode
character, and ‘E’ only
takes one byte—it’s
encoded as U+0045.

Use BinaryReader to read the data back in
The BinaryReader class works just like BinaryWriter. You create a
stream, attach the BinaryReader object to it, and then call its methods.
But the reader doesn’t know what data’s in the file! And it has no way
of knowing. Your float value of 491.695F was encoded as d8 f5 43 45. But
those same bytes are a perfectly valid int—1,140,185,334. So you’ll need
to tell the BinaryReader exactly what types to read from the file. Add the
following code to your program, and have it read the data you just wrote.

float and int values take up 4 bytes when you
write them to a file. If you’d used long or
double, then they’d take up 8 bytes each.

If you use the Windows desktop
calculator to convert these
bytes from hex to decimal, you
can see that these are the
numbers in byteArray.

The first byte in the string is 6—that’s
the length of the string. You can use
Character Map to look up each of the
characters in “Hello!”—it starts with
U+0048 and ends with U+0021.

Start out by setting up the FileStream and BinaryReader objects:

 using (FileStream input = File.OpenRead("binarydata.dat"))
 using (BinaryReader reader = new BinaryReader(input)) {

1

You tell BinaryReader what type of data to read by calling its different methods.

 int intRead = reader.ReadInt32();

 string stringRead = reader.ReadString();

 byte[] byteArrayRead = reader.ReadBytes(4);

 float floatRead = reader.ReadSingle();

 char charRead = reader.ReadChar();

2

Each value type has its own method in BinaryReader() that returns the data in the correct type. Most don’t need any parameters, but ReadBytes() takes one parameter that tells BinaryReader how many bytes to read.
You tell BinaryReader what type of data to read by calling its different methods.

 Console.Write("int: {0} string: {1} bytes: ", intRead, stringRead);
 foreach (byte b in byteArrayRead)
 Console.Write("{0} ", b);
 Console.Write(" float: {0} char: {1} ", floatRead, charRead);
 }
 Console.ReadKey();

Here’s the output that gets printed to the console:

 int: 48769414 string: Hello! bytes: 47 129 0 116 float: 491.695 char: E

3

Don’t take our word for it.
Replace the line that reads the
float with a call to ReadInt32().
(You’ll need to change the type
of floatRead to int.) Then you
can see for yourself what it
reads from the file.

an amalgam of data

floatValue

If you're adding
this code to
the end of the
program on the
previous page,
don't forget the
other ReadKey()
that waits for a
keystroke.

you are here 4   453

reading and writing files

You can read and write serialized f i les manually, too
Serialized files don’t look so pretty when you open them up in Notepad. You’ll find all
the files you write in your project’s bin\Debug folder—let’s take a minute and get more
acquainted with the inner workings of a serialized file.

Serialize two Card objects to different files.
Use the serialization code you’ve already written to serialize the Three of Clubs to three-c.dat and Six
of Hearts to six-h.dat. Check to make sure that both files were written out and are now in a folder,
and that they both have the same file size. Then open one of them in Notepad:

1

Write a loop to compare the two binary files.
We used the ReadByte() method to read the next byte from a stream—it returns an int that contains
the value of that byte. We also used the stream’s Length field to make sure we read the whole file.

byte[] firstFile = File.ReadAllBytes("three-c.dat");
byte[] secondFile = File.ReadAllBytes("six-h.dat");
for (int i = 0; i < firstFile.Length; i++)
 if (firstFile[i] != secondFile[i])
 Console.WriteLine("Byte #{0}: {1} versus {2}",
 i, firstFile[i], secondFile[i]);

2

This loop examines the first byte from each of
the files and compares them, then the second byte,
then the third, etc. When it finds a difference, it
writes a line to the console.

There are
some words in
the file, but
it’s mostly
unreadable.

The two files are read into two
different byte arrays, so they can
be compared byte by byte. Since
the same class was serialized to two
different files, they’ll be almost
identical…but let’s see just HOW
identical they are.

We’re not done yet—flip the page!

Do this!

	 When you write to a file, you don’t
always start from a clean slate!

Be careful if you use File.OpenWrite(). It
doesn’t delete the file—it just starts overwriting
the data starting at the beginning. That’s why

we’ve been using File.Create()—it creates a new file.

Don't
forget the
two using
statements!

454   Chapter 9

Take a look at the console output to see how the two files differ.
The console should show that two bytes differ:

 Byte #307: 1 versus 3
 Byte #364: 3 versus 6

That should make a lot of sense! Go back to the Suits enum from the last chapter, and you’ll find
the value for Clubs is 1 and the value for Hearts is 3, so that’s the first difference. And the second
difference—six versus three—is pretty obviously the card’s value. You might see different byte
numbers, which isn’t surprising: you might be using a different namespace, which would change the
length of the file.

3

Write code to manually create a new file that contains the King of Spades.
We’ll take one of the arrays that we read, alter it to contain a new card, and write it back out.

firstFile[307] = (byte)Suits.Spades;

firstFile[364] = (byte)Values.King;

File.Delete("king-s.dat");

File.WriteAllBytes("king-s.dat", firstFile);

Now deserialize the card from king-s.dat and see if it’s the King of Spades!

4

Now that you know which bytes
contain the suit and value, you
can change just those bytes
in the array before it gets
written out to king-s.dat.

If you found
different
byte numbers
in step #3,
substitute
them in here.

Remember how the namespace was included as part of the serialized file? If your namespace is longer or shorter, then the byte numbers will be different.

Find where the f i les differ, and use
that information to alter them

Hmm, if byte #307 in the serialized file
represents the suit, then we should be able to
change the suit of the card by reading that file
in, changing that one byte, and writing it out
again. (Remember, your own serialized file might
store the suit at a different location.)

celebrate our differences

The loop you just wrote pinpoints exactly where the two serialized
Card files differ. Since the only difference between the two objects
were their Suit and Value fields, then that should be the only
difference in their files, too. So if we find the bytes that hold the suit
and value, we should be able to change them to make a new card
with whatever suit and value we want!

you are here 4   455

reading and writing files

There’s another option—it’s a format called a hex dump, and it’s a pretty standard way to look at binary
data. It’s definitely more informative than looking at the file in Notepad. Hexadecimal—or “hex”—is a
convenient way to display bytes in a file. Every byte takes 2 characters to display in hex, so you can see
a lot of data in a really small space, and in a format that makes it easy to spot patterns. Also, it’s useful
to display binary data in rows that are 8, 16, or 32 bytes long because most binary data tends to break
down in chunks of 4, 8, 16, or 32…like all the types in C#. For example, an int takes up 4 bytes, and
is 4 bytes long when serialized on disk. Here’s what that same file looks like as a hex dump, using one of
any number of free hex dump programs available for Windows:

Working with binary f i les can be tr icky
What do you do if you have a file and you aren’t quite sure what’s inside it? You don’t
know what application created it, and you need to know something about it—but when
you open it in Notepad, it looks like a bunch of garbage. What if you’ve exhausted
all your other options, and really need to just look inside? Looking at that picture, it’s
pretty clear that Notepad just isn’t the right tool.

Here’s the serialized card, opened up in Notepad. That’s not going to be useful at all.

You can make out a few things—like the enum names (Suit and Value), and
the name of the namespace we used (SerializeCards). But that’s not all that
helpful. What else do you see in there that the BinaryFormatter generated?

You can immediately
see the numeric
value of each byte
in the file.

The number at the
beginning of each
line is the offset
(or distance into the
file) of the first
byte in the line.

You still
get to see
the original
text, but
the garbage
characters
are replaced
with dots.

456   Chapter 9

How to make a hex dump
Start with some familiar text:

 We the People of the United States, in Order to form a more perfect Union...

Here’s what a hex dump of that text would look like:

Each of those numbers—57, 65, 6F—is the value of one byte in the file. The reason some of the “numbers”
have letter values is that they’re hexadecimal (or hex). That’s just another way of writing a number. Instead of
using 10 digits from 0 to 9, it uses 16 digits from 0 to 9 plus the letters A through F.

Each line in our hex dump represents 16 characters in the input that was used to generate it. In our dump,
the first four characters are the offset in the file—the first line starts at character 0, the next at character 16
(or hex 10), then character 32 (hex 20), etc. (Other hex dumps look slightly different, but this one will do for
us.)

Use f i le streams to build a hex dumper
A hex dump is a hexadecimal view of the contents of a file, and it’s
a really common way for programmers to take a deep look at a file’s
internal structure. Most operating systems ship with a built-in hex
dump utility. Unfortunately, Windows doesn’t. So let’s build one!

69 73 6e 27 74 20 74 68 69 73 20 66 75 6e 3f 0a

Again, you can immediately see the
numeric value of each byte in the file.

We’ll add the number at the beginning of each line by using
the offset of the first byte in the line.

And we’ll
need to
replace the
garbage
characters
with periods.

 0000: 57 65 20 74 68 65 20 50 -- 65 6f 70 6c 65 20 6f 66 We the People of
 0010: 20 74 68 65 20 55 6e 69 -- 74 65 64 20 53 74 61 74 the United Stat
 0020: 65 73 2c 20 69 6e 20 4f -- 72 64 65 72 20 74 6f 20 es, in Order to
 0030: 66 6f 72 6d 20 61 20 6d -- 6f 72 65 20 70 65 72 66 form a more perf
 0040: 65 63 74 20 55 6e 69 6f -- 6e 2e 2e 2e ect Union...

String.Format() uses parameters just like Console.WriteLine(), so you don’t need to learn anything new to use it.

Working with hex
You can put hex numbers directly into your program—just add the
characters 0x (a zero followed by an x) in front of the number:

 int j = 0x20;
 MessageBox.Show("The value is " + j);

When you use the + operator to concatenate a number into a
string, it gets converted to decimal. You can use the static String.
Format() method to convert your number to a hex-formatted
string instead:

 string h = String.Format("{0:x2}", j);

you are here 4   457

reading and writing files

Our hex dumper will write its dump out to a file, and since it’s just writing text a
StreamWriter will do just fine. But we can also take advantage of the ReadBlock()
method in StreamReader. It reads a block of characers into a char array—you
specify the number of characters you want to read, and it’ll either read that many
characters or, if there are fewer than that many left in the file, it’ll read the rest of the file.
Since we’re displaying 16 characters per line, we’ll read blocks of 16 characters.

So add one more button to your program—add this hex dumper to it. Change the first
two lines so that they point to real files on your hard drive. Start with a serialized Card
file—copy it to a folder, then put its path in the StreamReader's constructor.

using (StreamReader reader = new StreamReader(@"c:\files\inputFile.txt"))

using (StreamWriter writer = new StreamWriter(@"c:\files\outputFile.txt", false))

{

 int position = 0;

 while (!reader.EndOfStream) {

 char[] buffer = new char[16];

 int charactersRead = reader.ReadBlock(buffer, 0, 16);

 writer.Write("{0}: ", String.Format("{0:x4}", position));

 position += charactersRead;

 for (int i = 0; i < 16; i++) {

 if (i < charactersRead) {

 string hex = String.Format("{0:x2}", (byte)buffer[i]);

 writer.Write(hex + " ");

 }

 else

 writer.Write(" ");

 if (i == 7) { writer.Write("-- "); }

 if (buffer[i] < 32 || buffer[i] > 250) { buffer[i] = '.'; }

 }

 string bufferContents = new string(buffer);

 writer.WriteLine(" " + bufferContents.Substring(0, charactersRead));

 }

}

You can convert a char[] array to a string by passing it to the overloaded constructor for string.

Every string has a Substring method that returns a piece of the string.
In this case, it returns the first charactersRead characters starting
at the beginning (position 0). (Look back at the top of the loop to see
where charactersRead is set—the ReadBlock() method returns the number
of characters that it read into the array.)

The static String.Format method converts numbers to strings. “{0:x4}” tells Format() to print the second parameter—in this case, position—as a four-character hex number.

A StreamReader’s EndOfStream property returns false if
there are characters still left to read in the file.

This ReadBlock() call reads up to 16
characters into a char array.

This loop goes
through the
characters
and prints
each of them
to a line in
the output.

Some characters with a value under

32 don’t print, so we’ll replace all

of them with a period.

StreamReader and StreamWriter wil l do just f ine (for now)
The reason the method’s
called ReadBlock() is
that when you call it, it
“blocks” (which means it
keeps executing and doesn’t
return to your program)
until it’s either read all the
characters you asked for or
run out of data to read.

458   Chapter 9

build hexdump right

Use Stream.Read() to read bytes from a stream
The hex dumper works just fine for text files. But there’s a problem. Try using File.WriteAllBytes() to write
an array of bytes with values over 127 to a file and then run it through your dumper. Uh oh—they’re all read in as

“fd”! That’s because StreamReader is built to read text files, which only contain bytes with values under 128.
So let’s do this right—by reading the bytes directly from the stream using the Stream.Read() method. And as a
bonus, we’ll build it just like a real hex dump utility: we’ll make it take a filename as a command-line argument.

Create a new Console Application and call it HexDumper. The code for the program is on the facing page.
Here’s what it will look like when you run the program:

If you run HexDumper without any
arguments, it returns an error message
and exits with an error code.

It also exits with an error if you pass it
the name of a file that doesn’t exist.

If you pass it a
valid filename, it’ll
write a hex dump
of the contents
of the file to the
console.

Using command-line arguments
Every time you create a new Console Application project, Visual Studio creates a Program class with an entry point method that has this declaration: static void Main(string[] args). If you run your program with command-line arguments, the args parameter will contain those arguments. And it’s not just for Console Applications, either: open up any Windows Forms Application project’s Program.cs file, and you’ll see the same thing. You’ll want to pass command-line arguments when you’re debugging your program. To pass arguments when you run your program in the IDE’s debugger, choose “Properties…” from the Project menu and enter them on the Debug tab.

Do this

Normally we use Console.
WriteLine() to print
to the console. But
we’ll use Console.Error.
WriteLine() to print
error messages so they
don’t get redirected
if we use > or >> to
redirect the output.

you are here 4   459

reading and writing files

static void Main(string[] args)
{
 if (args.Length != 1)
 {
 Console.Error.WriteLine("usage: HexDumper file-to-dump");
 System.Environment.Exit(1);
 }
 if (!File.Exists(args[0]))
 {
 Console.Error.WriteLine("File does not exist: {0}", args[0]);
 System.Environment.Exit(2);
 }
 using (Stream input = File.OpenRead(args[0]))
 {
 int position = 0;
 byte[] buffer = new byte[16];
 while (position < input.Length)
 {
 int charactersRead = input.Read(buffer, 0, buffer.Length);
 if (charactersRead > 0)
 {
 Console.Write("{0}: ", String.Format("{0:x4}", position));
 position += charactersRead;

 for (int i = 0; i < 16; i++)
 {
 if (i < charactersRead)
 {
 string hex = String.Format("{0:x2}", (byte)buffer[i]);
 Console.Write(hex + " ");
 }
 else
 Console.Write(" ");

 if (i == 7)
 Console.Write("-- ");

 if (buffer[i] < 32 || buffer[i] > 250) { buffer[i] = (byte)'.'; }
 }
 string bufferContents = Encoding.UTF8.GetString(buffer);
 Console.WriteLine(" " + bufferContents);
 }
 }
 }
}

Command-line arguments will be
passed using the args parameter.

If args.Length is not
equal to 1, then either
zero or more than one
argument was passed on
the command line.

Let’s make sure that a
valid file was passed. If
it doesn’t exist, print a
different error message
and return a different
exit code.

This Exit() method quits the
program. If you pass it an int,
it will return that error code
(which is useful when you’re writing
command scripts and batch files).

We don’t need a
StreamReader because
we’re reading bytes
directly from the stream.

This part of the
program is exactly
the same, except
the buffer contains
bytes and not
characters (but
String.Format()
does the right
thing in either case).

Use the Stream.Read() method
to read bytes directly into
a buffer. Notice how this
time the buffer is a byte
array. That makes sense—we’re
reading bytes, not characters
from a text file.

Notice how we’re using Console.
Error.WriteLine() here.

This is an easy way to convert a byte array to a
string. It’s part of Encoding.UTF8 (or another
Unicode encoding, or ASCII, or another encoding)
because different encodings can map the same byte
array to different strings.

If you use Start Without Debugging
(Ctrl-F5) from the Debug menu to
run a Console App, you’ll get a
convenient pause and a “Press any
key to continue...” prompt after
the program exits.

460   Chapter 9

Q: Why didn’t I have to use the
Close() method to close the file after
I used File.ReadAllText() and
File.WriteAllText()?

A: The File class has several very
useful static methods that automatically
open up a file, read or write data, and
then close it automatically. In addition
to the ReadAllText() and
WriteAllText() methods,
there are ReadAllBytes() and
WriteAllBytes(), which work with
byte arrays, and ReadAllLines()
and WriteAllLines(), which read
and write string arrays, where each string in
the array is a separate line in the file. All of
these methods automatically open and close
the streams, so you can do your whole file
operation in a single statement.

Q: If the FileStream has methods
for reading and writing, why do I ever
need to use StreamReader and
StreamWriter?

A: The FileStream class is really
useful for reading and writing bytes to binary
files. Its methods for reading and writing
operate with bytes and byte arrays. But a lot
of programs work exclusively with text files—
like the first version of the Excuse Generator,
which only wrote strings out to files. That’s
where the StreamReader and
StreamWriter come in really handy.
They have methods that are built specifically
for reading and writing lines of text. Without
them, if you wanted to read a line of text in
from a file, you’d have to first read a byte
array and then write a loop to search through
that array for a linebreak—so it’s easy to see
how they make your life easier.

Q: When should I use File, and
when should I use FileInfo?

A: The main difference between the
File and FileInfo classes is that the
methods in File are static, so you don’t
need to create an instance of them. On the
other hand, FileInfo requires that you
instantiate it with a filename. In some cases,
that would be more cumbersome, like if you
only need to perform a single file operation
(like just deleting or moving one file). On
the other hand, if you need to do many file
operations to the same file, then it’s more
efficient to use FileInfo, because
you only need to pass it the filename once.
You should decide which one to use based
on the particular situation you encounter.
In other words, if you’re doing one file
operation, use File. If you’re doing a lot of
file operations in a row, use FileInfo.

Q: Back up a minute. Why was
“Eureka!” written out with one byte per
character, but when I wrote out the
Hebrew letters they took up two bytes?
And what was that “FF FE” thing at the
beginning of the bytes?

A: What you’re seeing is the difference
between two closely related Unicode
encodings. Plain English letters, numbers,
normal punctuation marks, and some
standard characters (like curly brackets,
ampersands, and other things you see on
your keyboard) all have very low Unicode
numbers—between 0 and 127. (If you’ve
used ASCII before, they’re the same as the
ASCII characters.) If a file only contains
those Unicode characters with low numbers,
it just prints out their bytes.

Things get a little more complicated
when you add higher-numbered Unicode
characters into the mix. One byte can only
hold a number between 0 and 255. But two
bytes in a row can store numbers between 0
and 65,536—which, in hex, is FFFF. The file
needs to be able to tell whatever program
opens it up that it’s going to contain these
higher-numbered characters. So it puts
a special reserved byte sequence at the
beginning of the file: FF FE. That’s called the
byte order mark. As soon as a program sees
that, it knows that all of the characters are
encoded with two bytes each. (So an E is
encoded as 00 45—with leading zeroes.)

Q: Why is it called a byte order mark?

A: Remember how your bytes were
reversed? Shin’s Unicode value of U+05E9
was written to the file as E9 05. That’s
called “little endian.” Go back to the code
that wrote out those bytes and change the
third parameter to WriteAllText():
Encoding.BigEndianUnicode.
That tells it to write the data out in “big endian,”
which doesn’t flip the bytes around.You’ll see
the bytes come out as “05 E9” this time. You’ll
also see a different byte order mark: FE FF.
And your simple text editor is smart enough to
read both of them!

no dumb questions

If you’re writing a string
that only has Unicode
characters with low numbers,
it writes one byte per
character. But if it’s got
high-numbered characters,
they’ll be written using two
or more bytes each.

The encoding is called UTF-8, which .NET uses by default. You
can tell File.WriteAllText() to use a different encoding by passing
it a different encoding value. You can learn more about Unicode
encodings at http://unicode.org.

you are here 4   461

reading and writing files

Make the Excuse class serializable.
Mark the Excuse class with the [Serializable] attribute to make it
serializable. Also, you’ll need to add the using line:
using System.Runtime.Serialization.Formatters.Binary;

1

Change the Excuse.Save() method to serialize the excuse.
When the Save() method writes a file out to the folder, instead of using
StreamWriter to write the file out, have it open a file and serialize itself out.
You’ll need to figure out how the current class can deserialize itself.

2

Change the Excuse.OpenFile() method to deserialize an excuse.
You’ll need to create a temporary Excuse object to deserialize from the file, and
then copy its fields into the current class.

3

Hint: What keyword
can you use inside of
a class that returns a
reference to itself?

Change Brian’s Excuse Manager so it uses binary files with serialized Excuse objects
instead of text files.

Wow, that took just a few small changes
to the code! All the code for saving and opening
excuses was inside the Excuse class. I just had to

change the class-I barely had to touch the form at all.
It’s like the form doesn’t even care how the class saves

its data. It just passes in the filename and knows
everything will get saved properly.

Now just change the form so it uses a new file extension.
There’s just one very small change you need to make to the form. Since we’re
no longer working with text files, we shouldn’t use the .txt extension anymore.
Change the dialog boxes, default filenames, and directory search code so that
they work with *.excuse files instead.

4

That’s right! Your code was very easy to change
because the class was well encapsulated.

When you’ve got a class that hides its internal operations from
the rest of the program and only exposes the behavior that needs
to be exposed, it’s called a well-encapsulated class. In the
Excuse Manager program, the form doesn’t have any information
about how excuses are saved to files. It just passes a filename into
the excuse class, and the class takes care of the rest. That makes
it very easy to make big changes to how your class works with
files. The better you encapsulate your classes, the easier they are
to alter later on.

Remember how
encapsulation was
one of the four
core OOP principles?
Here’s an example
of how using those
principles makes your
programs better.

462   Chapter 9

Change Brian’s Excuse Manager so it uses binary files with serialized
Excuse objects instead of text files.

private void save_Click(object sender, EventArgs e) {
 // existing code
 saveFileDialog1.Filter = "Excuse files (*.excuse)|*.excuse|All files (*.*)|*.*";
 saveFileDialog1.FileName = description.Text + ".excuse";
 // existing code
}
 private void open_Click(object sender, EventArgs e) {
 // existing code
 openFileDialog1.Filter =
 "Excuse files (*.excuse)|*.excuse|All files (*.*)|*.*";
 openFileDialog1.FileName = description.Text + ".excuse";
 // existing code
}
[Serializable]
class Excuse {
 public string Description { get; set; }
 public string Results { get; set; }
 public DateTime LastUsed { get; set; }
 public string ExcusePath { get; set; }
 public Excuse() {
 ExcusePath = "";
 }
 public Excuse(string excusePath) {
 OpenFile(excusePath);
 }
 public Excuse(Random random, string folder) {
 string[] fileNames = Directory.GetFiles(folder, "*.excuse");
 OpenFile(fileNames[random.Next(fileNames.Length)]);
 }
 private void OpenFile(string excusePath) {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath)) {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 public void Save(string fileName) {
 BinaryFormatter formatter = new BinaryFormatter();
 using (Stream output = File.OpenWrite(fileName)) {
 formatter.Serialize(output, this);
 }
 }
}

We pass in “this”
because we want this
class to be serialized.

The only change to the form is to have it change the file extension it passes to the Excuse class.

The constructor for loading
random excuses needs to look
for the “.excuse” extension
instead of “*.txt” files.

Standard save and
open dialog boxes do
the trick here.

Here’s the entire Excuse class.

You only need to change these three statements in the
form: two in the Save button’s Click event, and one in
the Open button’s—they just change the dialogs to use

the .excuse extension, and set the default save filename.

You’ll need using System.IO;
and using System.Runtime.
Serialization.Formatters.
Binary;in the Excuse class.

you are here 4   463

reading and writing files

1 2 3 4

5 6 7

8 9

10

11 12

13

14

15

16

17 18

19

Across

6. The method in the File class that checks whether or
not a specific file is on the drive
9. This statement indicates the end of a case inside a
switch statement
10. The abstract class that FileStream inherits from
11. A nonvisual control that lets you pop up the
standard Windows "Save As" dialog box
15. How you write numbers in base-16
16. If you don't call this method, your stream could be
locked open so other methods or programs can't open it
17. The StreamReader method that reads data into a
char[] array
18. An encoding system that assigns a uniue number to
each character

Down

1. This class has a method that writes any value type
to a file
2. The static method in the Array class that turns an
array backwards
3. The event handler that gets run whenever someone
modifies the data in an input control
4. This class has many static methods that let you
manipulate folders
5. Using this OOP principle makes it a lot easier to
maintain your code
7. If you don't use this attribute to indicate that a class
can be written to a stream, BinaryFormatter will
generate an error
8. This BinaryFormatter method reads an object from
a stream
12. \n and \r are examples of this kind of sequence

Filecross

Across
6. The method in the File class that checks whether or not a
specific file is on the drive

9. This statement indicates the end of a case inside a switch
statement

10. The abstract class that FileStream inherits from

11. A nonvisual control that lets you pop up the standard Windows Save
As dialog box

15. How you write numbers in base-16

16. If you don’t call this method, your stream could be locked open so
other methods or programs can’t open it

17. The StreamReader method that reads data into a char[]
array

18. An encoding system that assigns a unique number to each character

19. Use this statement to indicate which statements should be executed
when the value being tested in a switch statement does not match

any of the cases

Down
1. This class has a method that writes a type to a file

2. The static method in the Array class that turns an array backward

3. The event handler that gets run whenever someone modifies the
data in an input control

4. This class has many static methods that let you manipulate folders

5. Using this OOP principle makes it a lot easier to maintain your code

7. If you don’t use this attribute to indicate that a class can be written to
a stream, BinaryFormatter will generate an error

8. This BinaryFormatter method reads an object from a
stream

12. \n and \r are examples of this kind of sequence

13. This class lets you perform all the operations in the File class for
a specific file

14. This method sends text to a stream followed by a line break

464   Chapter 9

Filecross
solution

exercise solution

B
1

R
2

C
3

D
4

I E
5

E H E
6

X I S T S
7

D
8

N N V B
9

R E A K R E

E A C E N E R

S
10

T R E A M R G C I

E Y P S E T A

R W S
11

A V E F I L E
12

D I A L O G L

I R U S R I

A I L F
13

C Y Z

L T A I A W
14

A

I E T L P R B

Z R I H
15

E X A D E C I M A L L

E O I T E

N N C
16

L O S E

F L

R
17

E A D B L O C K U
18

N I C O D E

N

D
19

E F A U L T

Across

6. The method in the File class that checks whether or
not a specific file is on the drive [exists]
9. This statement indicates the end of a case inside a
switch statement [break]
10. The abstract class that FileStream inherits from
[stream]
11. A nonvisual control that lets you pop up the
standard Windows "Save As" dialog box
[savefiledialog]
15. How you write numbers in base-16 [hexadecimal]
16. If you don't call this method, your stream could be
locked open so other methods or programs can't open it
[close]
17. The StreamReader method that reads data into a
char[] array [readblock]

Down

1. This class has a method that writes any value type
to a file [binarywriter]
2. The static method in the Array class that turns an
array backwards [reverse]
3. The event handler that gets run whenever someone
modifies the data in an input control [changed]
4. This class has many static methods that let you
manipulate folders [directory]
5. Using this OOP principle makes it a lot easier to
maintain your code [encapsulation]
7. If you don't use this attribute to indicate that a class
can be written to a stream, BinaryFormatter will
generate an error [serializable]
8. This BinaryFormatter method reads an object from
a stream [deserialize]

C# Lab   465

Name: Date:

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.

This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if
you get stuck—there’s nothing new in here, so you
can move on in the book and come back to the lab
later.

We’ve filled in a few design details for you, and we’ve
made sure you’ve got all the pieces you need…and
nothing else.

It’s up to you to finish the job. There are too many
ways to build this lab for us to you a “right” answer.
But if you need a hint, other readers have claimed
their bragging rights by publishing their solutions
on CodePlex, GitHub, and other collaborative source
code hosting sites.

C# Lab
The Quest

466   Head First Lab #1

The Quest

The spec: build an adventure game
Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of deadly
enemies. You’ll build a turn-based system, which means the
player makes one move and then the enemies make one move.
The player can move or attack, and then each enemy gets a
chance to move and attack. The game keeps going until the
player either defeats all the enemies on all seven levels or dies.

The player moves
using the four
Move buttons.

The game window gives an overhead
view of the dungeon where the
player fights his enemies.

These four buttons are
used to attack enemies
and drink potions. (The
player can use any of
these buttons to drink
an equipped potion.)

The game shows you the number
of hit points for the player
and enemies. When the player
attacks an enemy, the enemy’s
hit points go down. Once the
hit points get down to zero,
the enemy or player dies.

The player and enemies move
around in the dungeon.

Here’s the player’s inventory. It shows
what items the player’s picked up, and
draws a box around the item that
they’re currently using. The player
clicks on an item to equip it, and uses
the Attack button to use the item.

The player can pick
up weapons and
potions along the way.

It’s possible to build Windows Desktop programs
that automatically scale to any size display, but
that’s beyond the scope of what we’re teaching.
(You’ll learn all about how to do that with XAML

in the next chapter, but that obviously won’t
help with WinForms.) However, this means that
the inventory PictureBoxes, GroupBoxes, and

TableLayoutPanel on the form may look right in
the designer, but end up in strange places when

you run the program. Just drag them so they look
right for your screen when you run the program.

The enemies get a bit of an advantage—
they move every turn, and after they move
they’ll attack the player if he’s in range.

you are here 4   467

The Quest

The player picks up weapons…
There are weapons and potions scattered around the
dungeon that the player can pick up and use to defeat his
enemies. All he has to do is move onto a weapon, and it
disappears from the floor and appears in his inventory.

A black box around a weapon means it’s currently
equipped. Different weapons work differently—they have

different ranges, some only attack in one direction while

others have a wider range, and they cause different
levels of damage to the enemies they hit.

…and attacks enemies with them
Every level in the game has a weapon that the player can
pick up and use to defeat his enemies. Once the weapon’s
picked up, it should disappear from the game floor.

The attack causes the
bat’s hit points to
drop, from 6 to 2 in
this case.

Higher levels bring more enemies
There are three different kinds of enemies: a bat, a ghost, and
a ghoul. The first level has only a bat. The seventh level is the
last one, and it has all three enemies.

A ghoul moves quickly
toward the player, and
causes heavy damage
when it attacks.

The bat flies
around somewhat
randomly. When it’s near the player,
it causes a small
amount of damage.

The ghost moves slowly toward the
player. As soon as it’s close to the
player, it attacks and causes a medium
amount of damage.

The bat is to the right of
the player, so he hits the
Right attack button.

468   Head First Lab #1

The Quest

The design: building the form
The form gives the game its unique look. Use the form’s
BackgroundImage property to display the image of the dungeon
and the inventory, and a series of PictureBox controls to show
the player, weapons, and enemies in the dungeon. You’ll use a
TableLayoutPanel control to display the hit points for the player, bat,
ghost, and ghoul as well as the buttons for moving and attacking.

Each of these icons is a PictureBox.

The dungeon itself is a static image,
displayed using the BackgroundImage
property of the form.

Hit points for the player and
enemies are Label controls in
a TableLayoutPanel.

Download the background image and the graphics for
the weapons, enemies, and player from the Head First
Labs website: www.headfirstlabs.com/books/hfcsharp

Use the form’s BackgroundImage property
to set the background image to the dungeon
graphic. When you do this, setting controls’

background colors to Transparent
shows the background behind them. Set

the BackgroundImageLayout property
to Stretch and the FormBorderStyle

property to FixedSingle, then stretch out
the form until there’s enough room to add the

GroupBoxes and Buttons to the form.

Each of these sets of buttons
is in its own GroupBox.

The player, enemies, potions, and
weapons each get a PictureBox.

Notice how the inventory
PictureBox controls, the
TableLayoutPanel with
the hit points, and the
move and attack button
GroupBox controls are in
a strange place? That’s
where we had to drag
them so they looked
right on our screen.

It’s certainly possible
to build this program
so that it runs on any
display, but that’s
beyond the scope of
what we’re teaching in
this book. Don’t worry,
though—we’ll definitely
show you how to do that
with Windows Store apps.

Set the BackgroundColor property on the GroupBox and TableLayoutPanel controls to Transparent so the background is visible behind them.

You can find the arrow characters using CharMap (U+2190 to U+2193) and paste them into the button Text property.

you are here 4   469

The Quest

Add nine PictureBox controls to the
dungeon. Use the Size property to make
each one 30x30. It doesn’t matter
where you place them—the form will move
them around. Use the little black arrow
that shows up when you click on the
PictureBox to set each to one of the
images from the Head First Labs website.

You’ll need five more
50x50 PictureBoxes
for the inventory.

2 columns, 4 rows…8
cells for your hit
point statistics.

When the player equips one of the weapons, the form should set the BorderStyle of that weapon icon to FixedSingle and the rest of the icons’ BorderStyle to None.

Everything in the dungeon is a PictureBox
Players, weapons, and enemies should all be represented by icons. Add
nine PictureBox controls, and set their Visible properties to False.
Then, your game can move around the controls, and toggle their
Visible properties as needed.

After you’ve added the nine PictureBox controls, right-click on the player’s icon and select “Bring to Front,” then send the weapon and potion icons to the back. That ensures player icon stays “above” any items that are picked up.

The inventory contains PictureBox controls, too
You can represent the inventory of the player as five 50×50
PictureBox controls. Set the BackColor property of each to Color.
Transparent (if you use the Properties window to set the property, just
type it into the BackColor row). Since the picture files have a transparent
background, you’ll see the scroll and dungeon behind them:

Build your stats window
The hit points are in a TableLayoutPanel, just like the
attack and movement buttons. For the hit points, create two
columns in the panel, and drag the column divider to the left a
bit. Add four rows, each 25% height, and add in Label controls
to each of the eight cells:

Each cell has a Label in it, and you can update those values during the game.

Controls overlap each other in the IDE, so the form needs to know which ones are in front, and which are in back. That’s what the “Bring to Front” and “Send to Back” form designer commands do.

You can set a PictureBox’s BackColor
property to Color.Transparent to let the
form’s background picture or color show
through any transparent pixels in the picture.

470   Head First Lab #1

The Quest

The architecture: using the objects

 Game obje
c t

 Form objec
t

 List<Enem
y >

Weapon obj
e c

t

 Player obj
e c

t

You’ll need several types of objects in your game: a Player
object, several subclasses of an Enemy object, and several
subclasses of a Weapon object. And you’ll also need one object to
keep up with everything that’s going on: the Game object.

The Game object handles turns
When one of your form’s movement buttons is clicked,
the form will call the Game object’s Move() method.
That method will let the player take a turn, and then
let all the enemies move. So it’s up to Game to handle
the turn-based movement portion of the game.

For example, here’s how the move buttons work:

 Form obje
ct Player obj
ec

t

 Player obj
ec

t

Move
Button
Clicked

Near
Player

After the player moves, Game tells each of the
enemies to Move().

4. if (NearPlayer())
 game.HitPlayer();

When the user clicks
one of the four move
buttons, the form calls
Game’s Move() method.

Game’s Move() method
first calls the Player
object’s Move() method
to tell the player to move.

 If any of the enemies
end up near the player
after they’ve moved,
they attack the player.

We left the parameters out of this diagram.
Each Move() method takes a direction, and
some of them take a Random object, too.

The form never interacts
directly with the players,
weapons, or enemies.

Game takes the input from the form and deals with the objects in the game. The Game
object keeps
up with players,
weapons, and a
list of enemies.

1. game.Move()

 2. player.Move()

 Game obj
e c

t

 Game obj
e c

t

3. enemy.Move()

 Enemy obj
e c

t

This is just the general overview. We’ll give you a lot more details on how the player and enemies move, how the enemy figures out if it’s near the player, etc.

There’s only one weapon per level, so
the game just needs a Weapon reference,
not a List. The Player, however, has a
List<Weapon> to hold the inventory.

you are here 4   471

The Quest

Gameplay concerns are separated into the Game object
Movement, attacking, and inventory all begin in the form. So clicking a
movement or attack button, or an item in inventory, triggers code in your
form. But it’s the Game object that controls the objects in the game. So
the form has to pass on anything that happens to the Game object, and
then the Game object takes it from there:

 Game obje
c t

 Form obje
c t

 1.

 Mov
e(Direction.Right, random);

2. UpdateCharacters();

The Form object calls the
game’s Move(), and then calls
its own UpdateCharacters()
method to update the screen.

Use a Direction enum for
the four button directions.

This UpdateCharacters() method is part of the
form. It reads the location of the player, enemies, and any weapons currently in the dungeon and
moves the PictureBoxes to match them.

 Game obje
ct

 Form objec
t 2. UpdateCharacters();

How moving works

How attacking works

How the inventory scroll works

 Game obj
e c

t
 Form obje

ct

inventoryBow.BorderStyle =
 BorderStyle.FixedSingle;

inventorySword.BorderStyle =
 BorderStyle.None;

if (g

ame.Che
ckPlayerInventory("Bow")) {

 game.Equip("Bow");

The inventory scroll displays
all of the icons for the items
that the player has picked up.

Move
Button
Clicked

Attack
Button
Clicked

Inventory
icon

clicked

Attacking is like
movement. The form
calls Attack() on
Game, and Game
handles dealing with
the attack.

The UpdateCharacters() method
also checks the player’s inventory
and makes sure the correct icons are
displayed on the inventory scroll.

The BorderStyle property
highlights the active item in
the player’s inventory.

Game handles updating locations, so when UpdateCharacters() is called, things are moved to their new locations.

 1.

Attack
(Direction.Right, random);

Game.Move() calls the enemies’ Move() methods, which all take a Random reference.

When the player hits an
enemy, it causes a random
amount of damage (up to
a maximum damage limit).

All the other weapons’
borders should be
turned off.

472   Head First Lab #1

The Quest

using System.Drawing;

class Game {
 public IEnumerable<Enemy> Enemies { get; private set; }
 public Weapon WeaponInRoom { get; private set; }

 private Player player;
 public Point PlayerLocation { get { return player.Location; } }
 public int PlayerHitPoints { get { return player.HitPoints; } }
 public IEnumerable<string> PlayerWeapons { get { return player.Weapons; } }
 private int level = 0;
 public int Level { get { return level; } }

 private Rectangle boundaries;
 public Rectangle Boundaries { get { return boundaries; } }

 public Game(Rectangle boundaries) {
 this.boundaries = boundaries;
 player = new Player(this,
 new Point(boundaries.Left + 10, boundaries.Top + 70));
 }
 public void Move(Direction direction, Random random) {
 player.Move(direction);
 foreach (Enemy enemy in Enemies)
 enemy.Move(random);
 }
 public void Equip(string weaponName) {
 player.Equip(weaponName);
 }
 public bool CheckPlayerInventory(string weaponName) {
 return player.Weapons.Contains(weaponName);
 }
 public void HitPlayer(int maxDamage, Random random) {
 player.Hit(maxDamage, random);
 }

You’ll need Rectangle and Point from
System.Drawing, so be sure to add
this to the top of your class.

These are OK as public
properties if Enemy
and Weapon are well
encapsulated…in other
words, just make sure the
form can’t do anything
inappropriate with them.

The game keeps a private Player object. The form will only interact
with this through methods on Game, rather than directly.

The Rectangle object has Top, Bottom,
Left, and Right fields, and works
perfectly for the overall game area.

Building the Game class
We’ve gotten you started with the Game class in the code below.
There’s a lot for you to do—so read through this code carefully, get
it into the IDE, and get ready to go to work:

Movement is simple: move the player in the direction the form gives us, and move each enemy in a random direction.

These are examples
of encapsulation....
Game doesn’t know
how Player handles
these actions; it just
passes on the needed
information and lets
Player do the rest.

Game starts out with a bounding box for the dungeon, and creates a new Player object in the dungeon.

you are here 4   473

The Quest

 public void IncreasePlayerHealth(int health, Random random) {
 player.IncreaseHealth(health, random);
 }

 public void Attack(Direction direction, Random random) {
 player.Attack(direction, random);
 foreach (Enemy enemy in Enemies)
 enemy.Move(random);
 }

 private Point GetRandomLocation(Random random) {
 return new Point(boundaries.Left +
 random.Next(boundaries.Right / 10 - boundaries.Left / 10) * 10,
 boundaries.Top +
 random.Next(boundaries.Bottom / 10 - boundaries.Top / 10) * 10);
 }

 public void NewLevel(Random random) {
 level++;
 switch (level) {
 case 1:
 Enemies = new List<Enemy>() {
 new Bat(this, GetRandomLocation(random)),
 };
 WeaponInRoom = new Sword(this, GetRandomLocation(random));
 break;

 }
 }
}

GetRandomLocation() will come in handy in
the NewLevel() method, which will use it to
determine where to place enemies and weapons.

Attack() is almost exactly like Move(). The player attacks, and the enemies all get a turn to move.

This is just a math trick to get a
random location within the rectangle
that represents the dungeon area.

Finish the rest of the levels
It’s your job to finish the NewLevel() method. Here’s the
breakdown for each level:

Level	 Enemies			 Weapons
 2	 Ghost			 Blue potion
 3	 Ghoul			 Bow
 4	 Bat, Ghost		 Bow, if not picked up on 3; otherwise, blue potion
 5	 Bat, Ghoul		 Red potion
 6	 Ghost, Ghoul		 Mace
 7	 Bat, Ghost, Ghoul		 Mace, if not picked up on 6; otherwise, red potion
 8	 N/A			 N/A - end the game with Application.Exit()

So if the blue potion is still
in the player’s inventory from

Level 2, nothing appears on
this level.

This only appears if the red potion from Level 5 has already been used up.

We’ve only got room in the inventory for one

blue potion and one red potio
n. So if the

player already has a red potio
n, then the

game shouldn’t add a red potion
to the level

(and the same goes for the blue potion).

We only added the case for Level 1. It’s
your job to add cases for the other levels.

474   Head First Lab #1

The Quest

Finding common behavior: movement

Mover
(abstract)

Nearby(locationToCheck: Point,
 distance: int): bool
Move(direction: Direction,
 boundaries: Rectangle): Point

Location: Point

You already know that duplicate code is bad, and duplicate code usually
shows up when two or more objects share the same behavior. Well, you’ve
got a player that moves and enemies that move, so you’ll need a way to
avoid having the same movement code duplicated in all of those classes.

Create an abstract Mover class to put that common behavior into a single
place. Player and Enemy will inherit from Mover. And even though
weapons don’t move around much, they have a location and need to be
placed in the dungeon, so they’ll inherit from Mover, too. Mover has
a Move() method for moving around the dungeon, and a read-only
Location property that the form can use to position a subclass of Mover.

Nearby() takes a point,
and figures out if it’s
within a certain distance
away from the object.

Move takes a direction as well
as the dungeon’s boundaries,

and

calculates where the end point of

that movement would be.

Mover is abstract, so
can’t be instantiated.
You’ll only instantiate
Player and Enemy, which
inherit from it.

Player

Attack(direction: Direction, random: Random)
Hit(maxDamage: int, random: Random)
Equip(weaponName: String)
Move(direction: Direction)

Weapons: IEnumerable<Weapon>
HitPoints: int

Player and Enemy both inherit from Mover.

You can call Nearby() and Move() on both Enemy and Player now.

Add a Direct ion enum
The Mover class, as well as several other classes, need
a Direction enum. Create this enum, and give it four
enumerated values: Up, Down, Left, and Right.

Enemy
(abstract)

Move(random: Random)
Hit(maxDamage: int,
 random: Random)

HitPoints: int

The Player has an overloaded
Move() method that calls the
base class’s Move() method.

Enemies don’t
have an Attack()
method because
their attacking is
built into Move().

We added return values and parameters to this class diagram to make it easier for you to see what’s going on.

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

you are here 4   475

The Quest

abstract class Mover {
 private const int MoveInterval = 10;
 protected Point location;
 public Point Location { get { return location; } }
 protected Game game;

 public Mover(Game game, Point location) {
 this.game = game;
 this.location = location;
 }

 public bool Nearby(Point locationToCheck, int distance) {
 if (Math.Abs(location.X - locationToCheck.X) < distance &&
 (Math.Abs(location.Y - locationToCheck.Y) < distance)) {
 return true;
 } else {
 return false;
 }
 }
 public Point Move(Direction direction, Rectangle boundaries) {
 Point newLocation = location;
 switch (direction) {
 case Direction.Up:
 if (newLocation.Y - MoveInterval >= boundaries.Top)
 newLocation.Y -= MoveInterval;
 break;
 case Direction.Down:
 if (newLocation.Y + MoveInterval <= boundaries.Bottom)
 newLocation.Y += MoveInterval;
 break;
 case Direction.Left:
 if (newLocation.X - MoveInterval >= boundaries.Left)
 newLocation.X -= MoveInterval;
 break;
 case Direction.Right:
 if (newLocation.X + MoveInterval <= boundaries.Right)
 newLocation.X += MoveInterval;
 break;
 default: break;
 }
 return newLocation;
 }
}

The Nearby method checks a Point against this object’s current location. If they’re within distance of each other, then it
returns true; otherwise, it returns false.

The Mover class source code
Here’s the code for Mover:

Since protected properties are only available to subclasses, the form object can’t set the location…only read it through the public get method we define.

Instances of Mover take in the Game

object and a current location.

The Move() method tries to move one step in a direction. If it can, it returns the new Point. If it hits a boundary, it returns the original Point.

If the end location is
outside the boundaries,
the new location
stays the same as the
starting point.

Finally, this
new location is
returned (which
might still be
the same as
the starting
location!).

You can change MoveInterval if
you want your player and enemies
to move in bigger or smaller steps.

The Quest

476   Head First Lab #1

class Player : Mover {
 private Weapon equippedWeapon;

 public int HitPoints { get; private set; }

 private List<Weapon> inventory = new List<Weapon>();
 public IEnumerable<string> Weapons {
 get {
 List<string> names = new List<string>();
 foreach (Weapon weapon in inventory)
 names.Add(weapon.Name);
 return names;
 }
 }

 public Player(Game game, Point location)
 : base(game, location) {
 HitPoints = 10;
 }

 public void Hit(int maxDamage, Random random) {
 HitPoints -= random.Next(1, maxDamage);
 }

 public void IncreaseHealth(int health, Random random) {
 HitPoints += random.Next(1, health);
 }

 public void Equip(string weaponName) {
 foreach (Weapon weapon in inventory) {
 if (weapon.Name == weaponName)
 equippedWeapon = weapon;
 }
 }
}

The Player class keeps track of the player
Here’s a start on the Player class. Start with this code
in the IDE, and then get ready to add to it.

The player’s constructor sets
its HitPoints to 10 after the
base constructor is called. When an enemy hits the player,

it causes a random amount of
damage. And when a potion
increases the player’s health, it
increases it by a random amount.

The Equip() method tells the player to
equip one of his weapons. The Game
object calls this method when one of the
inventory icons is clicked.

A Player object can only have on
e Weapon

object equipped at a time.

Player inherits
from Mover, so
this passes in
the Game and
location to that
base class.

The Weapons property returns
a collection of strings with
the weapon names.

Even though potions help the player
rather than hurt the enemy, they’re
still considered weapons by the game.
That way the inventory can be a
List<Weapon>, and the game can
point to one with its WeaponInRoom
reference.

The Player and Enemy objects need to
stay inside the dungeon, which means
they need to know the boundaries of the
playing area. Use the Contains() method
of the boundaries Rectangle to make sure
they don’t move out of bounds.

you are here 4   477

The Quest

Potions will implement an IPotion interface (more on that
in a minute), so you can use the “is” keyword to see if a
Weapon is an implementation of IPotion.

Write the Move() method for the Player
Game calls the Player’s Move() method to tell a player to move
in a certain direction. Move() takes the direction to move as an
argument (using the Direction enum you should have already
added). Here’s the start of that method:

This happens when one of
the movement buttons on
the form is clicked.

public void Move(Direction direction) {
 base.location = Move(direction, game.Boundaries);
 if (!game.WeaponInRoom.PickedUp) {
 // see if the weapon is nearby, and possibly pick it up
 }
}

You’ll fill in the rest of this method. Check and see if the
weapon is near the player (within a single unit of distance).
If so, pick up the weapon and add it to the player’s inventory.

If the weapon is the only one that the player has, go ahead
and equip it immediately. That way, the player can use it
right away, on the next turn.

The Weapon and form will handle making the weapon’s PictureBox invisible when the player picks it up…that’s not the job of the Player class.

Add an Attack() method, too
Next up is the Attack() method. This is called when one of the
form’s attack buttons is clicked, and carries with it a direction (again,
from the Direction enum). Here’s the method signature:

public void Attack(Direction direction, Random random) {
 // Your code goes here
}

If the player doesn’t have an equipped weapon, this method
won’t do anything. If the player does have an equipped weapon,
this should call the weapon’s Attack() method.

But potions are a special case. If a potion is used, remove it
from the player’s inventory, since it’s not available anymore.

Move is in the
Mover base class.

The weapons all have an Attack()
method that takes a Direction enum
and a Random object. The player’s
Attack() will figure out which weapon
is equipped and call its Attack().

If the weapon is a
potion, then Attack()
removes it from the
inventory after the
player drinks it.

When the player picks up a weapon, it needs to disappear from the dungeon and appear in the inventory.

478   Head First Lab #1

The Quest

Bats, ghosts, and ghouls inherit from the Enemy class

abstract class Enemy : Mover {
 private const int NearPlayerDistance = 25;

 public int HitPoints { get; private set; }
 public bool Dead { get {
 if (HitPoints <= 0) return true;
 else return false;
 }
 }
 public Enemy(Game game, Point location, int hitPoints)
 : base(game, location) { HitPoints = hitPoints; }

 public abstract void Move(Random random);

 public void Hit(int maxDamage, Random random) {
 HitPoints -= random.Next(1, maxDamage);
 }

 protected bool NearPlayer() {
 return (Nearby(game.PlayerLocation, NearPlayerDistance));
 }

 protected Direction FindPlayerDirection(Point playerLocation) {
 Direction directionToMove;
 if (playerLocation.X > location.X + 10)
 directionToMove = Direction.Right;
 else if (playerLocation.X < location.X - 10)
 directionToMove = Direction.Left;
 else if (playerLocation.Y < location.Y - 10)
 directionToMove = Direction.Up;
 else
 directionToMove = Direction.Down;
 return directionToMove;
 }
}

We’ll give you another useful abstract class: Enemy. Each
different sort of enemy has its own class that inherits from the
Enemy class. The different kinds of enemies move in different
ways, so the Enemy abstract class leaves the Move method
as an abstract method—the three enemy classes will need to
implement it differently, depending on how they move.

If you feed FindPlayerDirection() the player’s location, it’ll use the base class’s location field to figure out where the player is in relation to the enemy and return a Direction enum that tells you in which direction the enemy needs to move in order to move toward the player.

The Enemy class inherited the Nearby() method from Mover,
which it can use to figure out whether it’s near the player.

When the player attacks
an enemy, it calls the
enemy’s Hit() method, which
subtracts a random number
from the hit points.

Each
subclass
of Enemy
implements
this.

The form can use this read-only
property to see if the enemy should
be visible in the game dungeon.

Enemy
(abstract)

Move(random: Random)
Hit(maxDamage: int,
 random: Random)

HitPoints: int

you are here 4   479

The Quest

class Bat : Enemy {
 public Bat(Game game, Point location)
 : base(game, location, 6)
 { }

 public override void Move(Random random) {
 // Your code will go here
 }
}

Ghost

Move()

Ghoul

Move()

Bat

Move()

Write the different Enemy subclasses
The three subclasses of Enemy are pretty straightforward. Each enemy has a
different number of starting hit points, moves differently, and does a different
amount of damage when it attacks. You’ll need to have each one pass a
different startingHitPoints parameter to the Enemy base constructor,
and you’ll have to write different Move() methods for each subclass.

Here’s an example of how one of those classes might look:

The bat starts with six hit points, so it
passes 6 to the base class constructor.

The bat starts with six hit points. It’ll keep moving toward the
player and attacking as long as it has one or more hit
points. When it moves, there’s a 50% chance that it’ll move
toward the player, and a 50% chance that it’ll move in a random
direction. After the bat moves, it checks if it’s near the player—
if it is, then it attacks the player with up to two hit points of
damage.

The ghost is harder to defeat than the bat. But like the bat, it will only
move and attack if its hit points are greater than zero. It starts with
eight hit points. When it moves, there’s a one in three chance that it’ll
move toward the player, and a two in three chance that it’ll stand still.
If it’s near the player, it attacks the player with up to three hit points
of damage.

The ghoul is the toughest enemy. It starts with 10 hit points, and
only moves and attacks if its hit points are greater than zero.
When it moves, there’s a two in three chance that it’ll move
toward the player, and a one in three chance that it’ll stand still.
If it’s near the player, it attacks the player with up to four hit
points of damage.

Once an enemy has no more hit points,
the form will no longer display it. But
it’ll still be in the game’s Enemies list
until the player finishes the level.

You probably won’t need a subclass constructor
for these; the base class handles everything.

Each of these subclasses the
Enemy base class, which in turn
subclasses Mover.

We’ll have to make
sure the form
sees if an enemy
should be visible
at every turn.

The bat flies around
somewhat randomly, so
it uses Random to fly
in a random direction
half the time.

The ghost
and ghoul use
Random to make
them move more
slowly than the
player.

480   Head First Lab #1

The Quest

abstract class Weapon : Mover {

 public bool PickedUp { get ; private set; }

 public Weapon(Game game, Point location) {
 : base(game, location)
 {
 PickedUp = false;
 }

 public void PickUpWeapon() { PickedUp = true; }

 public abstract string Name { get; }

 public abstract void Attack(Direction direction, Random random);

 protected bool DamageEnemy(Direction direction, int radius,
 int damage, Random random) {
 Point target = game.PlayerLocation;
 for (int distance = 0; distance < radius / 2; distance++) {
 foreach (Enemy enemy in game.Enemies) {
 if (Nearby(enemy.Location, target, distance)) {
 enemy.Hit(damage, random);
 return true;
 }
 }
 target = Move(direction, target, game.Boundaries);
 }
 return false;
 }
}

We need a base Weapon class, just like we had a base Enemy class.
And each weapon has a location, as well as a property indicating
whether or not it’s been picked up. Here’s the base Weapon class:

Weapon inherits from Mover;
each weapon inherits from Weapon

Each weapon class needs to
implement a Name property and an
Attack() method that determines
how that weapon attacks.

The constructor calls the Mover base constructor (which sets the game and location fields), and then sets pickedUp to false (because it hasn’t been picked up yet).

A picked up weapon shouldn’t
be displayed anymore…the
form can use this get
accessor to figure that out.

Each
weapon’s
Name
property
returns
its name
(“Sword”,
“Mace”,
“Bow”).

Each weapon has a
different range and
pattern of attack, so
the weapons implement
the Attack() method
differently.

The DamageEnemy() method is called by Attack(). It attempts to find
an enemy in a certain direction and radius. If it does, it calls the enemy’s
Hit() method and returns true. If no enemy’s found, it returns false.

Weapon inherits
from Mover
because it uses
its Nearby() and
Move() methods in
DamageEnemy().

We gave you a simple DamageEnemy() method that checks a series of points in the direction the weapon
is attacking, and returns true if an enemy is near that point. Take a close look at the iterator in the for

loop (distance < radius / 2). Can you figure out why we’re dividing the weapon’s radius by 2?

The Nearby() method in the Mover class takes only two parameters, a Point and an int, compares the
Point to the current location, and returns true if the Point is near the location. For the DamageEnemy
calculation, you’ll need to add an overloaded Nearby() method that compares two points and returns
true if they’re within the specified distance of each other. You’ll also need an overloaded Move method
to move a Point in a direction and return the new Point. Can you figure out how to modify the Nearby()

and Move() methods so that the overloaded methods don’t duplicate code?

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

you are here 4   481

The Quest

Bow

Attack()

Name

Mace

Attack()

Name

Sword

Attack()

Name

Different weapons attack in different ways
Each subclass of Weapon has its own name and attack logistic. Your job is to
implement these classes. Here’s the basic skeleton for a Weapon subclass:

The sword is the first weapon the player picks up. It’s got a wide
angle of attack: if he attacks up, then it first tries to attack an
enemy that’s in that direction. If there’s no enemy there, it looks
in the direction that’s clockwise from the original attack and
attacks any enemy there. If it still fails to hit, then it attempts to
attack an enemy counterclockwise from the original direction of
attack. It’s got a radius of 10, and causes 3 points of damage.

The bow has a very narrow angle of attack, but it’s got a very long
range—it’s got an attack radius of 30, but only causes 1 point
of damage. Unlike the sword, which attacks in three directions
(because the player swings it in a wide arc), when the player shoots
the bow in a direction, it only shoots in that one direction.

The mace is the most powerful weapon in the dungeon. It doesn’t
matter in which direction the player attacks with it—since he
swings it in a full circle, it’ll attack any enemy within a radius of
20 and cause up to 6 points of damage.

Think carefully
about this...what
is to the right
of the direction
left? What is to
the left of up?

class Sword : Weapon {

 public Sword(Game game, Point location)
 : base(game, location) { }

 public override string Name { get { return "Sword"; } }

 public override void Attack(Direction direction, Random random) {
 // Your code goes here
 }
}

Each subclass represents one of the
three weapons: a sword, bow, or mace.

Each subclass relies on the base class to do the initialization work.

Each specific weapon
knows its name.

The Game object will pass on the direction to attack in.

The different weapons will call DamageEnemy() in various ways. The
Mace attacks in all directions, so if the player’s attacking to the
right, it’ll call DamageEnemy(Direction.Right, 20, 6, random). If
that didn’t hit an enemy, it’ll attack Up. If there’s no enemy there,
it’ll try Left, then Down—that makes it swing in a full circle.

The player can use the
weapons over and over—they
never get dropped or used up.

482   Head First Lab #1

The Quest

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

Pot ions implement the IPot ion interface
There are two potions, a blue potion and a red potion, which increase the
player’s health. They act just like weapons—the player picks them up in
the dungeon, equips them by clicking on the inventory, and uses them
by clicking one of the attack buttons. So it makes sense for them to
inherit from the abstract Weapon class.

But potions act a little differently, too, so you’ll need to add an IPotion
interface so they can have extra behavior: increasing the player’s health.
The IPotion interface is really simple. Potions only need to add one read-
only property called Used that returns false if the player hasn’t used the
potion, and true if he has. The form will use it to determine whether or
not to display the potion in the inventory.

RedPotion

Attack()

Name

BluePotion

Attack()

Name

The BluePotion class’s Name property should return the string
Blue Potion. Its Attack() method will be called when the player
uses the blue potion—it should increase the player’s health by up to
five hit points by calling the IncreasePlayerHealth() method.
After the player uses the potion, the potion’s Used property should
return true.

The potions inherit from the Weapon class because
they’re used just like weapons—the player clicks on
the potion in the inventory scroll to equip it, and
then clicks any of the attack buttons to use it.

The RedPotion class is very similar to BluePotion, except that its
Name property returns the string Red Potion, and its Attack()
method increases the player’s health by up to 10 hit points.

interface IPotion {
 bool Used { get; }
}

RedPotion

Attack()

Name

BluePotion

Attack()

Name

IPotion makes potions
usable only once. It’s
also possible to find
out if a Weapon is a
potion with “if (weapon
is IPotion)” because of
this interface.

You should be able to
write these classes using this class diagram and the information below.

If the player picks up a
 blue potion

on level 2, uses it, and then picks

up another one on level
4, the game

will end up creating two different

BluePotion instances.

IPotion
(interface)

Used

you are here 4   483

The Quest

private Game game;
private Random random = new Random();
private void Form1_Load(object sender,
 EventArgs e) {
 game = new Game(new Rectangle(78, 57, 420, 155));
 game.NewLevel(random);
 UpdateCharacters();
}

The form brings it al l together
There’s one instance of the Game object, and it lives as a private field in
your form object. It’s created in the form’s Load event, and the various
event handlers in the form use the fields and methods on the Game object
to keep the game play going.

Everything begins with the form’s Load event handler, which passes the
Game a Rectangle that defines the boundaries of the dungeon play
area. Here’s some form code to get you going:

The form has a separate event handler for each of these PictureBox’s Click events. When the
player clicks on the sword, it first checks to make sure the sword is in the player’s inventory using the
Game object’s CheckPlayerInventory() method. If the player’s holding the sword, the form
calls game.Equip() to equip it. It then sets each PictureBox’s BorderStyle property to draw
a box around the sword, and make sure none of the other icons has a box around it.

Using a Rectangle
You’ll find a lot of Rectangles any time you work with WinForms. You can create one by passing it X, Y, Width, and Height values, or two Points (for opposite corners). Once you’ve got a Rectangle value, you can also access its Left, Right, Top, and Bottom, as well as its X, Y, Width, and Height values.

These are the boundaries of the dungeon in the background image you’ll download and add to the form. You may need to experiment to find the values that fit your screen size.

There’s an event handler for each of the four movement buttons.
They’re pretty simple. First, the button calls game.Move() with
the appropriate Direction value, and then it calls the form’s
UpdateCharacters() method.

The four attack button event handlers are also really simple.
Each button calls game.Attack(), and then calls the form’s
UpdateCharacters() method. If the player equips a potion,
it’s still used the same way—by calling game.Attack()—but
potions have no direction. So make the Left, Right, and Down
buttons invisible when the player equips a potion, and change the
text on the Up button to say Drink.

Remember to double-click on each PictureBox so the IDE adds a separate event handler method for each of them.

Make sure you change the buttons
back when the player equips the
sword, bow, or mace.

484   Head First Lab #1

The Quest

public void UpdateCharacters() {
 Player.Location = game.PlayerLocation;
 playerHitPoints.Text =
 game.PlayerHitPoints.ToString();

 bool showBat = false;
 bool showGhost = false;
 bool showGhoul = false;
 int enemiesShown = 0;
 // more code to go here...

The form’s UpdateCharacters() method
moves the PictureBoxes into posit ion
The last piece of the puzzle is the form’s UpdateCharacters() method. Once all the
objects have moved and acted on each other, the form updates everything…so weapons that
been dropped have their PictureBoxes’ Visible properties set to false, enemies and players
are drawn in their new locations (and dead ones are made invisible), and inventory is updated.

Here’s what you need to do:

Update the player’s position and stats.
The first thing you’ll do is update the player’s PictureBox location and the label
that shows his hit points. Then you’ll need a few variables to determine whether
you’ve shown each of the various enemies.

1

Update each enemy’s location and hit points.
Each enemy could be in a new location and have a different set of hit points. You need to
update each enemy after you’ve updated the player’s location:

Once you’ve looped through all the enemies on the level, check the showBat variable.
If the bat was killed, then showBat will still be false, so make its PictureBox invisible
and clear its hit points label. Then do the same for showGhost and showGhoul.

2

The showBat variable will be set to true if
we made the bat’s PictureBox visible. Same
goes for showGhost and showGhoul.

foreach (Enemy enemy in game.Enemies) {
 if (enemy is Bat) {
 bat.Location = enemy.Location;
 batHitPoints.Text = enemy.HitPoints.ToString();
 if (enemy.HitPoints > 0) {
 showBat = true;
 enemiesShown++;
 }
 }
 // etc...

You’ll need two more if statements like this in your foreach loop—one for the ghost and one for the ghoul.

This goes right after
the code from above.

This will affect the
visibility of the enemy
PictureBox controls in
just a bit.

you are here 4   485

The Quest

weaponControl.Location = game.WeaponInRoom.Location;
if (game.WeaponInRoom.PickedUp)
 weaponControl.Visible = false;
else
 weaponControl.Visible = true;

if (game.PlayerHitPoints <= 0) {
 MessageBox.Show("You died");
 Application.Exit();
}

if (enemiesShown < 1) {
 MessageBox.Show("You have defeated the enemies on this level");
 game.NewLevel(random);
 UpdateCharacters();
}

Update the weapon PictureBoxes.
Declare a weaponControl variable and use a big switch statement to set it equal to
the PictureBox that corresponds to the weapon in the room.

 sword.Visible = false;
 bow.Visible = false;
 redPotion.Visible = false;
 bluePotion.Visible = false;
 mace.Visible = false;
 Control weaponControl = null;
 switch (game.WeaponInRoom.Name) {
 case "Sword":
 weaponControl = sword; break;

The rest of the cases should set the variable weaponControl to the correct control on
the form. After the switch, set weaponControl.Visible to true to display it.

3

Set the Visible property on each inventory icon PictureBox.
Check the Game object’s CheckPlayerInventory() method to figure out whether or not to
display the various inventory icons.

4

Here’s the rest of the method.
The rest of the method does three things. First, it checks to see if the player’s already
picked up the weapon in the room, so it knows whether or not to display it. Then it
checks to see if the player died. And finally, it checks to see if the player’s defeated all of
the enemies. If he has, then the player advances to the next level.

5

Application.Exit() immediately quits the program.
It’s part of System.Windows.Forms, so you’ll need
the appropriate using statement if you want to
use it outside of a form.

Every level has one weapon. If
it’s been picked up, we need to
make its icon invisible.

If there are no more enemies on the
level, then the player’s defeated them
all and it’s time to go to the next level.

Make sure your controls’ names
match these names. It’s easy to end
up with bugs that are difficult to
track down if they don’t match.

You’ll have more cases for
each weapon type.

486   Head First Lab #1

The Quest

The fun’s just beginning!
Seven levels, three enemies…that’s a pretty decent game. But you
can make it even better. Here are a few ideas to get you started.…

Make the enemies smarter.
Can you figure out how to change the enemies’ Move() methods so that they’re harder to defeat?
Then see if you can change their constants to properties, and add a way to change them in the game.

Add more levels.
The game doesn’t have to end after seven levels. See if you can add more…can you figure out how
to make the game go on indefinitely? If the player does win, make a cool ending animation with
dancing ghosts and bats! And the game ends pretty abruptly if the player dies. Can you think of a
more user-friendly ending? Maybe you can let the user restart the game or retry his last level.

Add different kinds of enemies.
You don’t need to limit the dangers to ghouls, ghosts, and bats. See if you can add more enemies.

Add more weapons.
The player will definitely need more help defeating any new enemies you’ve added. Think of new ways
that the weapons can attack, or different things that potions can do. Take advantage of the fact that
Weapon is a subclass of Mover—make magic weapons the player has to chase around!

Add more graphics.
You can go to www.headfirstlabs.com/books/hfcsharp/ to find more graphics files for additional
enemies, weapons, and other images to help spark your imagination.

Make it an action game.
Here’s an interesting challenge. Can you figure out how to use the KeyDown event and Timer you
used in the Key Game in Chapter 4 to change this from a turn-based game into an action game?

This is your chance to show off! Did you come up with a cool new
version of the game? Post it to CodePlex or another project hosting
site. Then join the Head First C# forum and post about it to claim
your bragging rights: http://ww.headfirstlabs.com/books/hfcsharp/

this is a new chapter   487

Hope I
remembered to
bind my <Butt>

control to the
Saddle property!

designing windows store apps with xaml10

Taking your apps to the next level

You're ready for a whole new world of app development.�
Using WinForms to build Windows Desktop apps is a great way to learn

important C# concepts, but there’s so much more you can do with your programs.

In this chapter, you’ll use XAML to design your Windows Store apps, you’ll learn

how to build pages to fit any device, integrate your data into your pages with

data binding, and use Visual Studio to cut through the mystery of XAML pages

by exploring the objects created by your XAML code.

488   Chapter 10

finally, a modern look and feel

Brian's running Windows 8
Too bad Brian’s old-fashioned, old-style desktop app looks so outdated!
He’s sick of poking at tiny checkboxes in the desktop. Brian wants his
excuse generator to be a true Windows app. Can we give him one?

What is this, 2003?
Let’s get with the
program, people!Brian’s Excuse Manager works,

but using legacy Windows
programs in the desktop is just
no substitute for real, honest-
to-goodness, 100% pure
Windows Store apps.

you are here 4   489

designing windows store apps with xaml

Windows Store apps are more complex than WinForms programs. That’s why
WinForms are a really effective teaching tool, but not nearly as effective for
building killer apps. It’s useful to take a step back and think about how you’re
learning, because that will help you learn more effectively. Let’s do that now.

Behind the
scenes

You haven’t covered 100% of what WinForms apps can do. In fact, WinForms has a
graphics engine called GDI+ that’s capable of surprisingly good graphics, printing, and
user interaction (but it’s lot more work than doing the same thing in XAML). One of the
most important ways to learn programming principles is to see the same thing done in
more than one way. We covered GDI+ graphics in previous editions of Head First C#, which
we’ve made available on the Head First Labs website as a free PDF. Go have a look!

http://www.headfirstlabs.com/hfcsharp

Before you cont inue on with this chapter, do these things:
We spent Chapter 1 and much of Chapter 2 introducing you to building Windows Store apps with
XAML and the .NET Framework for Windows Store. We’re going to build on knowledge from
those chapters. If you want the best learning experience, we recommend that you do a few things:

≥≥ Switching gears from WinForms back to XAML is totally fine for some people, but for
others it’s really jarring. This will help you get these ideas into your brain faster!

≥≥ Go back to Chapter 1 and build the Save the Humans game again from scratch. This
time, make sure you type in all of the code.

≥≥ And actually read the code! There are still some things in it that we haven’t covered yet,
but you should recognize enough of it to start to lay down a good mental foundation.

≥≥ Try to piece together how the game works. Don’t give yourself a hard time, though. Like
we said, there’s still a lot we haven’t covered yet.

≥≥ Pay special attention to what you do with the Basic Page template and how you swap it in
for the default MainPage.xaml, because you’ll be doing that several times in this chapter.

≥≥ Redo the XAML projects in Chapter 2, too. Even the exercise. Now you’re ready!

Want to get these ideas into your
brain fast? Then do these things
before starting this chapter!

One more thing...

You’ve laid down a good foundation of core knowledge about C#, objects, collections, and
other .NET tools. Now we’ll get back to building Windows Store apps with XAML. Over the
next few pages, we’re going to use the IDE to explore the objects that WinForms programs
create and manage. Try to stay aware of what’s different—and, just as importantly, what’s
the same—when exploring those objects, and then when you use the IDE to explore the
objects that make up a Windows Store app built with XAML.

Do this!

490   Chapter 10

can you find it?

Scavenger
Hunt!

 Use a string as a key to look up an object in a Dictionary.

 Use an object initializer.

 Add two different types of object to the same collection.

 Call a static method.

You’ve learned a whole bunch of important C# concepts since you built Save the Humans
in Chapter 1, and you’ve gotten plenty of practice using them. Now it’s time to put on your
detective hat and test your sleuthing skills. See if you can find all of these C# items in the
Save the Humans code. We got you started with one of the answers. Can you find the rest?

(Some of these items have more than one correct answer.)

you are here 4   491

designing windows store apps with xaml

 Use an event handler method.

 Use the as keyword to downcast an object.

 Pass a reference to an object into a method.

 Use an enum to assign a value.

 Instantiate an object and one of its methods.

A new StoryBoard object is instantiated in the
AnimateEnemy() method, and its Begin() method is
called.

492   Chapter 10

scavenger hunt solution

Scavenger
Hunt!

You’ve learned a whole bunch of important C# concepts since you built Save the Humans
in Chapter 1, and you’ve gotten plenty of practice using them. Now it’s time to put on your
detective hat and test your sleuthing skills. See if you can find all of these C# items in the
Save the Humans code. We got you started with one of the answers. Can you find the rest?

(Some of these items have more than one correct answer.)

 Use a string as a key to look up an object in a Dictionary.

 Use an object initializer.

In the second line of the AddEnemy() method,
the string “EnemyTemplate” is used to look up a
ControlTemplate object in the Resources dictionary.

 Add two different types of object to the same collection.

 Call a static method.

The From, To, and Duration properties of the
DoubleAnimation object are initialized with an object
initializer in the AnimateEnemy() method.

A StackPanel object (human) and a Rectangle object
(target) are added to the playArea.Children collection
in the StartGame() method.

The static SetLeft() and SetTop() methods on the
Canvas class are called in the target_PointerEntered()
event handler method.

These are the ones we found;
you may have found others!solution

you are here 4   493

designing windows store apps with xaml

 Use an event handler method.

 Use the as keyword to downcast an object.

 Pass a reference to an object into a method.

 Use an enum to assign a value.

 Instantiate an object and one of its methods.

The Properties window is used to create an event
handler method for the PointerPressed event of the
“human” StackPanel.

The Resources dictionary has the type <object, object>,
so the return value of Resources[“EnemyTemplate”] is
downcast to the specific type ControlTemplate.

A reference to a ContentControl object is passed as
the first parameter to the AnimateEnemy() method.

A new StoryBoard object is instantiated in the
AnimateEnemy() method, and its Begin() method is
called.

The Visibility enum is used in the EndTheGame()
method to set startButton.Visibility to the value
Visibility.Collapsed.

494   Chapter 10

windows forms under the hood

Windows Forms use an object graph set up by the IDE
When you create a Windows Desktop program, the IDE sets up your form and generates a bunch of code
in the Form1.Designer.cs file. But what’s actually in that file? There’s no mystery there. You already know that
each control that’s on your form is an object, and you know that you can store references to objects in fields.
So somewhere in that generated code is a field declaration for each object, code to instantiate it, and code to
display it on the form. Let’s go find those lines so we can see exactly what’s going on with your forms.

Open up the Simple Text Editor project you built in Chapter 9 and open Form1.Designer.cs. Scroll to the
bottom and find the field declarations. You should see one declaration for each control:

1

Expand the Windows Form Designer–generated code section and find the code that instantiates the controls:2

Controls like the TableLayoutPanel and FlowLayoutPanel that contain other controls have a public
property called Controls. It’s a ControlCollection object, which in a lot of ways is very
similar to a List<Control> object. Every control on your form is a subclass of Control, and
adding it to a panel’s Controls collection causes it to draw itself inside that panel. Scroll down and
find where the Open and Save buttons are added to the FlowLayoutPanel:

The FlowLayoutPanel is in a cell in the TableLayoutPanel. Find where it and the TextBox are added:

Your Form object is also a container, and it contains the TableLayoutPanel:

3

The IDE may have
generated these lines
in a different order,
but there should be
one line for each
control on the form.

you are here 4   495

designing windows store apps with xaml

Button objec
t

ControlCollecti
on

 o
bj

ec
t

ControlCollecti
on

 o
bj

ec
tFlowLayoutPa

ne
l o

bj
ec

t

TableLayoutPa
ne

l o
bj

ec
t

Button objec
t

OpenFileDial
og

 o
bj

ec
t

TextBox obje
ct

SaveFileDial
og

 o
bj

ec
t

textBox
1

open saveFile
Dialog1

save

tableLayoutPanel1flowLayoutPanel1

You’ll need all of these pieces to draw your graph,
plus lines to connect the objects. We started you
out with two of the objects in the graph.

Look at the new and Controls.Add() statements that
the IDE generated for the Simple Text Editor form and draw
the object graph that they create when they’re executed.

OpenFileDial
og

 o
bj

ec
t

open
File

Dial
og1

ControlCollecti
on

 o
bj

ec
t

Form object

You’ll need to open up the Form1.Designer.cs file in the code that you built for the Simple Text Editor in Chapter 9.

496   Chapter 10

Look at the new and Controls.Add() statements that
the IDE generated for the Simple Text Editor form and draw
the object graph that they create when they’re executed.

winforms make great learning tools

Form object

ControlCollecti
on

 o
bj

ec
t TableLayoutPa
ne

l o
bj

ec
t

tableLayoutPanel1

ControlCollecti
on

 o
bj

ec
t

TextBox obje
ct

textBox
1

FlowLayoutPa

ne
l o

bj
ec

t

flowLayoutPanel1

SaveFileDial
og

 o
bj

ec
t

saveFile
Dialog1

OpenFileDial
og

 o
bj

ec
t

open
File

Dial
og1

ControlCollecti
on

 o
bj

ec
t

Button objec
t

save
Button objec

t

open

The two Button objects were added to the FlowLayoutPanel’s Controls collection, so it has references to both of them. The form also holds references to them in its open and save fields.

The two file dialog objects a
re fields on the

form, but they weren’t added to its Controls

collection becuase they
’re not visual controls.

Debugging tip
System.Diagnostics.Debug.WriteLine()

will write text to the output window while you’re debugging. You can use
it just like you used Console.WriteLine() in Windows Forms apps.

This is going to come in really handy when
you’re doing exercises. Have a look at the
other methods in that Debug class, too.

you are here 4   497

designing windows store apps with xaml

Use the IDE to explore the object graph
Go back to your Simple Text Editor project and put a breakpoint on the call to InitializeComponent()
in the form’s constructor, then start debugging the program. When it hits the breakpoint, press F10 to step over
the method. Then go to the Watch window and enter this to explore the object graph.

The System.Windows.Form class
doesn’t actually have a Controls property.
It inherits that property from its superclass,
ContainerControl, which inherits it from
ScrollableControl, which inherits it
from Control. Keep expanding
in the Watch window to move up the
inheritance hierarchy to System.Windows.
Forms.Control. (That’s where Form
inherits its Controls collection.) Expand at the
Controls collection’s Results View. You’ll
see an object for each control on the form!

Click the triangle
next to “this” to
expand it to see all
of the fields that
the IDE generated
to hold references to
the form’s controls.

Add a watch for tableLayoutPanel1.Controls and expand Results View to see the objects it contains:

Expand “base” to see the properties an object inherits from its base class:

The Controls collection
contains the two
controls in the
TableLayoutPanel, the
TextBox, and the
FlowLayoutPanel that
holds the Open and
Save buttons.

Do this!

That’s your last look at WinForms apps for a few chapters! We’ll come back to them a couple
more times, though, because they do make really good tools for learning and exploring C#.

We collapsed the
Value column for
this screenshot.

498   Chapter 10

2 Now have another look at the XAML that defines the page:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true"
 Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

let’s explore xaml

Windows Store apps use XAML to create UI objects
When you use XAML to build the user interface for a Windows Store app, you’re building out an object graph.
And just like with WinForms, you can explore it with IDE’s Watch window. Open the program from the
Chapter 2 “practice using if-else statements” exercise. Then open MainPage.xaml.cs, place a breakpoint
on the first lne of changeText_Click(), and use the IDE to explore the app’s UI objects.

1 Start debugging, then press the button so the program hits the breakpoint. Visual Studio 2013 for
Windows has a slightly different window layout than VS2013 for Desktop because it has more features,
including multiple watch windows (which comes in handy when you need to watch many things). Choose
Debug→Windows→Watch→Watch 1 to display one of the watch windows and watch this:

The XAML
that defines
the controls
on a page
is turned
into a Page
object with
fields and
properties
that contain
references to
UI controls.

labelToChange is an instance of TextBlock

Do this!

If you get deployment errors when you open your program from
Chapter 2, try choosing “Clean” from the Build menu.

you are here 4   499

designing windows store apps with xaml

3 Add some of the labelToChange properties to the Watch window:

The app automatically sets the properties based on your XAML:

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window.
The control is a Windows.UI.Controls.TextBlock object, and that object doesn’t have those
properties. Can you guess what’s going on with those XAML properties?

4 Place a breakpoint in the constructor. Then open MainPage.xaml.cs, and find the class declaration for
MainPage. Take a look at the declaration—it’s a subclass of Page. Hover over Page so the IDE:

Now start your program again and press F10 to step over the call to InitializeComponent(). Go back
to the Watch window and expand this >> base >> base to traverse back up the inheritance hierarchy.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these objects
later on in the book. For now, just poke around and get a sense of how many objects are behind your app.

Expand these to see the
superclasses. Expand Content and explore its [Windows.UI.Xaml.Controls.Grid] node.

Hover over Page to
see its class members.

If you used the WPF Learner’s Guide in Appendix ii to build desktop
versions of the projects in Chapters 1 and 2, flip to the appendix now
to find the replacement pages for Chapter 10 and beyond.

500   Chapter 10

old becomes new

Redesign the Go Fish! form as a Windows Store app page
The Go Fish! game that you built in Chapter 8 would make a great Windows Store app. Open Visual
Studio 2013 for Windows and create a new Windows Store project, then delete MainPage.xaml and
replace it with a Basic Page (just like you did when you built Save the Humans). Over the next few pages,
you’ll redesign your Go Fish! game in XAML as a page that adjusts to different sized devices. And instead
of using Windows Desktop controls on a form, you’ll use Windows Store app controls on a page.

This becomes a
<ScrollViewer/>

This becomes a
<ScrollViewer/>

This becomes a
<TextBox/>

This becomes a
<Button/>

This becomes a
<Button/>

This becomes a
<ListBox/>

We’ll use a horizontal StackPanel
to group the TextBox and
Button controls so they can go
into the same cell in the grid.

This is another control in the toolbox.
It displays a string of text, adding
vertical and/or horizontal scrollbars
if the text grows larger than the
window control.

Do this!

you are here 4   501

designing windows store apps with xaml

<TextBox/> <Button/>

<ListBox/>

<ScrollViewer/>

<ScrollViewer/>
<Button/>

The controls will be contained in a grid, with rows and columns that expand or contract based
on the size of the display. This will allow the game to shrink or grow to fit the screen. You can
use the Device window in the IDE to test different screen configurations.

The Device controls let you see your page
in portrait, landscape, and different sizes.

The Windows OS options let you set the edge
and contrast options. You can use the App

options to set the theme and minimum width.

Uncheck the “Show chrome” box to turn
off the picture of the Surface bezel.

Here’s how those controls will look on the app’s main page:

Most of the
code to manage
the gameplay will
remain the same,
but the UI code
will change.

The game will
be playable
no matter
what the page
dimensions are.

The numbers
that appear in the
upper corners of
the app when you

debug are frame rate
counters. You’ll learn

how to turn them off in
Chapter 14, but they’ll
come in handy when
you do animation in

Chapter 16.

502   Chapter 10

now that’s a page

<Grid Grid.Row="1" Margin="120,0,60,60">

 <TextBlock Text="Your Name" Margin="0,0,0,20"
 Style="{StaticResource SubheaderTextBlockStyle}"/>

 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="24"
 Width="500" MinWidth="300" />

 <Button x:Name="startButton" Margin="20,0"
 Content="Start the game!"/>
 </StackPanel>

If the window is made very tall, this ScrollViewer
should grow to fill up the extra vertical space. It
should display scrollbars if the text gets too big. This ListBox

should also grow to
fill up the extra
vertical space if
the window is made
taller.

This ScrollViewer needs to be tall
enough to show various books that have
been discovered, and it should also
display scrollbars if needed.

This is the header from the basic page. The back arrow button
will disappear, just like it did for “Save the Humans.” Don’t
forget to edit the AppName resource to change its text!

2

Page layout starts with controls
XAML and WinForms have one thing in common: they both rely on controls to lay out your page. The Go Fish! page
has two buttons, a ListBox to show the hand, a TextBox for the user to enter the name, and four TextBlock labels. It
also has two ScrollViewer controls with a white background to display the game progress and books.

The Basic Page template includes a grid that has two rows. The top row contains the header with the app name. The
second row holds the contents, which are defined by this grid. This whole grid will be contained in row 1 of the Basic
Page (it only has one column, column #0). Drag a out of the Toolbox and drop it in the bottom part
of the page to put it in the second row. Here’s the XAML—you can find <Grid> that you just added to the page
in the XAML window and modify it by hand, or you can use the IDE to lay out the page:

The margins indent the grid so
it’s aligned with the page. The
left margin is always 120 pixels.

1

3

4

5

6

1

2

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:

Here’s the opening
tag for the grid.

This adds a 20-pixel space
between the TextBox and
the Button. When the
Margin property only has
two numbers, they specify
horizontal (left/right)
and vertical (top/bottom)
margins.

you are here 4   503

designing windows store apps with xaml

We’ll finish this grid on the next page

 <TextBlock Text="Game progress"
 Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="2"/>

 <ScrollViewer Grid.Row="3" FontSize="24"
 Background="White" Foreground="Black" />

 <TextBlock Text="Books" Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="4"/>

 <ScrollViewer FontSize="24" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" />

 <TextBlock Text="Your hand" Style="{StaticResource SubheaderTextBlockStyle}"
 Grid.Row="0" Grid.Column="2" Margin="0,0,0,20"/>

 <ListBox x:Name="cards" Background="White" FontSize="24" Height="Auto"
 Margin="0,0,0,20" Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"/>

 <Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"/>

4

5

6

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock with a small
margin above it and SubHeaderTextBlockStyle applied:

A ScrollViewer control displays the game progress, with scrollbars
that appear if the text is too big for the window:

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is Stretch, and that’s going to be really useful.
We’ll set up the rows and columns so the ScrollViewer controls expand to fit any screen size.

We used a small 40-pixel column to add space, so the ListBox and Button controls need to
go in the third column. The ListBox spans rows 2 through 6, so we gave it Grid.Row="1"
and Grid.RowSpan="5"—this will also let the ListBox grow to fill the page.

Remember, rows and
columns start at zero, so a
control in the third column
has Grid.Column=“2”.

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so
that it fills up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

3

504   Chapter 10

it grows, it shrinks—it’s all good

<TextBlock/> <TextBlock
Grid.Column= "2"/>

<StackPanel Grid.Row="1">
 <TextBlock/>
 <Button/>
</StackPanel>

<ListBox
Grid.Column="2"
Grid.RowSpan="5"/>

<TextBlock Grid.Row="2"/>

<ScrollViewer
 Grid.Row="3"/>

<TextBlock Grid.Row="4"/>

<ScrollViewer Grid.Row="5" Grid.RowSpan="2">

<Button
Grid.Row="6"
Grid.Column="2" />

<ColumnDefinition Width="5*"/> <ColumnDefinition Width="2*"/>

<ColumnDefinition Width="40"/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"/>

<RowDefinition/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"

MinHeight="150"/>

<RowDefinition
Height="Auto"/>

XAML row and column numbering start at 0, so this Button’s row is 6 and its column is 2 (to skip the
middle column). Its vertical and horizontal alignment are set to Stretch so the button takes up the entire
cell. The row has a height of Auto so its height is based on the contents (the button plus its margin).

This ListBox spans
five rows, including the
fourth row—which will
grow to fill any free
space. This makes the
ListBox expand to fill
up the entire right-
hand side of the page.

This row is set to the default height of 1*,
and the ScrollViewer in it is set to the default
vertical and horizontal alignmnet of “Stretch”
so it grows or shrinks to fill up the page.

This ScrollViewer has a row span of “2” to span
these two rows. We gave the sixth row (which is
row number 5 in XAML because numbering starts
at 0) a minimum height of 150 to make sure the
ScrollViewer doesn’t get any smaller than that.

Rows and columns can resize to match the page size
Grids are very effective tools for laying out pages because they help you design pages that can be displayed on
many different devices. Heights or widths that end in * adjust automatically to different screen geometries.
The Go Fish! page has three columns. The first and third have widths of 5* and 2*, so they will grow or shrink
proportionally and always keep a 5:2 ratio. The second column has a fixed width of 40 pixels to keep them
separated. Here’s how the rows and columns for the page are laid out (including the controls that live inside them):

Row=“1” means the second row,
because row numbers start at 0.

<RowDefinition
Height="Auto"/>

you are here 4   505

designing windows store apps with xaml

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

</Grid>

The first column will always
be 2.5 times as wide as

the third (a 5:2 ratio), with
a 40-pixel column to add

space between them. The
ScrollViewer and ListBox
controls that display data
have HorizontalAlignment
set to “Stretch” to fill up

the columns.

Here’s how the row and column definitions make the page layout work:

Here’s the closing tag for the grid. You’ll
bring this all together at the end of
the chapter when you finish porting the
Go Fish! game to a Windows Store app.

The fourth row has the default height of 1*
to make it grow or shrink to fill up any space

that isn’t taken up by the other rows. The
ListBox and first ScrollViewer span this row,

so they will grow and shrink too.

Almost all of the row heights are set
to Auto. There’s only one row that will

grow or shrink, and any control that
spans this row will also grow or shrink.

You can add the row and column
definitions above or below the controls in
the grid. We added them below this time.

It doesn’t matter if the column and row
definitions are at the top or the bottom of the
grid, as long as they come before the closing
</Grid> tag. And everything between the

opening <Grid Grid.Row=...> tag to the
closing </Grid> tag can appear anywhere
between the opening and closing tags of the
outer Grid. Since there’s another Grid in the

Basic Page template (it contains the back
button and app name), a good place for this
new Grid is right after the other inner Grid.

506   Chapter 10

pages that work on any screen? inconceivable!

The header row is added
automatically to the
Basic Page template,.
which you’ll add later in
the chapter when you get
Go Fish! working.

Use the grid system to lay out app pages
Ever notice how different Windows Store apps have a similar look? That’s
because they use a grid system to give every app what Microsoft designers call
a “consistent silhouette.” The grid consists of squares called units and subunits—and
you’ve already seen them, because they’re built into the IDE.

If you didn’t use these
buttons at the bottom of

the designer to turn on the
grid lines, snapping, and

snapping to grid lines back
in Chapter 1, use them now.

The grid is made up of 20x20-pixel
squares called units.

Each unit is broken down
into 5x5-pixel subunits.The page header

should be 7
units tall, with
the bottom of

the text 5 units
from the top of
the page and

starting 6 units
from the left side.

The page uses margins to add 1 unit of
padding between items and text, and

a column to add 2 units of padding
between the ScrollViewers and ListBox.

<Grid Grid.Row="1" Margin="120,0,60,60">

<TextBlock Text="Books"
 Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="4"/>

In the Go Fish! app, you use the Margin property in the <Grid> that
contained all of your controls to create the spacing. The Margin property
consists of either one number (a thickness value for left, top, right, and
bottom), two numbers (where the first is left and right, and the second is top
and bottom), or four comma-separated numbers specifying left, top, right,
and bottom thickness.

Your Go Fish! app’s main page has a left margin of 120 pixels (6 units), top
margin of 0 pixels, and right and bottom margins of 60 pixels (3 units):

It also has a 1-unit margin above and below each label:

you are here 4   507

designing windows store apps with xaml

Q:What does setting the row height or
column width to “Auto” do?

A: When you set a row’s Height property
or a column’s Width property to Auto, that
causes the row or column to expand or contract
so that it exactly fits its contents. You can try this
out yourself to see how it works. Create a new
Blank App, edit the grid in MainPage.xaml, and
add a bunch of rows and columns with heights and
widths set to Auto. You won’t see anything in the
designer because the rows and columns are empty
and collapsed down to zero height. Add controls
with different heights to the cells, and you’ll see the
rows and columns expand to fit the controls.

Q:So how is that different from setting the
row height or column width to 1*, 2*, or 5*?

A:Using the * for the row height or column
width causes the rows or columns to expand
proportionally to fill the entire grid. If you have
three columns with widths of 3*, 3*, and 4*, the
3* columns will have a width of 30% of the total
grid width minus the fixed and auto columns, and
the 4* column will have 40% of that total.

This is one reason why the default width or height
of 1* makes sense. If all of the rows or columns
have that default setting, then they will evenly
distribute themselves as the grid grows or shrinks.

Q:“Pixels.” You keep using that word. I do
not think it means what you think it means.

A: Many XAML developers use the term pixel,
but you’re right—technically you aren’t using the
same kind of pixels you see on your screen. The
technical term for the numbers in the Margin,

Height, Width, and other properties is
device-independent unit. Windows Store apps
need to work on many different screen sizes and
shapes, so no matter how big or small a device
your app is displayed on, each device-independent
unit will always be a 1/96th of an inch. A five-by-five
square of these device-independent units combine
to make a page layout subunit, and a four-by-four
square of subunits make a page layout unit. It’s a
little confusing talking about units for page layout
versus device-independent unit, so we’ll keep using
the word pixel to mean device-independent unit.

You can specify any XAML height or width
in different units by adding in (inches), cm
(centimeters), or pt (points, where a typographer's
point is 1/72nd of an inch). Try laying out a page
using inches or centimeters. Then take a physical
ruler and hold it up to your screen to prove to
yourself that Windows resizes your app properly.

Q:Is there an easy way to make sure that my
app looks good on many different monitors?

A: Yes, the IDE gives you useful tools for doing
that.The IDE’s XAML page designer gives you
a few different ways to see how your page will
look on different devices. You can use the Device
window to show your page in different resolutions
or split modes. And later on, we’ll show you how
to run your app in a simulator that lets you interact
with your app in simulated devices that have
various sizes and shapes.

When a row or column
has a height or width
of Auto, that tells it
to grow or shrink to
exactly fit its contents.

You can read more about laying out app pages in the Dev Center:
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

508   Chapter 10

those programs look familiar

Find the right spot in each Basic Page XAML to add your new Grid or
StackPanel to contain the rest of the controls for the page. You’ll add them
to the second row (Grid.Row="1") of a newly added Blank Page.

Use XAML to redesign each of these Windows Desktop forms as Windows Store apps. Create a new
Windows Store Blank App project for each of them, add a new Basic Page item for each of these apps
(just like you did for Save the Humans), and modify each page by updating the grid and adding controls.
You don’t need to get them working. Just create the XAML so they match the screenshots.

Find this comment and
add your new grid above it.

Your code will go here. You can use the
IDE’s button to collapse it like this.

XAML is flexible
about tag order
We asked you to add the XAML code for your page layout below the row definitions because it’s an easy location to find in your XAML file. Some developers like to keep the XAML code in the same order that it’s displayed on the page. They might put it underneath the closing </Grid> tag for the grid that contains the back button and page title instead. We encourage you to experiment with this, because it’s good to get a feel for what seems most intuitive for you.

you are here 4   509

designing windows store apps with xaml

This is a Button with the style
TextBlockButtonStyle applied to it.

<StackPanel Grid.Row=“1” Margin=“120,0”>
<TextBlock/>

<StackPanel Orientation=“Horizontal”>

<StackPanel>
 <TextBlock/>
 <ComboBox>
 <ComboBoxItem/>
 <ComboBoxItem/>
 ... 4 more ...
 </ComboBox>
</StackPanel>

<StackPanel>
 <TextBlock/>
 <TextBox/>
</StackPanel>

<Button/>

<Button/>
<TextBlock/>
<ScrollViewer/>
</StackPanel>

This is a <ComboBox>, and its items
are <ComboBoxItem/> tags with the
Content property set to the item name.

Set the ComboBox control’s
SelectedIndex property to 0
so it displays the first item.

Use StackPanels to design this form. It’s broken into two groups. Subheaders have SubheaderTextBlockStyle applied,
a 40-pixel margin between groups, and a 20-pixel margin after the group header. The labels above the items have
BodyTextBlockStyle applied, and a 10-pixel margin above the item. There’s a 20-pixel margin between items.

When you use the IDE’s “New Item...” option to add a Basic Page to your
project, you might see an error message in the designer because it’s expecting
the project to be built. Rebuild the solution to make the error go away.

Use the Content property to add text to this
ScrollViewer.  will add line breaks. Give it
a 2-pixel white border using BorderThickness
and BorderBrush, and a height of 250.

Use a Grid to design this form. It has eight rows with height set
to Auto so they expand to fit their contents. Use StackPanels to
put multiple controls in the same row.

This is a ListBox. It uses <ListBoxItem/>
tags the same way the ComboBox uses
<ComboBoxItem/> tags. Don’t specify a
height so it grows as items are added.

<Grid Grid.Row=“1” Margin=“120,0”>

<TextBlock/>

<TextBox/>

<TextBlock/>

<ListBox>
 <ListBoxitem/>
 <ListBoxitem/>
 ... 4 more ...
</ListBox>

<TextBlock>

<StackPanel Orientation=“Horizontal”>
 <TextBox/>
 <ComboBox> ... 4 items ... </ComboBox>
 <Button/>
</StackPanel>

<ScrollViewer/>

<StackPanel Orientation=“Horizontal”>
 <Button/>
 <Button/>
</StackPanel>

Get your pages to look just like these screenshots by adding
dummy data to the controls that would normally be filled in using
the methods and properties in your classes.

510   Chapter 10

exercise solution

A

<StackPanel Grid.Row="1" Margin="120,0">
 <TextBlock Text="Worker Bee Assignments"
 Style="{StaticResource SubheaderTextBlockStyle}"/>
 <StackPanel Orientation="Horizontal" Margin="0,20,0,0">
 <StackPanel Margin="0,0,20,0">
 <TextBlock Text="Job" Margin="0,0,0,10"
 Style="{StaticResource BodyTextBlockStyle}"/>
 <ComboBox SelectedIndex="0">
 <ComboBoxItem Content="Baby bee tutoring"/>
 <ComboBoxItem Content="Egg care"/>
 <ComboBoxItem Content="Hive maintenance"/>
 <ComboBoxItem Content="Honey manufacturing"/>
 <ComboBoxItem Content="Nectar collector"/>
 <ComboBoxItem Content="Sting patrol"/>
 </ComboBox>
 </StackPanel>
 <StackPanel>
 <TextBlock Text="Shifts" Margin="0,0,0,10"
 Style="{StaticResource BodyTextBlockStyle}"/>
 <TextBox/>
 </StackPanel>
 <Button Content="Assign this job to a bee" Margin="20,20,0,0"
 Style="{StaticResource TextBlockButtonStyle}" />
 </StackPanel>
 <Button Content="Work the next shift" Margin="0,20,0,0" />

 <TextBlock Text="Shift report" Margin="0,40,0,20"
 Style="{StaticResource SubheaderTextBlockStyle}"/>
 <ScrollViewer BorderThickness="2" BorderBrush="White" Height="250"
 Content="
Report for shift #20
Worker #1 will be done with 'Nectar collector' after this shift
Worker #2 finished the job
Worker #2 is not working
Worker #3 is doing 'Sting patrol' for 3 more shifts
Worker #4 is doing 'Baby bee tutoring' for 6 more shifts
 "/>
</StackPanel>

Here’s the dummy data we used
to populate the shift report.
The Content property ignores
line breaks—we added them to
make the solution easier to read.

Use XAML to redesign each of these Windows Desktop forms as Windows Store apps. Create a new
Windows Store Blank App project for each of them, add a new Basic Page item for each of these apps
(just like you did for Save the Humans), and modify each page by updating the grid and adding controls.
You don’t need to get them working. Just create the XAML so they match the screenshots.

This is the header for the
second group, with a 40
pixel margin above and 20
pixel margin below.

Here’s the margin we gave you. Leaving off
the right and bottom margin causes them to
mirror the top and left (120 and 0).

Does your XAML code look
different from ours? There
are many ways to display

very similar (or even
identical) pages in XAML.

you are here 4   511

designing windows store apps with xaml

A
<Grid Grid.Row="1" Margin="120,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/><RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/><RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/><RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/><RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <TextBlock Text="Lumberjack name" Margin="0,0,0,10"
 Style="{StaticResource BodyTextBlockStyle}"/>
 <TextBox Grid.Row="1"/>

 <TextBlock Grid.Row="2" Text="Breakfast line" Margin="0,20,0,10"
 Style="{StaticResource BodyTextBlockStyle}"/>
 <ListBox Grid.Row="3">
 <ListBoxItem Content="1. Ed"/>
 <ListBoxItem Content="2. Billy"/>
 <ListBoxItem Content="3. Jones"/>
 <ListBoxItem Content="4. Fred"/>
 <ListBoxItem Content="5. Johansen"/>
 <ListBoxItem Content="6. Bobby, Jr."/>
 </ListBox>

 <TextBlock Grid.Row="4" Text="Feed a lumberjack" Margin="0,20,0,10"
 Style="{StaticResource BodyTextBlockStyle}"/>
 <StackPanel Grid.Row="5" Orientation="Horizontal">
 <TextBox Text="2" Margin="0,0,20,0"/>
 <ComboBox SelectedIndex="0" Margin="0,0,20,0">
 <ComboBoxItem Content="Crispy"/>
 <ComboBoxItem Content="Soggy"/>
 <ComboBoxItem Content="Browned"/>
 <ComboBoxItem Content="Banana"/>
 </ComboBox>
 <Button Content="Add flapjacks" Style="{StaticResource TextBlockButtonStyle}"/>
 </StackPanel>

 <ScrollViewer Grid.Row="6" Margin="0,20,0,0" Content="Ed has 7 flapjacks"
 BorderThickness="2" BorderBrush="White"/>

 <StackPanel Grid.Row="7" Orientation="Horizontal" Margin="0,40,0,0">
 <Button Content="Add Lumberjack" Margin="0,0,20,0" />
 <Button Content="Next Lumberjack" />
 </StackPanel>

</Grid>

We removed line
breaks to make the
row definitions fit
on this page.

Just to be 100% clear, we asked you to add these dummy items as part of the exercise, to make the form look like it’s being used. You’re about to learn how to bind controls like this ListBox to properties in your classes.

What do you think of this page layout? Would
it make more sense to move the Add and Next
buttons into a standard Windows 8 app bar?

More dummy content...

512   Chapter 10

no more dummy data

Data binding connects your XAML pages to your classes
Your TextBlocks, ScrollViewers, TextBoxes, and other controls are built for displaying data. When you were
using WinForms, you had to use properties to display text or add list items. That will work with XAML too,
but there’s another way: you can use data binding to automatically populate the controls on your page with
data. Even better, you can also use data binding to have your controls update properties in your classes.

Control objec
t

Target prope
rt

y Source prope
rt

y

Data object
Binding

DATA CONTEXT

Context, path, and binding
Data binding in XAML is a relationship between the source property of an object
that feeds data to a control and the target property of the control that displays the
data. To set up data binding, the control’s data context must be set to a reference
to the data object. The binding for the control must be set to a binding path,
which is the property on the object to bind to. Once these things are set, the control
will automatically read the source property and display the data as its content.

The data context is just
a normal reference, using
a property on the control
called DataContext.

To set up data binding in XAML, set the property that you want to bind to {Binding Path}:

 <TextBlock x:Name="walletTextBlock" Text="{Binding Cash}"/>

Then you just need an object to bind to—in this case, a Guy object named joe whose Cash property is set to the
decimal value 325.50. Giving the TextBlock’s DataContext a reference to the Guy object sets up the context.

 Guy joe = new Guy("Joe", 47, 325.50M);

 walletTextBlock.DataContext = joe;

Now your binding is set up! You’ve set the data context to an instance of Guy, you’ve set the binding path to the Cash
property. The TextBlock sees its binding is set to Cash, then looks for a property called Cash on its data object.

You can actually leave out the path and just set the property to {Binding}. In this case, it will call the Guy object’s
ToString() method.

The binding path for this
TextBlock control is the
Cash property. It will
display the value of Cash
for whatever object it’s
bound to.

Data binding only works with
properties. If you try to bind
to a public field, you won’t

see anything—and you
won’t get an error, either!

The data context for this TextBlock
is a reference to a Guy object.
The TextBlock will read any bound
properties from the Guy object.

you are here 4   513

designing windows store apps with xaml

Two-way binding can get or set the source property
Binding can read data from the data object. It can also use two-way binding to modify the source property:

<TextBox x:Name="ageTextBox" Text="{Binding Age, Mode=TwoWay}"/>

This TextBox’s binding path is the Age property, and the binding is set to two-way mode. When the page is
displayed, the TextBox will show the value of the Age property of whatever object it’s bound to. If you change
the value in the TextBox, the control will call the Age property’s set accessor to update the value.

Use code for binding (without using any XAML at all!)
If you examine a control, you won’t actually see a property called Binding. There’s no direct way in C# to
get a reference to a property on an object, just the whole object. When you create the XAML code for a data
binding, it sets up the binding using an instance of a Binding object that stores the name of the target
property as a string. Here’s code-behind that creates a Guy object, then sets up binding for a TextBlock called
walletTextBlock so its Text property is bound to the Guy object’s Cash property.

Guy joe = new Guy("Joe", 47, 325.50M);

Binding cashBinding = new Binding();

cashBinding.Path = new PropertyPath("Cash");

cashBinding.Source = joe;

walletTextBlock.SetBinding(TextBlock.TextProperty, cashBinding);

There’s a class called DependencyProperty,
and the TextBlock class has a whole bunch
of static properties that are instances of
it. One of them is called TextProperty.

ListBox objec
t ObservableCo
lle

ct
io

n
Binding

Bind to col lect ions with Obser vableCollect ion
Some controls like TextBlock or TextBox display a string. Other controls like ScrollViewer display content from an
object. But you’ve also seen controls that display a collection: ListBox and ComboBox. That’s why .NET comes
with ObservableCollection<T>, a collection class that’s built specifically for data binding. It works a lot like
List<T> (you’ll see it in action on the next page).

ItemsSource="{Binding}"

When you bind
the ListBox’s
ItemsSource
property to an
ObservableCollection,
it displays all of
the items in the
collection.

Target prope
rt

y Source prope
rt

y

Two-way Binding Data binding is built to cause
you as few headaches as

possible. If you set the binding
path to a property that isn’t in

the data context, it won’t display
or set any data, but it also won’t

cause your program to break.

514   Chapter 10

i can’t contain my excitement

XAML controls can contain text...and more
Let’s talk a little more about XAML markup (that’s what the M in XAML stands for, and it refers to the
tags that define the page) and code-behind (the code in the .cs file that’s joined with the markup).

When you use a Grid or StackPanel control, you add the controls that they contain between the opening
and closing tags. You can also use the same thing for other kinds of controls. For controls like TextBlock
and TextBox, you can set the Text property by adding text and a closing tag:

 <TextBlock>This is the text to display</TextBlock>

When you do this, you’ll use <LineBreak/> instead of  to add line breaks. What you’re really
doing here is specifying the Unicode character U+0013, which is interpreted as a line break. You can also
specify it in hex:  gives you a line break, £ gives you a £ character (remember Charmap?).

 <TextBlock>First line<LineBreak/>Second line</TextBlock>

Try adding that TextBlock to a XAML page, then use Edit Text to edit it and press Shift-Enter to add a
break. The IDE will add this:

 <TextBlock>
 <Run Text="First line"/>
 <LineBreak/>
 <Run Text="Second line"/>
 </TextBlock>

All three of those options may look the same on the screen, but they create different object graphs. Each
<Run> tag is turned into its own string object, and each of those strings can be given its own name:

 <Run Text="First line" x:Name="firstLine" />

You can use this to modify that string in your C# code behind the XAML form:

 firstLine.Text = "This is new text for the first line";

Content controls like ScrollViewer have a Content property (instead of a Text property) that doesn’t
have to be text—it can contain any control. And there are many content controls. One useful one is
Border, which you can use to add a background and border to controls like TextBlock that don’t have
one:

 <Border Background="Blue"
 BorderBrush="Green" BorderThickness="3">
 </Border>

I’m starting to see how

the Excuse Generator

will be designed. But how

will the controls access

and update data in the

Excuse objects?

ScrollViewer inherits from
ContentControl, which is the same
control you used to create your
enemy in Save the Humans. Your
ContentControl contained a Grid,
which contained three Ellipses.

This is just like using
the Text property.

you are here 4   515

designing windows store apps with xaml

Q:My page had a Grid that contained another Grid, which
contained a StackPanel. Is there a limit to how many controls can
live inside other controls?

A: No. You can nest controls inside of other controls, and those
controls can in turn contain additional controls. In fact, later on in the
book you’ll learn about how to build up your own controls by starting
with a container and adding content to it. You can put a Grid into any
content control—you already did this once when you created the
enemy out of a Grid and three Ellipse controls in Save the Humans.
That’s one of the strengths of using XAML to design your apps: it gives
you the ability to create complex pages out of simple controls.

Q:If I can lay out the same page using either a Grid or a
StackPanel, which one should I use?

A:It depends a lot on the situation. There is no “right” answer:
sometimes it makes more sense to use a StackPanel, sometimes
it makes sense to use a Grid, and sometimes it makes sense to
combine them. And those aren’t the only options, either. You used a
Canvas in Save the Humans, which is a container control that allows
you to use the Canvas.Left and Canvas.Top properties
to position controls at specific coordinates. All three of these controls
are subclasses of Panel, and among the behaviors they inherit from
that base class is the ability to host multiple other controls.

Q: Does that mean there are controls that can only host a
single control?

A: Yes. Try adding a ScrollViewer to a page. Then nest two other
controls inside it. Here’s what you’ll see:

That’s because this XAML sets the Content property on the
ScrollViewer object, and that property is of type object. If
you replace the ScrollViewer tags with Grid tags:

This will work just fine, because the contained controls are added to a
collection called Children. (Your code in Save the Humans used
the Children collection to add enemies.)

Q: Why do some controls like TextBlock have a Text
property instead of a Content property?

A:Because those controls can only host text, so they have a
string property called Text instead of an object property
called Content. This is called the default property of the control.
The default property of a Grid or StackPanel is its Children
collection.

Q: Should I be typing in my XAML code, or using the IDE’s
designer to drag controls out of the toolbox?

A: You should try both, and do what’s most comfortable to you. A
lot of developers rely heavily on the designer in the IDE, but many
developers rarely use the designer at all because they find it faster
to type the XAML. The IDE’s IntelliSense makes it especially easy to
type XAML.

Q: Remind me again why I had to learn WinForms? Why
couldn’t I just jump straight to XAML and Windows Store apps?

A: Because there are a lot of concepts that make XAML much
easier to understand. Take the Children collection, for example.
If you didn’t understand collections, would the answer to the third
question on this page make sense? Maybe. But it’s a lot more obvious
once you do understand collections. On the other hand, it’s really
easy to drag controls out of the toolbox and onto the form. There’s a
lot less depth to WinForms than there is to page design with XAML
(which makes sense, since XAML is a much newer and more flexible
technology). Spending several chapters on WinForms made it easy
for you to get the hang of designing visual applications and building
interesting projects. That, in turn, helped you get many of these
concepts into your brain. You’ll absorb XAML much faster now that
you have them there. There’s also a lot of value in seeing the same
project done two different ways. That’s why we’re revisiting some of
the projects from previous chapters: you’ll understand more about
both WinForms and Windows Store apps by seeing the same app
done in both.

WinForms is a great tool for learning
and exploring C#, but XAML is a
much more capable tool for building
flexible and effective apps.

516   Chapter 10

MenuMaker
NumberOfItems
Menu
GeneratedDate

UpdateMenu()

sloppy joe meets windows store

Use data binding to build Sloppy Joe a bet ter menu
Remember Sloppy Joe from Chapter 4? Well, he’s using Windows 8 now, and he wants a
Window Store app for his sandwich menu. Let’s build him one.

<StackPanel Grid.Row="1" Margin="120,0">

<StackPanel Orientation="Horizontal">

<StackPanel>
 <TextBlock/>
 <TextBox Text="{Binding NumberOfItems,
 Mode=TwoWay}"/>
</StackPanel>

 <Button/>
 </StackPanel>

 <ListView ItemsSource="{Binding Menu}"/>
 <TextBlock>
 <Run/>
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>

</StackPanel>

Here’s the page we’re going to build.

It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses
two-way data binding for a TextBox, using one of its <Run> tags to do the actual binding.

We’ll need an object with
properties to bind to.

The Page object will have an
instance of the MenuMaker class,
which has three public properties:
an int called NumberOfItems,
an ObservableCollection
of menu items called Menu,
and a DateTime called
GeneratedDate.

TextBox obje
ct

ListView obje
ct

TextBlock ob
je

ct

you are here 4   517

designing windows store apps with xaml

MenuItem
Meat
Condiment
Bread

override ToString()

Page obje
ct

MenuMaker o
bj

ec
t

ObservableCo
lle

ct
io

n

MenuItem ob
je

ct

MenuItem ob
je

ct

MenuItem ob
je

ct MenuItem ob
je

ct

MenuItem ob
je

ct

StackPanel o
bj

ec
tStackPanel o
bj

ec
t

StackPanel o
bj

ec
t

TextBlock ob
je

ct

TextBox obje
ct

Button objec
tListView obje

ct

TextBlock ob
je

ct

Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

The Page object creates an
instance of MenuMaker and
uses it for the data context.

The constructor for the Page
object will set the StackPanel’s
DataContext property to an
instance of MenuMaker. The binding
will all be done in XAML.

MenuItems are simple data
objects, overriding the
ToString() method to set
the text in the ListView.

The TextBox uses two-way
binding to set the number of
menu items.

That means the TextBox doesn’t need
an x:Name property. Since it’s bound
to the NumberOfItems property in
the MenuMaker object, we don’t need
to write any C# code that refers to it.

Menu

GeneratedDate

NumberOfItems

The button tells the MenuMaker to update.

The button calls the MenuMaker’s UpdateMenu()
method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems
to it. The ListView will automatically update any time the
ObservableCollection changes.

The two-way binding
for the TextBox
means that it gets
initially populated
with the value in
the NumberOfItems
property, and
then updates that
property whenever
the user edits the
value in the TextBox.

The ListView
and TextBlock
objects are
also bound to
properties in
the MenuMaker
object.

518   Chapter 10

sloppy joe 2: the legend of curly fries

using System.Collections.ObjectModel;

class MenuMaker {
 private Random random = new Random();
 private List<String> meats = new List<String>()
 { "Roast beef", "Salami", "Turkey", "Ham", "Pastrami" };
 private List<String> condiments = new List<String>() { "yellow mustard",
 "brown mustard", "honey mustard", "mayo", "relish", "french dressing" };
 private List<String> breads = new List<String>() { "rye", "white", "wheat",
 "pumpernickel", "italian bread", "a roll" };
 public ObservableCollection<MenuItem> Menu { get; private set; }
 public DateTime GeneratedDate { get; private set; }
 public int NumberOfItems { get; set; }
 public MenuMaker() {
 Menu = new ObservableCollection<MenuItem>();
 NumberOfItems = 10;
 UpdateMenu();
 }
 private MenuItem CreateMenuItem() {
 string randomMeat = meats[random.Next(meats.Count)];
 string randomCondiment = condiments[random.Next(condiments.Count)];
 string randomBread = breads[random.Next(breads.Count)];
 return new MenuItem(randomMeat, randomCondiment, randomBread);
 }
 public void UpdateMenu() {
 Menu.Clear();
 for (int i = 0; i < NumberOfItems; i++) {
 Menu.Add(CreateMenuItem());
 }
 GeneratedDate = DateTime.Now;
 }
}

 Add the new and improved MenuMaker class.
You’ve come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of
items with a property. You’ll create an ObservableCollection of MenuItem in its constructor, which is
updated every time the UpdateMenu() is called. That method will also update a DateTime property called
GeneratedDate with a timestamp for the current menu. Add this MenuMaker class to your project:

2

Use DateTime to work with dates
You’ve already seen the DateTime type that lets you store a date. You can also use it to create and modify dates and times. It has a static property called Now that returns the current time. It also has methods like AddSeconds() for adding and converting seconds, milliseconds, days, etc., and properties like Hour and DayOfWeek to break down the date. How timely!

Take a closer look at how this
works. It never actually creates
a new MenuItem collection. It
updates the current one by
clearing it and adding new items.

What happens if the
NumberOfItems is set
to a negative number?

The new CreateMenuItem() method
returns MenuItem objects, not just
strings. That will make it easier to change
the way items are displayed if we want.

You’ll need this using line because
ObservableCollection<T> is in this namespace.

You’ll use data
binding to display
data from these
properties on
your page. You’ll
also use two-way
binding to update
NumberOfItems.

 Create the new project and replace MainPage.xaml with a Basic Page.
Create a new Windows Store app. Then delete MainPage.xaml, and add a new Basic Page called
MainPage.xaml to replace it. You’ll need to rebuild the project after you replace the page. This is
exactly the same thing you did with Save the Humans (flip back to Chapter 1 if you need a refresher).

1

Just right-click
on the project
name in the
Solution Explorer
and add a new
class, just like
you did with
other projects.

Do this!

you are here 4   519

designing windows store apps with xaml

class MenuItem {
 public string Meat { get; private set; }
 public string Condiment { get; private set; }
 public string Bread { get; private set; }

 public MenuItem(string meat, string condiment, string bread) {
 Meat = meat;
 Condiment = condiment;
 Bread = bread;
 }

 public override string ToString() {
 return Meat + " with " + Condiment + " on " + Bread;
 }
}

 Add the MenuItem class.
You’ve already seen how you can build more flexible programs if you use classes instead of
strings to store data. Here’s a simple class to hold a menu item—add it to your project, too:

3

The three strings that
make up the item are
passed into the constructor
and held in read-only
automatic properties.

Override the
ToString() method so the MenuItem knows how to display itself.

 Build the XAML page.
Here’s the screenshot. Can you build it using StackPanels? The TextBox has a
width of 100. The bottom TextBlock has the style CaptionTextBlockStyle,
and it has two <Run> tags (the second one just holds the date).

4 Don’t add dummy data
this time. We’ll let data
binding do that for us.

Can you build this page on your own just from the screenshot before you see the XAML?

Don’t forget to set the AppName in the
<Page.Resources> section at the top of
the page to change the page header text.

This is a ListView control. It’s a lot like the ListBox
control—in fact, it inherits from the same base class as
ListBox, so it has the same item selection functionality.
But Windows Store apps typically use ListView instead
of ListBox because it has more Windows Store-like
scrolling (with inertia), and other UI features that make
your app look more like a “real” Windows Store app. We
clicked on the first item to take this screenshot, and
you can see that it selects like a Windows Store app does.

520   Chapter 10

bound and determined

 Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainPage.xaml. Make sure you add it to the outermost grid just above
the XAML comment, just like you did in the Save the Humans main page.
We named the button newMenu. Since we used data binding of the ListView, TextBlock, and TextBox, we didn’t
need to give them names. (Here’s a shortcut. We didn’t even really need to name the button, we did it just to get the IDE to
automatically add an event handler named newMenu_Click when we double-clicked it in the IDE. Try it out!)

5

 Add the code-behind for the page to MainPage.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance, and sets the
data contexts for the controls that use data binding. It also needs a MenuMaker field called
menuMaker.

MenuMaker menuMaker = new MenuMaker();

public MainPage() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
 // ... the rest of the MainPage constructor stays the same ...

You just need to set the data context for the outer StackPanel. It will pass that data context on to all
of the controls contained inside it.

Finally, double-click on the button to generate a method stub for its Click event handler. Here’s
the code for it—it just updates the menu:

private void newMenu_Click(object sender, RoutedEventArgs e) {
 menuMaker.UpdateMenu();
}

6

We need two-
way data binding
to both get and
set the number
of items with
the TextBox.

This is where <Run> tags
come in handy. You can have
a single TextBlock but only
bind part of its text.

Your main page’s class in MainPage.
xaml.cs gets a MenuMaker field,
which is used as the data context
for the StackPanel that contains
all of the bound controls.

Here’s that
ListView control.
Try swapping it
out for ListBox
to see how it
changes your page.

There’s an easy way to rename an event handler so that it updates XAML
and C# code at the same time. Flip to leftover #8 in the appendix to

learn more about the refactoring tools in the IDE.

<StackPanel Grid.Row="1" Margin="120,0" x:Name="pageLayoutStackPanel">
 <StackPanel Orientation="Horizontal" Margin="0,0,0,20">
 <StackPanel Margin="0,0,20,0">
 <TextBlock Style="{StaticResource BodyTextBlockStyle}"
 Text="Number of items" Margin="0,0,0,10" />
 <TextBox Width="100" HorizontalAlignment="Left"
 Text="{Binding NumberOfItems, Mode=TwoWay}" />
 </StackPanel>
 <Button x:Name="newMenu" VerticalAlignment="Bottom" Click="newMenu_Click"
 Content="Make a new menu" Margin="0,0,20,0"/>
 </StackPanel>
 <ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0" />
 <TextBlock Style="{StaticResource CaptionTextBlockStyle}">
 <Run Text="This menu was generated on " />
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>
</StackPanel>

you are here 4   521

designing windows store apps with xaml

Now run your program! Try changing the TextBox to different values. Set it to 3, and it generates a menu
with three items:

Now you can play with binding to see just how flexible it is. Try entering “xyz” or no data at all into the
TextBox. Nothing happens! When you enter data into the TextBox, you’re giving it a string. The TextBox
is pretty smart about what it does with that string. It knows that its binding path is NumberOfItems, so it
looks in its data context to see if there are any properties with that name, and then does its best to convert
the string to whatever that property’s type is.

TextBox obje
ct

My Text
property’s bound to
NumberOfItems. And look,

my data context has a
NumberOfItems property! Can I
stick this string “3” into that
property? Looks like I can!

TextBox obje
ct

Hmm, my
data context says
NumberOfItems is an int,

and I don’t know how to
convert the string “xyz” to

an int. Guess I won’t do
anything at all.

Keep your eye on the generated date. It’s not updating, even though
the menu updates. Hmm, maybe there’s still something we need to do.

Did you remember to update the AppName string in the <Page.Resources> section? If not, the XAML for it is in step 3 when you flip the page.

		 There’s a lot of code-behind in the Blank Page template.

Open up MainPage.xaml.cs—there’s a lot of C# code in there already! You’ll learn what it does
later in the book. Just add your code-behind methods, fields, etc., just like you did in Chapter2..

522   Chapter 10

put your data in context

Use stat ic resources to declare your objects in XAML
When you build a page with XAML, you’re creating an object graph with objects like StackPanel, Grid, TextBlock,
and Button. And you’ve seen that there’s no magic or mystery to any of that—when you add a <TextBox> tag to
your XAML, then your page object will have a TextBox field with a reference to an instance of TextBox. And if you
give it a name using the x:Name property, your code-behind C# code can use that name to access the TextBox.

You can do exactly the same thing to create instances of almost any class and store them as fields in your page by
adding a static resource to your XAML. And data binding works particularly well with static resources, especially
when you combine it with the visual designer in the IDE. Let’s go back to your program for Sloppy Joe and move the
MenuMaker to a static resource.

Delete the MenuMaker field from the
code-behind.
You’re going to be setting up the MenuMaker class and the data
context in the XAML, so delete these lines from your C# code:

MenuMaker menuMaker = new MenuMaker();

public MainPage() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;

1

Take a close look at the namespaces for your page.
Look at the top of the XAML code for your page, and you’ll see that the page’s opening tag
has a set of xmlns properties. Each of these properties defines a namespace. Look for the
one that starts with xmlns:local and has your project’s namespace. It should look like this:

2

Since we named our app SloppyJoeChapter10,
the IDE created this namespace for us. Find
the namespace that corresponds to your app,
beause that’s where your MenuMaker lives.

xmlns:local="using:SloppyJoeChapter10"

This is an XML namespace property. It consists of
“xmlns:” followed by an
identifier, in this case “local”.

When the namespace value starts with
“using:” it refers to one of the namespaces in
the project. It can also start with “http://”
to refer to a standard XAML namespace.

You’ll use this identifier to create
objects in your project’s namespace.

Q:Hey, there’s no Close button! How do I
quit my app?

A: Windows Store apps don’t have Close
buttons by default, because you typically never
quit most apps. Windows Store apps follow
an application lifecycle with three states:
not running, running, and suspended. Apps
can be suspended if the user switches away
or Windows enters a low power state. And if
it needs to reclaim the memory, Windows can
terminate it. Later in the book you’ll learn how
to make your app work with this lifecycle.

you are here 4   523

designing windows store apps with xaml

Hmm, something’s not quite right. The designer populated the number of items and the menu, but not the generated date. And when you run it, the date never changes. What’s going on?

Add the static resource to your XAML and set the data context.
Find the <Page.Resources> section of your page and type <local: to pop up an IntelliSense window:

The window shows all of the classes in the namespace that you can use. Choose MenuMaker, and give it the
name menuMaker:

 <local:MenuMaker x:Name="menuMaker"/>

Now your page has a static MenuMaker resource called menuMaker.

3

Set the data context for your StackPanel and all of its children.
Then go to the outermost StackPanel, remove the x:Name tag, and set its DataContext property:

 <StackPanel Grid.Row="1" Margin="120,0"
 DataContext="{StaticResource ResourceKey=menuMaker}">

Your program will still work, just like before. But did you notice what happened in the IDE when you added the
data context to the XAML? As soon as you added it, the IDE created an instance of MenuMaker and used its
properties to populate all of the controls that were bound to it. You got a menu generated immediately, right
there in the designer—before you even ran your program. Neat!

4

The menu shows up in the
designer immediately, even
before you run your program.

You can only add static resources if their classes
have parameterless consructors. This makes sense!
If the constructor has a parameter, how would the

XAML page know what arguments to pass to it?

524   Chapter 10

change your list’s look and feel

Use a data template to display objects
When you show items in a list, you’re showing contents of ListViewItem (which you use for ListViews),
ListBoxItem, or ComboBoxItem controls, which get bound to objects in an ObservableCollection.
Each ListViewItem in the Sloppy Joe menu generator is bound to a MenuItem object in its Menu collection.
The ListViewItem objects call the MenuItem objects’ ToString() methods by default, but you can use a
data template that uses data binding to display data from the bound object’s properties.

<ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

Modify the <ListView> tag to add a basic data template. It
uses the basic {Binding} to call the item’s ToString().

Leave the ListView tag
intact, but replace /> with >
and add a closing </ListView>
tag at the bottom. Then add
the ListView.ItemTemplate tag
to contain the data template.

Adding a {Binding} without a path
just calls the ToString() method of
the bound object.

This is a really
basic data
template, and it
looks just like the
default one used
to display the
ListViewItems.

Change your data template to add some color to your menu.

Go crazy! The data template can contain any controls you want.

<DataTemplate>
 <TextBlock>
 <Run Text="{Binding Meat}" Foreground="Blue"/><Run Text=" on "/>
 <Run Text="{Binding Bread}" FontWeight="Light"/><Run Text=" with "/>
 <Run Text="{Binding Condiment}" Foreground="Red" FontWeight="ExtraBold"/>
 </TextBlock>
</DataTemplate>

You can bind individual Run tags. You can change
each tag’s color, font, and other properties too.Replace the

<DataTemplate>,
but leave the
rest of the
ListView intact.

<DataTemplate>
 <StackPanel Orientation="Horizontal">
 <StackPanel>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 </StackPanel>
 <Ellipse Fill="DarkSlateBlue" Height="Auto" Width="10" Margin="10,0"/>
 <Button Content="{Binding Condiment}" FontFamily="Segoe Script"/>
 </StackPanel>
</DataTemplate>

The DataTemplate object’s
Content property can only
hold one object, so if you
want multiple controls in your
data template, you’ll need a
container like StackPanel.

you are here 4   525

designing windows store apps with xaml

Q:So I can use a StackPanel or a Grid to lay out my page.
I can use XAML static resources, or I can use fields in code-
behind. I can set properties on controls, or I can use data
binding. Why are there so many ways to do the same things?

A: Because C# and XAML are extremely flexible tools for building
apps. That flexibility makes it possible to design very detailed pages
that work on many different devices and displays. This gives you
a very large toolbox that you can use to get your pages just right.
So don’t look at it as a confusing set of choices; look at it as many
different options that you can choose from.

Q:I’m still not clear on how static resources work. What
happens when I add a tag inside <Page.Resources>?

A:When you add that tag, it udpates the Page object. Find the
AppName resource that you changed to set the page header:

<x:String x:Key="AppName">Welcome to Sloppy
Joe's</x:String>

Now go through the code that the IDE added as part of the Basic
Page template to find where it uses the resource:

<TextBlock x:Name="pageTitle"
 Grid.Column="1"
 Text="{StaticResource AppName}"
 Style="{StaticResource ...

The page uses this static resource to set the text. So what’s going
on behind the scenes? You can use the IDE to see what’s going
on. Put a breakpoint in your button event handler, then run the code
and press the button. Add this.Resources["AppName"]
to the Watch window, and you’ll see that it contains a reference to
a string. And every static resource works the same way—when you
add a static resource to the code, it creates an object and adds it to a
collection called Resources.

Q: Can I use that {StaticResource} syntax in my
own code, or is it just for templates like Blank Page?

A: Absolutely, you can set up resources and use them just like
that. There’s nothing special about the Blank Page template, or any
other templates you’ll use in this book. They just use regular XAML
and C#, and they don’t do anything that you can’t do yourself.

Q: I used x:Name to set my MenuMaker resource’s
name, but the AppName resource uses x:Key. What’s the
difference?

A: When you use the x:Key property in a static resource, it
adds the resource to the Resources collection using that key,
but it doesn’t create a field (so you can’t enter AppName into
your C# code, you can only access it using the Resources
collection). When you use the x:Name property, it adds it to the
Resources collection, but it also adds a field to the Page
object. That’s how you were able to call the UpdateMenu()
method on the MenuMaker static resource.

Q: Does my binding path have to be a string property?

A: No, you can bind a property of any type. If it can be converted
between the source and property types, then the binding will work.
If not, the data will be ignored. And remember, not all properties
on your controls are text, either. Let’s say you’ve got a bool in your
data context called EnableMyObject. You can bind it to any
Boolean property, like IsEnabled. This will enable or disable the
control based on the value of the EnableMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it’ll just print True or
False (which, if you think about it, makes perfect sense).

Q: Why did the IDE display the data in my form when I added
the static resource and set the data context in XAML, but not
when I did it in C#?

A: Because the IDE understands your XAML, which has all of the
information that it needs to create the objects to render your page. As
soon as you added the MenuMaker resource to your XAML code,
the IDE created an instance of MenuMaker. But it couldn’t do that
from the new statement in its constructor, because there could be
many other statements in the constructor, and they would need to be
run. The IDE only runs the code-behind C# code when the program
is executed. But if you add a static resource to the page the IDE will
create it, just like it creates instances of TextBlock, StackPanel, and
the other controls on your page. It sets the controls’ properties to
show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up
in the IDE’s designer.

The static resources in your page are
instantiated when the page is first
loaded and can be used at any time
by the objects in the app.

The name “static resource” is a little misleading.
Static resources are definitely created for each
instance; they’re not static fields!

526   Chapter 10

ch-ch-ch changes

INot ifyPropertyChanged le ts bound objects send updates
When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated too? The reason is that every time an ObservableCollection changes, it fires
off an event to tell any bound control that its data has changed. This is just like how a Button control
raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval elapses. Whenever
you add, remove, or delete items from an ObservableCollection, it raises an event.

You can make your data objects notify their target properties and bound controls that data has changed, too.
All you need to do is implement the INotifyPropertyChanged interface, which contains a single
event called PropertyChanged. Just fire off that event whenever a property changes, and watch your
bound controls update themselves automatically.

~
PropertyChanged event

Data object

Source prope
rt

y Target prope
rt

y

Control objec
t

Binding

DATA CONTEXT

The data object fires off
a PropertyChanged event
to notify any control
that it’s bound to that a
property has changed.

	 Collections work almost the same way as data objects.

The ObservableCollection<T> object doesn’t actually implement
INotifyPropertyChanged. Instead, it implements a closely related
interface called INotifyCollectionChanged that fires off a

CollectionChanged event instead of a PropertyChanged event. The control
knows to look for this event because ObservableCollection implements the
INotifyCollectionChanged interface. Setting a ListView’s DataContext to an
INotifyCollectionChanged object will cause it to respond to these events.

The control receives the event, and
refreshes its target property by reading
the data from the source property that
it’s bound to.

you are here 4   527

designing windows store apps with xaml

Modify MenuMaker to not ify you when
the GeneratedDate property changes
INotifyPropertyChanged is in the System.ComponentModel
namespace, so start by adding this using statement to the top of the
MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged,
and then use the IDE to automatically implement the interface:

This will be a little different than what you saw in Chapters 7 and 8. It won’t add
any methods or properties. Instead, it will add an event:

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged() method, which you’ll use to raise the PropertyChanged event.

private void OnPropertyChanged(string propertyName) {

 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;

 if (propertyChangedEvent != null) {

 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));

 }

}

Now all you need to do to notify a bound control that a property is changed is to call OnPropertyChanged()
with the name of the property that’s changing. We want the TextBlock that’s bound to GeneratedDate to refresh
its data every time the menu is updated, so all we need to do is add one line to the end of UpdateMenu():

public void UpdateMenu() {

 Menu.Clear();

 for (int i = 0; i < NumberOfItems; i++) {

 Menu.Add(CreateMenuItem());

 }

 GeneratedDate = DateTime.Now;

 OnPropertyChanged("GeneratedDate");

}

Now the date should change when you generate a menu.

		 This is the first
time you’re
raising events.

 You’ve been
writing event handler methods since
Chapter 1, but this is the first time
you’re firing an event. You’ll learn
all about how this works and what’s
going on in Chapter 15. For now, all
you need to know is that an interface
can include an event, and that your
OnPropertyChanged() method
is following a standard C# pattern for
raising events to other objects.

This is a standard
.NET pattern for
raising events.

	 Don't forget to implement
INotifyPropertyChanged.

Data binding only works when the
controls implement that interface.

If you leave : INotifyPropertyChanged
out of the class declaration, your bound
controls won't get updated—even if the data
object fires PropertyChanged events.

528   Chapter 10

go fish goes xaml

Finish porting the Go Fish! game to a Windows Store app. You’ll need to modify the XAML from earlier
in this chapter to add data binding, copy all of the classes and enums from the Go Fish! game in
Chapter 8 (or download them from our website), and update the Player and Game classes.

Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing
Item option in the Solution Explorer, but you’ll need to change the namespace in each of them to
match your new project’s namespace (just like you did with multipart projects earlier in the book).

Try building your project. You should get errors in Game.cs and Player.cs that look like this:

1

Remove all references to WinForms classes and objects; add using lines to Game.
You’re not in the WinForms world anymore, so delete using System.Windows.Forms; from the
top of Game.cs and Player.cs. You’ll also need to remove all mentions of TextBox. You’ll need to modify
the Game class to use INotifyPropertyChanged and ObservableCollection<T>, so add
these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

2

Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for
the grid that contains the Go Fish! page you built earlier in the chapter. Here’s the XAML for the static
resource: <local:Game x:Name="game"/> — and you’re going to need a new constructor because
you can only include resources that have parameterless constructors:

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

3

Add public properties to the Game class for data binding.
Here are the properties you’ll be binding to properties of the controls in the page:

 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

4

you are here 4   529

designing windows store apps with xaml

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public void AddProgress(string progress)
 {
 GameProgress = progress +
 Environment.NewLine +
 GameProgress;
 OnPropertyChanged("GameProgress");
 }

IsEnabled="{Binding GameInProgress}" IsEnabled="{Binding GameNotStarted}"

Use binding to enable or disable the TextBox, ListBox, and Buttons.
You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when
the game is not started, and you want the “Your hand” ListBox and “Ask for a card” Button
to be enabled only when the game is in progress. You’ll add code to the Game class to set the
GameInProgress property. Have a look at the GameNotStarted property. Figure out how
it works, then add the following property bindings to the TextBox, ListBox, and two Buttons:

5

IsEnabled="{Binding GameNotStarted}"IsEnabled="{Binding GameInProgress}"

You’ll need
two of each
of these.

Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor.
Change that to take a reference to the Game class and store it in a private field. (Look at the
StartGame() method below to see how this new constructor is used when adding players.)
Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress() method.

6

Modify the Game class.
Change the PlayOneRound() method so that it’s void instead of returning a Boolean, and have it use
the AddProgress() method instead of the TextBox to display progress. If a player won, display that
progress, reset the game, and return. Otherwise, refresh the Hand collection and describe the hands.

You’ll also need to add/update these four methods, and figure out what they do and how they work.

7

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

You’ll also need to implement the
INotifyPropertyChanged
interface and add the same
OnPropertyChanged() method
that you used in the MenuMaker class.
The updated methods use it, and your
modified PullOutBooks() method
will also use it.

530   Chapter 10

exercise solution

class Player {
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private Game game;
 public Player(String name, Random random, Game game) {
 this.name = name;
 this.random = random;
 this.game = game;
 this.cards = new Deck(new Card[] { });
 game.AddProgress(name + " has just joined the game");
 }
 public Deck DoYouHaveAny(Values value)
 {
 Deck cardsIHave = cards.PullOutValues(value);
 game.AddProgress(Name + " has " + cardsIHave.Count + " " + Card.Plural(value));
 return cardsIHave;
 }

 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
 game.AddProgress(Name + " asks if anyone has a " + value);
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 game.AddProgress(Name + " must draw from the stock.");
 cards.Add(stock.Deal());
 }
 }

 // ... the rest of the Player class is the same ...

A
Here’s all of the code-behind that you had to write:
private void startButton_Click(object sender, RoutedEventArgs e) {
 game.StartGame();
}
 private void askForACard_Click(object sender, RoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}
 private void cards_DoubleTapped(object sender, DoubleTappedRoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}

These are the changes needed for the Player class:

you are here 4   531

designing windows store apps with xaml

<Grid Grid.Row="1" Margin="120,0,60,60" DataContext="{StaticResource ResourceKey=game}" >
 <TextBlock Text="Your Name" Margin="0,0,0,20"
 Style="{StaticResource SubheaderTextBlockStyle}"/>
 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="24" Width="500" MinWidth="300"
 Text="{Binding PlayerName, Mode=TwoWay}" IsEnabled="{Binding GameNotStarted}" />
 <Button x:Name="startButton" Margin="20,0" IsEnabled="{Binding GameNotStarted}"
 Content="Start the game!" Click="startButton_Click" />
 </StackPanel>
 <TextBlock Text="Game progress"
 Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,20,0,20" Grid.Row="2"/>
 <ScrollViewer Grid.Row="3" FontSize="24" Background="White" Foreground="Black"
 Content="{Binding GameProgress}" />
 <TextBlock Text="Books" Style="{StaticResource SubheaderTextBlockStyle}"
 Margin="0,20,0,20" Grid.Row="4"/>
 <ScrollViewer FontSize="24" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" Content="{Binding Books}" />
 <TextBlock Text="Your hand" Style="{StaticResource SubheaderTextBlockStyle}"
 Grid.Row="0" Grid.Column="2" Margin="0,0,0,20"/>
 <ListBox Background="White" FontSize="24" Height="Auto" Margin="0,0,0,20"
 x:Name="cards" Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"
 ItemsSource="{Binding Hand}" IsEnabled="{Binding GameInProgress}"
 DoubleTapped="cards_DoubleTapped" />
 <Button x:Name="askForACard" Content="Ask for a card" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Grid.Row="6" Grid.Column="2"
 Click="askForACard_Click" IsEnabled="{Binding GameInProgress}" />
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
</Grid>

A These are the changes needed for the XAML:

The data context for the grid is the
Game class, since all of the binding is
to properties on that class.

Here’s the Click event handler
for the Start button.

The Game Progress and
Books ScrollViewers
bind to the Progress
and Books properties.

The IsEnabled property enables
or disables the control. It’s a
Boolean property, so you can
bind it to a Boolean property
to turn the control on or off
based on that property.

The TextBox
has a two-
way binding to
PlayerName.

532   Chapter 10

exercise solution

A

class Game : INotifyPropertyChanged {
 private List<Player> players;
 private Dictionary<Values, Player> books;
 private Deck stock;
 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

 public void AddProgress(string progress) {
 GameProgress = progress + Environment.NewLine + GameProgress;
 OnPropertyChanged("GameProgress");
 }

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

using System.ComponentModel;
using System.Collections.ObjectModel;

Here’s the
StartGame() method
that we gave you. It
clears the progress,
creates the players,
deals the cards, and
then updates the
progress and books.

You need these lines for
INotifyPropertyChanged
and ObservableCollection.

These properties are
used by the XAML
data binding.

Here’s the new Game constructor.
We only create one collection and
just clear it when the game is
reset. If we created a new object,
the form would lose its reference
to it, and the updates would stop.These methods

make the game
progress data
binding work.
New lines are
added to the
top so the
old activity
scrolls off the
bottom of the
ScrollViewer.

Here’s everything that changed in the Game class, including the code we gave you with the instructions.

Every program you’ve written in
the book so far can be adapted or
rewritten as a Windows Store app

using XAML. But there are so many
ways to write them, and that’s

especially true when you’re using
XAML! That’s why we gave you so
much of the code for this exercise.

you are here 4   533

designing windows store apps with xaml

A

 public void PlayOneRound(int selectedPlayerCard) {
 Values cardToAskFor = players[0].Peek(selectedPlayerCard).Value;
 for (int i = 0; i < players.Count; i++) {
 if (i == 0)
 players[0].AskForACard(players, 0, stock, cardToAskFor);
 else
 players[i].AskForACard(players, i, stock);
 if (PullOutBooks(players[i])) {
 AddProgress(players[i].Name + " drew a new hand");
 int card = 1;
 while (card <= 5 && stock.Count > 0) {
 players[i].TakeCard(stock.Deal());
 card++;
 }
 }
 OnPropertyChanged("Books");
 players[0].SortHand();
 if (stock.Count == 0) {
 AddProgress("The stock is out of cards. Game over!");
 AddProgress("The winner is... " + GetWinnerName());
 ResetGame();
 return;
 }
 }
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName) {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null) {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 // ... the rest of the Game class is the same ...

This used to return a Boolean value so the form could update its progress. Now it
just needs to call AddProgress, and data binding will take care of the updating for us.

This is the standard
PropertyChanged event
pattern from earlier in
the chapter.

Here are the modifications to
the PlayOneRound() method that
update the progress when the
game is over, or update the hand
and the books if it’s not.

This is the ResetGame() method
from the instructions. It clears
the books, stock, and hand.

The books changed, and the form needs to know about the change so it can refresh its ScrollViewer.

this is a new chapter   535

My DateLadyAsync()
method lets me finish
my romantic date with

Margaret without keeping
Suzie waiting.

async, await, and data contract serialization11

Pardon the interruption

Nobody likes to be kept waiting...especially not users.�
Computers are good at doing lots of things at once, so there’s no reason your

apps shouldn’t be able to as well. In this chapter, you’ll learn how to keep your

apps responsive by building asynchronous methods. You’ll also learn how

to use the built-in file pickers and message dialogs and asynchronous

file input and output without freezing up your apps. Combine this with data

contract serialization, and you’ve got the makings of a thoroughly modern app.

536   Chapter 11

where’d they go?

Brian runs into f i le trouble
Brian’s got his XAML, he’s got his data binding, and he’s all ready to
start porting his Excuse Manager to a Windows Store app. Everything’s
going great, until...

Wait, what?!
Where are my
file classes?

Yep, there’s no File class here.
IntelliSense doesn’t lie!

I checked everywhere
in the System.IO

namespace, but I can’t find
my File class! How am I

supposed to read or write
files now?

you are here 4   537

async await and data contract serialization

This looks promising, though.

And I can’t find my
BinaryFormatter, either.

What do I use to serialize
my objects?

Windows Store apps
improved on a lot of what

WinForms gave me. I bet there
are some good tools... and a
good reason these things are

missing.

Windows Store apps have superior I/O tools.

When you build a Windows Store app, it needs to be
responsive, intuitive, and consistent. That’s why the .NET
Framework for Windows Store Apps includes classes and
methods that let you display file dialogs and do file I/O
asynchronously—which means they don’t lock up your app
while dialogs are displayed or files are written. And by using
data contracts for serialization, your apps can write files
that are easier to work with, and much clearer to understand.

When you see an
hourglass, that
means you're
using a program
that's locked up
and has become
unresponsive...and
users hate that!
(Don't you?)

538   Chapter 11

don’t keep me waiting

Windows Store apps use await to be more responsive
What happens when you call MessageBox.Show() from a WinForms program? Everything
stops, and your program freezes until the dialog disappears. That’s literally the most unresponsive
that a program can be! Windows Store apps should always be responsive, even when they’re waiting
for feedback from a user. But some things—like waiting for a dialog, or reading or writing all the
bytes in a file—take a long time. When a method sits there and makes the rest of the program wait
for it to complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.

Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at how Windows
Apps pop up dialogs without blocking the app by using the MessageDialog class:

MessageDialog dialog = new MessageDialog("Message");
dialog.Commands.Add(new UICommand("Response #1"));
dialog.Commands.Add(new UICommand("Response #2"));
dialog.Commands.Add(new UICommand("Response #3"));
dialog.DefaultCommandIndex = 1;
UICommand result = await dialog.ShowAsync() as UICommand;

Configure the MessageDialog
by giving it a message and
adding responses. Each response
is a UICommand object.

You create a MessageDialog
object the same way that you’d
instantiate any other class.

The await operator causes the method that’s running this code to stop and wait until the
ShowAsync() method completes—and that method will block until the user chooses one of the
commands. In the meantime, the rest of the program will keep responding to other events. As soon
as the ShowAsync() method returns, the method that called it will pick up where it left off (although it
may wait until after any other events that started up in the meantime have finished).

If your method uses the await operator, then it must be declared with the async modifier:

 public async void ShowADialog() {
 // ... some code ...
 UICommand result = await dialog.ShowAsync() as UICommand;
 // ... some more code:
 }

When a method is declared with async, you have some options with how you call it. You can call
the method as usual. When you do, as soon as it hits the await statement it returns, which keeps the
blocking call from freezing your app.

you are here 4   539

async await and data contract serialization

You can see exactly how this works by creating a new Blank App and adding the following XAML:

<StackPanel VerticalAlignment="Top" HorizontalAlignment="Center">
 <Button Click="Button_Click_1" FontSize="36">Are you happy?</Button>
 <TextBlock x:Name="response" FontSize="36"/>
 <TextBlock x:Name="ticker" FontSize="36"/>
</StackPanel>

Here’s the code-behind. You’ll need to add using Windows.UI.Popups; because MessageDialog and
UICommand are in that namespace.

DispatcherTimer timer = new DispatcherTimer();
private void Button_Click_1(object sender, RoutedEventArgs e) {
 timer.Tick += timer_Tick;
 timer.Interval = TimeSpan.FromMilliseconds(50);
 timer.Start();
 CheckHappiness();
}
 int i = 0;
void timer_Tick(object sender, object e) {
 ticker.Text = "Tick #" + i++;
}
 private async void CheckHappiness() {
 MessageDialog dialog = new MessageDialog("Are you happy?");
 dialog.Commands.Add(new UICommand("Happy as a clam!"));
 dialog.Commands.Add(new UICommand("Sad as a donkey."));
 dialog.DefaultCommandIndex = 1;
 UICommand result = await dialog.ShowAsync() as UICommand;
 if (result != null && result.Label == "Happy as a clam!")
 response.Text = "The user is happy";
 else
 response.Text = "The user is sad";
 timer.Stop();
}

When you run the program, you can see the timer ticking while the dialog is open. Your app remains responsive! It
doesn’t stop ticking until after you click on one of the dialog options, at which point the method resumes.

Try moving the timer.Stop() line here. The timer will stop ticking immediately, because the async method returns as soon as it hits the await operator.

Do this!

540   Chapter 11

pick a file, any file

FileOpenPicker picker = new FileOpenPicker {
 ViewMode = PickerViewMode.List,
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
};
picker.FileTypeFilter.Add(".txt");
IStorageFile file = await picker.PickSingleFileAsync();
if (file != null) {
 string fileContents = await FileIO.ReadTextAsync(file);
}

Use the FileIO class to read and write f i les
WinForms use the System.IO.File class to read and write files, but you’ve already seen that class doesn’t exist
in the .NET Framework for Windows Store apps. And that’s a good thing! If you use File.WriteAllText()
to write a giant file that will fill up a big portion of your hard drive, it will block and cause your program to
become unresponsive.

Windows Store apps can use Windows.Storage classes to read and write files. That namespace includes
a class called FileIO, which has some familiar-looking methods that pop up in its IntelliSense window.

These methods look similar to the
ones in the File class. The FileIO
class has AppendLinesAsync()
and ReadTextAsync(), where the
File class had AppendLines()
and ReadText(). The difference
is that each of these methods is
declared using the async modifier,
and uses the await operator to do
the actual file reading. That lets you
write code that can read and write
files without blocking.

Use the f i le pickers to locate f i le paths
MessageBoxes aren’t the only kinds of dialogs that cause your WinForms programs
to become unresponsive. File dialogs do exactly the same thing. Windows Store apps
have their own file pickers to access files and folders, and they’re asynchronous, too
(so they don’t block). Here’s how to create and use a FileOpenPicker to find a file
to open, and ReadTextAsync() to read the text from it into a file: You can configure the properties on

the picker using an object initializer.
This FileOpenPicker is configured to
display files as a list, and start in the
user’s documents library folder.

This picker has a collection called FileTypeFilter
that has the types of files that it can load.

You can pass the IStorageFile reference
straight into FileIO.ReadTextAsync()
to read the contents of the file.

The file picker returns an IStorageFile
when you pick a single file. You'll read a
lot more about it in a few pages.

you are here 4   541

async await and data contract serialization

FileSavePicker picker = new FileSavePicker {
 DefaultFileExtension = ".txt",
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
};
picker.FileTypeChoices.Add("Text File", new List<string>() { ".txt" });
picker.FileTypeChoices.Add("Log File",
 new List<string>() { ".log", ".dat" });
IStorageFile saveFile = await picker.PickSaveFileAsync();
if (saveFile == null) return;
await FileIO.WriteTextAsync(saveFile, textToWrite);

Here’s what the FileOpenPicker
looks like when it’s open.

The FileSavePicker lets the user pick a file to save. Here’s how it can be
used in conjunction with FileIO.WriteTextAsync() to write text to a file:

The FileSavePicker returns an IStorageFile,
too. It contains all of the information
needed to read or write to a file, and can
be passed straight to WriteTextAsync().

542   Chapter 11

raise the bar for your app

Build a slight ly less simple text editor
Let’s rebuild the Simple Text Editor from Chapter 9 as a Windows Store app. You’ll use the
FileIO class, a FileOpenPicker, and a FileSavePicker to load and save the files.
But first you’ll build the main page. And since this is a Windows Store app that can open and
save files, it should have an app bar with Open and Save buttons, so you’ll use the IDE
to add one.

An AppBar control is a lot like a ScrollViewer or Border, because it can contain another
control. It knows how to hide and show itself, and acts just like any other app bar. All you
need to do is add it to the <BottomAppBar> or <TopAppBar> section of a page.

<Grid Grid.Row="1" Margin="120,0,60,60">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <TextBlock x:Name="filename" Margin="10"
 Style="{StaticResource TitleTextBlockStyle}">
 Untitled
 </TextBlock>
 <Border Margin="10" Grid.Row="1">
 <TextBox x:Name="text" AcceptsReturn="True"
 ScrollViewer.VerticalScrollBarVisibility="Visible"
 ScrollViewer.HorizontalScrollBarVisibility="Visible"
 TextChanged="text_TextChanged" />
 </Border>
</Grid>

Use the Document Outline to select the Page (it’s named pageRoot—or select any control and press Escape a
few times). Go to the Properties window, expand the Common section, and find the BottomAppBar property:

Click the button—this will pop up a Select Object window so you can choose what type of object to add.
Choose to add a bottom app bar. The IDE will add this code to your page:

<Page.BottomAppBar>
 <AppBar/>
</Page.BottomAppBar>

2

Create a new Windows Store Blank App project, and replace MainPage.xaml with a new Basic Page.
Here’s XAML for the page contents:

1

Do this!

Right-click on text_TextChanged and choose from the menu. The IDE
will create the TextChanged event handler for your TextBox.

The TextBox control can
display horizontal and
vertical scrollbars. These
properties turn them on.

The AcceptsReturn property makes
the TextBox accept multiline input.

you are here 4   543

async await and data contract serialization

You also need a Save button, so try dragging another AppBarButton out of the toolbar onto the app bar. Uh-oh—
something's not right! You should see two error messages, one for the AppBar telling you that the property ‘Content’
can only be set once, and one for the AppBarButton telling you that property is set more than once. That's beause
when a containr like an AppBar, Button, or Border bas a Content property, that property can only contain a single
control. So how do we get two AppBarButton controls into our AppBar?

You probably already guessed the answer: we'll use a horizontal StackPanel. Add a StackPanel to the AppBar
with horizontal orientation, and set its horizontal alignment to Right (so the buttons are on the right-hand side
of the page when the app bar pops up), and put the Open File AppBarButton inside of it. Next, add a second
AppBarButton to the StackPanel. Give it the Save icon, the label Save, name it saveButton, and set its IsEnabled
property to false so it's disabled when the app first starts. Finally, add Click event handlers to both app bar
buttons (call them openButton_Click() and saveButton_Click()). Here's the complete app bar XAML:

4

The AppBar is a container control. When you display a page’s app bar, its AppBar control displays itself and any
controls that it contains. But most of the time it’s hidden. Click anywhere in the page outside of the app
bar and you’ll see it disappear from the designer—just like it does in a typical Windows Store app.

You want your AppBar to contain buttons, and you want those buttons to look like normal, everyday app bar
buttons. .NET for Windows Store has a control for exactly that: the AppBarButton control. But your app bar
disappeared when yo clicked outside of it! No problem—just select the
app bar by either clicking on <AppBar/> in the XAML designer or
using the Document Outline to select it, and the app bar will appear again.

Next, drag an out of the Toolbox and onto your
app bar. (You can also double-click it in th Toolbox.) The default app bar
button has a smiley face icon and the label “AppBarButton,” so use the
Properties window to change its name, icon and label. You can also just
edit the XAML to change the x:Name, Label, and Icon properties:

<Page.BottomAppBar>
 <AppBar>
 <AppBarButton x:Name="openButton"
 Label="Open File" Icon="OpenFile"/>
 </AppBar>
</Page.BottomAppBar>

3

Now your app has a working app bar!

<Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <AppBarButton x:Name="openButton" Click="openButton_Click"
 Label="Open File" Icon="OpenFile"/>
 <AppBarButton x:Name="saveButton" IsEnabled="false"
 Label="Save" Icon="Save" Click="saveButton_Click"/>
 </StackPanel>
 </AppBar>
</Page.BottomAppBar>

544   Chapter 11

your editor’s looking pretty good

bool textChanged = false;
bool loading = false;
IStorageFile saveFile = null;

private async void openButton_Click(object sender, RoutedEventArgs e) {
 if (textChanged) {
 MessageDialog overwriteDialog = new MessageDialog(
 "You have unsaved changes. Are you sure you want to load a new file?");
 overwriteDialog.Commands.Add(new UICommand("Yes"));
 overwriteDialog.Commands.Add(new UICommand("No"));
 overwriteDialog.DefaultCommandIndex = 1;
 UICommand result = await overwriteDialog.ShowAsync() as UICommand;
 if (result != null && result.Label == "No")
 return;
 }
 OpenFile();
}

private void saveButton_Click(object sender, RoutedEventArgs e) {
 SaveFile();
}

private void text_TextChanged(object sender, TextChangedEventArgs e) {
 if (loading) {
 loading = false;
 return;
 }
 if (!textChanged) {
 filename.Text += "*";
 saveButton.IsEnabled = true;
 textChanged = true;
 }
}

Here’s the code-behind for the entire program. It uses the TextBox.Text property
to modify the text in the textbox. We’re modifying a property on the object instead of
using data binding in order to keep the code in this program as similar as possible to the
Simple Text Editor in Chapter 9. That will give you a reference point for comparison
if you want to flip back and forth to see how things change between WinForms and
Windows Store apps. You’ll also need these using statements at the top of the file:

using Windows.System;

using Windows.Storage;

using Windows.Storage.Pickers;

using Windows.UI.Popups;

Here’s the rest of the code. It should all go into the MainPage class.

5

You’ll need these three fields. The booleans are used
to add the * to the end of the filename. The
IStorageFile keeps track of the file being saved so
it doesn’t have to keep displaying the save file picker.

Once the text changes, a * should be added to the end of the filename—but it should only be added once. The textChanged field keeps track if the text has changed.

The loading field keeps it from adding that * immediately after it’s loaded (because the text changes, which triggers the event). See if you can figure out how it works.

The Open button displays a dialog if there are
unsaved changes. If the user confirms, then it calls
OpenFile() to display a picker and open the file.

The Save
button just
calls the
SaveFile()
method.

When you
have an
await
in your
method,

you must
have an
async

in the
method’s

declaration.

Rebuilding a
program you've

already built
using a new

technology is a
great way to get

that new material
into your brain.

you are here 4   545

async await and data contract serialization
private async void OpenFile() {
 FileOpenPicker picker = new FileOpenPicker {
 ViewMode = PickerViewMode.List,
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
 };
 picker.FileTypeFilter.Add(".txt");
 picker.FileTypeFilter.Add(".xml");
 picker.FileTypeFilter.Add(".xaml");
 IStorageFile file = await picker.PickSingleFileAsync();
 if (file != null) {
 string fileContents = await FileIO.ReadTextAsync(file);
 loading = true;
 text.Text = fileContents;
 textChanged = false;
 filename.Text = file.Name;
 saveFile = file;
 }
}
 private async void SaveFile() {
 if (saveFile == null) {
 FileSavePicker picker = new FileSavePicker {
 DefaultFileExtension = ".txt",
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
 };
 picker.FileTypeChoices.Add("Text File", new List<string>() { ".txt" });
 picker.FileTypeChoices.Add("XML File", new List<string>() { ".xml", ".xaml" });
 saveFile = await picker.PickSaveFileAsync();
 if (saveFile == null) return;
 }
 await FileIO.WriteTextAsync(saveFile, text.Text);
 await new MessageDialog("Wrote " + saveFile.Name).ShowAsync();
 textChanged = false;
 filename.Text = saveFile.Name;
}

The OpenFile() and SaveFile() methods are
really similar to the code on the previous
page. They display the picker, then use the
FileIO methods to load or save the file.

You can bring up the app bar
by touching or clicking, then
dragging up from the bottom of
the page. You can also use the
Windows-Z keyboard shortcut.

I can definitely
see how I can use an app

bar, message dialogs, and
asynchronous programming
to build my Excuse Manager
app! But I’m still missing
my BinaryFormatter. How
do I serialize my Excuse

objects?

You can hold the
Windows key and
press Z to show
the app bar for
the current app.

You’re all done. Fire it up!

546   Chapter 11

data beyond files

There is! It’s called data contract serialization.

Writing text files is great, because you can just open up a file in
Notepad and see what’s in it. But text files are also pretty lousy,
because you need to write a lot of code to parse your data.

Binary serialization with a BinaryFormatter is great because it’s
so convenient. But it’s pretty lousy in its own way! Binary files are
fragile. Make one tiny change to your class, and suddenly you
can’t load any of your files anymore! And you’ve already seen the
mess that appears when you open up binary files in Notepad. Good
luck getting a human to read or edit a binary file.

Data contract serialization is the best of both worlds. It’s true
serialization, so entire object graphs are automatically written out
for you. But it generates XML files, which turn out to be really easy
to read and can even be edited by hand (especially if you’re used to
working with XAML!).

Wouldn’t it be dreamy if there
were a way to save my objects
that had all of the convenience
of binary serialization, but with
files that humans can still read

and edit?

When you use binary serialization,
you’re writing “pure”(-ish) data: actual
bytes in memory get glued together
and written to a file, along with just
enough information for the binary
formatter to figure out which bytes
go with which class members in the
object graph. One little change to just
one class, and suddenly none of the
bytes line up anymore, and when you
try to deserialize you’ll get an error.

you are here 4   547

async await and data contract serialization

A data contract is an abstract def init ion
of your object’s data
A data contract is a formal agreement that’s attached to your class. The contract
uses the [DataContract] and [DataMember] attributes to define exactly what
data gets read or written during serialization.

If you want to serialize instances of a class, you can set up a data contract for it
by adding the [DataContract] attribute to the top, and [DataMember]
attributes to each class member to be serialized. Here’s a simple Guy class with a data contract:

using System.Runtime.Serialization;

[DataContract]
class Guy {

 [DataMember]
 public string Name { get; private set; }

 [DataMember]
 public int Age { get; private set; }

 [DataMember]
 public decimal Cash { get; private set; }

 public Guy(string name, int age, decimal cash) {
 Name = name; Age = age; Cash = cash;
 }
}

<Guy xmlns="http://schemas.datacontract.org/2004/07/XamlGuySerializer"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Age>37</Age>
 <Cash>164.38</Cash>
 <Name>Joe</Name>
</Guy>

Data contract serializat ion uses XML f iles
Luckily, you already know a lot about XML files, because XAML is an XML-based language. All XML files
use opening tags, closing tags, and attributes to define data. Each member gets a name, but the contract itself
also needs a name—or, more specifically, a unique namespace—because the serializer needs to be able
to distinguish the data files for a contract from other XML files. Here’s the XML file that’s created when the
Guy class on this page is serialized. As usual, we added spaces and line breaks to make it easier to read:

The [DataContract] attribute establishes the data contract for this class.

Every class member that needs to be
saved or retrieved during serialization
is added to the contract with a
[DataMember] attribute.

We named our project
XamlGuySerializer, and
that was turned into the
namespace for the contract.

Each of the data members gets its
own tag. This is way more readable
than binary files!

The [DataContract] and [DataMember] attributes
are in the System.Runtime.Serialization namespace.

In the XML snippet for <Guy> below,
xmlns is called an attribute, not a

property. In your XAML files you’ll find
tags with attributes like Fill, Text, and
x:Name. The designer in the IDE calls
them properties because they’re used

to define properties on objects.

548   Chapter 11

more async methods

Windows Store apps protect your filesystemFlip back to the first code sample in Chapter 9. We warned you that it's probably not a good idea to write to the C:\ folder, so hopefully you picked a safe folder to write to. Hopefully. It's really easy for Windows Desktop programs to damage important system files. That's one reason that every Windows Store app gets its own folder to store its files where it's safe to read and write files.

Each IStorageFolder object represents a folder in the filesystem, with methods to work with its files, including:

≥≥ CreateFileAsync() is an async method to create a file in the folder.

≥≥ CreateFolderAsync() is an async method to create a subfolder.

≥≥ GetFileAsync() gets a file in the folder and returns an IStorageFile object.

≥≥ GetFolderAsync() gets a subfolder and returns another IStorageFolder object.

≥≥ GetItemAsync() gets either a file or a folder, and returns an IStorageItem object.

≥≥ GetFilesAsync(), GetFoldersAsync(), and GetItemsAsync() return collections of items—
these methods return collections of type IReadOnlyList, a very simple kind of collection that lets you
get items by index but doesn’t have methods to add, sort, or compare.

Use async methods to f ind and open f i les
Data contract serialization works a lot like binary serialization. You need to open a file, create a stream
for reading or writing, and then call methods to read or write objects. But there are differences, too:
Windows Store apps have async methods for opening files. They’re based around the IStorageFile
and IStorageFolder interfaces. You can use the IDE to explore these interfaces and discover their
members.

Go to any line in any method and type Windows.Storage.IStorageFolder, then right-click
on IStorageFolder and choose Go To Definition (F12) to see the definition in the IDE:

When you use Go To Definition to find
information about a class or interface
that's not in your project, the IDE
will open a tab on the right like this.

Here's the declaration
for IStorageFolder.

you are here 4   549

async await and data contract serialization

IStorageFolder

CreateFileAsync()
CreateFolderAsync()
GetFileAsync()
GetFolderAsync()
GetItemAsync()
GetFilesAsync()
GetFoldersAsync()
GetItemsAsync()

IStorageFile
ContentType
FileType

CopyAndReplaceAsync()
CopyAsync()
MoveAndReplaceAsync()
MoveAsync()
OpenAsync()
OpenTransactedWrite-
Async()

IStorageItem
Attributes
DateCreated
Name
Path

DeleteAsync()
GetBasicProperties-
Async()
IsOfType()
RenameAsync()

The Windows.Storage namespace has two additional interfaces to help
you manage items in your filesystem.The IStorageFile interface and the
objects that implement it (of course!) move, copy, and open files. And if you look
closely at the declaration for IStorageFolder, you’ll see that it extends the
IStorageItem interface. IStorageFile extends the same interface, which
makes sense if you think about the operations that apply to both files and folders:
deleting, renaming, and getting the name, creation date, path, and attributes.

Every Windows Store app has a local folder where it’s safe to read and write files,
which you can access using an IStorageFolder called ApplicationData.
Current.LocalFolder. Then you can use an IStorageFile object to
open files for reading and writing by calling its OpenAsync() method
(which returns an IRandomAccessStream).

Once you have a data contract and a stream, you just need a new
DataContractSerializer, and you can read and write objects to XML files:

using Windows.Storage;
using Windows.Storage.Streams;
using System.Runtime.Serialization;

Guy joe = new Guy("Joe", 37, 164.38M);

DataContractSerializer serializer =
 new DataContractSerializer(typeof(Guy));

IStorageFolder localFolder =
 ApplicationData.Current.LocalFolder;

IStorageFile guyFile = await localFolder.CreateFileAsync("Joe.xml",
 CreationCollisionOption.ReplaceExisting);

using (IRandomAccessStream stream =
 await guyFile.OpenAsync(FileAccessMode.ReadWrite))

using (Stream outputStream = stream.AsStreamForWrite()) {

 serializer.WriteObject(outputStream, joe);

}
Guy copyOfJoe;

using (IRandomAccessStream stream =
 await guyFile.OpenAsync(FileAccessMode.ReadWrite))

using (Stream inputStream = stream.AsStreamForRead()) {

 copyOfJoe = serializer.ReadObject(inputStream) as Guy;

}

The data contract serializer needs to know what type it's serializing. Here's how you tell it to serialize Guy objects and their graphs.

You'll need
these using
statements.

You can pass the
CreateFileAsync() a
filename and a parameter
to replace, open, fail, or
generate a unique name if
the file already exists.

Now that you
have input and
output streams,
you can serialize
your objects.

Here's a Guy with a data contract from the previous page.

550   Chapter 11

how your apps protect your files

KnownFolders helps you access high-prof ile folders
The Windows.Storage namespace includes the KnownFolders class, which has properties
to help you access the documents library, music library, or other standard folder for a typical
Windows account. KnownFolders.PicturesLibrary is a StorageFolder object (which
implements IStorageFolder) that you can use to access the current user’s pictures library. It
also has properties for the other known folders, including the music and video libraries, removable
and media server devices, camera roll, and home group.

But there’s a catch. Windows Store apps are free to read and write to the local storage folder. But
if you want your app to write to another folder, you’ll need to give it special permission by adding
capabilities to the package manifest. When you explicitly allow your app to read and write to
the local folder, anyone who installs it from the Windows Store can see that it has this capability.

To add the Pictures Library capability to your app, double-click on Package.appxmanifest in
the Solution Explorer, click on the Capabilities tab, and check Pictures Library.

KnownFolders

CameraRoll
DocumentsLibrary
HomeGroup
MediaServerDevices
MusicLibrary
PicturesLibrary
Playlists
RemovableDevices
SavedPictures
VideoLibrary

Check Pictures
Library to give
your app access
to read and
write files in the
pictures library
folder.

	 Your apps should always use a FolderPicker to access
folders unless you have a really good reason not to.

Take a close look at the Package.appxmanifest screenshot. Do
you notice anything missing? What about a Documents Library
capability? That's right—you can't write directly to the Documents

library unless you go through a FolderPicker. If your Windows Store app needs
to write files, there's a good chance that some of your users will want to write
to their OneDrive folders, while others may want to write to the local hard drive.
So do your users a favor... use a FolderPicker and give them a choice!

Technically, you can
manually edit the
App Manifest and
add the Documents
Library capability.
If you do that,
don't bother trying
to get your app
certified for the
Windows Store—it'll
almost certainly fail
certification.

We're going to be writing XML files to the Pictures
Library, and that's a little weird. Normally you'd write
files like this to the Documents folder or local storage.
However, we want to show you how to write files to a

known folder using capabilities in the App Mainfest, so
we'll build a toy program to let you experiment with this.

you are here 4   551

async await and data contract serialization

The whole object graph is serialized to XML
When the data contract serializer writes an object, it goes through the entire object graph. Every instance of
a class with a data contract is written to the XML output. You can customize the XML output by choosing a
namespace and naming members using parameters of the DataContract and DataMember attributes.

[DataContract(Namespace = "http://www.headfirstlabs.com/Chapter11")]
class Guy {
 public Guy(string name, int age, decimal cash){
 Name = name;
 Age = age;
 Cash = cash;
 TrumpCard = Card.RandomCard();
 }

 [DataMember]
 public string Name { get; private set; }

 [DataMember]
 public int Age { get; private set; }

 [DataMember]
 public decimal Cash { get; private set; }

 [DataMember(Name = "MyCard")]
 public Card TrumpCard { get; set; }

 public override string ToString() {
 return String.Format("My name is {0}, I'm {1}, I have {2} bucks, "
 + "and my trump card is {3}", Name, Age, Cash, TrumpCard);
 }
} [DataContract(Namespace = "http://www.headfirstlabs.com/Chapter11")]

class Card {
 [DataMember]
 public Suits Suit { get; set; }

 [DataMember]
 public Values Value { get; set; }

 public Card(Suits suit, Values value) {
 this.Suit = suit;
 this.Value = value;
 }

 private static Random r = new Random();

 public static Card RandomCard() {
 return new Card((Suits)r.Next(4), (Values)r.Next(1, 14));
 }

 public string Name {
 get { return Value.ToString() + " of " + Suit.ToString(); }
 }

 public override string ToString() { return Name; }
}

Here's the XML for the serialized Guy:
<Guy
 xmlns="http://www.headfirstlabs.com/Chapter11"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Age>37</Age>
 <MyCard>
 <Suit>Hearts</Suit>
 <Value>Three</Value>
 </MyCard>
 <Cash>176.22</Cash>
 <Name>Joe</Name>
</Guy>

The Guy contains a
reference to a Card object
with a data contract, so
it gets included in the
XML as a <Card> tag.

Data contract member names don’t
need to match property names. This
Guy class has a property called
TrumpCard, but we used the Name
parameter of the DataMember
attribute to give it the name
MyCard. That’s what shows up in
the serialized XML.

Did you notice that the serialized
XML does not contain the Card type?
That’s because you can add these
data contract attributes to any class
with compatible members—like
the Suit and Value properties of
the Card class, which the serializer
knew how to set using values like
Hearts and Three by matching
with corresponding enum values.

Both contracts
are in the same
namespace, which
becomes the xmlns
property of the
<Guy> tag in the
serialized XML.

552   Chapter 11

those guys get around

Stream some Guy objects to XML f iles
Here’s a project to help you experiment with data contract serialization. Create a new Windows Store app
and replace the MainPage.xaml with a new Basic Bage. Then open Package.appxmanifest, enable access to
the Pictures Library. Add both classes with the data contracts from the previous page (you’ll need using
System.Runtime.Serialization; in each of them). And add the familiar Suits and Values enums,
too (for the Card class). Here’s the page you’ll build next:

Do this!

<Page.Resources>

 <local:GuyManager x:Name="guyManager"/>

 <x:String x:Key="AppName">Guy Serializer</x:String>

</Page.Resources>

Add a static GuyManager resource to the page (and set the app name).
You’ll add the GuyManager class on the next page.

1 You can add an empty
GuyManager class now to get
rid of the IDE error for
this tag—you'll fill it in on
the next page. Don't forget
to rebuild the solution after
you add the empty class
to get rid of any error
messages in the designer.

you are here 4   553

async await and data contract serialization

<Grid Grid.Row="1" DataContext="{StaticResource guyManager}" Margin="120,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <StackPanel>
 <TextBlock Text="{Binding Joe}" Style="{StaticResource CaptionTextBlockStyle}"
 Margin="0,0,0,20"/>
 <Button x:Name="WriteJoe" Content="Write Joe" Click="WriteJoe_Click"/>
 </StackPanel>

 <StackPanel Grid.Column="1">
 <TextBlock Text="{Binding Bob}" Style="{StaticResource CaptionTextBlockStyle}"
 Margin="0,0,0,20"/>
 <Button x:Name="WriteBob" Content="Write Bob" Click="WriteBob_Click"/>
 </StackPanel>

 <StackPanel Grid.Column="2">
 <TextBlock Text="{Binding Ed}" Style="{StaticResource CaptionTextBlockStyle}"
 Margin="0,0,0,20"/>
 <Button x:Name="WriteEd" Content="Write Ed" Click="WriteEd_Click"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.ColumnSpan="2" Margin="0,0,20,0">
 <TextBlock>Last filename written</TextBlock>
 <TextBox Text="{Binding Path, Mode=TwoWay}" Margin="0,0,0,20"/>
 <TextBlock>Date created</TextBlock>
 <TextBlock Text="{Binding LatestGuyFile.DateCreated}" Margin="0,0,0,20"
 Style="{StaticResource SubheaderTextBlockStyle}"/>
 <TextBlock>Content type</TextBlock>
 <TextBlock Text="{Binding LatestGuyFile.ContentType}"
 Style="{StaticResource SubheaderTextBlockStyle}"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.Column="2">
 <Button x:Name="ReadNewGuy" Content="Read a new Guy" Click="ReadNewGuy_Click"
 Margin="0,10,0,0"/>
 <TextBlock Style="{StaticResource CaptionTextBlockStyle}" Margin="0,0,0,20">
 <Run>New Guy: </Run>
 <Run Text="{Binding NewGuy}"/>
 </TextBlock>
 </StackPanel>
</Grid>

Here's the XAML to add to the page. 2

The page has
three columns
and two rows.

Each column in the top
row has a StackPanel
with a TextBlock and
a Button.

ThisTextBlock is bound to the
Ed property in GuyManager.

The first cell in the bottom row spans two columns. It has several controls bound to properties. Why do you think we used a TextBox for the path?

The grid's data context
is the GuyManager
static resource. Hey,
did you notice that we
left out “resourceKey”?
This XAML still works.

We’re not done yet—flip the page!

You can bind a control to a property
on an object. LatestGuyFile

is an IStorageFile, and these
TextBlock controls are bound to its

properties.

The LatestGuyFile property is
an IStorageFile, which has a

DateCreated property. Try adding a
TextBlock that binds to it—instead
of displaying a date, it displays a

type. Can you figure out how to use a
DatePicker and TimePicker to display

the file creation time? (Hint: you'll
need to bind the controls' Date and
Time properties to DateCreated.)

554   Chapter 11

think about separation of concerns

class GuyManager : INotifyPropertyChanged
{
 private IStorageFile latestGuyFile;
 public IStorageFile LatestGuyFile { get { return latestGuyFile; } }

 private Guy joe = new Guy("Joe", 37, 176.22M);
 public Guy Joe
 {
 get { return joe; }
 }

 private Guy bob = new Guy("Bob", 45, 4.68M);
 public Guy Bob
 {
 get { return bob; }
 }

 private Guy ed = new Guy("Ed", 43, 37.51M);
 public Guy Ed
 {
 get { return ed; }
 }

 public Guy NewGuy { get; private set; }

 public string Path { get; set; }

 public async void ReadGuyAsync()
 {
 if (String.IsNullOrEmpty(Path))
 return;
 latestGuyFile = await StorageFile.GetFileFromPathAsync(Path);

 using (IRandomAccessStream stream =
 await latestGuyFile.OpenAsync(FileAccessMode.Read))
 using (Stream inputStream = stream.AsStreamForRead())
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 NewGuy = serializer.ReadObject(inputStream) as Guy;
 }
 OnPropertyChanged("NewGuy");
 OnPropertyChanged("LatestGuyFile");
 }

Add the GuyManager class.3

using System.ComponentModel;

using Windows.Storage;

using Windows.Storage.Streams;

using System.IO;

using System.Runtime.Serialization;

You'll need these using statements
for the GuyManager class.

There are three read-only
Guy properties with private
backing fields. The XAML has a
TextBlock bound to each of them.

A fourth TextBlock is bound to
this Guy property, which is set
by the ReadGuyAsync() method.

The ReadGuyAsync() method uses the path in the
TextBox to set the latestGuyFile IStorgeFile field.
It uses the serializer to read the objects from the
XML file, then fires off PropertyChanged events
for properties that use IStorageFile attributes.

The backing field of this property
is set by the ReadGuyAsync()
method, and TextBlocks are
bound to its DateCreated and
ContentType properties.

You can use the static StorageFile.
GetFileFromPathAsync() method to

create an IStorageFile from a string path.

The String class also has a method called IsNullOrWhiteSpace() that detects
nulls, empty strings, or strings with only whitespace characters. Would it make more

sense to use it in the ReadGuyAsync() method instead of IsNullOrEmpty()?

you are here 4   555

async await and data contract serialization

 public async void WriteGuyAsync(Guy guyToWrite)
 {
 IStorageFolder guysFolder =
 await KnownFolders.PicturesLibrary.CreateFolderAsync("Guys",
 CreationCollisionOption.OpenIfExists);
 latestGuyFile =
 await guysFolder.CreateFileAsync(guyToWrite.Name + ".xml",
 CreationCollisionOption.ReplaceExisting);

 using (IRandomAccessStream stream =
 await latestGuyFile.OpenAsync(FileAccessMode.ReadWrite))
 using (Stream outputStream = stream.AsStreamForWrite())
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 serializer.WriteObject(outputStream, guyToWrite);
 }

 Path = latestGuyFile.Path;

 OnPropertyChanged("Path");
 OnPropertyChanged("LatestGuyFile");
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null)
 {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

private void WriteJoe_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Joe);
}
 private void WriteBob_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Bob);
}
 private void WriteEd_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuyAsync(guyManager.Ed);
}
 private void ReadNewGuy_Click(object sender, RoutedEventArgs e) {
 guyManager.ReadGuyAsync();
}

Here are the event handler methods for MainPage.xaml.cs:4

The WriteGuyAsync() method writes a guy
to an XML file in a Guys folder inside the
documents library. It sets the latestGuyFile
IStorageFile field to point to the file it
wrote, then it fires off property changed
events for the properties that use that field.

This creates a folder called Guys in the
pictures library to hold the XML files. If it already exists, the existing folder is opened.

This code
creates the
XML file, opens
a stream, and
writes the Guy
object graph
to it.

Here's the same code you
used earlier to implement
INotifyPropertyChanged and
fire off PropertyChanged events.

Keep in mind that
this is a toy program

to help you learn
how file access

works in Windows 8.
You should always

use a file picker
unless you have a
very specific need
to add a specific
capability to the

App Manifest.

556   Chapter 11

what is a task in real life?

Q: I didn’t set the app capabilities in
my Simple Text Editor. Why was it able to
write to my documents library?

A: When your app uses the File Picker,
the user can gain access to files and folders
without setting app capabilities in the
package manifest because the File Picker is
built to keep your filesystem safe: the pickers
won’t let you access install folders, local
folders, temporary folders, and a lot of other
unsafe locations in your filesystem that your
app could accidentally damage. You only
need to set capabilities if you need to write
code to access locations directly.

Q: Sometimes I make a change in my
XAML or my code, and the IDE’s designer
gives me a message that I need to rebuild.
What’s going on?

A: The XAML designer in the IDE is really
clever. It’s able to show you an updated page
in real time as you make changes to your
XAML code. You already know that when the
XAML uses static resources, that adds object

references to the Page class. Well, those
objects need to get instantiated in order for
them to be displayed in the designer. If you
make a change to the class that’s being used
for a static resource, the designer doesn’t
get updated until you rebuild that class. That
makes sense—the IDE only rebuilds your
project when you ask it to, and until you do
that it doesn’t actually have the compiled
code in memory that it needs to instantiate
the static resources.

You can use the IDE to see exactly how this
works. Open your Guy Serializer and edit the
Guy.ToString() method to add some
extra words to the return value. Then go back
to the main page designer. It’s still showing the
old output. Now choose Rebuild from the Build
menu. The designer will update itself as soon
as the code finishes rebuilding. Try making
another change, but don’t rebuild yet. Instead,
add another TextBlock that’s bound to a Guy
object. The IDE will use the old version of the
object until you rebuild.

Q: I’m confused about namespaces.
How is the namespace in the program
different from the one in an XML file?

A: Let’s take a step back and understand
why namespaces are necessary. C#, XML
files, the Windows filesystem, and web pages
all use different (but often related) naming
systems to give each class, XML document,
file, or web page its own unique name. So
why is this important? Well, let’s say back
in Chapter 9, you created a class called
KnownFolders to help Brian keep
track of excuse folders. Uh oh! Now you find
out that the .NET Framework already has a
KnownFolders class. No worries. The
.NET KnownFolders class is in the
Windows.Storage namespace, so it can exist
happily alongside your class with the same
name, and that’s called disambiguation.

Data contracts also need to disambiguate.
You’ve seen several different versions of
a Guy class throughout this book. What if
you wanted to have two different contracts
to serialize different versions of Guy? You
can put them in different namespaces to
disambiguate them. And it makes sense that
these namespaces would be separate from
the ones for your classes, because you can’t
really confuse classes and contracts.

Take your Guy Serializer for a test dri ve
Use the Guy Serializer to experiment with data contract serialization:

≥≥ Write each Guy object to the Document Library folder. Click the ReadGuy button to read the guy that was
just written. It uses the path in the TextBox to read the file, so try updating that path to read a different guy.
Try reading a file that doesn’t exist. What happens?

≥≥ Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options for the open
and save file pickers, so you can use it to edit Guy files. Open one of the Guy files, change it, save it, and read
it back into your Guy Serializer. What happens if you add invalid XML? What if you change the card suit or
value so it doesn’t match a valid enum value?

≥≥ Your Simple Text Editor doesn’t have a New button that resets it to untitled. Can you figure out how to add
one? (You can also just restart it.) Try copying a Guy file, then pasting it into a new XML file in the Guys folder.
What happens when you try to read it into the Guy Serializer?

≥≥ Try adding or removing the DataMember names ([DataMember(Name="...")]). What does that do
to the XML? What happens when you update the contract and then try to load a previously saved XML file?
Can you fix the XML file to make it work?

≥≥ Try changing the namespace of the Card data contract. What happens to the XML?

you are here 4   557

async await and data contract serialization

Use a Task to call one async method from another
When you mark a method with the async modifier, that method can also be awaited by other async
methods. But you’ll need to make one change to an asynchronous method in order to do that. Try adding
this method to your GuyManager.cs:

You’ll get an error, with a squiggly underline—and a very useful error message in the Error List window:

In order to make one async method call another, the method being called has to have the return type be the
Task class (or its subclass, Task<T>, if the method needs to return a value). Since ReadGuyAsync() has
a void return value, all you need to do is replace void with Task in the declaration:

 public async Task ReadGuyAsync()
 {
 // Same as on the previous page
 }

Now the method can be called with the await operator, and it will act just like any other asynchronous
method and return control when it hits an asynchronous operation. If you wanted the method to return a
value, you’d make it type Task<T>. For example, if you wanted ReadGuyAsync() to return the Guy
object that it read, you would change its return type to Task<Guy>.

In real life, a task is something that needs
to be done. So is a Task or Task<T> object a way for
a method to somehow return some sort of object

that runs an action?

Yes! The Task class represents an asynchronous operation.

The async modifier, await keyword, and Task class make writing asynchronous code easier,
and the way they do that is by encaspulating all of the work of yielding control into that Task
class. Use “Go to Definition” to have a quick look at the properties and methods of the Task class.
It has methods like Run(), Continue(), and Wait(), and properties like IsCompleted and
IsFaulted. This should give you a hint about what’s going on behind the scenes...and all of the
things it does automatically in order to make it easier to write asynchronous methods.

The recommended naming convention is
to add Async to the end of the method

name for any asynchronous method that
should be called with the await operator.

The IDE is telling you
exactly what you need
to do to fix the problem.

You can read more about asynchronous programming here:
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx

558   Chapter 11

concerned citizens

Build Brian a new Excuse Manager app
You know how to build XAML pages, read and write files, and serialize objects. It’s time to
put all of the pieces together and rebuild Brian his Excuse Manager as a Windows Store app.

Here’s the main page:

Run Windows Store apps in the Visual Studio simulator
We captured the screenshot on this page using the simulator built into the IDE. The simulator is a desktop application that's

installed with Visual Studio that lets you run your apps full-screen in a simulated device. This is really useful if you want to

see how it responds to touch and hardware events, which can be really handy for testing. (This is a simulator, not an emulator.)

To start the simulator, click the drop-down arrow next to and choose when you run

your program. Now your app will launch in a simulator that shows how it will respond to full-screen touch and hardware events.

Learn more about navigating the simulator here: http://msdn.microsoft.com/en-us/library/windows/apps/hh441475.aspx.

you are here 4   559

async await and data contract serialization

Folder butto
n

Excuse
Description
Results
LastUsedDate

MainPage o
bj

ec
t

Separate the page, excuse, and Excuse Manager
Your old Excuse object knew how to read and write itself, and that’s not a bad way to
design your objects. But there are other design choices that you can make. Your Guy
Serializer app had the information about the Guy in one class, and methods to read and
write Guy objects in the GuyManager class. You’ll follow the same pattern for the new
Excuse Manager app.

That’s another example of the separation of concerns design principle that we talked
about back in Chapters 5 and 6. The Guy just needs to expose the data contract; it’s up to
another class like GuyManager to determine what to do with that contract. And neither
of those classes has any code for updating the user interface, because they’re not concerned
with displaying the excuse—that’s the MainPage object’s job.

The Excuse and ExcuseManager classes don’t have any code for updating the user interface...
and you can use data contract serialization or asynchronous programming in a WinForms
program. Could you use them to adapt the Windows Forms version of Brian’s Excuse Manager
to read and write the same excuse files as your new Windows Store Excuse Manager?

Results TextB
ox

Two-way Binding

Excuse objec
t

ExcuseManag
er

 o
bj

ec

t

Results
property

ExcuseManag
er

 o
bj

ec

t

Click event handler calls ChooseNewFolderAsync()

The page controls bind
to the ExcuseManager
object, which reads and
writes Excuse objects.

The controls on the page display data using
data binding. Each control has two-way binding
straight to properties on the current Excuse
object exposed by the ExcuseManager.

The main page doesn't have any code
to choose folders, or read or write
files. All of that code is encapsulated
in the ExcuseManager class.

ExcuseManager
CurrentExcuse
FileDate

NewExcuseAsync()
ChooseNewFolderAsync()
OpenExcuseAsync()
OpenRandomExcuseAsync()
SaveCurrentExcuseAsync()
UpdateFileDateAsync()
SaveCurrentExcuseAsAsync()
WriteExcuseAsync()
ReadExcuseAsync()

560   Chapter 11

symbolic gesture

<StackPanel Grid.Row="1" Margin="120,0,0,0"
 DataContext="{StaticResource ResourceKey=excuseManager}">

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="Excuse" Margin="0,0,0,10"/>

 <TextBox Text="{Binding CurrentExcuse.Description, Mode=TwoWay}" Margin="0,0,20,20"/>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="Results" Margin="0,0,0,10"/>

 <TextBox Text="{Binding CurrentExcuse.Results, Mode=TwoWay}" Margin="0,0,20,20"/>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="Last Used" Margin="0,0,0,10"/>

 <DatePicker Date="{Binding CurrentExcuse.LastUsedDate, Mode=TwoWay}" Margin="0,0,0,20"/>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="File Date" Margin="0,0,0,10"/>

 <TextBlock Text="{Binding FileDate}" Style="{StaticResource CaptionTextBlockStyle}"/>

</StackPanel>

Create the main page for the Excuse Manager
Create a new Windows Store app project and replace MainPage.xaml with a new
Basic Page. You’ll need a static ExcuseManager resource. Add an empty ExcuseManager
class so your code compiles, then add it as a static resource to <Page.Resources>:

Do this!

<Page.Resources>
 <local:ExcuseManager x:Name="excuseManager"/>
 <x:String x:Key="AppName">Excuse Manager</x:String>
</Page.Resources>

Here’s the XAML for the page contents—it’s a simple StackPanel-based layout. It sets the
data context for the StackPanel to the ExcuseManager resource.

The TextBox and DatePicker controls have two-way data binding to properties on the
CurrentExcuse object in the ExcuseManager class. The TextBlock for the file date is
bound to the ExcuseManager's FileDate property.

This is a DatePicker control. You’ll use it with two-way
binding to update the Excuse object’s LastUsedDate property.
You can learn more about date and time pickers here:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/
dn386877.aspx

you are here 4   561

async await and data contract serialization

<Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <AppBarButton Label="New Excuse" Click="NewClick">
 <AppBarButton.Icon>
 <FontIcon Glyph="⛱"/>
 </AppBarButton.Icon>
 </AppBarButton>
 <AppBarButton Icon="Help" Label="Random Excuse"
 Click="RandomClick" x:Name="randomButton" IsEnabled="False"/>
 <AppBarSeparator/>
 <AppBarButton Icon="Folder" Label="Folder" Click="FolderClick"/>
 <AppBarButton Icon="OpenFile" Label="Open" Click="OpenClick"/>
 <AppBarButton Icon="Save" Label="Save" x:Name="saveButton" IsEnabled="False" Click="SaveClick"/>
 <AppBarButton Icon="Save" Label="Save as..." Click="SaveAsClick"/>
 </StackPanel>
 </AppBar>
</Page.BottomAppBar>

Add the app bar to the main page
Add a bottom app bar to the page, just like you did with the Guy Serializer earlier in the chapter.
You’ll need to uncomment OpenFileAppBarButtonStyle, SaveAppBarButtonStyle,
and FolderppBarButtonStyle for the Open, Save, and Folder buttons.

Content="⛱"

So how did that XAML change the picture in the New Excuse button? The icon is just text in the Segoe UI Symbol
font. and the icon is a Unicode character in that font. XAML is based on XML, and you can insert any character into
a string in XML with &#x followed by its Unicode number and a semicolon.

The Random Excuse and Save
buttons are disabled.

You can also copy the glyph out of Character Map and
paste it into the Properties window. But you can also

paste the glyph directly into the XAML editor, just like you
did with the Hebrew letters back in Chapter 9. But if the
Unicode character is isn't in the Segoe UI Symbol font,
then the Glyph might not display the way you expect.

Next comes the ExcuseManager class

You'll need to add a BottomAppBar to the page, just like you did with the Simple Text Editor.

The New Excuse button
uses a Font icon to make
it display an umbrella.

AppBar
separators
draw vertical
bars to
separate
your AppBar
buttons.

562   Chapter 11

no more excuses

You’ll need these using statements:

using System.ComponentModel;
using System.IO;
using System.Runtime.Serialization;
using Windows.Storage;
using Windows.Storage.Streams;
using Windows.Storage.FileProperties;
using Windows.Storage.Pickers;
using Windows.UI.Popups;

Build the ExcuseManager class
Here’s most of the code for the ExcuseManager class—you’ll finish the rest of the class and
build the Excuse class as an exercise. It has two public properties for binding: CurrentExcuse
is the currently loaded Excuse object, and FileDate is a string that either shows the file date
or the string "(no file loaded)" (if the current excuse hasn’t been saved or loaded). Since
it’s firing a PropertyChanged event, make sure you implement INotifyPropertyChanged.

The ChooseNewFolderAsync() method shows a folder picker, and returns true only if
the user chose a folder. Since it’s an async method that returns a bool value, its return type is
Task<bool>.

public Excuse CurrentExcuse { get; set; }

public string FileDate { get; private set; }

private Random random = new Random();

private IStorageFolder excuseFolder = null;

private IStorageFile excuseFile;

public ExcuseManager() {
 NewExcuseAsync();
}

async public void NewExcuseAsync() {
 CurrentExcuse = new Excuse();
 excuseFile = null;
 OnPropertyChanged("CurrentExcuse");
 await UpdateFileDateAsync();
}

public async Task<bool> ChooseNewFolderAsync() {
 FolderPicker folderPicker = new FolderPicker() {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
 };
 folderPicker.FileTypeFilter.Add(".xml");
 IStorageFolder folder = await folderPicker.PickSingleFolderAsync();
 if (folder != null) {
 excuseFolder = folder;
 return true;
 }
 MessageDialog warningDialog = new MessageDialog("No excuse folder chosen");
 await warningDialog.ShowAsync();
 return false;
}

ExcuseManager
CurrentExcuse
FileDate

NewExcuseAsync()
ChooseNewFolderAsync()
OpenExcuseAsync()
OpenRandomExcuseAsync()
SaveCurrentExcuseAsync()
UpdateFileDateAsync()
SaveCurrentExcuseAsAsync()
WriteExcuseAsync()
ReadExcuseAsync()

When the user clicks the
New Excuse button, the
ExcuseManager resets its
current excuse, then calls
UpdateFileDateAsync() to
update the FileDate property.

The excuseFile IStorageFile property
keeps track of the current excuse
file. It's reset to null if the current
excuse hasn't been loaded or saved.

You can call an async method
like NewExcuseAsync() from

a regular, non-asynchronous
method. Just leave off the

await keyword and the method
will block. The IDE will give you
a warning to make sure this is

what you want to do.

The FolderPicker is another picker that lets you choose a folder. It works just like the
other pickers you’ve seen. Have a look at all of the pickers in the Windows.Storage.
Pickers namespace: http://msdn.microsoft.com/library/windows/apps/BR207928

If the user picked a folder, the method returns
true. An async method that returns a Task<bool>
just returns the bool value as usual.

This asynchronous
method returns a bool
value, so its return
type is Task<bool>.

Task is in the System.Threading.Tasks namespace,
but the IDE already added that using statement.

Don't forget to make the
ExcuseManager class implement
INotifyPropertyChanged.

you are here 4   563

async await and data contract serialization

public async void OpenExcuseAsync() {
 FileOpenPicker picker = new FileOpenPicker {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 CommitButtonText = "Open Excuse File"
 };
 picker.FileTypeFilter.Add(".xml");
 excuseFile = await picker.PickSingleFileAsync();
 if (excuseFile != null)
 await ReadExcuseAsync();
}

public async void OpenRandomExcuseAsync() {
 IReadOnlyList<IStorageFile> files = await excuseFolder.GetFilesAsync();
 excuseFile = files[random.Next(0, files.Count())];
 await ReadExcuseAsync();
}

public async Task UpdateFileDateAsync() {
 if (excuseFile != null) {
 BasicProperties basicProperties = await excuseFile.GetBasicPropertiesAsync();
 FileDate = basicProperties.DateModified.ToString();
 }
 else
 FileDate = "(no file loaded)";
 OnPropertyChanged("FileDate");
}

public async void SaveCurrentExcuseAsync() {
 if (CurrentExcuse == null) {
 await new MessageDialog("No excuse loaded").ShowAsync();
 return;
 }
 if (String.IsNullOrEmpty(CurrentExcuse.Description)) {
 await new MessageDialog("Current excuse does not have a description").ShowAsync();
 return;
 }
 if (excuseFile == null)
 excuseFile = await excuseFolder.CreateFileAsync(CurrentExcuse.Description + ".xml",
 CreationCollisionOption.ReplaceExisting);

 await WriteExcuseAsync();
}

public async Task ReadExcuseAsync() {
 // You'll write this method
}

public async Task WriteExcuseAsync() {
 // You'll write this method
}

public async void SaveCurrentExcuseAsAsync() {
 // You'll write this method
}

Uh oh! There's a bug somewhere
around here. Can you spot it?
You’ll fix it in the next chapter.

The OpenExcuseAsync() method is just like the
ReadGuyAsync() method in the Guy Serializer.

The IStorageFile.GetBasicPropertiesAsync()
method returns a BasicProperties object with read-only
DateModified and Size properties that contain the
modified date and size of the file. Its DateModified

property has type DateTimeOffset, and your Excuse class
will use the same type for its LastUsedDate property
because that’s what the DatePicker control binds to.

The SaveCurrentExcuseAsync() method first
checks if the current excuse is null or if
it has an empty description, and displays a
warning message. If there's a valid excuse, it
calls WriteExcuseAsync() to write the excuse.
If there's no excuse file yet, it calls the
folder's CreateFileAsync() method to create it.

UpdateFileDateAsync() sets the FileDate property to the last
modified date of the current excuse file. If there's no excuse
loaded, it sets it to a string. It's an async method that gets
called by another async method, so it returns a Task.

Flip the page to finish porting the app

564   Chapter 11

update that app bar

private void OpenClick(object sender, RoutedEventArgs e) {
 excuseManager.OpenExcuseAsync();
}

private void SaveClick(object sender, RoutedEventArgs e) {
 excuseManager.SaveCurrentExcuseAsync();
}

private void NewClick(object sender, RoutedEventArgs e) {
 excuseManager.NewExcuseAsync();
}

private void SaveAsClick(object sender, RoutedEventArgs e) {
 excuseManager.SaveCurrentExcuseAsAsync();
}

private void RandomClick(object sender, RoutedEventArgs e) {
 excuseManager.OpenRandomExcuseAsync();
}

private async void FolderClick(object sender, RoutedEventArgs e) {
 bool folderChosen = await excuseManager.ChooseNewFolderAsync();
 if (folderChosen) {
 saveButton.IsEnabled = true;
 randomButton.IsEnabled = true;
 }
}

Add the code-behind for the page
This is all the code-behind you need. The event handlers for the buttons just call
methods in the ExcuseManager. This is a benefit of separating the concerns about
managing excuses from the concerns about displaying the user interface. Your user
interface code tends to be very simple, because the other classes do most of the work.

The Random Excuse and Save buttons only work if the user selected a folder, so the
Folder button's event handler method uses the ChooseNewFolderAsync() method's

return value. If it returns true, it enables the Random Excuse and Save buttons.

Still thinking about
that bug on the
previous page? Here's
a hint: what happens
when you try to read
a random excuse
from a folder that
you created back in
Chapter 9? What about
an empty folder?

you are here 4   565

async await and data contract serialization

INotifyPropertyChanged

PropertyChanged event

Build the Excuse class.
It needs a data contract with the http://www.headfirstlabs.com/
ExcuseManager namespace and three data members. The first two data members
are the Description and Results automatic string properties. The third is a
DateTimeOffset automatic property called LastUsedDate. Take another look
at the XAML—it uses three controls that bind direcly to these properties like this:
{Binding CurrentExcuse.Description, Mode=TwoWay}

When you build your Excuse class, make sure you add a constructor that uses
DateTimeOffset.Now to set the LastUsedDate property to the current date.

1

Implement the ExcuseManager.WriteExcuseAsync() method.
This method opens a stream and serializes the current excuse to the excuse
file managed by the IStorageFile currently stored in the excuseFile
field. Then it displays a message that the excuse was written correctly, and calls
UpdateFileDateAsync() to update the FileDate property.

2

Implement the ExcuseManager.ReadExcuseAsync() method.
This method opens a stream and deserializes a new Excuse object from the
excuse file managed by excuseFile. It fires a PropertyChanged event
to let the page know that the CurrentExcuse was updated, then calls the
UpdateFileDateAsync() method. You’ll also need to implement
INotifyPropertyChanged and add the OnPropertyChanged() method.

3

Finish the Excuse and ExcuseManager
classes for Brian’s new XAML Excuse Manager.

Implement the ExcuseManager.SaveCurrentExcuseAsAsync() method.
This method displays a FileSavePicker to let the user choose an XML file to save. If
the user chooses one, it calls the WriteExcuseAsync() method to save the file.

4

Excuse
Description
Results
LastUsedDate

INotifyPropertyChanged

PropertyChanged event

ExcuseManager
CurrentExcuse
FileDate

NewExcuseAsync()
ChooseNewFolderAsync()
OpenExcuseAsync()
OpenRandomExcuseAsync()
SaveCurrentExcuseAsync()
UpdateFileDateAsync()
SaveCurrentExcuseAsAsync()
WriteExcuseAsync()
ReadExcuseAsync()

Windows Store apps use DateTimeOffsetWhen you built Windows Forms applications, you used DateTime values to store dates and times. Windows Store apps typically use DateTimeOffset values instead, because that’s what controls like DatePicker and properties like BasicProperties.DateModified use. You can learn more about DateTimeOffset here: http://msdn.microsoft.com/en-us/library/system.datetimeoffset.aspx

566   Chapter 11

exercise solution

Here are the methods that you needed to add to the ExcuseManager
class. Make sure the class extends INotifyPropertyChanged.

public async Task ReadExcuseAsync() {
 using (IRandomAccessStream stream =
 await excuseFile.OpenAsync(FileAccessMode.Read))
 using (Stream inputStream = stream.AsStreamForRead()) {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Excuse));
 CurrentExcuse = serializer.ReadObject(inputStream) as Excuse;
 }

 await new MessageDialog("Excuse read from " + excuseFile.Name).ShowAsync();
 OnPropertyChanged("CurrentExcuse");
 await UpdateFileDateAsync();
}

public async Task WriteExcuseAsync() {
 using (IRandomAccessStream stream =
 await excuseFile.OpenAsync(FileAccessMode.ReadWrite))
 using (Stream outputStream = stream.AsStreamForWrite()) {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Excuse));
 serializer.WriteObject(outputStream, CurrentExcuse);
 }
 await new MessageDialog("Excuse written to " + excuseFile.Name).ShowAsync();
 await UpdateFileDateAsync();
}

public async void SaveCurrentExcuseAsAsync() {
 FileSavePicker picker = new FileSavePicker {
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary,
 SuggestedFileName = CurrentExcuse.Description,
 CommitButtonText = "Save Excuse File"
 };
 picker.FileTypeChoices.Add("XML File", new List<string>() { ".xml" });
 IStorageFile newExcuseFile = await picker.PickSaveFileAsync();
 if (newExcuseFile != null) {
 excuseFile = newExcuseFile;
 await WriteExcuseAsync();
 }
}

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged(string propertyName) {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null) {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
}

The methods to read and write Excuse
objects are very similar to the corresponding
methods in the Guy Serializer.

Here's the normal code to fire
the PropertyChanged event.

The SaveCurrentExcuseAsAsync() method shows
a picker and then saves the excuse to the file
it picked. It updates the excuseFile field to
keep track of the new file that was saved (so
the Save button saves to this new file).

you are here 4   567

async await and data contract serialization

using System.ComponentModel;
using System.Runtime.Serialization;

[DataContract(Namespace = "http://www.headfirstlabs.com/ExcuseManager")]
class Excuse : INotifyPropertyChanged
{
 [DataMember]
 public string Description { get; set; }

 [DataMember]
 public string Results { get; set; }

 [DataMember]
 public DateTimeOffset LastUsedDate { get; set; }

 public Excuse()
 {
 LastUsedDate = DateTimeOffset.Now;
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null)
 {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

Here’s the new Excuse class. It’s got a data contract that includes the Description
and Results properties and the lastUsed backing field for the LastUsed property.

This is the same code to fire a PropertyChanged event from earlier in the
chapter. But if you copied and pasted it into your Excuse or ExcuseManager
class and forgot to add : INotifyPropertyChanged to the class declaration,
the controls on the page won’t set up data binding. That means your objects
will fire their PropertyChanged events, but without page controls listening
for those events, the data binding will not work. That can be a frustrating bug!

this is a new chapter   569

Good thing I wrote
code to handle my
HangoverException.

exception handling12

Putting out fires gets old

Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession. But you’re

still getting panicked phone calls in the middle of the night from work because your

program crashes, or doesn’t behave like it’s supposed to. Nothing pulls you

out of the programming groove like having to fix a strange bug...but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.

570   Chapter 12

Brian needs his excuses to be mobile
Brian recently got reassigned to the international division. Now
he flies all over the world. But he still needs to keep track of his
excuses, so he installed the Excuse Manager app on his laptop and
takes it with him everywhere.

Work’s boring today. I want to
go scuba diving. Time to fire up

the Excuse Manager.

Brian’s got the Excuse Manager running on his laptop.

Same ol’ Brian…
always looking for
an excuse to get
out of work.

An unhandled
exception…must
have been a
problem we didn’t
account for.

mo’ programs, mo’ problems

But the program isn’t working!
Brian chose a brand new, empty folder and
clicked the Random Excuse button, and got
a pretty nasty-looking error. What gives?

you are here 4   571

exception handling

public static void BeeProcessor() {

 object myBee = new HoneyBee(36.5, "Zippo");

 float howMuchHoney = (float)myBee;

 HoneyBee anotherBee = new HoneyBee(12.5, "Buzzy");

 double beeName = double.Parse(anotherBee.MyName);

 double totalHoney = 36.5 + 12.5;

 string beesWeCanFeed = "";

 for (int i = 1; i < (int) totalHoney; i++) {

 beesWeCanFeed += i.ToString();

 }

 float f =
 float.Parse(beesWeCanFeed);

 int drones = 4;

 int queens = 0;

 int dronesPerQueen = drones / queens;

 anotherBee = null;

 if (dronesPerQueen < 10) {

 anotherBee.DoMyJob();

 }

}

Here’s another example of some broken code. There are five different exceptions
that this code throws, and the error messages are shown on the right. It’s your
job to match the line of code that has a problem with the exception that line
generates. Read the exception messages for a good hint.

Calling double.Parse(“32”) will parse a
string and return a double value, like
32. The HoneyBee constructor’s second
parameter sets the MyName property.

3

2

1

4

5

572   Chapter 12

HoneyBee anotherBee = new HoneyBee(12.5, "Buzzy");

double beeName = double.Parse(anotherBee.MyName);

object myBee = new HoneyBee(36.5, "Zippo");

float howMuchHoney = (float)myBee;

Your job was to match the line of code that has a
problem with the exception that line generates.

C# lets you cast myBee to a float—but there’s no way

to convert a HoneyBee object to a float value. When your

code runs, the CLR has no idea how to actually do that

cast, so it throws an InvalidCastException.

The Parse() method wants you to give it a string in a certain format. “Buzzy” isn’t a string it knows how to convert to a number. That’s why it throws a FormatException.

breaking the rules

double totalHoney = 36.5 + 12.5;

string beesWeCanFeed = "";

for (int i = 1; i < (int) totalHoney; i++) {

 beesWeCanFeed += i.ToString();

}

float f = float.Parse(beesWeCanFeed);

The for loop will create a string called
beesWeCanFeed that contains a number with over
60 digits in it. There’s no way a float can hold
a number that big, and trying to cram it into a
float will throw an OverflowException.

You’d never actually get all these exceptions
in a row—the program would throw the first
exception and then stop. You’d only get to
the second exception if you fixed the first.

3

1

5

you are here 4   573

exception handling

Setting the anotherBee reference variable equal to
null tells C# that it doesn’t point to anything. So
instead of pointing to an object, it points to nothing.
Throwing a NullReferenceException is C#’s way of
telling you that there’s no object whose DoMyJob()
method can be called.

anotherBee = null;

if (dronesPerQueen < 10) {

 anotherBee.DoMyJob();

}

int drones = 4;

int queens = 0;

int dronesPerQueen = drones / queens;

That DivideByZero error didn’t have to happen. You can see just by looking
at the code that there’s something wrong. The same goes for the other
exceptions. These problems were preventable—and the more you know
about exceptions, the better you’ll be at keeping your code from crashing.

It’s really easy to throw a
DivideByZeroException. Just
divide any number by zero.

Dividing any integer by zero always throws this kind of
exception. Even if you don’t know the value of queens, you
can prevent it just by checking the value to make sure it’s
not zero before you divide it into drones.

4

2

574   Chapter 12

Exception objec
t

When your program throws an except ion,
.NET generates an Except ion object.
You’ve been looking at .NET’s way of telling you something went
wrong in your program: an exception. In .NET, when an exception
occurs, an object is created to represent the problem. It’s called—no
surprise here—Exception.

For example, suppose you have an array with four items. Then, you try
to access the 16th item (index 15, since we’re zero-based here):

ex-cep-tion, noun.
a person or thing that is
excluded from a general
statement or does not
follow a rule. While Jim
usually hates peanut butter, he
made an exception for Ken’s
peanut butter fudge.

int[] anArray = {3, 4, 1, 11};
int aValue = anArray[15];

.NET goes to the trouble of creating an object because it wants to give you all
the information about what caused the exception. You may have code to fix,
or you may just need to make some changes to how you handle a particular
situation in your program.

In this case, an IndexOutOfRangeException indicates you have a bug:
you’re trying to access an index in the array that’s out of range. You’ve also got
information about exactly where in the code the problem occurred, making it
easier to track down (even if you’ve got thousands of lines of code).

The exception object has a
message that tells you what’s
wrong, and a stack trace, or
a list of all of the calls that
were made leading up to the
statement that caused the
exception.

As soon as your program runs into an exception, it generates an object with all the data it has about the problem.

This code is
obviously going to
cause problems.

mmm fudge

When the IDE breaks because of an exception, you can see the
details of the execption by adding $exception to the Watch
window. It always shows up in the Locals window too, which is a
lot like the Watch window but only shows current local variables.

you are here 4   575

exception handling

Q: Why are there so many kinds of exceptions?

A: There are all sorts of ways that you can write code that
C# simply doesn’t know how to deal with. It would be difficult
to troubleshoot your problems if your program simply gave a
generic error message (“A problem occurred at line 37”). It’s a
lot easier to track down and fix problems in your code when you
know specifically what kind of error occurred.

Q: So what is an exception, really?

A: It’s an object that .NET creates when there’s a problem.
You can specifically generate exceptions in your code, too (more
about that in a minute).

Q: Wait, what? It’s an object?

A: Yes, an exception is an object. The properties in the
object tell you information about the exception. For example,
it’s got a Message property that has a useful string like

“Specified cast was invalid” or “Value was either too large or too
small for a Single”, which is what the IDE used to populate the
$exception watch. The reason that .NET generates it is
to give you as much information as it can about exactly what
was going on when it executed the statement that threw the
exception.

Q: OK, I still don’t get it. Sorry. Why are there so many
different kinds of exceptions, again?

A: Because there are so many ways that your code can act
in unexpected ways. There are a lot of situations that will cause
your code to simply crash. It would be really hard to troubleshoot
the problems if you didn’t know why the crash happened.
By throwing different kinds of exceptions under different
circumstances, .NET is giving you a lot of really valuable
information to help you track down and correct the problem.

Q: So exceptions are there to help me, not just cause a
pain in my butt?

A: Yes! Exceptions are all about helping you expect the
unexpected. A lot of people get frustrated when they see code
throw an exception. But if you think about an exception as

.NET’s way of helping you track down and debug your program, it
really helps out when you’re trying to track down what’s causing
the code to bomb out.

Q: So when my code throws an exception, it’s not
necessarily because I did something wrong?

A: Exactly. Sometimes your data’s different than you
expected it to be—like you’ve got a method that’s dealing with
an array that’s a lot longer or shorter than you anticipated when
you first wrote it. And don’t forget that human beings are using
your program, and they almost always act in an unpredictable
way. Exceptions are .NET’s way to help you handle those
unexpected situations so that your code still runs smoothly and
doesn’t simply crash or give a cryptic, useless error message.

Q: Once I knew what I was looking for, it was pretty clear
that the code on the previous page was going to crash. Are
all exceptions easy to spot?

A: No. Unfortunately, there will be times when your code
will have problems, and it’ll be really hard to figure out what’s
causing them just by looking at it. That’s why the IDE has a
debugger—to help you get the bugs out by letting you pause
your program, execute it statement by statement, and inspect
the value of each individual variable and field as you go. That
makes it a lot easier for you to figure out where your code is
acting in a way that’s different from how you expect it to act.
That’s when you have the best chance of finding and fixing the
exceptions—or, even better, preventing them in the first place.

Exceptions are all about
helping you find and fix
situations where your
code behaves in ways
you didn’t expect.

576   Chapter 12

Brian’s code did something unexpected
When Brian wrote his Excuse Manager, he never expected the
user to try to pull a random excuse out of an empty directory.

The problem happened when Brian pointed his Excuse Manager program at an
empty folder on his laptop and clicked the Random Excuse button. Let’s take a
look at it and see if we can figure out what went wrong. Here’s the unhandled
exception window that popped up when he ran the program outside the IDE:

1

OK, that’s a good starting point. It’s telling us that there’s some value that
doesn’t fall inside some range. Clicking the Break button drops the IDE back
into the debugger, with the execution halted on a specific line of code:

2

public async void OpenRandomExcuseAsync()
{
 IReadOnlyList<IStorageFile> files = await excuseFolder.GetFilesAsync();
 excuseFile = files[random.Next(0, files.Count())];
 await ReadExcuseAsync();
}

Let’s use the Watch window to track down the problem. Add a watch for files.Count(). Looks
like that returns 0. Try adding a watch for random.Next(0, files.Count()). That returns
0, too. So add a watch for files[random.Next(0, files.Count())].

3

nobody expects the …

You can call methods and use indexers in the Watch window.
When one of those things throws an exception, you’ll see that
exception in the Watch window too.

Do this!

you are here 4   577

exception handling

That’s right. Exceptions are a really useful tool
that you can use to find places where your code
acts in ways you don’t expect.

A lot of programmers get frustrated the first time they see an
exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code is reacting to a situation
that you didn’t anticipate. And that’s good for you: it lets you know
about a new scenario that your program has to handle, and it gives
you an opportunity to do something about it.

So what happened? It turns out that calling GetFilesAsync() from an IStorageFolder object
returns an IReadOnlyList<IStorageFile> collection. And like other collections that you’ve used,
if you try to access an element that doesn’t exist, it will throw an exception. Try to get the 0th element of
an empty collection and your program will throw a System.ArgumentException, with the message,

“Value does not fall within the expected range.”

Luckily, there’s an easy fix. Just check to see if the collection has items before getting a file:

4

public async void OpenRandomExcuseAsync()
{
 IReadOnlyList<IStorageFile> files = await excuseFolder.GetFilesAsync();
 if (files.Count() == 0) {
 await new MessageDialog("The current excuse folder is empty.").ShowAsync();
 return;
 }
 excuseFile = files[random.Next(0, files.Count())];
 await ReadExcuseAsync();
}

By checking for excuse
files in the folder before
we create the Excuse
object, we can prevent
the exception from being
thrown—and display a
helpful dialog, too.

Oh, I get it. Exceptions aren’t always
bad. Sometimes they identify bugs, but a

lot of the time they’re just telling me that
something happened that was different

from what I expected.

578   Chapter 12

All except ion objects inherit from Except ion
.NET has lots of different exceptions it may need to report. Since many of these
have a lot of similar features, inheritance comes into play. .NET defines a base
class, called Exception, that all specific exceptions types inherit from.

The Exception class has a couple of useful members. The Message property
stores an easy-to-read message about what went wrong. And StackTrace tells
you what code was being executed when the exception occurred, and what led up
to the exception. (There are others, too, but we’ll use those first.)

IndexOutOfRange
Exception

Message
StackTrace
GetBaseException()
ToString()

FormatException

Message
StackTrace

GetBaseException()
ToString()

OverflowException

Message
StackTrace

GetBaseException()
ToString()

Exception

Message
StackTrace

GetBaseException()
ToString()

Exception can be extended like any other class. So you can write your own exception classes, and use
Message and any other Exception properties and methods.

It’s really useful that .NET
gives us so many types of
exceptions, because each
different exception is thrown
in a different situation. You
can learn a lot about the
unexpected action that’s causing
the exception just by looking at
which one was thrown.

ToString() generates a summary
of all of the information in the
exception’s fields and returns it in
a string.

the exception family tree

DivideByZero
Exception

Message
StackTrace
GetBaseException()
ToString()

you are here 4   579

exception handling

You’ve been using the Continue, Break All, and
Stop Debuging buttons throughout the book to
pause, resume, and end your programs.

The debugger helps you track down and
prevent except ions in your code
Before you can add exception handling to your program, you need to know which
statements in your program are throwing the exception. That’s where the debugger
that’s built into the IDE can be really helpful. You’ve been using the debugger
throughout the book, but now let’s take a few minutes and really dig into it. When
you run the debugger, the IDE pops up a toolbar with some really useful buttons.

Click the icon on the Debug toolbar and choose “Add or Remove Buttons” to drill
down into the various debugging commands that are available.

The Debug toolbar only shows up when you’re debugging your program in the IDE. So you’ll have to run a program in order to see this.

Here’s the same value
displayed in hex mode on
the left and decimal mode
on the right.

You’ve used these to step through your programs.
Use Step Over to skip over method calls. Step
Into moves to the first statement of a method
call, and Step Out finishes the current method
and stops after the statement that called it.

Show Next Statement moves the IDE’s editor to
the next statement that will be executed.

We won’t talk much about threads in this book, but if you’re curious see leftover #4 in the appendix.
If you enable the Hex button, you can
use it to turn hexadecimal mode on and
off. When it’s on, then when you watch
or hover over a whole number variable like
int, long, or byte, it’s displayed in hex.

The “Refresh Windows app”
button is used for JavaScript
apps. It’s disabled for C# apps.

580   Chapter 12

Use the IDE’s debugger to ferret out exact ly
what went wrong in the Excuse Manager
Let’s use the debugger to take a closer look at the problem that we ran
into in the Excuse Manager. You’ve probably been using the debugger
a lot over the last few chapters, but we’ll go through it step by step
anyway to make sure we don’t leave out any details.

Add a breakpoint to the Random button’s event handler.
You’ve got a starting point—the exception happens when the Random Excuse button is clicked after
an empty folder is selected. So open up the code-behind for the button and use Debug→Toggle
Breakpoint (F9) to add a breakpoint to the method. Start debugging the app, choose an empty
folder, then click the Random button to make your program break at the breakpoint:

1

Debug this

you don’t know where that watch has been

Step into the OpenRandomExcuseAsync() method.
Use the Step Into command (using either the toolbar or the F11 key) to debug into the method.
Then use Step Over (F10) to step through the method line by line. Since you selected an empty
folder, you should see the program show the MessageDialog() and then exit the method.

Now select a folder with excuses in it, click the Random button again, and step into the
method again. This time, your code will skip past the if block and move on to the next line.

2

Notice how
the debugger
waits for the
MessageDialog
even though it’s
called with the
await keyword.

you are here 4   581

exception handling

Use the Watch window to start reproducing the problem.
You’ve already seen how handy the Watch window is. Now we’ll use it to reproduce the exception.
Stop the program, delete the old breakpoint, and put a breakpoint on the second line of the
OpenRandomExcuseAsync() method. Start the program, choose an empty folder, then click the
Random Excuse button. When the debugger breaks in the method, select files.Count(), right-click
on it, and choose to add a watch to the Watch window:

3

Add another watch to start tracking down the problem.
Debugging is a little like performing a forensic crime scene investigation on your program. You don’t necessarily
know what you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow
clues and track down the culprit. Since files.Count() wasn’t the guilty party, move on to the next
suspect: select random.Next(files.Count()) and add it to your Watch window:

The Watch window has another very useful feature. It lets you change the value of variables and
fields that it’s displaying, and it even lets you execute methods and create new objects. When you
do, it displays its reevaluate icon that you can click to tell it to execute that method again, because
sometimes running the same method twice will generate different results (like with Random).

4

Catch the culprit that threw Brian’s original exception.
Here’s where debugging gets really interesting. Add one more line to the debugger—the statement that
actually threw the exception: files[random.Next(0, files.Count())]. As soon as you type it in,
the Watch window evaluates it…and that throws the exception!

Click the + icon to expand the exception, and you’ll see that its Message property contains “Value does
not fall within the expected range.” Now you know exactly what caused the problem, and why it happened.
GetFilesAsync() returns a IReadOnlyList<IStorageFile> collection that has a count of 0 for
an empty folder. If you try to use its indexer (files[0]), it will throw an ArgumentException.

5

When you get an exception, you can go back and reproduce it in the
debugger and use the Exception object to help you fix your code.

Even when you
already fixed
the problem by
adding code to
check that the
folder has files,
you can still
use the Watch
window to
reproduce the
exception.

You want
to break on
the second
line because
that’s the
line that
accesses the
files object.

582   Chapter 12

Q: When I run my app in the IDE, I
can view the exception details using the
Watch window. But what happens if I run
the program outside of the IDE?

A: There’s an easy way to
answer that question. Comment
out the change you made the
OpenRandomExcuseAsync()
method to fix the problem, and then launch
your app by choosing Start Without
Debugging from the Debug menu. This will
launch your app as if it were clicked from the
Start screen. (You can also just go and click
it from the Start screen.) Choose an empty
folder, click the Random Excuse button,
and...bam! Your app just disappears.

That’s what normally happens when an
app has an unhandled exception. (You’ll
learn more about how to handle exceptions
later in the chapter.) Most users don’t want
to see a cryptic window full of method
names and exception details. But don’t
worry—your exception isn’t lost. Open up
the Windows Control Panel (you can search
for “Control Panel” from the Start screen),
search for “event,” and view the event
logs. Expand Windows Logs and click on
Application. One of the events in
the Application event log will contain your
app’s exception, including a stack trace
that shows you the line that threw the
exception, the line that called it, the one that
called it, etc. (that’s called the call stack).
When you’re debugging, the stack trace
is in the StackTrace property of the
Exception object.

Q: So that’s it? When an exception
happens outside the IDE, my program
just stops and there’s nothing I can do
about it?

A: Well, your program does stop when
there’s an unhandled exception. But that
doesn’t mean that all of your exceptions
have to be unhandled! We’ll talk a lot more
about how you can handle exceptions in your
code. There’s no reason your users ever
have to see an unhandled exception.

Q: How do I know where to put a
breakpoint?

A: That’s a really good question, and
there’s no one right answer. When your code
throws an exception, it’s always a good
idea to start with the statement that threw it.
But usually, the problem actually happened
earlier in the program, and the exception
is just fallout from it. For example, the
statement that throws a divide-by-zero error
could be dividing values that were generated
10 statements earlier but just haven’t been
used yet. So there’s no one good answer to
where you should put a breakpoint, because
every situation is different. But as long as
you’ve got a good idea of how your code
works, you should be able to figure out a
good starting point.

Q: Can I run any method in the Watch
window?

A: Yes. Any statement that’s valid in your
program will work inside the Watch window,
even things that make absolutely no sense
to run inside a Watch window. Here’s an
example. Bring up a program, start it running,
break it, and then add this to the Watch
window: System.Threading.
Thread.Sleep(2000). That
method causes your program to delay for
two seconds.There’s no reason you’d ever
do that in real life, but it’s interesting to see
what happens: the IDE will block and you’ll
get a wait cursor for two seconds while the

method evaluates. Then, since Sleep()
has no return value, the Watch window will
display the value Expression has
been evaluated and has no
value to let you know that it didn’t return
anything. But it did evaluate it. Not only that,
but it displays IntelliSense pop ups to help
you type code into the window. That’s useful
because it shows the available properties
and methods for objects currently in memory.

Q: Wait, so isn’t it possible for me
to run something in the Watch window
that’ll change the way my program runs?

A: Yes! Not permanently, but it can
definitely affect your program’s output. But
even better, just hovering over fields inside
the debugger can cause your program to
change its behavior, because hovering
over a property executes its get accessor.
If you have a property that has a get
accessor that executes a method, then
hovering over that property will cause that
method to execute. And if that method sets
a value in your program, then that value will
stay set if you run the program again. And
that can cause some pretty unpredictable
results inside the debugger. Programmers
have a name for results that seem to be
unpredictable and random: they’re called
heisenbugs (which is a joke that makes
sense to physicists and cats trapped in
boxes).

When you run your
program inside the
IDE, an unhandled
exception will cause
it to break as if
it had run into a
breakpoint.

make a break for it

you are here 4   583

exception handling

Uh oh—the code’s st i l l got problems…
Brian was happily using his Excuse Manager when he accidentally
chose a folder full of XML files that weren’t created by the Excuse
Manager. Let’s see what happens when he tries to load one of them....

You can re-create Brian’s problem. Find one of the XML files that contains
a serialized Excuse object. Open it up in Notepad and and add some
invalid, non-XML text to the very beginning, right before the opening <
character.

1

Pop open the Excuse Manager in the IDE and open up the excuse. It throws an
exception! Look at the message, then click the Break button to start investigating.

2

Open up the Locals window and expand $exception (you can also enter it into
the Watch window). Take a close look at its members to see if you can figure out
what went wrong.

3

No, not again!

Do you see why the program threw the exception?

Does it make sense for the program to crash if
it encounters an invalid Excuse XML file?

Can you think of anything you can do about this?

584   Chapter 12

Wait a second. Of course the
program’s gonna crash. I gave it a bad

file. Users screw up all the time. You can’t
expect me to do anything about that...

right?

Actually, there is something you can do about it.

Yes, it’s true that users screw up all the time. That’s a fact of life.
But that doesn’t mean you can’t do anything about it. There’s
a name for programs that deal with bad data, malformed input,
and other unexpected situations gracefully: they’re called robust
programs. And C# gives you some really powerful exception
handling tools to help you make your programs more robust.
Because while you can’t control what your users do, you can make
sure that your program doesn’t crash when they do it.

ro-bust, adj.
sturdy in construction; able
to withstand or overcome
adverse conditions. After the
Tacoma Narrows Bridge disaster,
the civil engineering team looked
for a more robust design for the
bridge that would replace it.

	 Serializers will throw an exception
if there’s anything at all wrong with
a serialized file.

It’s easy to get the Excuse Manager to
throw a SerializationException—

just feed it any file that’s not a serialized Excuse
object. When you try to deserialize an object from a file,
DataContractSerializer expects the file to contain a
serialized object that matches the contract of the class that
it’s trying to read. If the file contains anything else, almost
anything at all, then the ReadObject() method will throw
a SerializationException.

users are unpredictable

The BinaryFormatter class will
also throw a SeralizationException
if you give it a file that doesn’t
contain exactly the right serialized
object. It’s even more finicky than
DataContractSerializer!

you are here 4   585

exception handling

public async Task ReadExcuseAsync() {
 try
 {
 using (IRandomAccessStream stream =
 await excuseFile.OpenAsync(FileAccessMode.Read))
 using (Stream inputStream = stream.AsStreamForRead()) {
 DataContractSerializer serializer
 = new DataContractSerializer(typeof(Excuse));
 CurrentExcuse = serializer.ReadObject(inputStream) as Excuse;
 }

 await new MessageDialog("Excuse read from "
 + excuseFile.Name).ShowAsync();
 OnPropertyChanged("CurrentExcuse");
 await UpdateFileDateAsync();
 }
 catch (SerializationException)
 {
 new MessageDialog("Unable to read " + excuseFile.Name).ShowAsync();
 }
}

Handle except ions with try and catch
In C#, you can basically say, “Try this code, and if an exception occurs,
catch it with this other bit of code.” The part of the code you’re trying is the
try block, and the part where you deal with exceptions is called the catch
block. In the catch block, you can do things like print a friendly error
message instead of letting your program come to a screeching halt:

This is the simplest kind of exception handling: stop the
program, write out the exception message, and keep
running. Notice how there’s no await keyword when
showing the MessageDialog? That’s because you
can’t await in the body of a catch clause. Luckily,
you can still call the ShowAsync() method, but it will
block until the user dismisses the dialog.

The catch keyword means that the block immediately following it contains an exception handler.

If throwing an exception makes your code
automatically jump to the catch block, what
happens to the objects and data you were
working with before the exception happened?

Put the code that might throw an exception inside the try block. If no exception happens, it’ll get run exactly as usual, and the statements in the catch block will be ignored. But if a statement in the try block throws an exception, the rest of the try block won’t get executed.

This is the
try block. You
start exception
handling with
try. In this
case, we’ll put
the existing
code in it.

When an exception is thrown, the program immediately jumps to the catch statement and starts executing the catch block.

You’ll recognize the code here because we surrounded the entire method with this try block.

586   Chapter 12

1 Let’s say your user is
using your code, and
gives it some input
that it didn’t expect.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know that
the method you’re
calling is risky.

What happens when a method you want to call is r isky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

user
a class

you wrote

a user gives input
to your method

 public void
 Process(Input i) {
 if (i.IsBad()) {
 Explode();
 }
 }

user

your class, now with
exception handling

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

a class
you wrote

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

user

now your program’s more robust!

some input

˙∆å˚ß∂ıÏÔ˚œ∑ˆ
øƒ¥∂∫√˚Ω∆¬˙√˚
ÔÒÎ˙˚∆¬åß¥∂ÒÅ
∆˚åƒ˙ß∂∆˙å∆˚ß
ƒå∂ß˙˚ƒ∆˚å∂ß∂
´˙®£√•√∂¨∂¬∆ƒ
ƒ˜å∂√˚ç¥ƒ´∂ˆ´
∂å˚∆ƒ´∫®˚´¨√∂

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Users are unpredictable. They feed all sorts of weird data into your
program, and click on things in ways you never expected. And
that’s just fine, because you can handle unexpected input with good
exception handling.

“Runtime” just means “while your program is running.” Some people refer to exceptions as “runtime errors.”

a class
you wrote

My Process()
method will blow
up if it gets bad

input data!

I wonder
what happens
if I click

here…

Wow, this program’s really stable!

risky business

If you can come up with a way to do a
less risky thing that avoids throwing the
exception, that’s the best possible outcome!
But some risks just can’t be avoided, and
that’s when you want to do this.

you are here 4   587

exception handling

Q: So when do I use try and catch?

A: Any time you’re writing risky code, or
code that could throw an exception. The trick
is figuring out which code is risky, and which
code is safer.

You’ve already seen that code that uses
input provided by a user can be risky. Users
give you incorrect files, words instead of
numbers, and names instead of dates, and
they pretty much click everywhere you could
possibly imagine. A good program will take
all that input and work in a calm, predictable
way. It might not give the users a result they
can use, but it will let them know that it found
the problem and hopefully suggest a solution.

Q: How can a program suggest a
solution to a problem it doesn’t even
know about in advance?

A: That’s what the catch block is for. A
catch block is only executed when code
in the try block throws an exception. It’s
your chance to make sure the user knows
that something went wrong, and to let the
user know that it’s a situation that might be
corrected.

If the Excuse Manager simply crashes when
there’s bad input, that’s not particularly
useful. But if it tries to read the input and
displays garbage in the form, that’s also not

useful—in fact, some people might say
that it’s worse. But if you have the program
display an error message telling the user that
it couldn’t read the file, then the user has an
idea of what went wrong, and information
that he can use to fix the problem.

Q: So the debugger should really only
be used to troubleshoot exceptions then?

A: No. As you’ve already seen many
times throughout the book, the debugger’s
a really useful tool that you can use
to examine any code you’ve written.
Sometimes it’s useful to step through your
code and check the values of certain fields
and variables—like when you’ve got a really
complex method, and you want to make sure
it’s working properly.

But as you may have guessed from the
name “debugger,” its most common use is
to track down and remove bugs. Sometimes
those bugs are exceptions that get thrown.
But a lot of the time, you’ll be using the
debugger to try to find other kinds of
problems, like code that gives a result that
you don’t expect.

Q: I’m not sure I totally got what you
did with the Watch window.

A: When you’re debugging a program,
you usually want to pay attention to how
a few variables and fields change. That’s
where the Watch window comes in. If you

add watches for a few variables, the Watch
window updates their values every time you
step into, out of, or over code. That lets you
monitor exactly what happens to them after
every statement, which can be really useful
when you’re trying to track down a problem.

The Watch window also lets you type in any
statement you want, and even call methods,
and the IDE will evaluate it and display the
results. If the statement updates any of the
fields and variables in your program, then it
does that, too. That lets you change values
while your program is running, which can
be another really useful tool for reproducing
exceptions and other bugs.

The catch block
is only executed
when code in the
try block throws
an exception. It
gives you a chance
to make sure
your user has the
information to fix
the problem.

Any changes you make in the Watch window just affect the data in memory, and only last as long as the program is running. Restart your program, and values that you changed will be undone.

588   Chapter 12

An important part of exception handling is that when a statement in
your try block throws an exception, the rest of the code in the block
gets short-circuited. The program’s execution immediately jumps to
the first line in the catch block. But don’t take our word for it.... Debug this

Add the try/catch from a few pages ago to your Excuse Manager app’s
ReadExcuseAsync() method. Then place a breakpoint on the opening
bracket { in the try block.

1

go with the flow

Use the debugger to fol low the try/catch f low

Step over the
statements until
your yellow “next
statement” bar
shows that the next
statement to get
executed will read
the Excuse object
from the stream.

Put the breakpoint on
the opening bracket of
the try block.

Start debugging your app and open up a file that’s not a valid excuse file (but still
has the .xml extension). When the debugger breaks on your breakpoint, click the Step
Over button (or F10) five times to get to the statement that calls ReadObject() to
deserialize the Excuse object. Here’s what your debugger screen should look like:

2

SerializationException is in the System.Runtime.
Serialization namespace. Luckily, you already have

using System.Runtime.Serialization
at the top of your ExcuseManager.cs file.

you are here 4   589

exception handling

Keep stepping through the code. As soon as the debugger executes the
ReadObject() statement, the exception is thrown and the program short-circuits
right past the rest of the method and jumps straight to the catch block.

3

	 Keep risky code out of the constructor!

You’ve noticed by now that a constructor doesn’t have a return
value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an object—
which is a problem for exception handling inside the constructor.

When an exception is thrown inside the constructor, then the statement that
tried to instantiate the class won’t end up with an instance of the object.

Here’s a career
tip: a lot of C#
programming job
interviews include
a question about
how you deal with
exceptions in a
constructor.

Start the program again by pressing the Continue button (or F5). It’ll begin
running the program again, starting with whatever’s highlighted by the yellow

“next statement” block—in this case, the catch block. It will just display the dialog,
and then act as if nothing happened. The ugly crash has now been handled.

4

The debugger will
highlight the catch
statement with
its yellow “next
statement” block,
but it shows the
rest of the block
in gray to show you
that it’s about to
execute the whole
thing.

590   Chapter 12

If you have code that ALWAYS
should run, use a f inally block
When your program throws an exception, a couple of things can happen. If the exception isn’t handled, your
program will stop processing and crash. If the exception is handled, your code jumps to the catch block. But
what about the rest of the code in your try block? What if you were closing a stream, or cleaning up important
resources? That code needs to run, even if an exception occurs, or you’re going to make a mess of your
program’s state. That’s where the finally block comes in really handy. It comes after the try and catch
blocks. The finally block always runs, whether or not an exception was thrown. Here’s how you can use
it to make sure the ReadExcuseAsync() method always fires the PropertyChanged event:

clean up after yourself

public async Task ReadExcuseAsync() {
 try
 {
 using (IRandomAccessStream stream =
 await excuseFile.OpenAsync(FileAccessMode.Read))
 using (Stream inputStream = stream.AsStreamForRead()) {
 DataContractSerializer serializer
 = new DataContractSerializer(typeof(Excuse));
 CurrentExcuse = serializer.ReadObject(inputStream) as Excuse;
 }

 await new MessageDialog("Excuse read from to "
 + excuseFile.Name).ShowAsync();
 await UpdateFileDateAsync();
 }
 catch (SerializationException)
 {
 new MessageDialog("Unable to read " + excuseFile.Name).ShowAsync();
 NewExcuseAsync();
 }
 finally
 {
 OnPropertyChanged("CurrentExcuse");
 }
}

Adding NewExcuseAsync() to the catch block
clears the form if the Excuse constructor
throws an exception.

NewExcuseAsync()
resets the Excuse
object, but the
page won’t read
the CurrentExcuse
property if the
PropertyChanged
event doesn’t fire.
The finally block
makes sure that the
PropertyChanged
event gets fired
whether or not
an exception was
thrown.

Always catch specific exceptions like SerializationException. You typically follow a catch statement
with a specific kind of exception telling it what to catch. It’s valid C# code to just have catch (Exception) and you
can even leave the exception type out and just use catch. When you do that, it catches all exceptions, no matter
what type of exception is thrown. But it’s a really bad practice to have a catch-all exception handler like that.
Your code should always catch as specific an exception as possible.

you are here 4   591

exception handling

Now debug this

Update the ReadExcuseAsync() method with the code on the facing page.
Then place a breakpoint on the opening bracket in the try block and debug the
program.

1

Run the program normally, and make sure that the Open button works when you
load a working excuse file. The debugger should break at the breakpoint you set:

2

Step through the rest of the method and make sure it runs the way you expect it to. It
should finish the try block, skip over the catch block (because no exceptions were
thrown), and then execute the finally block.

3

Now try opening a malformed excuse file. The method should start executing the try
block, and then jump to the catch block when it throws the exception. After it finishes
all of the statements in the catch block, it’ll execute the finally block.

4

When
the “next
statement”
bar and the
breakpoint are
on the same
line, the IDE
shows you the
yellow arrow
placed over the
big red dot in
the margin.

Pay special attention to what happens
with the dialogs. Sometimes a dialog
won’t get displayed until after your
method finishes. Welcome to the world
of asynchronous methods!

592   Chapter 12

Q: Back up a second. So every time
my program runs into an exception, it’s
going to stop whatever it’s doing unless I
specifically write code to catch it. How is
that a good thing?

A: One of the best things about
exceptions is that they make it really obvious
when you run into problems. Imagine how
easy it could be in a complex application for
you to lose track of all of the objects your
program was working with. Exceptions call
attention to your problems and help you
root out their causes so that you always
know that your program is doing what it’s
supposed to do.

Any time an exception occurs in your
program, something you expected to happen
didn’t. Maybe an object reference wasn’t
pointing where you thought it was, or it was
possible for a user to supply a value you
hadn’t considered, or a file you thought you’d
be working with suddenly isn’t available. If
something like that happened and you didn’t
know it, it’s likely that the output of your
program would be wrong, and the behavior
from that point on would be pretty different
from what you expected when you wrote the
program.

Now imagine that you had no idea the error
had occurred and your users started calling
you up with incorrect data and telling you
that your program was unstable. That’s why
it’s a good thing that exceptions disrupt
everything your program is doing. They force
you to deal with the problem while it’s still
easy to find and fix.

Q: OK, so then what’s the difference
between a handled exception and an
unhandled exception?

A: Whenever your program throws an
exception, the runtime environment will

search through your code looking for a
catch block that handles it. If you’ve
written one, the catch block will execute
and do whatever you specified for that
particular exception. Since you wrote a
catch block to deal with that error up
front, that exception is considered handled.
If the runtime can’t find a catch block to
match the exception, it stops everything your
program is doing and raises an error. That’s
an unhandled exception.

Q: But isn’t it easier to use a catch-all
exception? Isn’t it safer to write code that
always catches every exception?

A: You should always do your best
to avoid catching Exception, and
instead catch specific exceptions. You know
that old saying about how an ounce of
prevention is better than a pound of cure?
That’s especially true in exception handling.
Depending on catch-all exceptions is usually
just a way to make up for bad programming.
For example, you’re often better off using
File.Exists() to check for a file
before you try to open it than catching a
FileNotFoundException. While
some exceptions are unavoidable, you’ll find
that a surprising number of them never have
to be thrown in the first place.

It’s sometimes really useful to leave
exceptions unhandled. Real-life programs
have complex logic, and it’s often difficult
to recover correctly when something goes
wrong, especially when a problem occurs
very far down in the program. By only
handling specific exceptions, avoiding
catch-all exception handlers, and letting
those exceptions bubble up to get caught on
a top level, you end up with a more robust
app because it will be immediately obvious if
there’s a problem.

Q: What happens when you have a
catch that doesn’t specify a particular
exception?

A: A catch block like that will catch any
kind of exception the try block can throw.

Q: If a catch block with no specified
exception will catch anything, why would
I ever want to specify an exception type?

A: Certain exceptions might require
different actions to keep your program
moving. Maybe an exception caused by
dividing by zero might have a catch block
where it goes back and sets properties to
save some of the data you’ve been working
with, while a null reference exception in the
same block of code might require it to create
new instances of an object.

Q: Does all error handling happen in a
try/catch/finally sequence?

A: No. You can mix it up a bit. You could
have multiple catch blocks if you wanted
to deal with lots of different kinds of errors. You
could also have no catch block at all. It’s
legal to have a try/finally block. That
wouldn’t handle any exceptions, but it would
make sure that the code in the finally
block ran even if you got stopped halfway
through the try block. But we’ll talk a lot more
about that in a minute....

An unhandled exception
means your program
will run unpredictably.
That’s why the program
stops whenever it runs
into one.

exceptions lead to instability

A system that’s designed to immediately report
a failure (rather than slowly becoming unstable)
is sometimes referred to as “fail-fast.”

you are here 4   593

exception handling

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the program. You
can use the same snippet more
than once, and you won’t need
to use all the snippets. Your
goal is to make the program

produce the output.

Note: Each snippet
from the pool can be
used more than once!

using System.IO; public static void Main() {

 Kangaroo joey = new Kangaroo();

 int koala = joey.Wombat(

 joey.Wombat(joey.Wombat(1)));

 try {

 Console.WriteLine((15 / koala)

 + " eggs per pound");

 }

 catch (___________________) {

 Console.WriteLine("G’Day Mate!");

 } }

class Kangaroo {

 ___________ fs;

 int croc;

 int dingo = 0;

 public int Wombat(int wallaby) {

 _______ __;

 try {

 if (________ > 0) {

 __ = _____.OpenWrite("wobbiegong");

 croc = 0;

 } else if (________ < 0) {

 croc = 3;

 } else {

 ___ = _____.OpenRead("wobbiegong");

 croc = 1;

 } }

 catch (IOException) {

 croc = -3;

 }

 catch {

 croc = 4;

 }

 finally {

 if (______ > 2) {

 croc ___ dingo;

 } }

 ________ ______;

 } }

Exception
IOException

NullPointerException
DivideByZeroException

InvalidCastException
OutOfMemoryException

dingo
wallaby

koala
croc

platypus

ef
i

fs
int
j

++
-=
+=
==
!=

FileInfo
File

Directory
Stream

FileStream

Output: 			 G’day Mate!

return

The pool puzzles are getting harder, and the names are getting more obscure to give you
fewer hints. You’ll really need to work through the problem! Remember, the puzzles are
optional, so don’t worry if you need to move on and come back to this one…but if you

really want to get this stuff into your brain, these puzzles will do the trick!

594   Chapter 12

public static void Main() {

 Kangaroo joey = new Kangaroo();

 int koala = joey.Wombat(joey.Wombat(joey.Wombat(1)));

 try {

 Console.WriteLine((15 / koala) + " eggs per pound");

 }

 catch (DivideByZeroException) {
 Console.WriteLine("G’Day Mate!");

 } }

class Kangaroo {

 FileStream fs;
 int croc;

 int dingo = 0;

 public int Wombat(int wallaby) {

 dingo ++;
 try {

 if (wallaby > 0) {
 fs = File.OpenWrite("wobbiegong");
 croc = 0;

 } else if (wallaby < 0) {
 croc = 3;

 } else {

 fs = File.OpenRead("wobbiegong");
 croc = 1;

 } }

 catch (IOException) {

 croc = -3;

 }

 catch {

 croc = 4;

 }

 finally {

 if (dingo > 2) {
 croc -= dingo;
 } }

 return croc;
 } }

Pool Puzzle Solution
one object’s trash is another’s treasure

This catch block only
catches exceptions where
the code divides by zero.

The clue that this is a
FileStream is that it has
an OpenRead() method and
throws an IOException.

You already know that you always have
to close files when you’re done with
them. If you don’t, the file will be
locked open, and if you try to open it
again it’ll throw an IOException.

This code opens a file called “wobbiegong” and keeps it open the first time it’s called. Later on, it opens the file again. But it never closed the file, which causes it to throw an IOException.

joey.Wombat() is called three
times, and the third time it
returns zero. That causes
the WriteLine() to throw a
DivideByZeroException.

Remember, you should avoid catch-
all exceptions in your code. But you
should also avoid other things we do
to make puzzles more interesting, like
using obfuscated variable names.

using System.IO;

you are here 4   595

exception handling

Exception objec
t

Use the Except ion object to get
information about the problem
We’ve been saying all along that .NET generates an Exception object when
an exception is thrown. When you write your catch block, you have access to
that object. Here’s how it works:

string mess
age = ex.Message;

An object is humming along, doing its thing, when it encounters
something unexpected and throws an exception.

1

Uh oh! what
the heck

happened?

Luckily, its try/catch block caught the exception. Inside
the catch block, it gave the exception a name: ex.

 try {

 DoSomethingRisky();

 }

 catch (RiskyThingException ex) {

 string message = ex.Message;

 new MessageDialog("I took too many risks! "

 + message).ShowAsync();

 }

2

The Exception object stays around until the catch block is done.
Then the ex reference disappears, and it’s eventually garbage-collected.

3

When you specify a type of exception in
the catch block, if you provide a variable
name, then your code can use it to access
the Exception object.

An object

An object

EX

If a statement inside the
DoSomethingRisky()

method throws an exception
that isn’t handled in the

method, then it will be caught
by the exception handler

for the code that called it. If
there’s no exception handler
there, the exception will keep
moving up the call stack. If it

gets to the top of the call stack
without being handled, then

you end up with an unhandled
exception that causes your

program to crash.

596   Chapter 12

Use more than one catch block to
handle mult iple types of except ions
You know that you can catch a specific type of exception…but what if you write code where more
than one problem can occur? In these cases, you may want to write code that handles each different
type of exception. That’s where using more than one catch block comes in. Here’s an example
from the code in the beehive nectar processing plant. You can see how it catches several kinds of
exceptions. In some cases it uses properties in the Exception object. It’s pretty common to use the
Message property, which usually contains a description of the exception that was thrown. You can
also call throw; to rethrow the exception, so it can be handled further up the call stack.

public void ProcessNectar(NectarVat vat, Bee worker, HiveLog log) {
 try {
 NectarUnit[] units = worker.EmptyVat(vat);
 for (int count = 0; count < worker.UnitsExpected, count++) {
 stream hiveLogFile = log.OpenLogFile();
 worker.AddLogEntry(hiveLogFile);
 }
 }
 catch (VatEmptyException) {
 vat.Emptied = true;
 }
 catch (HiveLogException ex) {
 throw;
 }
 catch (IOException ex) {
 worker.AlertQueen("An unspecified file error happened: "
 + "Message: " + ex.Message + "\r\n"
 + "Stack trace: " + ex.StackTrace + "\r\n"
 + "Data: " + ex.Data + "\r\n");
 }
 finally {
 vat.Seal();
 worker.FinishedJob();
 }
}

When you have several catch blocks, they’re
examined in order. In this code, first it checks for
a VatEmptyException and then a HiveLogException.
The last catch block catches IOException.
That’s the base class for several different file
exceptions, including FileNotFoundException and
EndOfStreamException.

This statement uses three properties in the Exception object: Message, which has the message you’d normally see in the exception window in the IDE (“Attempted to divide by zero”); StackTrace, which gives you a summary of the call stack; and Data, which sometimes contains pertinent data that’s associated with the exception.

This catch block assigns the exception to the variable ex, which
it can use to get information from the Exception object.

You can also call
the exception’s
ToString()
method to get

a lot of the
pertinent data
into a dialog.

playing catch

If you won’t use the Exception object,
there’s no need to declare it.

It’s fine for two
blocks to use the
same name (“ex”)
for the Exception.

Sometimes you
want to bubble
an exception up
to the method
that called
this one by
using throw; to
rethrow the
exception.

you are here 4   597

exception handling

BeeProfile objec

t

H
ive object

BeeProfile objec
t

One class throws an exception that
a method in another class can catch
When you’re building a class, you don’t always know how it’s going to be used. Sometimes
other people will end up using your objects in a way that causes problems—and sometimes
you do it yourself ! That’s where exceptions come in.

The whole point behind throwing an exception is to see what might go wrong, so you can
put in place some sort of contingency plan. You don’t usually see a method that throws
an exception and then catches it. An exception is usually thrown in one method and then
caught in a totally different one—usually in a different object.

Instead of this…
Without good exception handling, one exception can
halt the entire program. Here’s how it would work in
a program that manages bee profiles for a queen bee.

…we can do this.
The BeeProfile object can intercept the exception
and add a log entry. Then it can turn around and
throw the exception back to the hive, which catches it
and recovers gracefully.

The BeeProfile object tried to read a file but it wasn’t there, so File.OpenRead() threw an exception. The hive didn’t catch it, so it went unhandled.

stream = File.OpenRead(profile);

try {
 stream = File.OpenRead(profile);
} catch (FileNotFoundException ex) {
 WriteLogEntry("unable to find " +
 profile + ": " + ex.Message();
 throw;
}

try {
 prof = new BeeProfile("prof.dat");
} catch (FileNotFoundException) {
 Hive.RecreateBeeProfile("prof.dat");
}

This BeeProfile object’s constructor expects the filename for a profile data file that it’ll open using File.Open(). If there’s a problem opening the file, the program bombs out.

Now when the hive tries to create a
new BeeProfile object by passing it an
invalid filename, it can trust BeeProfile
to log the error and then alert it to
the problem by throwing an exception.
The hive can catch the exception and
take some corrective action—in this case,
recreating the bee profile.

Notice how the BeeProfile object intercepts the exception, logs it using its WriteLogEntry() method, and then throws it again so it’s passed along to the hive.

new
 BeePro

file("prof.dat")

new
 BeePro

file("prof.dat")
H

ive object

...or another method
in the same class.

598   Chapter 12

Bees need an OutOfHoney except ion
Your classes can throw their own exceptions. For example, if you get a null parameter in a method
that was expecting a value, it’s pretty common to throw the same exception that a .NET method
would:

 throw new ArgumentException();

But sometimes you want your program to throw an exception because of a special condition that
could happen when it runs. The bees we created in the hive, for example, consume honey at a
different rate depending on their weight. If there’s no honey left to consume, it makes sense to have
the hive throw an exception. You can create a custom exception to deal with that specific error
condition just by creating your own class that inherits from Exception and then throwing the
exception whenever you encounter a specific error.
class OutOfHoneyException : System.Exception {

 public OutOfHoneyException(string message) : base(message) { }

}

class HoneyDeliverySystem {

 ...

 public void FeedHoneyToEggs() {

 if (honeyLevel == 0) {

 throw new OutOfHoneyException("The hive is out of honey.");

 } else {

 foreach (Egg egg in Eggs) {

 ...

}

public partial class Form1 : Form {

...

 private void consumeHoney_Click(object sender, EventArgs e) {

 HoneyDeliverySystem delivery = new HoneyDeliverySystem();

 try {

 delivery.FeedHoneyToEggs()

 }

 catch (OutOfHoneyException ex){

 MessageBox.Show(ex.Message, "Warning: Resetting Hive");

 Hive.Reset();

 }

 }

}

You can catch a custom exception by
name just like any other exception, and
do whatever you need to do to handle it.

This throws a new
instance of the
exception object.

You need to create a class for your
exception and make sure that it
inherits from System.Exception. Notice
how we’re overloading the constructor
so we can pass an exception message.

In this case, if the hive is out of honey none
of the bees can work, so the simulator can’t
continue. The only way to keep the program
working once the hive runs out of honey is
to reset it, and we can do that by putting
the code to reset it in the catch block.

If there’s honey in the hive, the exception will never get thrown and this code will run.

Exception

Message
StackTrace

GetBaseException()
ToString()

your Exception

Message
StackTrace

GetBaseException()
ToString()

your very own exception

Your methods can throw this exception if they get
invalid or unexpected values in their parameters.

you are here 4   599

exception handling

public static void Main() {
 Console.Write("when it ");
 ExTestDrive.Zero("yes");
 Console.Write(" it ");
 ExTestDrive.Zero("no");
 Console.WriteLine(".");
}

class MyException : Exception { }

output:

when it thaws it throws.

Exception Magnets
Arrange the magnets so the application writes
the output to the console.

class ExTestDrive {
 public static void Zero(string test) {

 Console.Write
("r");

 }
}

try {

Console.Write("t");

Console.Write("o");

DoRisky(test);

}

} catch (MyException) {

Console.Write("a");

} finally {

Console.Write("w");

Console.Write("s");

}

static void DoRisky(String t) {
 Console.Write("h");

if (t == "yes") {

throw new MyException();

}

600   Chapter 12

class ExTestDrive {
 public static void Zero(string test) {

 Console.Write("r");
 }
}

try {

Console.Write("t");

Console.Write("o");

DoRisky(test);

}

Console.Write("a");

} finally {

Console.Write("w");

Console.Write("s");

}

static void DoRisky(String t) {
 Console.Write("h");

if (t == "yes") {

}

public static void Main() {
 Console.Write("when it ");
 ExTestDrive.Zero("yes");
 Console.Write(" it ");
 ExTestDrive.Zero("no");
 Console.WriteLine(".");
}

class MyException : Exception { }

output:

when it thaws it throws.

Exception Magnets Solution
Arrange the magnets so the application writes the
output to the console.

a little review

} catch (MyException) {

throw new MyException();

This line defines a custom
exception called MyException,
which gets caught in a catch
block in the code.

The DoRisky() method only throws an exception if it’s passed the string “yes”.

This line only gets executed
if DoRisky() doesn’t throw
the exception.

The Zero() method either
prints “thaws” or “throws”,
depending on whether it was
passed “yes” or something else
as its test parameter.

The finally block makes sure that
the method always prints “w”.
And the “s” is printed outside the
exception handler, so it always
prints, too.

you are here 4   601

exception handling

¢¢ Any statement can throw an exception if something fails
at runtime.

¢¢ Use a try/catch block to handle exceptions.
Unhandled exceptions will cause your program to stop
execution and pop up an error window.

¢¢ Any exception in the block of code after the try
statement will cause the program’s execution to
immediately jump to the first statement in the block of
code after catch.

¢¢ The Exception object gives you information
about the exception that was caught. If you specify an
Exception variable in your catch statement, that
variable will contain information about any exception
thrown in the try block:

 try {
 // statements that might
 // throw exceptions
 } catch (IOException ex) {
 // if an exception is thrown,
 // ex has information about it
 }

¢¢ There are many different kinds of exceptions that
you can catch. Each has its own object that inherits
from Exception. Really try to avoid just catching
Exception—catch specific exceptions instead.

¢¢ Each try can have more than one catch:

 try { ... }
 catch (NullReferenceException ex) {
 // these statements will run if a
 // NullReferenceException is thrown
 }
 catch (OverflowException ex) { ... }
 catch (FileNotFoundException) { ... }
 catch (ArgumentException) { ... }

¢¢ Your code can throw an exception using throw:

 throw new Exception("Exception message");

¢¢ Your code can also rethrow an exception using
throw; but this only works inside of a catch block.
Rethrowing an exception preserves the call stack.

¢¢ You can create a custom exception by inheriting from
the Exception base class.

 class CustomException : Exception { }

¢¢ Most of the time, you only need to throw exceptions
that are built into .NET, like ArgumentException.
The reason you use different kinds of exceptions is so
that you can give more information to your users.
Popping up a window with the text “An unknown
error has occurred” is not nearly as useful as an error
message that says “The excuse folder is empty. Please
select a different folder if you want to read excuses.”

An easy way to avoid a lot of problems:
using gi ves you try and f inally for free
You already know that using is an easy way to make sure that
your files always get closed. But what you didn’t know is that it’s
really just a C# shortcut for try and finally!

using (YourClass c
 = new YourClass()) {

 // code

}

YourClass c = new YourClass();

try {

 // code

} finally {

 c.Dispose();
}

When you use a using statement, you’re
taking advantage of finally to make sure its Dispose() method is always called.

is like this

Remember, when you declare a reference in
a “using” statement, its Dispose() method is
automatically called at the end of the block.

602   Chapter 12

using (Stream log = new File.OpenWrite("log.txt"))
using (Nectar nectar = new Nectar(16.3, hive, log)) {
 Bee.FlyTo(flower);
 Bee.Harvest(nectar);
 Bee.FlyTo(hive);
}

class Nectar : IDisposable {
 private double amount;
 private BeeHive hive;
 private Stream hiveLog;
 public Nectar(double amount, BeeHive hive, Stream hiveLog) {
 this.amount = amount;
 this.hive = hive;
 this.hiveLog = hiveLog;
 }
 public void Dispose() {
 if (amount > 0) {
 hive.Add(amount);
 hive.WriteLog(hiveLog, amount + " mg nectar added to the hive");
 amount = 0;
 }
 }
}

The IDisposable interface only has one member: the
Dispose() method. Whatever you put in this method will
get executed at the end of the using statement…or
whenever Dispose() is called manually.

Your object must implement IDisposable if you want to
use your object within a using statement.

You’ll see nested using statements like this when you need to declare two IDisposable references in the same block of code.

Except ion avoidance: implement
IDisposable to do your own cleanup
Streams are great, because they already have code written to close
themselves when the object is disposed. But what if you have your own
custom object, and it always needs to do something when it’s disposed
of ? Wouldn’t it be great if you could write your own code that got run if
your object was used in a using statement?

C# lets you do just that with the IDisposable interface. Implement
IDisposable, and write your cleanup code in the Dispose()
method, like this:

This particular code empties any remaining nectar into the hive and logs a message. It’s important, and must happen, so we put it in the Dispose() method.
We can use multiple using statements now. First, let’s use a built-in object,
Stream, which implements IDisposable. Then, we’ll work with our
updated Nectar object, which also implements IDisposable:

The Nectar object uses the log stream,
which will close automatically at the end
of the outer using statement.

Then the Bee object uses the Nectar object, which will add its nectar to the hive automatically at the end of the inner using statement.

an ounce of prevention

IDisposable is a really effective way to avoid common exceptions and problems. Make sure you use using statements any time you’re working with any class that implements it.

You can only use a class in a using
statement if it implements IDisposable;
otherwise, your program won’t compile.

This Dispose()
method was
written so it
could be called
many times,
not just once.

One of the guidelines for implementing IDispose is that your
Dispose() method can be called multiple times without side
effects. Can you think of why that’s an important guideline?

you are here 4   603

exception handling

If try/catch is so great, why
doesn’t the IDE just put it around

everything? Then we wouldn’t
have to write all these try/catch

blocks on our own, right?

You want to know what type of exception is
thrown, so you can handle that exception.
There’s more to exception handling than just printing out a
generic error message. For instance, in the excuse finder, if we
know we’ve got a FileNotFoundException, we might
print an error that suggested where the right files should be
located. If we have an exception related to databases, we
might send an email to the database administrator. All that
depends on you catching specific exception types.

This is why there are so
many classes that inherit
from Exception, and why
you may even want to write
your own classes to inherit
from Exception.

Q: Is it possible to use an object
with a using statement if it doesn’t
implement IDisposable?

A: No, you can only create objects that
implement IDisposable with using
statements, because they’re tailor-made for
each other. Adding a using statement is
just like creating a new instance of a class,
except that it always calls its Dispose()
method at the end of the block. That’s
why the class must implement the
IDisposable interface.

Q: Can you put any statement inside a
using block?

A: Definitely. The whole idea with
using is that it helps you make sure that
every object you create with it is disposed.
But what you do with those objects is
entirely up to you. In fact, you can create an
object with a using statement and never
even use it inside the block. But that would
be pretty useless, so we don’t recommend
doing that.

Q: Can you call Dispose()
outside of a using statement?

A: Yes. You don’t ever actually need
to use a using statement. You can call
Dispose() yourself when you’re done
with the object. Or you can do whatever
cleanup is necessary—like calling a stream’s
Close() method manually. But if you use
a using statement, it’ll make your code
easier to understand and prevent problems that
happen if you don’t dispose of your objects.

Q: You mentioned a “try/
finally” block. Does that mean
it’s OK to have a try and finally
without a catch?

A: Yes! You can definitely have a
try block without a catch, and just a
finally. It looks like this:

try {
 DoSomethingRisky();
 SomethingElseRisky();
}
finally {
 AlwaysExecuteThis();
}
If DoSomethingRisky() throws an
exception, then the finally block will
immediately run.

Q: Does Dispose() only work
with files and streams?

A: No, there are a lot of classes that
implement IDisposable, and when
you’re using one you should always use
a using statement. (You’ll see some of
them in the next few chapters.) And if you
write a class that has to be disposed of
in a certain way, then you can implement
IDisposable, too.

604   Chapter 12

The worst catch block EVER: catch-all plus comments
A catch block will let your program keep running if you want.
An exception gets thrown, you catch the exception, and instead
of shutting down and giving an error message, you keep going.
But sometimes, that’s not such a good thing.

Take a look at this Calculator class, which seems to be acting
funny all the time. What’s going on?

You should handle your exceptions, not bury them

class Calculator {

...

 public void Divide(int dividend, int divisor) {

 try {

 this.quotient = dividend / divisor;

 } catch {

 // Note from Jim: we need to figure out a way to prevent

 // people from entering in zero in a division problem.

 }

 }

}

Just because you can keep your program running doesn’t mean
you’ve handled your exceptions. In the code above, the calculator
won’t crash…at least, not in the Divide() method. But what if
some other code calls that method, and tries to print the results?
If the divisor was zero, then the method probably returned an
incorrect (and unexpected) value.

Instead of just adding a comment and burying the exception,
you need to handle the exception. And if you’re not able to
handle the problem, don’t leave empty or commented catch
blocks! That just makes it harder for someone else to track down
what’s going on. It’s better to let the program continue to throw
exceptions, because then it’s easy to figure out what’s going wrong.

Here’s the problem. If divisor
is zero, this will create a
DivdeByZeroException.

But there’s a catch block. So why are we still getting errors?

the one that got away

The programmer thought that he could bury his exceptions by using an empty catch block, but he just caused a headache for whoever had to track down problems with it later.

Remember, when your code doesn’t
handle an exception, the exception
bubbles up the call stack. Letting
an exception bubble up is a perfectly
valid way of dealing with an exception,
and in some cases it makes more sense
to do that than to use a try/catch
block to handle the exception.

you are here 4   605

exception handling

class Calculator {

...

 public void Divide(int dividend, int divisor) {

 try {

 this.quotient = dividend / divisor;

 } catch (Exception ex) {

 using (StreamWriter sw = new StreamWriter(@"C:\Logs\errors.txt");

 sw.WriteLine(ex.getMessage());

 };

 }

 }

}

I get it. It’s sort of like
using exception handling
to place a marker in the

problem area.

This still needs to be fixed, but
short-term, this makes it clear
where the problem occurred. Still,
wouldn’t it be better to figure
out why your Divide method is
being called with a zero divisor in
the first place?

Handling exceptions doesn’t always mean
the same thing as FIXING exceptions.

It’s never good to have your program bomb out. But it’s
way worse to have no idea why it’s crashing or what it’s
doing to users’ data. That’s why you need to be sure that
you’re always dealing with the errors you can predict and
logging the ones you can’t. But while logs can be useful
for tracking down problems, preventing those problems in
the first place is a better, more permanent solution.

Temporary solut ions are OK (temporarily)
Sometimes you find a problem, and know it’s a problem, but aren’t
sure what to do about it. In these cases, you might want to log the
problem and note what’s going on. That’s not as good as handling
the exception, but it’s better than doing nothing.

Here’s a temporary solution to the calculator:

…but in real life,
“temporary” solutions have a nasty habit of becoming permanent.

Take a minute and think
about this catch block.
What happens if the
StreamWriter can’t write to
the C:\Logs\ folder? You can
nest another try/catch
block inside it to make it
less risky. Can you think of
a better way to do this?

606   Chapter 12

A few simple ideas for except ion handling

Design your code to handle failures GRACEFULLY.

Give your users USEFUL error messages.

Throw built-in .NET exceptions where you can. Only throw
custom exceptions if you need to give custom information.

Think about code in your try block that COULD get
short‑circuited.

Avoid unnecessary file system errors…ALWAYS USE
A USING BLOCK ANY TIME YOU USE A STREAM!

 ALWAYS ALWAYS ALWAYS!

…and most of all…

some quick suggestions

Or anything else
that implements
IDisposable.

you are here 4   607

exception handling

1 2

3 4

5 6

7

8 9

10 11 12

13

14 15

16

17

18

Across
5. The base class that DivideByZeroException and
FormatException inherit from
8. An ____________exception happens when you try to cast a
value to a variable that can’t hold it
10. If the next statement is a method, “Step _____” tells the
debugger to execute all the statements in the method and break
immediately afterward
12. If you ____ your exceptions, it can make them hard to track
down
13. This method is always called at the end of a using block
14. The field in the Exception object that contains a string
with a description
15. One try block can have multiple _______ blocks
17. The ________ block contains any statements that absolutely
must be run after an exception is handled
18. An __________exception means you tried to cram a
number that was too big into a variable that couldn’t hold it

Down
1. The window in the IDE that you can use to check your
variables’ values
2. You’ll get an exception if you try to divide by this
3. Toggle this if you want the debugger to stop execution when it
hits a specific line of code
4. “Step ____” tells the debugger to execute the rest of the
statements in the current method and then break
6. What a reference contains if it doesn’t point to anything
7. You can only declare a variable with a using statement if it
implements this interface
9. When a statement has a problem, it ________ an exception
11. A program that handles errors well
16. If the next statement is a method, “Step _____” tells the
debugger to execute the first statement in that method

Exceptioncross

608   Chapter 12

W
1

Z
2

B
3

A O
4

E

R T U R

E
5

X C E P T I O N
6

A H U I
7

K I
8

N V A L I D C A S T
9

P L I H

O
10

V E R
11

S B
12

U R Y

I O P O

N B D
13

I S P O S E W

T U S S

M
14

E S S A G E C
15

A T C H

T I
16

B

F
17

I N A L L Y

T E

O
18

V E R F L O W

Across

5. The base class that DivideByZeroException and
FormatException inherit from [EXCEPTION]
8. An ____________Exception happens when you try to cast a
value to a variable that can't hold it [INVALIDCAST]
10. If the next statement is a method, "Step _____" tells the
debugger to execute all the statements in the method and break
immediately afterwards [OVER]
12. If you ____ your exceptions, it can make them hard to track
down [BURY]
13. This method is always called at the end of a using block
[DISPOSE]
14. The field in the Exception object that contains a string with a
description [MESSAGE]
15. One try block can have multiple _______ blocks [CATCH]
17. The ________ block contains any statements that absolutely
must be run after an exception is handled [FINALLY]
18. An __________Exception means you tried to cram a
number that was too big into a variable that couldn't hold it
[OVERFLOW]

Down

1. The window in the IDE that you can use to check your
variables' values [WATCH]
2. You'll get an exception if you try to divide by this [ZERO]
3. Toggle this if you want the debugger to stop execution when it
hits a specific line of code [BREAKPOINT]
4. "Step ____" tells the debugger to execute the rest of the
statements in the current method and then break [OUT]
6. What a reference contains if it doesn't point to anything
[NULL]
7. You can only declare a variable with a using statement if it
implements this interface [IDISPOSABLE]
9. When a statement has a problem, it ________ an exception
[THROWS]
11. A program that handles errors well. [ROBUST]
16. If the next statement is a method, "Step _____" tells the
debugger to execute the first statement in that method [INTO]

Exceptioncross Solution

get it? finally? yeah, we’re funny

you are here 4   609

exception handling

Good ol’ Brian.
Never misses a day
of work unless
he’s got a real

problem.

Your exception handling skills did more
than just prevent problems. They ensured
that Brian’s boss has no idea anything
went wrong in the first place! Good exception

handling is invisible
to your users. The
program never crashes,
and if there are
problems, they are
handled gracefully,
without confusing error
messages.

Brian f inally gets
his vacat ion…
Now that Brian’s got a handle on his
exceptions, his job’s going smoothly
and he can take that well‑deserved
(and boss‑approved!) vacation day.

…and things are looking
up back home!

CAPTAIN AMAZING
THE DEATH

OF THE OBJECT
Head First Labs

Chapter
13

Four
bucks

612

Captain Amazing, Objectville’s most amazing
object, pursues his arch-nemesis...

...READY TO WREAK HAVOC
ON THE STREETS OF

OBJECTVILLE!

YOU’RE TOO LATE! AS WE SPEAK
MY CLONE ARMY IS GATHERING IN

THE FACTORY BENEATH US...

I’LL TAKE DOWN EACH
CLONE’S REFERENCES, ONE

BY ONE.

I’VE GOT YOU NOW,
SWINDLER.

613

A FEW MINUTES FROM
NOW, YOU AND MY

ARMY WILL BE GARBAGE
(COLLECTED, THAT IS)

Is this the end of Captain Amazing...?

Captain Amazing backs
Swindler into a corner...

 ...but ends up
trapped himself.

614   Chapter 13

 Below is the code detailing the fight between Captain Amazing and Swindler (not to
mention his clone army). Your job is to draw out what’s going on in memory when
the FinalBattle class is instantiated.

class FinalBattle {
 public CloneFactory Factory = new CloneFactory();
 public List<Clone> Clones = new List<Clone>() { ... };
 public SwindlersEscapePlane escapePlane;

 public FinalBattle() {
 Villain swindler = new Villain(this);
 using (Superhero captainAmazing = new Superhero()) {
 Factory.PeopleInFactory.Add(captainAmazing);
 Factory.PeopleInFactory.Add(swindler);
 captainAmazing.Think("I'll take down each clone's reference,
 one by one");
 captainAmazing.IdentifyTheClones(Clones);
 captainAmazing.RemoveTheClones(Clones);
 swindler.Think("A few minutes from now, you AND my army will be garbage");
 swindler.Think("(collected, that is!)");
 escapePlane = new SwindlersEscapePlane(swindler);
 swindler.TrapCaptainAmazing(Factory);
 new MessageDialog("The Swindler escaped.").ShowAsync();
 }
 }
}
 [Serializable]
class Superhero : IDisposable {
 private List<Clone> clonesToRemove = new List<Clone>();
 public void IdentifyTheClones(List<Clone> clones) {
 foreach (Clone clone in clones)
 clonesToRemove.Add(clone);
 }
 public void RemoveTheClones(List<Clone> clones) {
 foreach (Clone clone in clonesToRemove)
 Clones.Remove(clone);
 ...
 }
 ...
}
 class Villain {
 private FinalBattle finalBattle;
 public Villain(FinalBattle finalBattle) {
 this.finalBattle = finalBattle;
 }
 public void TrapCaptainAmazing(CloneFactory factory) {
 factory.SelfDestruct.Tick += new EventHandler(SelfDestruct_Tick);
 factory.SelfDestruct.Interval = TimeSpan.FromSeconds(60);
 factory.SelfDestruct.Start();
 }
 private void SelfDestruct_Tick(object sender, EventArgs e) {
 finalBattle.Factory = null;
 }
}

3

2

There’s more code here (including the Dispose() method
to implement IDisposable) that we aren’t showing you,
but you don’t need it to answer this.

Draw a picture of what the heap will look like exactly one second after the FinalBattle constructor runs.

Draw what’s going on
right here, when the
SwindlersEscapePlane
object is instantiated.

We’ve gotten you started here, with what’s going on in the factory object.

reenacting the crime

There’s a Clone
class that we’re not
showing you in this
code, too. You don’t
need it to answer the
questions.

You can assume that Clones was
set using a collection initializer.

you are here 4   615

the death of an object

Based on your diagrams, where in the code did Captain Amazing die?

Be sure to annotate that on your diagram, too.

2

3

class SwindlersEscapePlane {
 public Villain PilotsSeat;
 public SwindlersEscapePlane(Villain escapee) {
 PilotsSeat = escapee;
 }
}

class CloneFactory {
 public DispatcherTimer SelfDestruct = new DispatcherTimer();
 public List<object> PeopleInFactory = new List<object>();
 ...
}

1
CloneFacto

ry
We started the first one for you. Make sure you
draw in lines showing the architecture—we drew a
line from the clone factory to the Villain object,
because the factory has references to it (via its
PeopleInFactory field).

facto
ry

We’ve left space, as there is more to be drawn at this stage.

Make sure you add labels to your objects to show the reference variables that are
pointing to them.

Don’t worry about drawing the

Clone and List objects—just add

the objects for the Captain, the

Swindler, the clone factory
, and

Swindler’s escape plane.

Your job is to draw what’s going on in these two bits of memory, too.

Villain obje
ct

 swindler

616   Chapter 13

Draw what’s happening in memory with the FinalBattle
program.

Timer

Villain

3

2

1

When the selfDestruct fires, the factory reference variable is set to null, and eligible for garbage collection. So it’s gone in this drawing.

The captainAmazing reference points to aSuperhero object, and the swindler referencepoints to a Villain object, and the clonefactory’s PeopleInFactory list containsreferences to both of them.

As long as there’s a
reference to swindler
from the escapePlane,
he won’t get
garbage-collected.

Villain obje
ct

Superhero o
b j

ec
t CloneFacto

ry

facto
ry

captain
amazing

swindler

Villain obje
ct

CloneFacto
ryfacto

ry

captain
amazing

swindler

Self
Destruct

swindler

Not long after the
FinalBattle constructor r

an,

the hero was gone.

Here’s the
object you
should have
added to this
diagram.

The escapePlane
reference now
points to a new
instance of the
SwindlersEscapePlane
object, and its
PilotSeat field
points to the
Villain object.

Based on your diagrams, where in the code did Captain Amazing die?

Once finalBattleFactory was set to null, it was ready for garbage
collection. And it took the last reference to the Captain with it!

void SelfDestruct_Tick(object sender, EventArgs e) {
 finalBattle.factory = null;
}

Not long after the factory reference was gone,
it took the CloneFactory object with it—and
that caused the List object referenced by its
PeopleInFactory field to disappear…and that
was the only thing keeping the SuperHero object
alive. Now he’ll be destroyed the next time the
garbage collector runs.

Once the Superhero instance had no
clone factory referencing it, it was
marked for garbage collection too.

hmm…i wonder what those numbers say

SwindlersEscape
Pl

an
eescape

Plane

SwindlersEscape
Pl

an
eescape

Plane

617

Later, at the funeral home

THE CAPTAIN’S COFFIN IS
EMPTY...BUT WHAT’S THIS?

THAT LOOKS LIKE SOME KIND OF
SECRET CODE. DO YOU THINK IT’S

FROM THE CAPTAIN?

6e
61

6d
65

73
70

61
63

65
20

51
7b

0d
0a

5b
53

65
72

69
61

6c
69

7a
61

62
6c

65
5d

70
75

62
6c

69
63

20
63

6c
61

73
73

20
4d

73
67

7b
0d

0a
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
61

3b
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
62

3b
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
63

3b
70

75
62

6c
69

63
20

69
6e

74
20

69
3b

0d
0a

70
75

62
6c

69
63

20
76

6f
69

64
20

53
68

6f
77

28
29

7b
4d

65
73

73
61

67
65

42
6f

78
2e

53
68

6f
77

28
63

2e
53

75
62

73
74

72
69

6e
67

28
31

2c
32

29
2b

69
2b

22
40

22
2b

61
2b

63
2b

22
2e

22
2b

62
29

3b
7d

7d
7d

00
01

00
00

00
ff

ff
ff

ff
01

00
00

00
00

00
00

00
0c

02
00

00
00

38
51

2c
20

56
65

72
73

69
6f

6e
3d

31
2e

30
2e

30
2e

30
2c

20
43

75
6c

74
75

72
65

3d
6e

65
75

74
72

61
6c

2c
20

50
75

62
6c

69
63

4b
65

79
54

6f
6b

65
6e

3d
6e

75
6c

6c
05

01
00

00
00

05
51

2e
4d

73
67

04
00

00
00

01
61

01
62

01
63

01
69

01
01

01
00

08
02

00
00

00
06

03
00

00
00

04
6f

62
6a

65
06

04
00

00
00

03
6e

65
74

06
05

00
00

00
07

63
74

76
69

6c
6c

65
17

00
00

00
0b

618   Chapter 13

	 Some of this code is for learning
purposes only, not for your real programs.

Throughout the book we’ve made reference to
how objects “eventually” get garbage-collected,
but we never really specified exactly when that

happens…just that it happens sometime after the reference to
the object disappears. We’re about to show you some code that
automatically triggers garbage collection using GC.Collect()
and pops up a MessageBox in a finalizer. These things mess
with the “guts” of the CLR. We’re doing this to teach you about
garbage collection. Never do this outside of toy programs.

class Clone {
 string Location;
 int CloneID;

 public Clone (int cloneID, string location){
 this.CloneID = cloneID;
 this.Location = location;
 }

 public void TellLocation(string location, int cloneID){
 Console.WriteLine("My Identification number is {0} and " +
 "you can find me here: {1}.", cloneID, location);
 }

 public void WreakHavoc(){...}

 ~Clone() {
 TellLocation(this.Location, this.CloneID);
 Console.WriteLine ("{0} has been destroyed", CloneID);
 }
}

Sometimes you need to be sure something happens before your object
gets garbage-collected, like releasing unmanaged resources.

A special method in your object called the finalizer allows you to write
code that will always execute when your object is destroyed. Think of
it as your object’s personal finally block: it gets executed last, no
matter what.

Here’s an example of a finalizer in the Clone class:

Your last chance to DO something…
your object’s f inalizer

Here’s the constructor. It looks like
the CloneID and Location fields are
populated any time a Clone gets created.

This is the finalizer. It sends a message to the villain telling the ill-fated clone’s location and ID. But it will only run when the object is garbage-collected.

You write a finalizer method just like
a constructor, but instead of an access
modifier, you put a ~ in front of the
class name. That tells .NET that the
code in the finalizer block should be
run right before it garbage-collects the
object.

Also, finalizers can’t have parameters,
because .NET doesn’t need to tell it
anything other than “you’re done!”

This ~ (or “tilde”) character says
that the code in this block gets run
when the object is garbage-collected.

In general, you’ll never write a finalizer for
an object that only owns managed resources.

Everything you’ve encountered so far in
this book has been managed—meaning

managed by the CLR (including any object
that ends up on the heap). But occasionally
programmers need to access an underlying
Windows resource that isn’t part of the .NET
Framework. If you find code on the Internet
that uses the [DllImport] attribute, you

might be using an unmanaged resource. And
some of those non-.NET resources might
leave your system unstable if they’re not

“cleaned up” somehow (maybe by calling a
method). And that’s what finalizers are for.

you are here 4   619

the death of an object

The finalizer for your object runs after all references
are gone, but before that object gets garbage-collected.
And garbage collection happens after all references
to your object go away. But garbage collection doesn’t
always happen right after the references are gone.

Suppose you have an object with a reference to it.
.NET sends the garbage collector to work, and it checks
out your object. But since there are references to your
object, the garbage collector ignores it and moves along.
Your object keeps living on in memory.

Then, something happens. That last object holding a
reference to your object decides to move on. Now, your
object is sitting in memory, with no references. It can’t
be accessed. It’s basically a dead object.

But here’s the thing. Garbage collection is
something that .NET controls, not your objects. So
if the garbage collector isn’t sent out again for, say, a
few seconds, or maybe even a few minutes, your object
still lives on in memory. It’s unusable, but it hasn’t been
garbage-collected. And any finalizer your object
has does not (yet) get run.

Finally, .NET sends the garbage collector out again.
Your finalizer runs…possibly several minutes after the
last reference to the object was removed or changed.
Now that it’s been finalized, your object is dead, and
the collector tosses it away.

When EXACTLY does a f inalizer run?

 MyObject

poof!

.NET does let you suggest that garbage collection would
be a good idea. Most times, you’ll never use this
method, because garbage collection is tuned to
respond to a lot of conditions in the CLR and
calling it isn’t really a good idea. But just to see how
a finalizer works, you could call for garbage collection
on your own. If that’s what you want to do, just call GC.
Collect().

Be careful, though. That method doesn’t force .NET
to garbage-collect things immediately. It just says, “Do
garbage collection as soon as possible.”

You can SUGGEST to .NET that it’s
t ime to col lect the garbage

public void RemoveTheClones(
 List<Clone> clones) {
 foreach (Clone clone in clonesToRemove)
 Clones.Remove(clone);
 GC.Collect();
}

Here’s your object,
living in memory.This other object

references your object.

Your object is still
on the heap…

…but now there
aren’t any
references to it.

 OtherObje
ct

 OtherObje
ct

Now this other
object change

d its

reference.

Eventually the garbage
collector comes along and
trashes your object.

The Heap

The Heap

The Heap

 OtherObj
ec

t

 MyObject

We can’t emphasize enough just how bad an idea
it is to use GC.Collect() in a program that’s not
just a toy, because it can really confuse the CLR’s
garbage collector. It’s an excellent tool for learning
about garbage collection and finalizers, so we’ll build
a toy to play with it.

620   Chapter 13

using System.Windows.Forms;

class Clone : IDisposable {
 public int Id { get; private set; }

 public Clone(int Id) {
 this.Id = Id;
 }

 public void Dispose() {
 MessageBox.Show("I’ve been disposed!",
 "Clone #" + Id + " says...");
 }

 ~Clone() {
 MessageBox.Show("Aaargh! You got me!",
 "Clone #" + Id + " says...");
 }
}

When an object implements IDisposable, its Dispose() is called at the end of the block after a
using statement. If you don’t use a using statement, then just setting the reference to null won’t
cause Dispose() to be called—you’ll need to call it directly. An object’s finalizer runs at garbage
collection for that particular object. Let’s explore how these two patterns differ. Start up Visual
Studio for Windows Desktop and create a Windows Forms Application project.

Dispose() works with using ;
f inalizers work with garbage col lect ion

Create a Clone class that implements IDisposable and has a finalizer.
The class should have one int automatic property called Id. It has a constructor, a
Dispose() method, and a finalizer:

1

Do this!

Create a Form with three buttons.
Create one instance of Clone inside the Click handler for the first button
with a using statement. Here’s the first part of the code for the button:

2

As soon as the using block is done and the Clone object’s Dispose() method is called, there’s no more reference to it and it gets marked for garbage collection.

private void clone1_Click(object sender, EventArgs e) {
 using (Clone clone1 = new Clone(1)) {
 // Do nothing!
 }
}

Here’s the form you
should create.

The method
creates a
new Clone
and then
immediately
kills it by
taking away
its reference.

collect the garbage

Here’s the finalizer. It will run when the object gets garbage-collected.

Since the class implements
IDisposable, it has to have a
Dispose() method.

Since we declared clone1
with a using statement, its
Dispose() method gets run.

Like you saw earlier, Dispose() works
without a using statement. When
you build a Dispose() method, it
shouldn’t have any side effects that
cause problems if it’s run many times.

Popping up a
MessageBox in a
finalizer can mess
with the “guts” of
the CLR. Don’t
do it outside of a
toy program for
learning about
garbage collection.

Here’s a good example
of how desktop apps

can make good tools for
exploring C# and .NET.
In this project, you’ll
go back to creating a

Windows Forms project
to take advantage of

the way MessageBox
windows block as a tool
to explore how garbage

collection works.

Quick reminder: if you’re using Visual Studio Professional, Premium, or Ultimate, you can create both Windows Store and Windows Desktop apps.

you are here 4   621

the death of an object

private void gc_Click(object sender, EventArgs e) {
 GC.Collect();
}

private void clone2_Click(object sender, EventArgs e) {
 Clone clone2 = new Clone(2);
 clone2 = null;
}

This suggests that
garbage collection run.

Since this doesn’t use a using
statement, Dispose() won’t ever get
run, but the finalizer will.

Run the program and play with Dispose() and finalizers.
Click on the first button and check out the message box: Dispose() runs first.

4

Garbage is collected…eventually. In most cases, you won’t
see the garbage collection message box, because your object
is set to null, but garbage collection hasn’t run yet.

Now click on the second button…nothing happens, right?
That’s because we didn’t use a using statement, so there’s
no Dispose() method. And until the garbage collector
runs, you won’t see the message boxes from the finalizer.

Now click the third button, to suggest garbage collection.
You should see the finalizer from both clone1 and clone2
fire up and display message boxes.

Even though the clone1 object has been set to null and its Dispose method has run, it’s still on the heap waiting for garbage collection.

poof!

The Heap

poof!

When GC.Collect() is run, both objects
quickly run their finalizers and disappear.

Add the other two buttons.
Create another instance of Clone in the second button’s Click handler,
and set it to null manually:

3

For the third button, add a call to GC.Collect() to suggest
that garbage collection occur.

The Heap

The Heap

Now clone2
is on the
heap, too, but
without any
references
to it.

Play around with the program. Click the Clone #1 button, then the Clone #2 button, then the GC
button. Do it a few times. Sometimes Clone #1 is collected first, and sometimes Clone #2 is. And once in
a while, the garbage collector runs even though you didn’t ask it to using GC.Collect().

Remember, normally it’s not
a great idea to do this. But
it’s fine here, because it’s
a good way to learn about
garbage collection.

Don’t forget to add “using
System.Windows.Forms;” to
the top of your Clone class.

Add a watch for one of
the Clone references,

right-click on it, and
choose to

add the name 1# to your
Watch window. This

lets you keep watching
the object even after

the reference goes out
of scope. The Watch
window will let you

know when the object is
collected (you may need
to Click to refresh it).

You can make IDs for many
objects—it’ll add 2#, 3#, etc.

 Clone obje ct

 Clone obje ct

 Clone obje ct

clone
1

clone
2clone

1

622   Chapter 13

Finalizers can’t depend on stabili t y
When you write a finalizer, you can’t depend
on it running at any one time. Even if you call
GC.Collect()—which you should avoid, unless
you have a really good reason to do it—you’re only
suggesting that the garbage collector is run. It’s not a
guarantee that it’ll happen right away. And when it does,
you have no way of knowing what order the objects will
be collected in.

So what does that mean, in practical terms? Well, think
about what happens if you’ve got two objects that have
references to each other. If object #1 is collected first,
then object #2’s reference to it is pointing to an object
that’s no longer there. But if object #2 is collected
first, then object #1’s reference is invalid. So what that
means is that you can’t depend on references in
your object’s finalizer. Which means that it’s a really
bad idea to try to do something inside a finalizer that
depends on references being valid.

Serialization is a really good example of something that
you shouldn’t do inside a finalizer. If your object’s
got a bunch of references to other objects, serialization
depends on all of those objects still being in memory…
and all of the objects they reference, and the ones those
objects reference, and so on. So if you try to serialize
when garbage collection is happening, you could end
up missing vital parts of your program because some
objects might’ve been collected before the finalizer ran.

Luckily, C# gives us a really good solution to this:
IDisposable. Anything that could modify your core
data or that depends on other objects being in memory
needs to happen as part of a Dispose() method, not
a finalizer.

Some people like to think of a finalizers as a kind of
fail-safe for the Dispose() method. And that makes
sense—you saw with your Clone object that just
because you implement IDisposable, that doesn’t
mean the object’s Dispose() method will get called.
But you need to be careful—if your Dispose()
method depends on other objects that are on the heap,
then calling Dispose() from your finalizer can cause
trouble. The best way around this is to make sure you
always use a using statement any time you’re
creating an IDisposable object.

an unstable environment

Object # 1

O
bject # 2

poof!

Let’s say you’ve got
two objects that have

references to each other…

…if they’re both marked for garbage
collection at the same time, then
object #1 could disappear first…

O
bject # 2poof!

…on the other hand, object #2 could
disappear before object #1. You’ve
got no way of knowing the order…

…and that’s why one object’s
finalizer can’t rely on any other
object still being on the heap.

O
bject # 1

you are here 4   623

the death of an object

Once you understand the difference between Dispose() and a
finalizer, it’s pretty easy to write objects that serialize themselves out
automatically when they’re disposed of.

Make an object serialize itse lf in its Dispose()

Make the Clone class (from page 620) serializable.
Just add the Serializeable attribute on top of the class so that we can save the file out.

1

[Serializable]
class Clone : IDisposable

Do this!

Modify Clone’s Dispose() method to Serialize itself out to a file.
Let’s use a BinaryFormatter to write Clone out to a file in Dispose():

2

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

// existing code

public void Dispose() {
 string filename = @"C:\Temp\Clone.dat";
 string dirname = @"C:\Temp\";
 if (File.Exists(filename) == false) {
 Directory.CreateDirectory(dirname);
 }
 BinaryFormatter bf = new BinaryFormatter();
 using (Stream output = File.OpenWrite(filename)) {
 bf.Serialize(output, this);
 }
 MessageBox.Show("Must...serialize...object!",
 "Clone #" + Id + " says...");
}

Run the application.
You’ll see the same behavior you saw on the last few pages…but before the
clone1 object is garbage-collected, it’s serialized to a file. Look inside the file
and you’ll see the binary representation of the object.

3

You’ll need a
few more using
directives to
access the I/O
classes we’ll use.

The Clone will create the C:\Temp directory and serialize itself out to a file called Clone.dat.

We hardcoded the filename—
we included them as string
literals in the code. That’s
fine for a small toy program
like this, but it’s not problem-
free. Can you think of
problems this might cause, and
how you could avoid them?

There’s a lot to think about in this project! What do you think the rest of
the SuperHero object’s code looked like? We showed you part of it on
page 623. Could you write the rest now? More importantly, should you?

It’s clearly possible to have your object serialize itself when it’s disposed.
But is that a good idea? Does it violate separation of concerns? Could it
lead to code that’s hard to maintain? What other problems could occur?

And is this Dispose()
method really side-effect
free? What happens if it’s
called more than once?
These are all things you
need to think about when
you implement IDisposable.

We’ve gone back
to using binary
serialization
and hardcoded
directories as
teaching tools
because they’re
simple—and
because we don’t
want you doing
this in live code!
This is only for
toy programs.

624   Chapter 13

Tonight’s talk: the Dispose() method and a finalizer spar
over who’s more valuable.

Dispose():

To be honest, I’m a little surprised I was invited here.
I thought the programming world had come to a
consensus. I mean, I’m way more valuable than you
are. Really, you’re pretty feeble. You can’t even serialize
yourself out, alter core data, anything. Pretty unstable,
aren’t you?

There’s an interface specifically because I’m so
important. In fact, I’m the only method in it!

OK, you’re right, programmers need to know they’re
going to need me and either call me directly or use a
using statement to call me. But they always know when
I’m gonna run, and they can use me to do whatever they
need to do to clean up after their object. I’m powerful,
reliable, and easy to use. I’m a triple threat. And you?
Nobody knows exactly when you’ll run or what the state
of the application will be when you finally do decide to
show up.

So there’s basically nothing you can do that I can’t do.
You think you’re a big shot because you always run with
GC, but at least I can depend on other objects.

Finalizer:

Excuse me? That’s rich. I’m feeble…OK. Well, I didn’t
want to get into this, but since we’re already stooping
this low…at least I don’t need an interface to get started.
Without IDisposable, you’re just another useless
method.

Right, right…keep telling yourself that. And what
happens when someone forgets to use a using
statement when they instantiate their object? Then
you’re nowhere to be found.

OK, but if you need to do something at the very last
moment when an object is garbage-collected, there’s no
way to do it without me. I can free up network resources
and Windows handles and streams and anything else
that might cause a problem for the rest of the program
if you don’t clean it up. I can make sure that your
objects deal with being trashed more gracefully, and
that’s nothing to sneeze at.

That’s right, pal—I always run; you need someone else
to run you. I don’t need anyone or anything!

what happened to the captain?

Handles are what your programs use when they go around .NET and the CLR and interact directly with Windows. Since .NET doesn’t know about them, it can’t clean them up for you.

625

...BUT HOW DO WE
GET IT BACK?

SOMEHOW CAPTAIN AMAZING
CAPTURED HIS WHOLE ESSENCE IN

THIS NOTE...

Q: Can a finalizer use all of an object’s fields and methods?

A: Sure. While you can’t pass parameters to a finalizer method,
you can use any of the fields in an object, either directly or using
this—but be careful, because if those fields reference other
objects, then the other objects may have already been garbage-
collected. But you can definitely call other methods and properties in
the object being finalized (as long as those methods and properties
don’t depend on other objects).

Q: What happens to exceptions that get thrown in a finalizer?

A: Good question. It’s totally legal to put a try/catch block
inside a finalizer method. Give it a try yourself. Create a divide-by-
zero exception inside a try block in the Clone program we just
wrote. Catch it and throw up a message box that says “I just caught
an exception.” right before the “…I’ve been destroyed.” box we’d
already written. Now run the program and click on the first button
and then the GC button. You’ll see both the exception box and the
destroyed box pop up. (Of course, it’s generally a really bad idea
to pop up message boxes in finalizers for objects that are more than
just toys…and those message boxes may never actually pop up.)

Q: How often does the garbage collector run automatically?

A: There’s no good answer to that one. It doesn’t run on an easily
predictable cycle, and you don’t have any firm control over it. You can
be sure it will be run when your program exits. But if you want to be
sure it’ll run, you have to use GC.Collect() to set it off…and
even then, you’re only suggesting that the CLR should collect now.

Q: How soon after I call GC.Collect() will .NET start
garbage collection?

A: When you run GC.Collect(), you’re telling .NET to
garbage-collect as soon as possible. That’s usually as soon as .NET
finishes whatever it’s doing. That means it’ll happen pretty soon, but
you can’t actually control when.

Q: So if something absolutely must run, I put it in a finalizer?

A: It’s possible that your finalizer won’t run. It’s possible to suppress
finalizers when garbage collection happens. Or the process could end
entirely. If you aren’t freeing unmanaged resources, you’re almost
always better off using IDisposable and using statements.

626

CAPTAIN AMAZING...
HE’S BACK! CAPTAIN AMAZING TOOK SO LONG

TO GET HERE THAT MR FLUFFY
RESCUED HIMSELF FROM THE TREE...

MEOW!

Even later...

What’s wrong? Why
are the Captain’s
powers behaving
differently? Is
this the end?

PUFF...PANT...UGH!
I’M EXHAUSTED.

BUT SOMETHING’S WRONG. HE
DOESN’T SEEM THE SAME...AND

HIS POWERS ARE WEIRD.

Later...

Meanwhile, on the streets of Objectville…

you are here 4   627

the death of an object

One of the types in .NET we haven’t talked about much is the struct.
Struct is short for structure, and structs look a lot like objects. They
have fields and properties, just like objects. And you can even pass them
into a method that takes an object type parameter:

A struct looks like an object…

…but isn’t an object

public struct AlmostSuperhero : IDisposable {
 public int SuperStrength;
 public int SuperSpeed { get; private set; }

 public void RemoveVillain(Villain villain)
 {
 Console.WriteLine("OK, " + villain.Name +
 " surrender and stop all the madness!");
 if (villain.Surrendered)
 villain.GoToJail();
 else
 villain.Kill();
 }

 public void Dispose() { ... }
}

But structs aren’t objects. They can have methods and fields, but they
can’t have finalizers. They also can’t inherit from other classes or structs,
or have classes or structs inherit from them.

 SuperHer
o

struct

Structs can’t
inherit from
other objects.

You can mimic a standalone object with a struct, but structs don’t stand in very well for complex inheritance hierarchies.

The power of objects
lies in their ability
to mimic real-world
behavior, through
inheritance and
polymorphism.

Structs are best
used for storing
data, but the lack
of inheritance and
references can be a
serious limitation.

…and define methods.

Structs can implement
interfaces but can’t
subclass other classes.
And structs are sealed, so
they can’t be subclassed.

A struct can have
properties and fields…

All structs inherit from System.ValueType, which in turn inherits from System.Object. That’s why every struct has a ToString() method—it gets it from Object. But that’s all the inheriting that structs are allowed to do.

That’s why you use classes a lot more than structs. But that doesn’t mean they don’t have their uses!

But the thing that sets structs apart from objects more than almost anything else is that
you copy them by value, not by reference. Flip the page to see what this means....

628   Chapter 13

 List<double>

You already have a sense of how some types are different than others. On one hand
you’ve got value types like int, bool, and decimal. On the other hand, you’ve
got objects like List, Stream, and Exception. And they don’t quite work
exactly the same way, do they?

When you use the equals sign to set one value type variable to another, it makes a
copy of the value, and afterward the two variables aren’t connected to each other.
On the other hand, when you use the equals sign with references, what you’re doing is
pointing both references at the same object.

Variable declaration and assignment works the same with
value types or object types:

≥

Differences creep in when you start to assign values, though. Value types all are
handled with copying. Here’s an example:

≥

temperatures

differentlist

This line sets the
differentList
reference to point
to the same object
as the temperatures
reference.

This line copies the value that’s stored in the fifteenMore variable into the howMany variable and adds 15 to it.Changing the
fifteenMore
variable has
no effect on
howMany, and
vice versa.

When you called differentList.Add(),
it added a new temperature to the
object that both differentList and
temperatures point to.

Values get copied; references get assigned

int and bool are value types, List
and Exception are object types.

Here’s a quick refresher on value types vs. objects.

int howMany = 25;
bool Scary = true;
List<double> temperatures = new List<double>();
Exception ex = new Exception("Does not compute");

These are all
initialized in the
same basic way.

int fifteenMore = howMany;
fifteenMore += 15;
Console.WriteLine("howMany has {0}, fifteenMore has {1}",
 howMany, fifteenMore);

The output here shows that fifteenMore and howMany are not connected:

howMany has 25, fifteenMore has 40

With object assignments, though, you’re assigning references, not actual values:≥

temperatures.Add(56.5D);
temperatures.Add(27.4D);
List<double> differentList = temperatures;
differentList.Add(62.9D); Both references

point at the same
actual object.

So changing the List means both references see the
update…since they both point to a single List object.

Console.WriteLine("temperatures has {0}, differentlist has {1}",
			 temperatures.Count(), differentList.Count());

temperatures has 3, differentList has 3

The output here demonstrates that differentList and
temperatures are actually pointing to the same object:

makin’ copies

Remember when we
said that methods and
statements ALWAYS
live in classes? Well, it
turns out that’s not
100% accurate—they
can also live in structs.

you are here 4   629

the death of an object

Structs are value types; objects are reference types
When you create a struct, you’re creating a value type. What that means
is when you use equals to set one struct variable equal to another, you’re
creating a fresh copy of the struct in the new variable. So even though a
struct looks like an object, it doesn’t act like one. Do this

Create a struct called Dog.
Here’s a simple struct to keep track of a dog. It looks just like an object, but it’s not. Add it
to a new console application.

1

 public struct Dog {
 public string Name;
 public string Breed;

 public Dog(string name, string breed) {
 this.Name = name;
 this.Breed = breed;
 }

 public void Speak() {
 Console.WriteLine("My name is {0} and I’m a {1}.", Name, Breed);
 }
 }

Create a class called Canine.
Make an exact copy of the Dog struct, except replace struct with class and then
replace Dog with Canine. (Don’t forget to rename Dog’s constructor.) Now you’ll have a
Canine class that you can play with, which is almost exactly equivalent to the Dog struct.

2

Add a Main() method that makes some copies of Dogs and Canines.
Here’s the code for the Main() method:

 Canine spot = new Canine("Spot", "pug");
 Canine bob = spot;
 bob.Name = "Spike";
 bob.Breed = "beagle";
 spot.Speak();

 Dog jake = new Dog("Jake", "poodle");
 Dog betty = jake;
 betty.Name = "Betty";
 betty.Breed = "pit bull";
 jake.Speak();

 Console.ReadKey();

3

Yes, this is not good encapsulation.
Bear with us—we’re making a point.

Before you run the program…
Write down what you think will be written to the console when you run this code:

4

You’ve already used
structs in your programs.

Remember DateTime
from previous chapters?
You were working with a

struct the whole time!

630   Chapter 13

My name is Spike and I’m a beagle.
My name is Jake and I’m a poodle.

Here’s what happened…
The bob and spot references both point to the same object, so
both changed the same fields and accessed the same Speak()
method. But structs don’t work that way. When you created
betty, you made a fresh copy of the data in jake. The two
structs are completely independent of each other.

Dog jake = new Dog("Jake", "poodle");

Dog betty = jake;

betty.Name = "Betty";

betty.Breed = "pit bull";

jake.Speak();

Canine spot = new Canine("Spot", "pug");

Canine bob = spot;

bob.Name = "Spike";

bob.Breed = "beagle";

spot.Speak();

jake

4

5

1

2

Canine obje
c t

1
spot

Canine obje
c t

2 spot

3

6

A new Canine object was
created and the spot
reference points to it.

The new reference variable bob was
created, but no new object was added
to the heap—the bob variable points to
the same object as spot.

Spot
pug

Canine obje
c t3

spot
bob Spike

beagle

Spot
pug

bob

Since spot and bob both point to the same object,
spot.Speak() and bob.Speak() both call the same
method, and both of them produce the same output with “Spike” and “beagle”.

Jake
poodle

jake

Jake
poodle

betty

Jake
poodle

betty

Betty
pit bull

jake

Jake
poodle

4

5

6

When you set one struct
equal to another, you’re
creating a fresh COPY of
the data inside the struct.
That’s because struct is a
VALUE TYPE.

When you create a new struct,
it looks really similar to creating
an object—you’ve got a variable
that you can use to access its
fields and methods.

Here’s the big difference. When
you added the betty variable,
you created a whole new value.

Since you created a fresh
copy of the data, jake
was unaffected when you
changed betty’s fields.

What did you think would get written to the console?

stack versus heap

you are here 4   631

the death of an object

It’s not hard to understand how a struct differs from an object—you can make
a fresh copy of a struct just using equals, which you can’t do with an object. But
what’s really going on behind the scenes?

The .NET CLR divides your data into two places in memory. You already know
that objects live on the heap. It also keeps another part of memory called the
stack to store all of the local variables you declare in your methods, and the
parameters that you pass into those methods. You can think of the stack as a
bunch of slots that you can stick values in. When a method gets called, the CLR
adds more slots to the top of the stack. When it returns, its slots are removed.

The stack vs. the heap: more on memory

The Code
Here’s code that you might

see in a program.

Behind
the Scenes

The Stack
This is where structs and local

variables hang out.

Dog jake

spot

Dog betty

Dog jake

spot

Canine spot = new Canine("Spot", "pug");

Dog jake = new Dog("Jake", "poodle");

Canine spot = new Canine("Spot", "pug");

Dog jake = new Dog("Jake", "poodle");

Dog betty = jake;

public SpeakThreeTimes(Dog dog) {

 int i;

 for (i = 0; i < 5; i++)

 dog.Speak();

}

Dog betty

Dog jake

spot

Dog myDog

int i

Dog dog

Canine spot = new Canine("Spot", "pug");

Dog jake = new Dog("Jake", "poodle");

Dog betty = jake;

SpeakThreeTimes(jake);

When you call a
method, the CLR
puts its local
variables on the
top of the stack.
It takes them off
when it’s done.

Here’s what the stack looks like after these two lines of code run.

When you create a new struct—or any other value
type variable—a new “slot” gets added onto the
stack. That slot is a copy of the value in your type.

Remember, when your
program’s running, the CLR
is actively managing memory,
dealing with the heap, and
collecting garbage.

Even though you can
assign a struct to
an object variable,
structs and objects
are different.

632   Chapter 13

Dog sid (boxed)

Wait a minute. Why do I even need
to know this stuff? I can’t control any

of it directly, right?

You definitely want to understand how a struct you copy by
value is different from an object you copy by reference.

There are times when you need to be able to write a method that can take either a
value type or a reference type—perhaps a method that can work with either a Dog
struct or a Canine object. If you find yourself in that situation, you can use the
object keyword:

 public void WalkDogOrCanine(object getsWalked) { ... }

If you send this method a struct, the struct gets boxed into a special object
“wrapper” that allows it to live on the heap. While the wrapper’s on the heap, you
can’t do much with the struct. You have to “unwrap” the struct to work with it.
Luckily, all of this happens automatically when you set an object equal to a value type,
or pass a value type into a method that expects an object.

Sid
husky

Here’s what the stack and heap look like after you create an object
variable and set it equal to a Dog struct.

Dog sid = new Dog("Sid", "husky");

WalkDogOrCanine(sid);

1

Dog sid (boxed)

Sid
husky

If you want to unbox the object, all you need to do is cast it to the right type, and
it gets unboxed automatically. You can’t use the as keyword with value
types, so you’ll need to cast to Dog.

 Dog happy = (Dog) getsWalked;

2

obj

obj

obj

obj

Dog sid

Dog sid

Dog happy

You can also use the “is”
keyword to see if an
object is a struct, or
any other value type,
that’s been boxed and
put on the heap.

These are structs, so unless they’re boxed, they don’t live on the heap.

don’t box me in

After a struct
is boxed, there
are two copies
of the data: on
the stack, and
the copy boxed
on the heap.

After this line
runs, you’ve got
a third copy of
the data in a
new struct called
happy, which gets
its own slot on
the stack.

The WalkDogOrCanine()
method takes an object
reference, so the Dog
struct was boxed
before it was passed
in. Casting it back to a
Dog unboxes it.

you are here 4   633

the death of an object

When a method is called, it looks for its arguments on the stack.

The stack plays an important part in how the CLR runs your programs. One thing we take for granted is the fact
that you can write a method that calls another method, which in turn calls another method. In fact, a method
can call itself (which is called recursion). The stack is what gives your programs the ability to do that.

public double FeedDog(Canine dogToFeed, Bowl dogBowl) {
 double eaten = Eat(dogToFeed.MealSize, dogBowl);
 return eaten + .05D; // A little is always spilled
}

public void Eat(double mealSize, Bowl dogBowl) {
 dogBowl.Capacity -= mealSize;
 CheckBowl(dogBowl.Capacity);
}

public void CheckBowl(double capacity) {
 if (capacity < 12.5D) {
 string message = "My bowl’s almost empty!";
 Console.WriteLine(message);
 }
}

Here are a couple of methods from
a dog simulator program. They’re
pretty simple: FeedDog() calls
Eat(), which calls CheckBowl().

dogToFeed

dogBowl

dogToFeed

mealSize value

dogBowl

dogBowl Dog myDog

capacity value

dogToFeed

mealSize value

dogBowl

dogBowl

dogToFeed

mealSize value

dogBowl

dogBowl

capacity value

message

1 2 3 4The FeedDog()
method takes two
parameters, a Canine
reference and a Bowl
reference. So when
it’s called, the two
arguments passed to it
are on the stack.

FeedDog() needs to
pass two arguments to
the Eat() method, so
they’re pushed onto
the stack as well.

Remember the terminology
here: a parameter is what you
call the part of the method
declaration that specifies the
values it needs; an argument is
the actual value or reference
that you pass into a method
when you call it.

Here’s what the stack looks like as the
FeedDog() method calls Eat(),
which calls CheckBowl(), which
calls Console.WriteLine():

As the method calls
pile up and the
program goes deeper
into methods that call
methods that call other
methods, the stack
gets bigger and bigger.

When Console.
WriteLine() exits,
its arguments will
be popped off of the
stack. That way, Eat()
can keep going as if
nothing had happened.
That’s why the stack is
so useful!

Behind
the Scenes

634   Chapter 13

references upon request

Speaking of parameters and arguments, there are a few more ways that you can get values in
and out of your programs, and they all involve adding modifiers to your method declarations.
One of the most common ways of doing this is by using the out modifier to specify an
output parameter. Here’s how it works. Create a new Windows Forms application and add this
empty method declaration to the form. Note the out modifiers on both parameters:

Use out parameters to make a
method return more than one value

public int ReturnThreeValues(out double half, out int twice)
{
	 return 1;
}

Do this!

When you try to build your code, you’ll see two errors: the out parameter half must be
assigned a value before control leaves the current method (and you’ll get an identical
message for the twice parameter). Any time you use an out parameter, you always need
to set it before the method returns—just like you always need to use a return statement if your
method is declared with a return value. Here’s the whole method:

Random random = new Random();

public int ReturnThreeValues(out double half, out int twice) {
 int value = random.Next(1000);
 half = ((double)value) / 2;
 twice = value * 2;
 return value;
}

private void button1_Click(object sender, EventArgs e) {
 int a;
 double b;
 int c;
 a = ReturnThreeValues(b, c);
 Console.WriteLine("value = {0}, half = {1}, double = {2}", a, b, c);
}

Now that you’ve set the two out parameters, it compiles. So let’s use them. Add a button with this event handler:

Uh oh! There are more build errors: Argument 1 must be passed with the out
keyword. Every time you call a method with an out parameter, you need to use the out
keyword when you pass the argument to it. Here’s what that line should look like:

 a = ReturnThreeValues(out b, out c);

Now your program will build. When you run it, the ReturnThreeValues() methods
sets the three values and returns all three of them: a gets the method’s return value, b gets
the value returned by the half parameter, and c gets the value returned by twice.

A method
can return
more
than one
value by
using out
parameters.

This method needs to set all of its
out parameters before it returns;
otherwise, it won’t compile.

Did you notice how you didn’t need to initialize b and c? You don’t need to initialize a variable before you use it as an argument to an out parameter.

We’re using a
Windows Forms

application for this
project because

it’s easy for you to
repeatedly click
the buttons and
see the console

output in the
Output window.

Quick reminder: when
Windows Forms programs

call Console.WriteLine()
it updates the IDE’s Output

window (View→Output).

you are here 4   635

the death of an object

One thing you’ve seen over and over again is that every time you pass an int, double, struct,
or any other value type into a method, you’re passing a copy of that value to that method. There’s a
name for that: pass by value, which means that the entire value of the argument is copied.

But there’s another way to pass arguments into methods, and it’s called pass by reference. You can
use the ref keyword to allow a method to work directly with the argument that’s passed to it. Just
like the out modifier, you need to use ref when you declare the method and also when you call it. It
doesn’t matter if it’s a value type or a reference type, either—any variable that you pass to a method’s
ref parameter will be directly altered by that method.

You can see how it works—add this method to your program:

Pass by reference using the ref modif ier

Built-in value types’ TryParse() method uses out parameters
There’s a great example of out parameters built right into some of the built-in value types. There are a lot of times that you’ll want to convert a string like “35.67” into a double. And there’s a method to do exactly that: double.Parse(“35.67”) will return the double value 35.67. But double.Parse(“xyz”) will throw a FormatException. Sometimes that’s exactly what you want, but other times you want to check if a string can be parsed into a value. That’s where the TryParse() method comes in: double.TryParse(“xyz”, out d) will return false and set d to 0, but double.TryParse(“35.67”, out d) will return true and set d to 35.67.
Also, remember back in Chapter 9 when we used a switch statement to convert Spades into Suits.Spades? Well, there are static methods Enum.Parse() and Enum.TryParse() that do the same thing, except for enums!

public void ModifyAnIntAndButton(ref int value, ref Button button) {
 int i = value;
 i *= 5;
 value = i - 3;
 button = button1;
}

private void button2_Click(object sender, EventArgs e) {
 int q = 100;
 Button b = button1;
 ModifyAnIntAndButton(ref q, ref b);
 Console.WriteLine("q = {0}, b.Text = {1}", q, b.Text);
}

And add a button with this event handler to call the method:

When button2_Click() calls the ModifyAnIntAndButton() method, it passes its q and b variables
by reference. The ModifyAnIntAndButton() method works them just like any other variable. But since
they were passed by reference, the method was actually updating the q and b variables all along, and not just a
copy of them. So when the method exits, the q and b variables are updated with the modified value.

Run the program and debug through it, adding a watch for the q and b variables to see how this works.

Under the hood, an
out argument is just
like a ref argument,
except that it doesn’t
need to be assigned
before going into the
method, and must be
assigned before the
method returns.

This prints “q = 497, b.Text = button1”
because the method actually altered the
q and b variables.

When this method sets value and button
parameters, what it’s really doing is
changing the values of the q and b
variables in the button2_Click() method
that called it.

636   Chapter 13

arguments optional

A lot of times, your methods will be called with the same arguments over and over again, but the
method still needs the parameter because occasionally it changes. It would be useful if you could set a
default value, so you only needed to specify the argument when calling the method if it was different.

That’s exactly what optional parameters do. You can specify an optional parameter in a method
declaration by using an equals sign followed by the default value for that parameter. You can have
as many optional parameters as you want, but all of the optional parameters have to come after the
required parameters.

Here’s an example of a method that uses optional parameters to check if someone has a fever:

Use opt ional parameters to set default values

void CheckTemperature(double temperature, double tooHigh = 99.5, double tooLow = 96.5)
{
 if (temperature < tooHigh && temperature > tooLow)
 Console.WriteLine("Feeling good!");
 else
 Console.WriteLine("Uh-oh -- better see a doctor!");
}

private void button3_Click(object sender, EventArgs e)
{
 // Those values are fine for your average person
 CheckTemperature(101.3);

 // A dog's temperature should be between 100.5 and 102.5 Fahrenheit
 CheckTemperature(101.3, 102.5, 100.5);

 // Bob's temperature is always a little low, so set tooLow to 95.5
 CheckTemperature(96.2, tooLow: 95.5);
}

This method has two optional parameters: tooHigh has a default value of 99.5, and tooLow has
a default value of 96.5. Calling CheckTemperature() with one argument uses default values for
both tooHigh and tooLow. If you call it with two arguments, it will use the second argument for the
value of tooHigh, but still use the default value for tooLow. You can specify all three arguments to
pass values for all three parameters.

There’s another option as well. If you want to use some (but not all) of the default values, you can use
named arguments to pass values for just those parameters that you want to pass. All you need to
do is give the name of each parameter followed by a colon and its values. If you use more than one
named argument, make sure you separate them with commas, just like any other argument.

Add the CheckTemperature() method to your form, and then add a button with the following
event handler. Debug through it to make sure you understand exactly how this works:

Use optional
parameters
and named
arguments
when you
want your
methods to
have default
values.

Optional parameters have default
values specified in the declaration.

you are here 4   637

the death of an object

In a lot of projects earlier in the book, you used null to indicate that there is no value. That’s very
typical: you can use null to indicate that a variable, field, or property is empty, and you can check
to see if it’s equal to null, which means that it doesn’t have a value. But for structs (and ints,
booleans, enums, and other value types), you can’t set them to null. That means these statements:

	 bool myBool = null;
	 DateTime myDate = null;

will cause errors when you try to compile! So how do you indicate an empty value for these types?

Let’s say your program needs to work with a date and time value. Normally you’d use a
DateTime variable. But what if that variable doesn’t always have a value? That’s where nullable
types comes in really handy. All you need to do is add a question mark (?) to the end of any value
type, and it becomes a nullable type that you can set to null.

Use nullable types when you need nonexistent values

bool? myNulableBool = null;
DateTime? myNullableDate = null;

Nullable<DateTime>
Value: DateTime
HasValue: bool
...

GetValueOrDefault(): DateTime
...

The question mark T? is an alias for Nullable<T>
When you add a question mark to any value type (like int? or decimal?), the compiler translates that to the

Nullable<T> struct (Nullable<int> or Nullable<decimal>). You can see this for yourself: add a Nullable<DateTime>

variable to a program, put a breakpoint on it, and add a watch for it in the debugger. You’ll see System.DateTime?

displayed in the Watch window in the IDE. This is an example of an alias, and it’s not the first one you’ve

encountered. Hover your cursor over any int. You’ll see that it translates to a struct called System.Int32:

 int.Parse() and int.TryParse() are members of this struct

Take a minute and do that for each of the types at the beginning of Chapter 4. Notice how all of them are aliases

for structs—except for string, which is a class called System.String (it’s a reference type, not a value type).

Every nullable type has a property called Value that gets or sets the value. A DateTime? will
have a Value of type DateTime, an int? will have one of type int, etc. They’ll also have a
property called HasValue that returns true if it’s not null.

You can always convert a value type to a nullable type:
	 DateTime myDate = DateTime.Now;
	 DateTime? myNullableDate = myDate;

But you need to cast the nullable type in order to assign it back to a value type:

	 myDate = (DateTime) myNullableDate;

But you also get this handy Value property—it also returns the value:

	 myDate = myNullableDate.Value;
If HasValue is false, the Value property will throw an InvalidOperationException,
and so will the cast (because that cast is equivalent to using the Value property).

Nullable<T> is a struct
that lets you store a
value type OR a null value.
Here are some of the
methods and properties
on Nullable<DateTime>.

Back in Chapter 11, you
used DateTime.MinValue
to mean “date not set”
in the Excuse Manager
app. Nullable<DateTime>
would make both your
code and the serialized
XML files easier to
read.

638   Chapter 13

taste the robust flavor

Users do all sorts of crazy things. You think you know how people will use a program you’re
writing, but then someone clicks buttons in an unexpected order, or enters 256 spaces in a
textbox, or uses the Windows Task Manager to quit your program halfway through writing
data to a file, and suddenly it’s popping up all manner of errors. Remember in Chapter 12
when we talked about how a program that can gracefully handle badly formatted, unexpected,
or just plain bizarre input is called robust? When you’re processing raw input from your
users, nullable types can be very useful in making your programs more robust. Now see for
yourself.Create a new console application and add this RobustGuy class to it:

Nullable types help you make your programs more robust

class RobustGuy {
 public DateTime? Birthday { get; private set; }
 public int? Height { get; private set; }

 public RobustGuy(string birthday, string height) {
 DateTime tempDate;
 if (DateTime.TryParse(birthday, out tempDate))
 Birthday = tempDate;
 else
 Birthday = null;

 int tempInt;
 if (int.TryParse(height, out tempInt))
 Height = tempInt;
 else
 Height = null;
 }

 public override string ToString() {
 string description;
 if (Birthday.HasValue)
 description = "I was born on " + Birthday.Value.ToLongDateString();
 else
 description = "I don’t know my birthday";
 if (Height.HasValue)
 description += ", and I’m " + Height + " inches tall";
 else
 description += ", and I don’t know my height";
 return description;
 }
}

And here’s the Main() method for the program. It uses Console.ReadLine() to get input from the user:

static void Main(string[] args) {
 Console.Write("Enter birthday: ");
 string birthday = Console.ReadLine();
 Console.Write("Enter height in inches: ");
 string height = Console.ReadLine();
 RobustGuy guy = new RobustGuy(birthday, height);
 Console.WriteLine(guy.ToString());
 Console.ReadKey();
}

When you run the program,
see what happens when you
enter different values for dates.
DateTime.TryParse() can figure
out a lot of them. When you
enter a date it can’t parse, the
RobustGuy’s Birthday property
will have no value.

When you add RobustGuy’s ToString() method, take a look at the IntelliSense window when you enter Birthday.Value. Since
the Value property is a DateTime, you’ll see all the usual DateTime members.

Use the ToLongDateString() method to convert it to a human-readable string.

If the user
entered garbage,
the Nullable
types won’t
have values, so
their HasValue()
methods will
return false.

Use the
DateTime and
int TryParse()
methods to
attempt to
convert the
user input into
values.

Try experimenting with the
other DateTime methods
that start with “To” to
see how they affect your
program’s output.

Console.ReadLine() lets the user enter text
into the console window. When the user hits
enter, it returns the input as a string.

Do this!

you are here 4   639

the death of an object

Pool Puzzle
Your job is to take snippets from the

pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make
the code write this output to the

console when a new instance of the
Faucet class is created:

Note: Each
thing from
the pool can
be used more
than once.

public class Faucet {
 public Faucet() {
 Table wine = new Table();
 Hinge book = new Hinge();
 wine.Set(book);
 book.Set(wine);
 wine.Lamp(10);
 book.garden.Lamp("back in");
 book.bulb *= 2;
 wine.Lamp("minutes");
 wine.Lamp(book);
 }
}

public _______ Table {
 public string stairs;
 public Hinge floor;
 public void Set(Hinge b) {
 floor = b;
 }
 public void Lamp(object oil) {

 if (oil ____ int)
 _______.bulb = (int)oil;
 else if (oil ____ string)
 stairs = (string)oil;

 else if (oil ____ Hinge) {
 _______ vine = oil ____ _______;
 Console.WriteLine(vine.Table()

 + " " + ______.bulb + " " + stairs);
 }
 }
}

public _______ Hinge {
 public int bulb;
 public Table garden;
 public void Set(Table a) {
 garden = a;
 }
 public string Table() {

 return _______.stairs;
 }
}

Output when you create a
new Faucet object:

back in 20 minutes

public
private
class
new

abstract
interface

struct
string

int
float

single
double

if
or
is
on
as

oop

+
-

++
--
=

==

garden
floor

Window
Door
Hinge

Brush
Lamp
bulb

Table
stairs

Bonus points: Circle the lines
where boxing happens.

Here’s the goal…to
get this output.

Answers on page 648.

640   Chapter 13

Q: OK, back up a minute. Why do I
care about the stack?

A: Because understanding the difference
between the stack and the heap helps you
keep your reference types and value types
straight. It’s easy to forget that structs and
objects work very differently—when you use
the equals sign with both of them, they look
really similar. Having some idea of how .NET
and the CLR handle things under the hood
helps you understand why reference and
value types are different.

Q: And boxing? Why is that important
to me?

A: Because you need to know when
things end up on the stack, and you need
to know when data’s being copied back and
forth. Boxing takes extra memory and more
time. When you’re only doing it a few times
(or a few hundred times) in your program,
then you won’t notice the difference. But let’s
say you’re writing a program that does the
same thing over and over again, millions of
times a second. That’s not too far-fetched:
you’ll build an arcade game at the end of
the book that could do many calculations
per second. If you find that your program’s
taking up more and more memory, or going
slower and slower, then it’s possible that you
can make it more efficient by avoiding boxing
in the part of the program that repeats.

Q: I get how you get a fresh copy of
a struct when you set one struct variable
equal to another one. But why is that
useful to me?

A: One place that’s really helpful is with
encapsulation. Take a look at this familiar
code from a class that knows its location:

protected Point location;
public Point Location {
 get { return location; }
}

If Point were a class, then this would be
terrible encapsulation. It wouldn’t matter that
location is private, because you made
a public read-only property that returns a
reference to it, so any other object would be
able to access it.

Lucky for us, Point is actually a struct.
And that means that the public Location
property returns a fresh copy of the point.
The object that uses it can do whatever it
wants to that copy—none of those changes
will make it to the private location field.

Q: How do I know whether to use a
struct or a class?

A: Most of the time, programmers use
classes. Structs have a lot of limitations that
can really make it hard to work with them for
large jobs. They don’t support inheritance or
abstraction, and only limited polymorphism,
and you already know how important those
things are for writing code.

Where structs come in really handy is if you
have a small, limited type of data that you
need to work with repeatedly. Rectangles
and points are good examples—there’s not
much you’ll do with them, but you’ll use
them over and over again. Structs tend to be
relatively small and limited in scope. If you
find that you have a small chunk of a few
different kinds of data that you want to store
in a field in a class or pass to a method as a
parameter, that’s probably a good candidate
for a struct. But if the way you use the struct
will cause it to be boxed most of the time, so
you may be better off with a class.

A struct can be very
valuable when you
want to add good
encapsulation to
your class, because a
read-only property
that returns a struct
always makes a
fresh copy of it.

structs are safe

Pop quiz, hotshot! Answer’s on page 642.

This method is supposed to kill a Clone object, but it
doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

Go back to the label bouncer project
from Chapter 4. Under the hood,
you were indirectly using points and
locations, which means your code was
setting struct values (even if you
didn’t declare them directly).

you are here 4   641

the death of an object

I THINK I’VE FOUND A WAY TO GIVE HIS
POWERS TO A NORMAL CITIZEN!

Back at the Lab

With all this talk of boxing, you should have a pretty good idea
of what was going on with the less-powerful, more-tired Captain
Amazing. In fact, it wasn’t Captain Amazing at all, but a boxed struct:

“Captain” Amazing…not so much

struct vs.
Structs can’t inherit from classes.
No wonder the Captain’s superpowers seemed a
little weak! He didn’t get any inherited behavior.

1 You can’t create a fresh copy of an object.
When you set one object variable equal to another,
you’re copying a reference to the same variable.

1

Structs are copied by value.
This is one of the most useful things about them.
It’s especially useful for encapsulation.

2 You can use the as keyword with an object.
Objects allow for polymorphism by allowing an object
to function as any of the objects it inherits from.

2

That’s one big
advantage of structs
(and other value
types)—you can easily
make copies of them.

 Objec
t

One important point: you can use the “is” keyword to
check if a struct implements an interface, which is one
aspect of polymorphism that structs do support.

642   Chapter 13

sealed class OrdinaryHuman {
 private int age;
 int weight;

 public OrdinaryHuman(int weight){
 this.weight = weight;
 }

 public void GoToWork() { /* code to go to work */ }
 public void PayBills() { /* code to pay bills */ }
}

static class SuperSoldierSerum {
 public static string BreakWalls(this OrdinaryHuman h, double wallDensity) {
 return ("I broke through a wall of " + wallDensity + " density.");
 }
}

Sometimes you need to extend a class that you can’t inherit from, like a sealed class (a lot of the .NET classes
are sealed, so you can’t inherit from them). And C# gives you a flexible tool for that: extension methods.
When you add a class with extension methods to your project, it adds new methods that appear on classes
that already exist. All you have to do is create a static class, and add a static method that accepts an instance
of the class as its first parameter using the this keyword.

So let’s say you’ve got a sealed OrdinaryHuman class (remember, that means you can’t extend it):

Extension methods add new
behavior to EXISTING classes

Extension methods are always
static methods, and they have
to live in static classes.

Since we want to extend the OrdinaryHuman class, we make the first parameter this OrdinaryHuman.

The OrdinaryHuman class is
sealed, so it can’t be subclassed.
But what if we want to add a
method to it?

When the program creates an
instance of the OrdinaryHuman
class, it can access the BreakWalls()
method directly—as long as it has
access to the SuperSoldierSerum class.

All this method does is set its own parameter to null, but that parameter’s just a
reference to a Clone. It’s like sticking a label on an object and peeling it off again.

So the clone parameter
is just on the stack, so
setting it to null doesn’t do
anything to the heap.

The SuperSoldierSerum method adds an extension method to OrdinaryHuman:

As soon as the SuperSoldierSerum class is added to the project,
OrdinaryHuman gets a BreakWalls method. So now a form can use it:

static void Main(string[] args){
 OrdinaryHuman steve = new OrdinaryHuman(185);
 Console.WriteLine(steve.BreakWalls(89.2));
}

You use an extension method by specifying the first parameter using the “this” keyword.

This method is supposed to kill a Clone object, but it doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

Remember the sealed modifier
from Chapter 7? It’s how you
set up a class that can’t be
extended.

Go ahead, try it out! Create a new console application and add the two classes and the Main() method to it. Debug into the BreakWalls() method and see what’s going on.

you are here 4   643

the death of an object

Q: Tell me again why I wouldn’t add the new methods I
need directly to my class code, instead of using extensions?

A: You could do that, and you probably should if you’re just
talking about adding a method to one class. Extension methods
should be used pretty sparingly, and only in cases where you
absolutely can’t change the class you’re working with for some
reason (like it’s part of the .NET Framework or another third party).
Where extension methods really become powerful is when you
need to extend the behavior of something you wouldn’t normally
have access to, like a type or an object that comes for free with
the .NET Framework or another library.

Q:Why use extension methods at all? Why not just extend
the class with inheritance?

A: If you can extend the class, then you’ll usually end up doing
that—extension methods aren’t meant to be a replacement for
inheritance. But they come in really handy when you’ve got classes
that you can’t extend. With extension methods, you can change the
behavior of whole groups of objects, and even add functionality to
some of the most basic classes in the .NET Framework.

Extending a class gives you new behavior, but requires that you
use the new subclass if you want to use that new behavior.

Q: Does my extension method affect all instances of a
class, or just a certain instance of the class?

A: It will affect all instances of a class that you extend. In
fact, once you’ve created an extension method, the new method
will show up in your IDE alongside the extended class’s normal
methods.

Oh, I get it! So you’d use
extension methods to add new
behavior to one of the built-in

.NET Framework classes, right?

Exactly! There are some classes that you can’t inherit from.

Pop open any project, add a class, and try typing this:

 class x : string { }

Try to compile your code—the IDE will give you an error. The reason is that
some .NET classes are sealed, which means that you can’t inherit from them.
(You can do this with your own classes, too! Just add the sealed keyword to
your class after the public access modifier, and no other class will be allowed to
inherit from it.) Extension methods give you a way to extend it, even if you can’t
inherit from it.

But that’s not all you can do with extension methods. In addition to extending
classes, you can also extend interfaces. All you have to do is use an interface
name in place of the class, after the this keyword in the extension method’s
first parameter. When you do, the extension method is added to every class
that implements that interface. You’ll learn all about LINQ in the next
chapter—while you’re learning, one thing to keep in mind is that it was built
entirely with extension methods, extending the IEnumerable<T> interface.

The combination of an
interface plus extension
methods can be very useful,
because it lets you add
behavior to any class that
implements the interface.

One more point to remember about
extension methods: you don’t gain
access to any of the class’s internals
by doing an extension method, so
it’s still acting as an outsider!

644   Chapter 13

You don’t often get to change the behavior of a language’s most fundamental types,
like strings. But with extension methods, you can do just that! Create a new project,
and add a file called HumanExtensions.cs. It doesn’t matter what kind of project you
create—you’ll be using the IDE to explore how extension methods work.

Extending a fundamental type: str ing

Put all of your extension methods in a separate namespace.
It’s a good idea to keep all of your extensions in a different namespace than the rest of your
code. That way, you won’t have trouble finding them for use in other programs. Set up a
static class for your method to live in, too.

1

namespace MyExtensions {
 public static class HumanExtensions {

Do this!

Create the static extension method, and define its first
parameter as this and then the type you’re extending.
The two main things you need to know when you declare an extension method are that
the method needs to be static and it takes the class it’s extending as its first parameter.

2

Put the code to evaluate the string in the method.3

Use your new IsDistressCall() extension method.
Go to any other class and add using MyExtensions; to the top. Now, when you use a string, you get
the extension methods for free. You can see this for yourself by typing the name of a string variable and a period:

4

public static class HumanExtensions {
 public static bool IsDistressCall(this string s){
 if (s.Contains("Help!"))
 return true;
 else
 return false;
 }
}

public static bool IsDistressCall (this string s){

This checks the string for a certain value…something definitely not in the default string class.

Using a separate namespace is a good
organizational tool.

The class your extension method is
defined in must be static.

The extension method must
be static, too.

“this string” says we’re extending the string class.

better faster stronger

You want this class to be
accessed by code in the
other namespace, so make
sure you make it public!

Comment out the using line, and the
extension method will disappear from

the IntelliSense window.As soon as you type
the dot, the IDE
pops up a helper
window with all of
string’s methods…
including your
extension method.

This toy example just shows you the syntax
of extension methods. To get a real sense
of how useful they are, just wait until the
next chapter. It’s all about LINQ, which is

implemented entirely with extension methods.

The IntelliSense window tells
you that it’s an extension.

you are here 4   645

the death of an object

}

}

Extension Magnets
Arrange the magnets to produce this output:

a buck begets more bucks

namespace Upside {

namespace Sideways
{
 using Upside;

public static class Margin {

public static void SendIt

}

Console.Write(s);

public static string ToPrice

if (n == 1)
 return "a buck ";

else
 return " more bucks";

}

public static string Green

(this bool b) {
if (b == true)
 return "be";

else
 return "gets";

}
}

}

int i = 1;

string s = i.ToPrice();

s.SendIt();

bool b = true;
b = false;

i = 3;

b.Green().SendIt();

i.ToPrice()

.SendIt();

(this string s) { (this int n) {

b.Green().
SendIt();

class Program {

static void Main(string[] args) {

 Console.ReadKey();
}

646   Chapter 13

Extension Magnets
Your job was to arrange the magnets to produce this output:

a buck begets more bucks

namespace Upside {

public static class Margin {

public static void SendIt (this string s) {

}

Console.Write(s);

public static string ToPrice (this int n) {
if (n == 1)
 return "a buck ";

else
 return " more bucks";

}

public static string Green (this bool b) {

if (b == true)
 return "be";

else
 return "gets";

}
}

}

static void Main(string[] args) {

int i = 1;

string s = i.ToPrice();

s.SendIt();

bool b = true;

b.Green().SendIt();

b = false;

i = 3;

i.ToPrice() .SendIt();

 Console.ReadKey();
}

}

}

The Upside namespace
has the extensions. The
Sideways namespace has
the entry point.

The Green method extends a
bool—it returns the string “be”
if the bool is true, and “gets”
if it’s false.

The entry point method
uses the extensions that
you added in the Margin
class.

The Margin class extends the string by
adding a method called SendIt() that just
writes the string to the console, and it
extends int by adding a method called
ToPrice() that returns “a buck” if the int’s
equal to 1, or “more bucks” if it’s not.

b.Green().SendIt();

class Program {

namespace Sideways
{
 using Upside;

647

TheUNIVERSE
CAPTAIN AMAZING REBORNDeath was not the end!

By Bucky Barnes
UNIVERSE STAFF WRITER

OBJECTVILLE

Captain Amazing deserializes himself, makes stunning comebackIn a stunning turn of events, Captain Amazing has returned to Objectville. Last month, Captain Amazing’s coffin was found empty, and only a strange note left where his body should have been. Analysis of the note revealed Captain Amazing’s object DNA—all his last fields and values, captured faithfully in binary format.

Today, that data has sprung to life. The Captain is back, deserialized from his own brilliant note. When asked how he conceived of such a plan, the Captain merely shrugged and mumbled, “Chapter 10.” Sources close to the Captain refused to comment on the meaning of his cryptic reply, but did admit that prior to his failed assault on Swindler, the Captain had spent a lot of time reading books, studying Dispose methods and persistence. We expect Captain Amazing…

…see AMAZING on A-5

Captain Amazing is back!

WE’VE REBUILT THE SUPERHERO CLASS, BUT
HOW DO WE BRING BACK THE CAPTAIN?

EUREKA! I’VE ANALYZED THE
CODE—CAPTAIN AMAZING
USED HIS OWN DEATH TO

SERIALIZE HIMSELF!

648   Chapter 13

Pool Puzzle Solution

public class Faucet {

 public Faucet() {

 Table wine = new Table();

 Hinge book = new Hinge();

 wine.Set(book);

 book.Set(wine);

 wine.Lamp(10);

 book.garden.Lamp("back in");

 book.bulb *= 2;

 wine.Lamp("minutes");

 wine.Lamp(book);

 }

}

public struct Table {

 public string stairs;

 public Hinge floor;

 public void Set(Hinge b) {

 floor = b;

 }

 public void Lamp(object oil) {

 if (oil is int)

 floor.bulb = (int)oil;

 else if (oil is string)

 stairs = (string)oil;

 else if (oil is Hinge) {

 Hinge vine = oil as Hinge;

 Console.WriteLine(vine.Table()

 + " " + floor.bulb + " " + stairs);

 }

 }

}

public class Hinge {

 public int bulb;

 public Table garden;

 public void Set(Table a) {

 garden = a;

 }

 public string Table() {

 return garden.stairs;

 }

}

Output when you create a
new Faucet object:
back in 20 minutes

Here’s why Table has to be a struct. If it were a class, then wine would point to the same object as book.Garden, which would cause this to overwrite the “back in” string.

The Lamp() method sets the various

strings and ints. If you call it w
ith

an int, then it sets the Bulb field
in whatever object Hinge points to.

If you pass a
string to Lamp,
it sets the Stairs
field to whatever
is in that string.

Remember, the as
keyword only works with
classes, not structs.

Both Hinge and Table
have a Set() method.
Hinge’s Set() sets
its Table field called
Garden, and Table’s
Set() method sets
its Hinge field called
Floor.Bonus question: Circle the

lines where boxing happens.

Since the Lamp() method takes an object
parameter, boxing automatically happens
when it’s passed an int or a string.

puzzle solution

this is a new chapter   649

querying data and building apps with LINQ14

Get control of your data

It’s a data-driven world…it’s good to know how to live in it.�
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. Today, everything is about data. And that’s where LINQ comes in. LINQ

not only lets you query data in a simple, intuitive way, but it lets you group data and

merge data from different data sources. And once you’ve wrangled your data into

manageable chunks, your Windows Store apps have controls for navigating data that

let your users navigate, explore, and even zoom into the details.

So if you take the first word from this
article, and the second word in that list, and

add it to the fifth word over here…you get
secret messages from the government!

650   Chapter 14

Jimmy’s a Captain Amazing super-fan...

Check out this limited-
series Captain Amazing

mug from the second
annual Amazin’Con signed

by the actual penciler and
inker!

Meet Jimmy, one of the most prolific collectors of Captain Amazing
comics, graphic novels, and paraphernalia. He knows all the Captain trivia,
he’s got props from all the movies, and he’s got a comic collection that can
only be described as, well, amazing.

an amazing fan

That’s right, that’s the actual set from the flop Captain Amazing
TV show that ran from September through November 1973. How’d Jimmy even get his hands on that stuff?

you are here 4   651

querying data and building apps with LINQ

Jimmy may be passionate, but he’s not exactly organized. He’s trying
to keep track of the most prized “crown jewel” comics of his collection,
but he needs help. Can you build Jimmy an app to manage his comics?

…but his col lect ion’s al l over the place

Framed cover of
the legendary
“Death of the
Object” issue,
signed by the
writers.

652   Chapter 14

LINQ can pull data from mult iple sources
LINQ to the rescue! LINQ (or Language Integrated Query) is a
flexible feature of C# that lets you write queries to pull data out
of a collection. But LINQ also lets you work with more than just
collections—in fact, you can use it to query any object that implements the
IEnumerable<T> interface.

So let’s use LINQ to help Jimmy get a handle on his comic book collection.

LINQ works with pretty much every kind of data source you could
use in .NET. Your code needs a using System.Linq; line at the
top of your file, but that’s it. Even better, the IDE automatically puts
a reference to LINQ in the header of the class files it creates.

LINQ to the rescue

List of Bee o
bj

ec
ts

Bee

Bees
Bee

Bee

ID = 987
currentState = MakingHoney

ID = 12
currentState = FlyingToFlower

ID = 1982
currentState = GatheringNectar

Database

Bees table
ID = 987 currentState = MakingHoney
ID = 12

ID = 1982 currentState = GatheringNectar

XML
<bee id="987" currentState="MakingHoney" />
<bee id="12" currentState="FlyingToFlower" />
<bee id="1982" currentState="GatheringNectar" />

var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState
 into beeGroup
 orderby beeGroup.Key
 select beeGroup;

LINQ

Here’s a query we used in a bee simulator to
group and order bees by their state. The
simulator is part of the free GDI+ PDF you
can download from the Head First Labs website.

In the simulator, the bees were in a collection.

The nice thing about LINQ is
that the same query works on a
database or XML document, of
bees or customers or anything else.

you are here 4   653

querying data and building apps with LINQ

LINQ uses extension methods to let you query, sort, and update data. Check it out
for yourself. Create an int array called linqtest, put some numbers in the array, and
then type this line of code (don’t worry, you’ll learn what it does in a minute):

 IEnumerable<int> result = from i in linqtest where i < 3 select i;

Now comment out the using System.Linq; line up in the header of the file you’ve
created. When you try to rebuild the solution, you’ll see that this line doesn’t compile
anymore. The methods you’re calling when you use LINQ are just extension methods
that are being used to extend the array.

All of the collection types in .NET implement the IEnumerable<T> interface,
which you learned about in Chapter 8. But take a minute to get a refresher: type
System.Collections.Generic.IEnumerable<int> into your IDE
window, right-click on the line, and select Go To Definition (or press F12). You’ll
see that the IEnumerable interface defines a GetEnumerator() method:

namespace System.Collections.Generic {
 interface IEnumerable<T> : IEnumerable {
 // Summary:
 // Returns an enumerator that iterates through the collection.
 //
 // Returns:
 // A System.Collections.Generic.IEnumerator<T> that can be
 // used to iterate through the collection.
 IEnumerator<T> GetEnumerator();
 }
} This is the only method in the interface. Each

collection implements this method. You could
create your own kind of object that implemented
IEnumerable<T> too…and if you did, you could use
LINQ with your object.

.NET collect ions are already set up for LINQ

This method requires your object to define a way to move
through the elements in it, one element at a time. That’s
all LINQ requires as a prerequisite. If you can move
through a list of data, item by item, then you can implement
IEnumerable<T>, and LINQ can query the collection.

Now you can see why extension methods were so important in Chapter 13…they let .NET (and you) add all kinds of cool behavior to existing types.

Behind
the Scenes

Notice how IEnumerable<T> extends

an interface called IEnumerable? Use

Go To Definition to explore it, to
o.

654   Chapter 14

LINQ makes queries easy

int[] values = new int[] {0, 12, 44, 36, 92, 54, 13, 8};

var result = from v in values

 where v < 37

 orderby v

 select v;

foreach(int i in result)

 Console.Write("{0} ", i);

Console.ReadKey();

Here’s a simple example of LINQ syntax. It selects all the numbers in an
int array that are under 37 and puts those numbers in ascending order. It
does that using four clauses that tell it what object to query, what criteria to
use to determine which of its members to select, how to sort the results, and
how the results should be returned.

This assigns the letter “v” to stand in for each of the array values in the query. So v is 0, then 12, then 44, then 36…etc. It’s called the range variable.
This says to select each v in the
array that is less than 37.

Then, put those values in order (lowest to highest).
If you’ve used SQL before, it may
seem weird to put the select at
the end, but that’s how things
work in LINQ.

Now you can iterate through the
sequence that LINQ returned to
print the output.

This LINQ query has
four clauses: the from
clause, a where clause, an
orderby clause, and the
select clause.

some queries are simple

Output:

0 8 12 13 36

Flip back to Chapter 8 to get a refresher on the IEnumerable<T>

interface. Plus, you can read more about it in leftover #7 in the appendix.

var
var is a keyword that tells the compiler to figure out the type of a variable at compilation time.

.NET detects the type from the type of the local variable that you’re using LINQ to query. When

you build your solution, the compiler will replace var with the right type for the data you’re working

with.
In the example above, when this line is compiled:
 var result = from v in values

The compiler replaces “var” with this:
 IEnumerable<int>
And while we’re on the subject of interfaces for collections, remember how we talked about how

IEnumerable<T> is the interface that supports iteration? A lot of these great LINQ queries are

implemented via extension methods that extend IEnumerable<T>, so you’ll see that interface a lot.

you are here 4   655

querying data and building apps with LINQ

Jimmy just sold his start-up that sells apps in the Windows Store to a big investor,
and wants to take some of his profits and buy the most rare and expensive issues
of Captain Amazing that he can find. How can LINQ help him scour his data
and figure out which comics are the most expensive?

LINQ is simple, but your queries don’t have to be

Luckily, there’s a thriving marketplace for Captain Amazing comics on Greg’s List, a website where people sell
used comics. Jimmy knows that issue #57, “Hippie Madness,” was misprinted and that almost all of the run was
destroyed by the publisher, and he found that a rare copy recently sold on Greg’s List for $13,525. After a few hours
of searching, Jimmy was able to build a Dictionary<> that mapped issue numbers to values.

private static Dictionary<int, decimal> GetPrices()
{
 return new Dictionary<int, decimal> {
 { 6, 3600M },
 { 19, 500M },
 { 36, 650M },
 { 57, 13525M },
 { 68, 250M },
 { 74, 75M },
 { 83, 25.75M },
 { 97, 35.25M },
 };
}

2

Look closely at the LINQ query on
page 654, then look at Jimmy’s
methods on this page. What do
you think he would put into a query
to find the most expensive issues?

Jimmy downloaded a list of Captain Amazing issues from a Captain Amazing fan page.
He put them in a List<T> of Comic objects that have two fields, Name and Issue.

class Comic {
 public string Name { get; set; }
 public int Issue { get; set; }
}

Jimmy used object initializers and a collection initializer to build his catalog:

private static IEnumerable<Comic> BuildCatalog()
{
 return new List<Comic> {
 new Comic { Name = "Johnny America vs. the Pinko", Issue = 6 },
 new Comic { Name = "Rock and Roll (limited edition)", Issue = 19 },
 new Comic { Name = "Woman’s Work", Issue = 36 },
 new Comic { Name = "Hippie Madness (misprinted)", Issue = 57 },
 new Comic { Name = "Revenge of the New Wave Freak (damaged)", Issue = 68 },
 new Comic { Name = "Black Monday", Issue = 74 },
 new Comic { Name = "Tribal Tattoo Madness", Issue = 83 },
 new Comic { Name = "The Death of an Object", Issue = 97 },
 };
}

1

Issue #57 is worth $13,525.

Issue #74 of Captain Amazing
is called “Black Monday.”

There’s no special reason
this method is static, other
than to make it easy to call
from a console application’s
entry point method.

Remember
this syntax
for collection
initializers for
dictionaries from
Chapter 8?

Take a minute and flip to leftover #7 in the appendix to learn
about a really useful bit of syntax that could come in handy

here. This is a great opportunity to experiment!

We left the ()
parentheses off
of the collection
and object
initializers after
<Comic>, because
you don’t need ’em.

We’re showing you
each LINQ query in
this chapter twice:

first in a console app
to help you see how it
works, then in a larger

Windows Store app
so you can see how
a LINQ query works
in context—because

your brain keeps
track of things things

better in context!

656   Chapter 14

IEnumerable<Comic> comics = BuildCatalog();

Dictionary<int, decimal> values = GetPrices();

var mostExpensive =

 from comic in comics

 where values[comic.Issue] > 500

 orderby values[comic.Issue] descending

 select comic;

foreach (Comic comic in mostExpensive)

 Console.WriteLine("{0} is worth {1:c}",

 comic.Name, values[comic.Issue]);

The LINQ query pulls Comic
objects out of the comics list,
using the data in the values
dictionary to decide which
comics to select.

The first clause in the query is the from clause. This one tells LINQ to query the comics collection, and that the name comic will be used in the query to specify how to treat each individual piece of data in the collection.

The where and orderby
clauses can include ANY C#
statement, so we can use the
values dictionary to select
only those comics worth
more than $500, and we can
sort the results so the most
expensive ones come first.

When you add “{1:c}” to the
WriteLine output, that tells it
to print the second parameter
in the local currency format.

The name comic was defined in the from
clause specifically so it could be used in
the where and orderby clauses.

The query returned its results into an
IEnumerable<T> called mostExpensive. The select
clause determines what goes into the results—since
it selected comic, the query returned Comic objects.

take a closer look at a query

Anatomy of a query
Jimmy could analyze his comic book data with one LINQ query. The where clause tells
LINQ which items from the collection should be included in the results. But that clause
doesn’t have to be just a simple comparison. It can include any valid C# expression—like
using the values dictionary to tell it to return only comics worth more than $500. And the
orderby clause works the same way—we can tell LINQ to order the comics by their value.

You can
choose any
name you
want when
you use a
from clause.
We chose
“comic.”

Output:
Hippie Madness (misprinted) is worth $13,525.00
Johnny America vs. the Pinko is worth $3,600.00
Woman’s Work is worth $650.00

	 LINQ may look like SQL, but it doesn’t work like SQL.

If you’ve worked with SQL before, you’ll recognize keywords like select, from, where,
descending, and join. But LINQ is very dfiferent—treat it like SQL, and you’ll end up
with code that doesn’t do what you expect! One big difference is that SQL operates on
tables, while LINQ uses enumerable objects or sequences. Rows in a table aren’t in any

particular order; sequences have a specific order. And LINQ’s ability to call methods on the objects in
a sequence and deferred execution (which you’ll learn about) make it a very different beast entirely!

you are here 4   657

querying data and building apps with LINQ

Jimmy could use some help
Let’s help Jimmy out by building him a Windows Store app
to help him manage his comic collection—and to show
him just how useful LINQ can be when it comes to data.

Windows Store apps use page-based navigat ion
Open up the toolbox and find a XAML equivalent of the WinForms
TabControl. Can’t find it? That’s not an accident. Tabs are a staple
of desktop applications, but when you’re not using them they can
clutter up the screen. Windows store apps use a navigation system
that’s based on pages, which can reduce that clutter and provide
a more intuitive interface for your program.

Read more about navigation design for Windows Store apps here:
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx

When your app navigates to another
page, the back button becomes
visible, and Jimmy can use it to
navigate back to the previous page.

When Jimmy clicks on an item in the list of

queries on the main page, the app navigates

to the detail page for that query.

658   Chapter 14

so that's what that back button is for

Use the IDE to explore app page navigat ion
Here’s another chance to use the IDE as a learning tool. Go to any Windows Store app that you’ve built and open
up App.xaml.cs. That’s your main application file, and every Windows Store app has one. It’s a subclass of a class
called Application in the Windows.UI.Xaml namespace, and it’s always in a file named App.xaml. Your app’s
Application object initializes the app, and manages app lifetime: launching, suspending, and resuming. And it
does another really useful thing: it creates a Frame object (from Windows.UI.Xaml.Controls), which is what
your app uses to support navigation in your XAML pages.

Find the OnLaunched() method in your App class. It’s run every time your app is launched, and it sets up the frame:

Your code-behind can use the same Frame.Navigate() method to navigate between pages, too. Every XAML page
has a property called Frame. If you were to add a page called AnotherPage to your app, here’s how you’d navigate to it.
Notice the argument query passed to Navigate(). That’s a parameter being passed to the newly created page.

 if (this.Frame != null)

 this.Frame.Navigate(typeof(AnotherPage), query);

When you delete MainPage.xaml and replace it with a Basic Page with the same name, you're adding a new MainPage class to replace the one you removed, so the Navigate() method can create an
instance of your newly added page instead of the default one.

Use the “Go To Definition”
menu option to explore
the Window and Frame
classes that represent
the main window of the
current application and

the navigation frame.

This is where the
app creates a new
navigation frame

that will contain all
of your app's pages.

This is how the app brings up your
main page. The Frame.Navigate()
method creates a new instance of a
page and then displays its contents.

The typeof keyword returns the type
of a class, so that’s how it knows what

page type to instantiate.

If you add a page called AnotherPage, the IDE adds the AnotherPage
class to your project, and this code will navigate to a new instance of
AnotherPage, passing it “query” as an argument.

Flip to leftover #5
in the appendix to

learn more about the
typeof keyword.

This line enables the
frame rate counters in
the corners of the screen.
Try commenting it out.

you are here 4   659

querying data and building apps with LINQ

Create a new Windows Store app project.

Use the Blank App template, delete the MainPage.xaml file, and add a new Basic Page called
MainPage.xaml. Then add another Basic Page called QueryDetail.xaml. Don’t forget
to choose Rebuild Solution from the Build menu before you go on to step #2.

1

Do this!
Start building Jimmy an app
You’ll build an app that uses page navigation to execute different
LINQ queries, starting with the two queries that you’ve seen so far.

ComicQuery

Title
Subtitle
Description
ImagePath

Comic

Name
Issue

Add the Comic class.

You already saw the Comic class from a few pages ago, so go ahead and add
that class to your project.

2

class Comic {

 public string Name { get; set; }

 public int Issue { get; set; }

}

class ComicQuery {
 public string Title { get; private set; }
 public string Subtitle { get; private set; }
 public string Description { get; private set; }
 public string ImagePath { get; private set; }

 public ComicQuery(string title, string subtitle,
 string description, string imagePath) {
 Title = title;
 Subtitle = subtitle;
 Description = description;
 ImagePath = imagePath;
 }
}

Add the ComicQuery class.

You’ll need this class to represent a query, and when this app is done you’ll have
one instance of ComicQuery for each LINQ query in the chapter. Have a look
at the screenshot two pages ago. Each of the queries has an icon, so you’ll need
a way to represent that in your class. XAML has an Image control and all you
need to do is set its Source property to the a string that contains path of an
image in your project. The images will live in the Assets folder, all we need to do
is set the ImagePath property to "Assets/" plus the name of the image file
and bind the Source property of an Image control to it.

3

660   Chapter 14

new app familiar pattern

using System.Collections.ObjectModel;

class ComicQueryManager {

 public ObservableCollection<ComicQuery> AvailableQueries { get; private set; }

 public ObservableCollection<object> CurrentQueryResults { get; private set; }

 public string Title { get; set; }

 public ComicQueryManager() {
 UpdateAvailableQueries();
 CurrentQueryResults = new ObservableCollection<object>();
 }

 private void UpdateAvailableQueries() {
 AvailableQueries = new ObservableCollection<ComicQuery> {
 new ComicQuery("LINQ makes queries easy", "A sample query",
 "Let's show Jimmy how flexible LINQ is",
 "Assets/purple_250x250.jpg"),

 new ComicQuery("Expensive comics", "Comics over $500",
 "Comics whose value is over 500 bucks."
 + " Jimmy can use this to figure out which comics are most coveted.",
 "Assets/captain_amazing_250x250.jpg"),
 };
 }

 public void UpdateQueryResults(ComicQuery query) {
 Title = query.Title;

 switch (query.Title) {
 case "LINQ makes queries easy": LinqMakesQueriesEasy(); break;
 case "Expensive comics": ExpensiveComics(); break;
 }
 }

ComicQueryManager

AvailableQueries
CurrentQueryResults
Title

UpdateAvailableQueries()
UpdateQueryResults()
static BuildCatalog()
static GetPrices()
private LinqMakesQueriesEasy()
private ExpensiveComics()
private CreateImageFromAssets()

Add a query manager class so your controls have something to bind to.

Jimmy’s app will follow the same pattern that you used with the last two apps. The
ComicQueryManager class will do all of the work of running the queries and
exposing properties that contain the results. Each XAML page will have a static
resource that contains an instance of ComicQueryManager, calling its methods
to run the queries and data binding the results to controls.

4

The CurrentQueryResults and Title properties are used to
display the query results on the QueryDetail page.

The ListView of queries
on the main page is bound
to the AvailableQueries
property.

This collection
initializer creates
the ComicQuery
objects to display
in the main page.

The QueryDetail
page uses this
method to run a
LINQ query.

Before you flip the page to see the rest of the class, can you figure out what the
LinqMakesQueriesEasy() and ExpensiveComics() methods will look
like? The app will call those methods to run LINQ queries. But first, read the

next page to learn about anonymous types—you'll use them in those methods.

Did you
know that

you can put
the using
statements

inside of the
namespace

block?

you are here 4   661

querying data and building apps with LINQ

Flip the page to finish the app

Use the new keyword to create anonymous types
You’ve been using the new keyword since Chapter 3 to create instances of objects. Every time you
use it, you include a type (so the statement new Guy() creates an instance of the type Guy). But
you can also use the new keyword without a type to create an anonymous type. That’s a perfectly
valid type that has read-only properties, but doesn’t have a name. You can add properties to your
anonymous type by using an object initializer.

Here’s the statement you'll use in the ExpensiveComics query on the next page that creates an
instance of an anonymous type to add to the collection in the CurrentQueryResults property:

a-non-y-mous, adjective.
not identified by name. Secret
Agent Dash Martin uses his alias to
become anonymous to keep the
KGB agents from recognizing him.

new {
 Title = String.Format("{0} is worth {1:c}",
 comic.Name, values[comic.Issue]),
 ImagePath = "Assets/captain_amazing_250x250.jpg",
}

When you run the program, you can see the objects that it creates just like any other
objects. Here’s what an instance of that anonymous type looks like in the Watch window:

This works just like any other object initializer. You can call methods
like CreateImageFromAssets() and String.Format() in
the object initializer to populate the object’s properties. (Of course,
you can also set them to values if you need to, too.)

The one thing you can’t do is refer to the name of the type, because
the type doesn’t have a name! That’s where the var keyword comes
in very handy, because you can use it to hold a reference to an
anonymous type—like this:

 var myAnonymousObject = new {

 Name = "Bob",

 Cash = 186.3M,

 Age = 37,

 };

 Console.WriteLine(myAnonymousObject.Name);

That code creates an instance of an anonymous type, saves a reference to that new object in the
myAnonymousObject variable, and uses it to write the Name property to the output.

Flip to leftover #9 in the appendix to
learn more about anonymous types.

662   Chapter 14

a rose by any other name

These are the same
BuildCatalog() and
GetPrices() methods
from a few pages ago.

We still don't quite know how
the CreateImageFromAssets()
method works, but I bet we'll
find out on the next page.

Each of these methods executes one
of the LINQ queries from earlier in the
chapter. Instead of writing each result

to the console, it adds each result to the
CurrentQueryResults property, an
ObservableCollection<object>
collection. But take a close look at the
new { } statement. Somehow you’re
using the new keyword with an object

initializer. Usually there’s a type after the
new keyword, but these statements leave

it out so they can create instances of

anonymous types.

The CurrentQueryResults
property is used to display
the query results with data

binding. It doesn’t need to be
cleared because a new page
object is created each time
page navigation occurs, and

it has its own new instance of
ComicQueryManager, with a

newly created empty collection.

 public static IEnumerable<Comic> BuildCatalog() {
 return new List<Comic> {
 new Comic { Name = "Johnny America vs. the Pinko", Issue = 6 },
 new Comic { Name = "Rock and Roll (limited edition)", Issue = 19 },
 new Comic { Name = "Woman’s Work", Issue = 36 },
 new Comic { Name = "Hippie Madness (misprinted)", Issue = 57 },
 new Comic { Name = "Revenge of the New Wave Freak (damaged)", Issue = 68 },
 new Comic { Name = "Black Monday", Issue = 74 },
 new Comic { Name = "Tribal Tattoo Madness", Issue = 83 },
 new Comic { Name = "The Death of an Object", Issue = 97 },
 };
 }

 private static Dictionary<int, decimal> GetPrices() {
 return new Dictionary<int, decimal> {
 { 6, 3600M }, { 19, 500M }, { 36, 650M }, { 57, 13525M },
 { 68, 250M }, { 74, 75M }, { 83, 25.75M }, { 97, 35.25M },
 };
 }

 private void LinqMakesQueriesEasy() {
 int[] values = new int[]
 { 0, 12, 44, 36, 92, 54, 13, 8 };
 var result = from v in values
 where v < 37
 orderby v
 select v;

 foreach (int i in result)
 CurrentQueryResults.Add(
 new {
 Title = i.ToString(),
 ImagePath = "Assets/purple_250x250.jpg",
 }
);
 }

 private void ExpensiveComics() {
 IEnumerable<Comic> comics = BuildCatalog();
 Dictionary<int, decimal> values = GetPrices();

 var mostExpensive = from comic in comics
 where values[comic.Issue] > 500
 orderby values[comic.Issue] descending
 select comic;

 foreach (Comic comic in mostExpensive)
 CurrentQueryResults.Add(
 new {
 Title = String.Format("{0} is worth {1:c}",
 comic.Name, values[comic.Issue]),
 ImagePath = "Assets/captain_amazing_250x250.jpg",
 }
);
 }
}

Here's the rest of the ComicQueryManager class:

you are here 4   663

querying data and building apps with LINQ

Add image files to the Assets folder in your project.

Find the image files purple_250x250.jpg and captain_amazing_250x250.
jpg for this project (you can download them from the book web page
at http://www.headfirstlabs.com/hfcsharp) and save them in a folder. Then
go to the Solution Explorer, right-click on the folder, choose
Add→Existing Item from the menu, and add the files.

Now have a closer look at the code in the LinqMakesQueriesEasy()
method that uses an anonymous type to add an object to the results:

new {

 Title = i.ToString(),
 ImagePath = "Assets/purple_250x250.jpg",
 }

This object will be displayed in a ListView with an Image control in the
item template. When one of these is displayed as an item in that list, its
ImagePath property will be bound to the Source property.

5

Add code-behind for the main page and query detail page.

When the user clicks on the list of queries in the main page, we want the app to navigate to the query
detail page. Open MainPage.xaml.cs and add this event handler to the code-behind. The
SelectionChanged event handler for a ListView can access the items that were selected using the
e.AddedItems. The ListView is bound to an ObservableCollection of ComicQuery objects, so
e.AddedItems[0] will always contain the ComicQuery that the user clicked on. You’ll pass that as a
parameter to the new page using Frame.Navigate().

6

private void ListView_ItemClick(object sender, ItemClickEventArgs e) {
 ComicQuery query = e.ClickedItem as ComicQuery;
 if (query != null)
 this.Frame.Navigate(typeof(QueryDetail), query);
}

You can add an argument to the Frame.Navigate() method to
pass an object as a parameter to the page you’re navigating to.

protected override void OnNavigatedTo(NavigationEventArgs e) {
 ComicQuery comicQuery = e.Parameter as ComicQuery;
 if (comicQuery != null) {
 comicQueryManager.UpdateQueryResults(comicQuery);
 pageTitle.Text = comicQueryManager.Title;
 }
 navigationHelper.OnNavigatedTo(e);
}

When the main page calls Frame.Navigate() to navigate to the query detail page, a ComicQuery object
is passed as a parameter that's used in the the OnNavigatedTo() method. This method is called when the
page is navigated to, and its code-behind is part of the Basic Page template. Find it in QueryDetail.xaml.cs
by expanding . Use e.Parameter to access the navigation parameter:

Add this code to
the OnNavigatedTo()
method to update
the query results and
set the page title.

664   Chapter 14

finish jimmy’s app

<Grid Grid.Row="1" Margin="120,0"
 DataContext="{StaticResource ResourceKey=comicQueryManager}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="Choose a query to run" Margin="10,0,0,20"/>

 <GridView Grid.Row="1" ItemsSource="{Binding AvailableQueries}" SelectionMode="None"
 IsItemClickEnabled="True" ItemClick="ListView_ItemClick">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid HorizontalAlignment="Left" Width="250" Height="250">

 <Image Source="{Binding ImagePath}" Stretch="UniformToFill"/>

 <StackPanel VerticalAlignment="Bottom"
 Background="{ThemeResource ListViewItemOverlayBackgroundThemeBrush}">

 <TextBlock Text="{Binding Title}"
 Foreground="{ThemeResource ListViewItemOverlayForegroundThemeBrush}"
 Style="{StaticResource BaseTextBlockStyle}" Height="60"
 Margin="15,0,15,0" FontWeight="SemiBold"/>

 <TextBlock Text="{Binding Subtitle}"
 Foreground=
 "{ThemeResource ListViewItemOverlaySecondaryForegroundThemeBrush}"
 Style="{StaticResource BaseTextBlockStyle}" TextWrapping="NoWrap"
 Margin="15,0,15,10" FontSize="12"/>

 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
</Grid>

<Page.Resources>

 <local:ComicQueryManager x:Name="comicQueryManager"/>

 <x:String x:Key="AppName">Jimmy's Comics</x:String>

</Page.Resources>

Finish the XAML for the main page.

Open MainPage.xaml. Here are the resources for the page:

7

Use a Grid to lay out the content—it has a TextBlock and a GridView. The GridView control is just like
a ListView. The only difference is that instead of laying out items And just like the ListView, it uses a
DataTemplate to display an Image and StackPanel with two TextBlocks for each item:

The ListView control
automatically adds vertical
scrollbars if the list items
scroll off the bottom. Try
adding Height="*" to

the second RowDefinition
in the Grid’s row

definitions. The scrollbars
disappear! That’s because
the row expands to fit all of

the ListView’s items.

Setting the
SelectionMode
property to
None disables
the list selection
functionality, and
IsItemClickEnabled
set to true causes
the ItemClick
event to fire
when an item is
clicked.

We used some pretty long style names in the data
template. Where do you think they came from?

This GridView's ItemsSource
property is bound to the
AvailableQueries property, an
ObservableCollection. Any
object it contains is displayed
using the data template.

All we need to do to
display an image for an
item in the GridView
is make sure that its
ImagePath property
is set to the name of
an image file in the
project's Assets folder.

you are here 4   665

querying data and building apps with LINQ

<Page.Resources>
 <local:ComicQueryManager x:Name="comicQueryManager"/>
 <x:String x:Key="AppName">Query Detail</x:String>
</Page.Resources>

Finish the XAML and code-behind for the query detail page.

Open QueryDetail.xaml. Here are the resources for the page:

8

Use another Grid to lay out the content:

Run your program! And then use the IDE to explore it and understand how it works.

Put a breakpoint in ListView_ItemClick() in MainPage.xaml.cs and add watches to see exactly what is in the
ComicQueryManager object. Look at how the current query and the query results work, and match up the
properties in the anonymous types to the bound properties in the GridView and ListView.

9

<Grid Grid.Row="1" Margin="120,0"
 DataContext="{StaticResource ResourceKey=comicQueryManager}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="Query results" Margin="10,0,0,20"/>

 <ListView Grid.Row="1" Margin="0,-10,0,0" ItemsSource="{Binding CurrentQueryResults}"
 SelectionMode="None">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Margin="6">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Image Source="{Binding ImagePath}" Stretch="UniformToFill" />

 <StackPanel Grid.Column="1" Margin="10,0,0,0">

 <TextBlock Text="{Binding Title}"
 Style="{StaticResource TitleTextBlockStyle}"
 TextWrapping="NoWrap" MaxHeight="40"/>

 <TextBlock Text="{Binding Subtitle}"
 Style="{StaticResource CaptionTextBlockStyle}"
 TextWrapping="NoWrap"/>

 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

This ListView displays the
items in the query results. Each
item is displayed using the
DataTemplate, which works a
lot like the one in the main page.

666   Chapter 14

LINQ is versat ile
You can do a lot more than just pull a few items out of a
collection. You can modify the items before you return them.
And once you’ve generated a set of result sequences, LINQ gives
you a bunch of methods that work with them. Top to bottom,
LINQ gives you the tools you need to manage your data.

Modify every item returned from the query.
This code will add a string onto the end of each string in an array. It doesn’t
change the array itself—it creates a new sequence of modified strings.

string[] sandwiches = { "ham and cheese", "salami with mayo",
			 "turkey and swiss", "chicken cutlet" };
var sandwichesOnRye =
 from sandwich in sandwiches
 select sandwich + " on rye";

foreach (var sandwich in sandwichesOnRye)
Console.WriteLine(sandwich);

This adds the string “ on rye” to every item in the results from the query.

Notice that all the items returned have
“ on rye” added to the end.

Output:
ham and cheese on rye
salami with mayo on rye
turkey and swiss on rye
chicken cutlet on rye

This change is
made to the items
in the results of
your query…but
not to the items
in the original
collection or
database.

Perform calculations on collections.
Remember, we said LINQ provides extension methods for your collections
(and anything else that implements IEnumerable<T>). And some of
those are pretty handy on their own, without actually requiring a query:

Random random = new Random();
List<int> listOfNumbers = new List<int>();
int length = random.Next(50, 150);
for (int i = 0; i < length; i++)
 listOfNumbers.Add(random.Next(100));

Console.WriteLine("There are {0} numbers",
 listOfNumbers.Count());
Console.WriteLine("The smallest is {0}",
 listOfNumbers.Min());
Console.WriteLine("The biggest is {0}",
 listOfNumbers.Max());
Console.WriteLine("The sum is {0}",
 listOfNumbers.Sum());
Console.WriteLine("The average is {0:F2}",
 listOfNumbers.Average());

None of these methods
are part of the .NET
collections classes…they’re
all defined by LINQ.

that’s why jimmy loves LINQ

These are all extension methods for
IEnumerable<T> in the System.Linq
namespace using a static class called
Enumerable. But don’t take our
word for it! Click on any of them
and use Go To Definition to see
for yourself.

≥

≥

All collections are enumerable—they
implement IEnumerable<T>—but not

everything that’s enumerable is technically
a collection unless it implements the
ICollection<T> interface, which

means implementing Add(), Clear(),
Contains(), CopyTo(), and Remove()…

and, of course, ICollection<T>
extends IEnumerable<T>. LINQ deals
with sequences of values or objects, not

collections, and all you need for a sequence is
an object that implements IEnumerable<T>.

you are here 4   667

querying data and building apps with LINQ

Store all or part of your results in a new sequence.
Sometimes you’ll want to keep your results from a LINQ query
around. You can use the ToList() command to do just that:

var under50sorted =
 from number in listOfNumbers
 where number < 50
 orderby number descending
 select number;

List<int> newList = under50sorted.ToList();

ToList() converts a LINQ var into a List<T> object, so you can keep results of a query around. There’s also ToArray() and ToDictionary() methods, which do just what you’d expect.

This time, we’re
sorting a list
of numbers in
descending order,
from highest to
lowest.

You can even take just a subset of the results, using
the Take() method:

var firstFive = under50sorted.Take(5);

List<int> shortList = firstFive.ToList();
foreach (int n in shortList)
 Console.WriteLine(n);

Take() pulls out the supplied number of items
from the first set of the results from a
LINQ query. You can put these into another
var, and then convert that into a list.

Q: That’s a lot of new keywords—from,
where, orderby, select…it’s like a
whole different language. Why does it look
so different from the rest of C#?

A: Because it serves a different purpose.
Most of the C# syntax was built to do one
small operation or calculation at a time. You
can start a loop, or set a variable, or do a
mathematical operation, or call a method…
those are all single operations.

LINQ queries look different because a single
LINQ query usually does a whole bunch of
things at once. Let’s take a closer look at a
straightforward query:

var under10 =
 from number in numberArray
 where number < 10
 select number;

It looks really simple—not a lot of stuff there,
right? But this is actually a pretty complex
piece of code. Think about what’s got to
happen for the program to actually select all
the numbers from numberArray that
are less than 10. First, you need to loop
through the entire array. Then, each number
is compared to 10. Then those results need
to be gathered together so your code can
use them.

And that’s why LINQ looks a little odd:
because C# has to cram a whole lot of
behavior into a very small space.

LINQ lets you write
queries that do very
complex things using
very little code.

Check out Microsoft’s official 101 LINQ Samples page.
There’s way more that LINQ can do. Luckily, Microsoft gives you a great little reference to help you along.

http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

	 LINQ queries
aren’t run until
you access
their results!

It’s called “deferred
evaluation”—the

LINQ query doesn’t actually do
any looping until a statement is
executed that uses the results
of the query. That’s why ToList()
is important: it tells LINQ to
evaluate the query immediately.

≥

≥

A sequence is an ordered set of objects
or values, which is what LINQ returns in
an IEnumerable<T>.

668   Chapter 14

expand jimmy’s app

Add the new queries to Jimmy’s app
Jimmy’s curious about how LINQ can help manage his data. Add the three queries from the
previous pages to the app to show him what LINQ can do. All you need to do is update the
ComicQueryManager class (and add another image to the Assets folder). Start by adding
three ComicQuery objects to the object initializer for the AvailableQueries property:

private void UpdateAvailableQueries() {
 AvailableQueries = new ObservableCollection<ComicQuery> {
 new ComicQuery("LINQ makes queries easy", "A sample query",
 "Let's show Jimmy how flexible LINQ is",
 "Assets/purple_250x250.jpg"),

 new ComicQuery("Expensive comics", "Comics over $500",
 "Comics whose value is over 500 bucks."
 + " Jimmy can use this to figure out which comics are most coveted.",
 "Assets/captain_amazing_250x250.jpg"),

 new ComicQuery("LINQ is versatile 1", "Modify every item returned from the query",

 "This code will add a string onto the end of each string in an array.",

 "Assets/bluegray_250x250.jpg"),

 new ComicQuery("LINQ is versatile 2", "Perform calculations on collections",

 "LINQ provides extension methods for your collections (and anything else"

 + " that implements IEnumerable<T>).",

 "Assets/purple_250x250.jpg"),

 new ComicQuery("LINQ is versatile 3",

 "Store all or part of your results in a new sequence",

 "Sometimes you’ll want to keep your results from a LINQ query around.",

 "Assets/bluegray_250x250.jpg"),
 };
}

public void UpdateQueryResults(ComicQuery query) {
 Title = query.Title;

 switch (query.Title) {
 case "LINQ makes queries easy": LinqMakesQueriesEasy(); break;
 case "Expensive comics": ExpensiveComics(); break;
 case "LINQ is versatile 1": LinqIsVersatile1(); break;
 case "LINQ is versatile 2": LinqIsVersatile2(); break;
 case "LINQ is versatile 3": LinqIsVersatile3(); break;
 }
}

Add these
three queries
so they show
up on the
main page.

Next, you’ll need to update the switch statement to run the queries when they’re selected in the ListView:

Add these three cases to the
switch statement. They'll get
executed by the query detail
page when it's navigated to.

Do this

This is an example of separation of concerns. You
can add queries by modifying ComicQueryManager
without changing any XAML or code-behind because
you encapsulated all of the query code in that class.

you are here 4   669

querying data and building apps with LINQ

private void LinqIsVersatile1() {
 string[] sandwiches = { "ham and cheese", "salami with mayo",
		 "turkey and swiss", "chicken cutlet" };
 var sandwichesOnRye =
 from sandwich in sandwiches
 select sandwich + " on rye";

 foreach (var sandwich in sandwichesOnRye)
 CurrentQueryResults.Add(CreateAnonymousListViewItem(sandwich, "bluegray_250x250.jpg"));
}

private void LinqIsVersatile2() {
 Random random = new Random();
 List<int> listOfNumbers = new List<int>();
 int length = random.Next(50, 150);
 for (int i = 0; i < length; i++)
 listOfNumbers.Add(random.Next(100));

 CurrentQueryResults.Add(CreateAnonymousListViewItem(
 String.Format("There are {0} numbers", listOfNumbers.Count())));
 CurrentQueryResults.Add(
 CreateAnonymousListViewItem(String.Format("The smallest is {0}", listOfNumbers.Min())));
 CurrentQueryResults.Add(
 CreateAnonymousListViewItem(String.Format("The biggest is {0}", listOfNumbers.Max())));
 CurrentQueryResults.Add(
 CreateAnonymousListViewItem(String.Format("The sum is {0}", listOfNumbers.Sum())));
 CurrentQueryResults.Add(CreateAnonymousListViewItem(
 String.Format("The average is {0:F2}", listOfNumbers.Average())));
}

private void LinqIsVersatile3() {
 List<int> listOfNumbers = new List<int>();
 for (int i = 1; i <= 10000; i++)
 listOfNumbers.Add(i);

 var under50sorted =
 from number in listOfNumbers
 where number < 50
 orderby number descending
 select number;

 var firstFive = under50sorted.Take(6);

 List<int> shortList = firstFive.ToList();
 foreach (int n in shortList)
 CurrentQueryResults.Add(CreateAnonymousListViewItem(n.ToString(), "bluegray_250x250.jpg"));
}

You'll need to download the
bluegray_250x250.jpg file from

the Head First Labs website and
add it to your Assets folder. If you

don't some of the items in the
main page won't have images!

You’ll need to add these three methods. Compare them with the LINQ queries on the previous two pages:

You need to add one more method to
make this code work. Each of these three

LinqIsVersatile methods calls another method
called CreateAnonymousListViewItem().
Its first parameter is the title, and it should be used
as the Title property in a new anonymous object.
The second is an optional parameter. It’s the name of
the image file to load into the ImagePath property
of the anonymous object, and it should default to
purple_250x250.jpg if it’s not included. Can you come up
with this method? The answer is on the next page.

Micro
Do this

670   Chapter 14

¢¢ from is how you specify the IEnumerable<T>
that you’re querying. It’s always followed by the
name of a variable, followed by in and the name
of the input (from value in values).

¢¢ where generally follows the from clause. That’s
where you use normal C# conditions to tell LINQ
which items to pull (where value < 10).

¢¢ orderby lets you order the results. It’s followed
by the criteria that you’re using to sort them, and
optionally descending to tell it to reverse the
sort (orderby value descending).

¢¢ select is how you specify what goes into the
results (select value).

¢¢ Take lets you pull the first items out of the results
of a LINQ query (results.Take(10)).
LINQ gives you other methods for each sequence:
Min(), Max(), Sum(), and Average().

¢¢ You can select anything—you’re not limited to
selecting the name that you created in the from
clause. Here’s an example: if your LINQ query
pulls a set of prices out of an array of int values
and names them value in the from clause,
you can return a sequence of price strings like
this: select String.Format("{0:c}",
value).

This is just like the {0:x} you used in Chapter 9 when you
built the hex dumper. There’s also {0:d} and {0:D} for
short and long dates, and {0:P} or {0:Pn} to print a
percent (with n decimal places).

a little review

Q: How does the from clause work?

A: It’s a lot like the first line of a
foreach loop. One thing that makes
thinking about LINQ queries a little tricky is
that you’re not just doing one operation.

A LINQ query does the same thing over and
over again for each item in a collection. The
from clause does two things: it tells LINQ
which collection to use for the query, and it
assigns a name to use for each member of
the collection that’s being queried.

The way the from clause creates a new
name for each item in the collection is really
similar to how a foreach loop does it.
Here’s the first line of a foreach loop:
 foreach (int i in values)

That foreach loop temporarily creates
a variable called i, which it assigns
sequentially to each item in the values
collection. Now look at a from clause in a
LINQ query on the same collection:

 from i in values

That clause does pretty much the same thing.
It creates a temporary variable called i and
assigns it sequentially to each item in the
values collection. The foreach loop
runs the same block of code for each item in
the collection, while the LINQ query applies
the same criteria in the where clause
to each item in the collection to determine
whether or not to include it in the results. But
one thing to keep in mind here is that LINQ
queries are just extension methods. They
call methods that do all the real work. You
could call those same methods without LINQ.

Q: How does LINQ decide what goes
into the results?

A: That’s what the select clause is
for. Every LINQ query returns a sequence,
and every item in that sequence is of
the same type. It tells LINQ exactly what
that sequence should contain. When
you’re querying an array or list of a
single type—like an array of ints or a
List<string>—it’s obvious what
goes into the select clause. But what
if you’re selecting from a list of Comic
objects? You could do what Jimmy did
and select the whole class. But you could
also change the last line of the query to
select comic.Name to tell it to
return a sequence of strings. Or you could
do select comic.Issue and have
it return a sequence of ints.

private object CreateAnonymousListViewItem(string title,

 string imageFilename = "purple_250x250.jpg") {

 return new {

 Title = title,

 ImagePath = "Assets/" + imageFilename,

 };

}

Here's the optional
parameter. If it's left
out, the purple box is used.

Micro

solution

you are here 4   671

querying data and building apps with LINQ

);

LINQ Magnets
Rearrange the magnets so they produce
the output at the bottom of the page.

Console.WriteLine("Get your kicks on route {0}",

{ 36, 5, 91, 3, 41, 69, 8 };

int[] badgers =

var skunks =

pigeon in badgers

orderby

where

select

pigeon descending

pigeon + 5;

(pigeon != 36 && pigeon < 50)

var bears =

var weasels =

from

from

sparrow in bears

select

sparrow - 1;

skunks

.Take(3);

weasels.Sum()

Output:
Get your kicks on route 66

672   Chapter 14

);

Console.WriteLine("Get your kicks on route {0}",

{ 36, 5, 91, 3, 41, 69, 8 };

var skunks =

pigeon in badgers

orderby

where

select

pigeon descending

pigeon + 5;

(pigeon != 36 && pigeon < 50)

var bears =

var weasels =

from

from sparrow in bears

select sparrow - 1;

skunks .Take(3);

weasels.Sum()

int[] badgers =

LINQ Magnets Solution
Rearrange the magnets so they produce
the output at the bottom of the page.

LINQ starts with some sort
of sequence, collection, or
array—in this case, an array
of integers.

This LINQ statement pulls all
the numbers that are below
50 and not equal to 36 out
of the array, adds 5 to each
of them, sorts them from
biggest to smallest, puts them
in a new object, and points
the skunks reference at it.

Here’s where we take the first three numbers in skunks and put them into a new sequence called bears.

This statement just subtracts 1 from each number in bears and puts them all into weasels.

The numbers in weasels add up to 66.

After this statement, skunks contains four numbers: 46, 13, 10, and 8.

After this
statement, bears
contains three
numbers: 46, 13,
and 10.

After this statement, weasels contains three numbers: 45, 12, and 9.

45 + 12 + 9 = 66
Output:
Get your kicks on route 66

are you a LINQ groupie?

“from pigeon in badgers” makes for a good puzzle, but an unreadable LINQ query. “from badger in badgers” is more readable.

you are here 4   673

querying data and building apps with LINQ

LINQ can combine your
results into groups
You can use LINQ to build your results into groups,
which can be really useful when you need to slice
and dice your collections. Let’s take a closer look at a
query that breaks a collection into groups.

results

var beeGroups =

 from bee in world.Bees

 group bee by bee.CurrentState

 into beeGroup

 orderby beeGroup.Key

 select beeGroup;

The query starts out just like the other queries you’ve
seen—by pulling individual bee objects out of the
world.Bees collection, a List<Bee> object.

1

The next line in the query has a new keyword:
group. This tells the query to return groups
of bees. What that means is that rather than
returning one single sequence, the query will
return a sequence of sequences. group
bee by bee.CurrentState tells
LINQ to return one group for each unique
CurrentState property that it finds in the
bees that it selects. Finally, we need to give
LINQ a name for the group. That’s what the
next line is for: into beeGroup says that the
name “beeGroup” refers to the new groups.

2

Now that we’ve got groups, we can manipulate them.
Since we’re returning a sequence of groups, we can
use the orderby keyword to put the groups in the
order of the CurrentState enum values (Idle,
FlyingToFlower, etc.). orderby beeGroup.
Key tells the query to put the sequence of groups
in order, sorting them by the group key. Since we
grouped the bees by their CurrentState, that’s
what is being used as a key.

3

Since the bees were grouped by their state,
we call that state the “key.” A group’s key
is the criteria it was grouped by.

Now we just have to use the select
keyword to indicate what’s being returned
by the query. Since we’re returning
groups, we select the group name:
select beeGroup;

4

Note that this query returns groups of bees, not individual bees.

beeGroup

currentState = MakingHoney

Collection o
f

B
e

e
s

currentState = FlyingToFlower

beeGroup

currentState = GatheringNectar

You can see this LINQ query in action
(and learn more about how WinForms
applications work) by building some
nifty animation in a beehive simulator.
Download the free GDI+ chapter from
http://headfirstlabs.com/hfcsharp.

674   Chapter 14

Combine Jimmy’s values into groups
Jimmy buys a lot of cheap comic books, some midrange comic books, and a few expensive ones, and he wants to know
what his options are before he decides what comics to buy. He’s taken those prices he got from recent sales on Greg’s List
and put them into a Dictionary<int, decimal> using his GetPrices() method. Let’s now use LINQ to group
them into three groups: one for cheap comics that cost under $100, one for midrange comics that cost between $100 and
$1,000, and one for expensive comics that cost over $1,000. We’ll create a PriceRange enum that we’ll use as the key
for the groups, and a method called EvaluatePrice() that’ll evaluate a price and return a PriceRange.

Now we can group the comics by their price categories.
The LINQ query returns a sequence of sequences. Each of the sequences inside the results has
a Key property, which matches the PriceRange that was returned by EvaluatePrice(). Look
closely at the group by clause—we’re pulling pairs out of the dictionary, and using the name pair
for each of them: pair.Key is the issue number, and pair.Value is the price from Greg’s List.
Adding group pair.Key tells LINQ to create groups of issue numbers, and then bundles all of those
groups up based on the price category that’s returned by EvaluatePrice():

Dictionary<int, decimal> values = GetPrices();
 var priceGroups =
 from pair in values
 group pair.Key by EvaluatePrice(pair.Value)
 into priceGroup
 orderby priceGroup.Key descending
 select priceGroup;
 foreach (var group in priceGroups) {
 Console.Write("I found {0} {1} comics: issues ", group.Count(), group.Key);
 foreach (var issueNumber in group)
 Console.Write(issueNumber.ToString() + " ");
 Console.WriteLine();
}

2

Every group needs a key—we’ll use an enum for that.
The group’s key is the thing that all of its members have in common. The key can be anything: a
string, a number, even an object reference. We’ll be looking at the prices that Jimmy got from Greg’s
List. Each group that the query returns will be a sequence of issue numbers, and the group’s key
will be a PriceRange enum. The EvaluatePrice() method takes a price as a parameter and
returns a PriceRange:

enum PriceRange { Cheap, Midrange, Expensive }

static PriceRange EvaluatePrice(decimal price) {
 if (price < 100M) return PriceRange.Cheap;
 else if (price < 1000M) return PriceRange.Midrange;
 else return PriceRange.Expensive;
}

1

The query figures out which group a
particular comic belongs to by sending
its price to EvaluatePrice(). That
returns a PriceRange enum, which it
uses as the group’s key.

Each of the groups is a sequence, so we
added an inner foreach loop to pull each
of the issue numbers out of the group.

the key to success

Output:
I found 2 Expensive comics: issues 6 57
I found 3 Midrange comics: issues 19 36 68
I found 3 Cheap comics: issues 74 83 97

Try adding the code on
this page to a new Console

app—see if you can get it to
work! You’ll add the query to
Jimmy’s Windows Store app

at the end of the chapter.

you are here 4   675

querying data and building apps with LINQ

Pool Puzzle
Your job is to take snippets from the

pool and place them into the blank
lines in the program. You can use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make the
code produce this output:

Note: Each snippet
from the pool can be
used more than once!

var ______ =

 from ______ in ______

 ______ line by line.______

 into wordGroups

 orderby ________.______

 select ________;

____ _________ = words.______(2);

foreach (var group in twoGroups)

{

 int i = 0;

 foreach (______ inner in ______) {

 i++;

 if (i == ______.Key) {

 var poem =

 ______ word in ______.______

 ________ word descending

 ______ word + ____;

 foreach (var word in ______)
 Console.Write(word);

 }

 }

}

class Line {

 public string[] Words;

 public int Value;

 public Line(string[] Words, int Value) {

 this.Words = Words; this.Value = Value;

 } }

Line[] lines = {

 new Line(new string[] { "eating", "carrots,",

 "but", "enjoy", "Horses" } , 1),

 new Line(new string[] { "zebras?", "hay",

 "Cows", "bridge.", "bolted" } , 2),

 new Line(new string[] { "fork", "dogs!",

 "Engine", "and" }, 3) ,

 new Line(new string[] { "love", "they",

 "apples.", "eating" }, 2) ,

 new Line(new string[] { "whistled.", "Bump" }, 1) };

from
to

select
inside

outside
orderby

into
output

Horses enjoy eating carrots, but they love eating apples.

+
-

+=
-=
“”
“ ”

int
string

var
[]

[1]
[2]

in
by

Key
Value

Line[]
lines
new
line

group
 Take

 wordGroups
twoGroups

Value
Key

Words
words

this
inner

Hint: LINQ sorts strings in
alphabetical order.

676   Chapter 14

class Line {
 public string[] Words;
 public int Value;
 public Line(string[] Words, int Value) {
 this.Words = Words; this.Value = Value;
 }
}

Line[] lines = {
 new Line(new string[] { "eating", "carrots,", "but", "enjoy", "Horses" } , 1),
 new Line(new string[] { "zebras?", "hay", "Cows", "bridge.", "bolted" } , 2),
 new Line(new string[] { "fork", "dogs!", "Engine", "and" }, 3) ,
 new Line(new string[] { "love", "they", "apples.", "eating" }, 2) ,
 new Line(new string[] { "whistled.", "Bump" }, 1)
};

var words =
 from line in lines
 group line by line.Value
 into wordGroups
 orderby wordGroups.Key
 select wordGroups;

var twoGroups = words.Take(2);

foreach (var group in twoGroups)
{
 int i = 0;
 foreach (var inner in group) {
 i++;
 if (i == group.Key) {
 var poem =
 from word in inner.Words
 orderby word descending
 select word + “ ”;
 foreach (var word in poem)
 Console.Write(word);
 }
 }
}

Output: Horses enjoy eating carrots, but they love eating apples.

This first LINQ query divides the Line objects in the lines[] array into groups, grouped by their Value, in ascending order of the Value key.

The first two groups are the
lines with Values 1 and 2.

Did you figure out that the
two phrases “Horses enjoy eating
carrots, but” and “they love
eating apples” are in descending
alphabetical order?

This loop does a LINQ query
on the first Line object in the
first group and the second Line
object in the second group.

two collections walk into a var

Pool Puzzle Solution

you are here 4   677

querying data and building apps with LINQ

Use join to combine t wo collect ions into one sequence

List<Purchas
e>

on comic.Issue
equals purchase.Issue

LINQ Seque
n c

eresults

List<Comic>

Issue = 6 Name = "Johnny America"

Issue = 19 Name = "Rock and Roll"

Issue = 57

Price = 3600

Price = 375

Name = "Hippie Madness" Price = 13215

from comic

in comics
jo
in
 p
ur
ch
as
e

in
 p
ur
ch
as
es

select new { comic.Name,
comic.Issue, purchase.Price }

Jimmy’s got a whole collection of comics he’s purchased, and he wants to compare them with the prices he
found from sales on Greg’s List to see if the prices he’s been paying are better or worse. He’s been tracking
his purchases using a Purchase class with two automatic properties, Issue and Price. And he’s got a
List<Purchase> called purchases that’s got all the comics he’s bought. But now he needs to match
up the purchases he’s made with the prices he found on Greg’s List. How’s he going to do it?

LINQ to the rescue! Its join keyword lets you combine data from two sources using a single
query. It does it by comparing items in one sequence with their matching items in a second sequence.
(LINQ is smart enough to do this efficiently—it doesn’t actually compare every pair of items unless it
has to.) The final result combines every pair that matches.

Start off your query with the usual from clause.
But instead of following it up with the criteria it’ll
use to determine what goes into the results, you add:
 join name in collection

The join clause tells LINQ to loop through both
collections to match up pairs with one member from
each collection. It assigns name to the member it’ll
pull out of the joined collection in each iteration.
You’ll use that name in the where clause.

1

You’ll continue the LINQ query
with where and orderby
clauses as usual. You could finish
it with a normal select clause,
but you usually want to return
results that pull some data from
one collection and other data
from the other. That’s where
you use select new to create
a custom set of results using an
anonymous type.

3

Next you’ll add the on clause, which
tells LINQ how to match the two
collections together. You’ll follow it
with the name of the member of
the first collection you’re matching,
followed by equals and the name of
the member of the second collection to
match it up with.

2

class Purchase {
 public int Issue
 { get; set; }
 public decimal Price
 { get; set; }
}

The select new is followed
by curly brackets that
contain the data to
return in the results.

Jimmy’s joining his comics
to purchases, a list of
comics he’s bought.

Jimmy’s got his data in a collection of
Purchase objects called purchases.

Flip to leftover #9 in the appendix to
learn more about anonymous types!

678   Chapter 14

Now he can do the join!
You’ve seen all the parts of this query already…now here they are, put together in one piece.

IEnumerable<Comic> comics = BuildCatalog();
Dictionary<int, decimal> values = GetPrices();
IEnumerable<Purchase> purchases = Purchase.FindPurchases();
 var results =
 from comic in comics
 join purchase in purchases
 on comic.Issue equals purchase.Issue
 orderby comic.Issue ascending
 select new { comic.Name, comic.Issue, purchase.Price };
 decimal gregsListValue = 0;
decimal totalSpent = 0;
foreach (var result in results) {
 gregsListValue += values[result.Issue];
 totalSpent += result.Price;
 Console.WriteLine("Issue #{0} ({1}) bought for {2:c}",
 result.Issue, result.Name, result.Price);
}
Console.WriteLine("I spent {0:c} on comics worth {1:c}",
 totalSpent, gregsListValue);

2

Jimmy saved a bunch of dough
It looks like Jimmy drives a hard bargain. This query creates a list of
Purchase classes that contain his purchases, and compares them
with the prices he found from recent sales on Greg’s List.

First Jimmy created his collection to join.
Jimmy already had his first collection—he just used his BuildCatalog() method from before. So
all he had to do was write a FindPurchases() method to build his list of Purchase classes.

public static IEnumerable<Purchase> FindPurchases() {
 List<Purchase> purchases = new List<Purchase>() {
 new Purchase() { Issue = 68, Price = 225M },
 new Purchase() { Issue = 19, Price = 375M },
 new Purchase() { Issue = 6, Price = 3600M },
 new Purchase() { Issue = 57, Price = 13215M },
 new Purchase() { Issue = 36, Price = 660M },
 };
 return purchases;
}

1

Jimmy’s real happy
that he knows LINQ,
because it let him
see just how hard a
bargain he can drive!

When Jimmy used a join clause, LINQ
compared every item in the comics collection
with each item in purchases to see which
ones have comic.Issue equal to purchase.Issue.

The select clause creates a result set with Name and Issue from the comic member, and Price from the purchase member.

jimmy’s a joiner

Jimmy paid $13,215 for issue #57.

Output:
Issue #6 (Johnny America vs. the Pinko) bought for $3,600.00

Issue #19 (Rock and Roll (limited edition)) bought for $375.00

Issue #36 (Woman's Work) bought for $660.00

Issue #57 (Hippie Madness (misprinted)) bought for $13,215.00

Issue #68 (Revenge of the New Wave Freak (damaged)) bought for $225.00

I spent $18,075.00 on comics worth $18,525.00

This is a static
method in the
Purchase class.

you are here 4   679

querying data and building apps with LINQ

¢¢ The group clause tells LINQ to group the
results together—when you use it, LINQ creates a
sequence of group sequences.

¢¢ Every group contains members that have one
member in common, called the group’s key. Use
the by keyword to specify the key for the group.
Each group sequence has a Key member that
contains the group’s key.

¢¢ join queries use an on…equals clause to tell
LINQ how to match the pairs of items.

¢¢ Use a join clause to tell LINQ to combine two
collections into a single query. When you do, LINQ

compares every member of the first collection with
every member of the second collection, including
the matching pairs in the results.

¢¢ When you’re doing a join query, you usually
want a set of results that includes some members
from the first collection and other members from the
second collection. The select clause lets you
build custom results from both of them.

¢¢ You can use select new to construct custom
LINQ query results that include only the items that
you want in your result sequence.

v Add the last two LINQ queries to Jimmy’s app.

Add the ComicQuery objects to UpdateAvailableQueries().
Update the AvailableQueries object initializer to instantiate two new ComicQuery
objects so they get added to the main page. Here’s what the new buttons should look like:

1

Add methods to execute the queries and update the output.
You’ll also need the Purchase class and EvaluatePrice() method from a
few pages ago, and don’t forget to add the PriceRange enum to the project. Add
EvaluatePrice() as a static method to the Purchases class.

2

Add the new queries to UpdateQueryResults().
Once you add the two new query methods to the switch statement in
UpdateQueryResults, you’re in business.

3

Can you figure
out how to make
the page title tell
Jimmy how much he
spent and how much
they were worth?

680   Chapter 14

no dumb queries

Q: I don’t quite get how join works.

A: join works with any two sequences.
Let’s say you’ve got a collection of football
players called players—its items are
objects that have a Name property, a
Position property, and a Number
property. So we could pull out the players
whose jerseys have a number bigger than
10 with this query:

var results =
 from player in players
 where player.Number > 10
 select player;

Let’s say we wanted to figure out each
player’s shirt size, and we’ve got a
jerseys collection whose items have a
Number property and a Size property. A
join would work really well for that:

var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select shirt;

Q: Hold on, that query will just give
me a bunch of shirts. What if I want to
connect each player to his shirt size, and
I don’t care about his number at all?

A: That’s what anonymous types are
for—you can construct an anonymous type
that only has the data you want in it. And it
lets you pick and choose from the various
collections that you’re joining together, too.

So you can select the player’s name and the
shirt’s size, and nothing else:

var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select new {
 player.Name,
 shirt.Size
 };

The IDE is smart enough to figure out exactly
what results you’ll be creating with your
query. If you create a loop to enumerate
through the results, as soon as you type
the variable name the IDE will pop up an
IntelliSense list.

foreach (var r in results)
 r.

Notice how the list has Name and Size in
it. If you added more items to the select
clause, they’d show up in the list too. That’s
because the query would create a different
anonymous type with different members.

Q: Can you rewind a minute and
explain what var is again?

A: Yes, definitely. The var keyword
solves a tricky problem that LINQ brings
with it. Normally, when you call a method
or execute a statement, it’s absolutely clear
what types you’re working with. If you’ve
got a method that returns a string, for
instance, then you can only store its results
in a string variable or field.

But LINQ isn’t quite so simple. When you
build a LINQ statement, it might return an
anonymous type that isn’t defined anywhere
in your program. Yes, you know that it’s going
to be a sequence of some sort. But what
kind of sequence will it be? You don’t know—
because the objects that are contained in the
sequence depend entirely on what you put in
your LINQ query. Take this query, for example,
from Jimmy’s program:

var mostExpensive =
 from comic in comics
 where
 values[comic.Issue]
 > 500
 orderby
 values[comic.Issue]
 descending
 select comic;

What if you changed the last line to this:

 select new
 { Name = comic.Name,
 IssueNumber = "#" +
comic.Issue };

That returns a perfectly valid type: an
anonymous type with two members, a
string called Name and a string called
IssueNumber. But we don’t have a
class definition for that type anywhere in our
program! Sure, you don’t actually need to
run the program to see exactly how that type
is defined. But the mostExpensive
variable still needs to be declared with some
type.

And that’s why C# gives us the var
keyword, which tells the compiler, “OK, we
know that this is a valid type, but we can’t
exactly tell you what it is right now. So why
don’t you just figure that out yourself and not
bother us with it? Thanks so much.”

you are here 4   681

querying data and building apps with LINQ

private void UpdateAvailableQueries() {
 AvailableQueries = new ObservableCollection<ComicQuery> {
 new ComicQuery("LINQ makes queries easy", "A sample query",
 "Let's show Jimmy how flexible LINQ is",
 "Assets/purple_250x250.jpg"),

 new ComicQuery("Expensive comics", "Comics over $500",
 "Comics whose value is over 500 bucks."
 + " Jimmy can use this to figure out which comics are most coveted.",
 "Assets/captain_amazing_250x250.jpg"),

 new ComicQuery("LINQ is versatile 1", "Modify every item returned from the query",

 "This code will add a string onto the end of each string in an array.",

 "Assets/bluegray_250x250.jpg"),

 new ComicQuery("LINQ is versatile 2", "Perform calculations on collections",

 "LINQ provides extension methods for your collections (and anything else"

 + " that implements IEnumerable<T>).",

 "Assets/purple_250x250.jpg"),

 new ComicQuery("LINQ is versatile 3",

 "Store all or part of your results in a new sequence",

 "Sometimes you'll want to keep your results from a LINQ query around.",

 "Assets/bluegray_250x250.jpg"),

 new ComicQuery("Group comics by price range",

 "Combine Jimmy's values into groups",

 "Jimmy buys a lot of cheap comic books, some midrange comic books, and"

 + " a few expensive ones, and he wants to know what his options are"

 + " before he decides what comics to buy.",

 "Assets/captain_amazing_250x250.jpg"),

 new ComicQuery("Join purchases with prices",

 "Let's see if Jimmy drives a hard bargain",

 "This query creates a list of Purchase classes that contain Jimmy's purchases"

 + " and compares them with the prices he found on Greg's List.",

 "Assets/captain_amazing_250x250.jpg"),
 };
}

Adding these two ComicQuery objects
to the AvailableQueries object initializer
causes them to show up on the main page.

Here’s the code you need to add to Jimmy’s app to make the last two LINQ queries show up.

682   Chapter 14

exercise solution

public void UpdateQueryResults(ComicQuery query) {
 Title = query.Title;

 switch (query.Title) {
 case "LINQ makes queries easy": LinqMakesQueriesEasy(); break;
 case "Expensive comics": ExpensiveComics(); break;
 case "LINQ is versatile 1": LinqIsVersatile1(); break;
 case "LINQ is versatile 2": LinqIsVersatile2(); break;
 case "LINQ is versatile 3": LinqIsVersatile3(); break;
 case "Group comics by price range":
 CombineJimmysValuesIntoGroups();
 break;
 case "Join purchases with prices":
 JoinPurchasesWithPrices();
 break;
 }
}

class Purchase {
 public int Issue { get; set; }
 public decimal Price { get; set; }

 public static IEnumerable<Purchase> FindPurchases()
 {
 List<Purchase> purchases = new List<Purchase>() {
 new Purchase() { Issue = 68, Price = 225M },
 new Purchase() { Issue = 19, Price = 375M },
 new Purchase() { Issue = 6, Price = 3600M },
 new Purchase() { Issue = 57, Price = 13215M },
 new Purchase() { Issue = 36, Price = 660M },
 };
 return purchases;
 }

 public static PriceRange EvaluatePrice(decimal price)
 {
 if (price < 100M) return PriceRange.Cheap;
 else if (price < 1000M) return PriceRange.Midrange;
 else return PriceRange.Expensive;
 }
}

enum PriceRange { Cheap, Midrange, Expensive }

Here are the new
cases for the switch
statement that call
the query methods.

Here’s the
Purchase class.
EvaluatePrice()
is now a static
method in the
class.

Don’t forget the
PriceRange enum.

you are here 4   683

querying data and building apps with LINQ

private void JoinPurchasesWithPrices() {
 IEnumerable<Comic> comics = BuildCatalog();
 Dictionary<int, decimal> values = GetPrices();
 IEnumerable<Purchase> purchases = Purchase.FindPurchases();
 var results =
 from comic in comics
 join purchase in purchases
 on comic.Issue equals purchase.Issue
 orderby comic.Issue ascending
 select new {
 Comic = comic,
 Price = purchase.Price,
 Title = comic.Name,
 Subtitle = "Issue #" + comic.Issue,
 Description = String.Format("Bought for {0:c}", purchase.Price),
 ImagePath = "Assets/captain_amazing_250x250.jpg",
 };

 decimal gregsListValue = 0;
 decimal totalSpent = 0;
 foreach (var result in results) {
 gregsListValue += values[result.Comic.Issue];
 totalSpent += result.Price;
 CurrentQueryResults.Add(result);
 }

 Title = String.Format("I spent {0:c} on comics worth {1:c}",
 totalSpent, gregsListValue);
}

private void CombineJimmysValuesIntoGroups() {
 Dictionary<int, decimal> values = GetPrices();
 var priceGroups =
 from pair in values
 group pair.Key by Purchase.EvaluatePrice(pair.Value)
 into priceGroup
 orderby priceGroup.Key descending
 select priceGroup;
 foreach (var group in priceGroups) {
 string message = String.Format("I found {0} {1} comics: issues ",
 group.Count(), group.Key);
 foreach (var issue in group)
 message += issue.ToString() + " ";
 CurrentQueryResults.Add(
 CreateAnonymousListViewItem(message, "captain_amazing_250x250.jpg"));
 }
}

The page title is bound to
the Title property in the
ComicQueryManager object,
so this line will change it to
a message telling Jimmy how
much he spent and how much
the comics are worth.

Here are the
methods with
the LINQ
queries.

684   Chapter 14

pinch your data

Use semantic zoom to navigate your data
It’s great to give Jimmy an overview of his collection, but let’s give him a way
to really drill down into the details. There’s a very useful control that will let
you add an extra dimension to your app’s navigation. The semantic zoom
is a scrollable control that lets your user switch between two different views of
a sequence of data: a “zoomed out” view that shows an overview of the data,
and a “zoomed in” view that shows more detail for each item in the sequence.

You can learn more about how semantic zoom fits into your apps here:
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

Semantic zoom
allows you to display
two different views
of the same sequence
of data: a zoomed-
out view that shows
many items, and a
zoomed-in view that
shows more detail.

You can use pinch to zoom in
and out of the semantic zoom
control, just like you pinch to
zoom your photos on your phone
or tablet. You can also use the
scroll wheel or click on items.

Use the button in
the simulator to put
it into pinch/zoom
mode. Hold down
the mouse button
and use the scroll
wheel to simulate

pinch/zoom.

you are here 4   685

querying data and building apps with LINQ

<SemanticZoom IsZoomedInViewActive="False" >

 <SemanticZoom.ZoomedOutView>

 <ListView>

 <!-- This section contains a ListView or GridView

 to show the zoomed out overview view -->

 </ListView>

 </SemanticZoom.ZoomedOutView>

 <SemanticZoom.ZoomedInView>

 <GridView>

 <!-- This ListView or GridView shows

 the zoomed zoomed in detail view -->

 <GridView.ItemTemplate>

 <DataTemplate>

 <!-- This ListView or GridView in this section

 shows the zoomed in detail view -->

 </DataTemplate>

 </GridView.ItemTemplate>

 </GridView>

 </SemanticZoom.ZoomedInView>

</SemanticZoom>

ListView and GridView implement ISemanticZoomInformation
The SemanticZoom control can only contain controls that implement the ISemanticZoomInformation

interface, which has methods that let the SemanticZoom control initiate and complete the view change.

Luckily, you don’t need to implement this interface yourself. In the example on this page, we used a

ListView to show the zoomed-out items, and a GridView to show the zoomed-in items.

The GridView control is a lot like
ListView. The main difference is

that the ListView control scrolls its
items vertically, while the GridView

scrolls its items horizontally.

Both the zoomed-in
and zoomed-out views
contain a ListView or
GridView control with
a data template that
contains controls to
make the view work.

Here’s the basic XAML pattern for the semantic zoom control. It uses a ListView or
GridView control for the zoomed-out view, and another one for the zoomed-in view:

We happened to use a ListView for the
zoomed-out view and a GridView for
the zoomed-in view, but you can use
either one for either of the views.

686   Chapter 14

it’s all semantics

Add semantic zoom to Jimmy’s app
Jimmy would love to be able to see all of the comics in his collection, and
zoom in on individual comics to see details.

Add a new item to the main page.
Jimmy needs something to click on, so the first thing you’ll do is add a new item to return all of the
comics in the collection. First, add a method to ComicQueryManager to show all of the comics:

1

new ComicQuery("All comics in the collection",
 "Get all of the comics in the collection",
 "This query returns all of the comics",
 "Assets/captain_amazing_zoom_250x250.jpg"),

private void AllComics() {
 foreach (Comic comic in BuildCatalog()) {
 var result = new {
 ImagePath = "Assets/captain_amazing_zoom_250x250.jpg",
 Title = comic.Name,
 Subtitle = "Issue #" + comic.Issue,
 Description = "The Captain versus " + comic.MainVillain,
 Comic = comic,
 };
 CurrentQueryResults.Add(result);
 }
}

case "All comics in the collection": AllComics(); break;

class Comic {
 public string Name { get; set; }
 public int Issue { get; set; }
 public int Year { get; set; }
 public string CoverPrice { get; set; }
 public string Synopsis { get; set; }
 public string MainVillain { get; set; }
 public string Cover { get; set; }
}

Do this!

Next, add a new case to the switch statement in UpdateQueryResults():

And finish it off by adding a new ComicQuery to the collection initializer in UpdateAvailableQueries().
You’ll also need to add the captain_amazing_zoom_250x250.jpg image to the Assets/ folder.

Add more properties to the Comic class.
Semantic zoom only makes sense if you have details to zoom in on. It’ll still be displaying Comic objects
from the ComicQueryManager.CurrentQueryResults collection, so we just need to add those
details to the Comic class and make sure to bind to those new properties in the zoomed-in view.

2

Download
this image
file from the
Head First
C# website.

you are here 4   687

querying data and building apps with LINQ

public static IEnumerable<Comic> BuildCatalog() {
 return new List<Comic> {
 new Comic { Name = "Johnny America vs. the Pinko", Issue = 6, Year = 1949, CoverPrice = "10 cents",
 MainVillain = "The Pinko", Cover = "Assets/Captain Amazing Issue 6 cover.png",
 Synopsis = "Captain Amazing must save America from Communists as The Pinko and his"
 + " communist henchmen threaten to take over Fort Knox and steal all of the nation's gold." },

 new Comic { Name = "Rock and Roll (limited edition)", Issue = 19, Year = 1957, CoverPrice = "10 cents",
 MainVillain = "Doctor Vortran", Cover = "Assets/Captain Amazing Issue 19 cover.png",
 Synopsis = "Doctor Vortran wreaks havoc with the nation's youth with his radio wave device that"
 + " uses the latest dance craze to send rock and roll fans into a mind-control trance." },

 new Comic { Name = "Woman's Work", Issue = 36, Year = 1968, CoverPrice = "12 cents",
 MainVillain = "Hysterianna", Cover = "Assets/Captain Amazing Issue 36 cover.png",
 Synopsis = "The Captain faces his first female foe, Hysterianna, whose incredible telepathic"
 + " and telekinetic abilities have allowed her to raise an all-girl army that"
 + " even the Captain has trouble resisting." },

 new Comic { Name = "Hippie Madness (misprinted)", Issue = 57, Year = 1973, CoverPrice = "20 cents",
 MainVillain = "The Mayor", Cover = "Assets/Captain Amazing Issue 57 cover.png",
 Synopsis = "A zombie apocalypse threatens Objectville when The Mayor rigs the election by"
 + " introducing his zombification agent into the city's cigarette supply." },

 new Comic { Name = "Revenge of the New Wave Freak (damaged)", Issue = 68, Year = 1984,
 CoverPrice = "75 cents", MainVillain = "The Swindler",
 Cover = "Assets/Captain Amazing Issue 68 cover.png",
 Synopsis = "A tainted batch of eye makeup turns Dr. Alvin Mudd into the Captain's new nemesis,"
 + " in The Swindler's first appearance in a Captain Amazing comic." },

 new Comic { Name = "Black Monday", Issue = 74, Year = 1986, CoverPrice = "75 cents",
 MainVillain = "The Mayor", Cover = "Assets/Captain Amazing Issue 74 cover.png",
 Synopsis = "The Mayor returns to throw Objectville into a financial crisis by directing his"
 + " zombie creation powers to the floor of the Objectville Stock Exchange." },

 new Comic { Name = "Tribal Tattoo Madness", Issue = 83, Year = 1996, CoverPrice = "Two bucks",
 MainVillain = "Mokey Man", Cover = "Assets/Captain Amazing Issue 83 cover.png",
 Synopsis = "Monkey Man escapes from his island prison and wreaks havoc with his circus sideshow"
 + " of tattooed henchmen that and their deadly grunge ray." },

 new Comic { Name = "The Death of an Object", Issue = 97, Year = 2013, CoverPrice = "Four bucks",
 MainVillain = "The Swindler", Cover = "Assets/Captain Amazing Issue 97 cover.png",
 Synopsis = "The Swindler's clone army attacks Objectville in a ruse to trap and kill the "
 + " Captain. Can the scientists of Objectville find a way to bring him back?" },
 };
}

Add the detailed comic data.
Modify the BuildCatalog() method to add more details about each comic. You’ll also need to add images
of the covers to your project’s Assets. Download them from http://www.headfirstlabs.com/hfcsharp.

3

Flip the page to finish the app

688   Chapter 14

drilling down into the details

private void ListView_ItemClick(object sender, ItemClickEventArgs e) {
 ComicQuery query = e.ClickedItem as ComicQuery;
 if (query != null) {
 if (query.Title == "All comics in the collection")
 this.Frame.Navigate(typeof(QueryDetailZoom), query);
 else
 this.Frame.Navigate(typeof(QueryDetail), query);
 }
}

protected override void OnNavigatedTo(NavigationEventArgs e) {
 ComicQuery comicQuery = e.Parameter as ComicQuery;
 if (comicQuery != null) {
 comicQueryManager.UpdateQueryResults(comicQuery);
 pageTitle.Text = comicQueryManager.Title;
 }
 navigationHelper.OnNavigatedTo(e);
}

<Page.Resources>
 <local:ComicQueryManager x:Name="comicQueryManager"/>
 <!-- TODO: Delete this line if the key AppName is declared in App.xaml -->
 <x:String x:Key="AppName">My Application</x:String>
</Page.Resources>

Add a new Basic Page to hold the semantic zoom control.
Jimmy’s happy with the rest of the app, so instead of modifying the existing page, we’ll add a whole
new page. Add a new Basic Page called QueryDetailZoom.xaml.

Once it’s added, go back to MainPage.xaml and modify its ItemClick event handler in the
code-behind to navigate to a QueryDetailZoom page if the user clicks on the newly added query:

4

Add a static ComicQueryManager resource to the new page.
The new QueryDetailZoom page works exactly like the existing QueryDetail page. You’ll
need to add a ComicQueryManager to the <Page.Resources> section of QueryDetailZoom.xaml.
You don’t need to update the AppName resource because the page will set that using C# code:

5

Add the code-behind for the new detail page.
And you’ll need to add exactly the same OnNavigatedTo() method to QueryDetailZoom.xaml.cs:

6

Here's the new ItemClick event handler for MainPage.xaml.
It checks the title of the query to see if it should navigate
to a QueryDetail or QueryDetailZoom page.

Remember, you'll
need to expand the
NavigationHelper
registration section in
the code editor to see
the OnNavigatedTo()
method.

you are here 4   689

querying data and building apps with LINQ

<Grid Grid.Row="1" Margin="120,0"
 DataContext="{StaticResource ResourceKey=comicQueryManager}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"
 Text="Pinch to zoom in or out" />

 <SemanticZoom IsZoomedInViewActive="False" Grid.Row="1">

 <SemanticZoom.ZoomedOutView>
 <ListView ItemsSource="{Binding CurrentQueryResults}"
 Margin="0,0,20,0" SelectionMode="None">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Height="110" Width="480" Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Image Source="{Binding ImagePath}" Stretch="UniformToFill"/>
 <StackPanel Grid.Column="1" VerticalAlignment="Top" Margin="10,0,0,0">
 <TextBlock Text="{Binding Title}" TextWrapping="NoWrap"
 Style="{StaticResource TitleTextBlockStyle}"/>
 <TextBlock Text="{Binding Subtitle}" TextWrapping="NoWrap"
 Style="{StaticResource CaptionTextBlockStyle}"/>
 <TextBlock Text="{Binding Description}" MaxHeight="60"
 Style="{StaticResource BodyTextBlockStyle}"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </SemanticZoom.ZoomedOutView>

Modify the XAML for the new detail page.
There’s just one more thing you need to do: build out the XAML for the QueryDetailZoom.xaml page so that
it contains a semantic zoom control that displays the comic book details. It’s the biggest page you’ve created
so far, so we’ve spread the code across two pages to make it easier for you to understand what’s going on.

7

We're putting the SemanticZoom in a grid
row to make sure that its ListView and
GridView controls can scroll.

Our Semantic Zoom's
zoomed-out view is
a ListView that's
very similar to like
the one on the
QueryDetail page. It
uses a DataTemplate.
We added another
textblock bound
to the Description
property.

Flip the page for the rest of the comic detail page XAML.

690   Chapter 14

 <SemanticZoom.ZoomedInView>
 <GridView ItemsSource="{Binding CurrentQueryResults}"
 Margin="0,0,20,0" SelectionMode="None" x:Name="detailGridView">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Height="780" Width="600" Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Image Source="{Binding Comic.Cover}" Margin="0,0,20,0"
 Stretch="UniformToFill" Width="326" Height="500"
 VerticalAlignment="Top"/>

 <StackPanel Grid.Column="1">

 <TextBlock Text="Name"
 Style="{StaticResource CaptionTextBlockStyle}" />
 <TextBlock Text="{Binding Comic.Name}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Issue"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Issue}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Year"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Year}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Cover Price"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.CoverPrice}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Main Villain"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.MainVillain}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Synopsis"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Synopsis}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
 </SemanticZoom.ZoomedInView>
 </SemanticZoom>
</Grid>

jimmy’s thrilled

Edit queries with LINQPad
There’s a great learning tool for exploring and using LINQ. It’s called

LINQPad, and it’s available for free from Joe Albahari (one of our

superstar “Head First C#” technical reviewers who kept a lot of bugs

out of this book). You can download it here:

http://www.linqpad.net/

Here's the rest of
the XAML, which
defines the Semantic
Zoom's zoomed-in
view. It displays the
rest of the details in
a set of TextBlock
controls that are
bound to properties
on the Comic object.

The zoomed-in view is
based on a GridView.
Its data template is
a grid that contains
an Image control
for the cover and
a StackPanel of
TextBlock controls for
the other properties.

This is just another
DataTemplate. It's
longer than the ones
you've seen before, but
it's all familiar stuff.
It has Grid with an
image on the left and
a StackPanel with a
set of TextBlocks on
the right.

you are here 4   691

querying data and building apps with LINQ

This is the best
thing to happen since

I found that limited
edition reprint of issue
#23 at a garage sale for

only five bucks!

You made Jimmy’s day
Thanks to the new app you built, Jimmy has
his collection totally organized. Nice work!

692   Chapter 14

split the difference

The IDE’s Split App template helps you build
apps for navigat ing data
There’s an easier way to build two-page apps that navigate between overview and
detail pages to display grouped items. When you create a new project using the
Split App template, the IDE automatically creates a project that lets the user
navigate between an overview items page and a split page with the details. We can
explore the Split App template by adapting the app that you built for Jimmy to use it.

Create a new Split App project and run it.
The Split App project template contains a class that generates sample data, which means that
you can actually run it as soon as it’s created.

Create a new Split App (XAML) project and name it JimmysComicsSplitApp so the
namespaces match the code on the next few pages.

Change the app name to “Jimmy’s Comics” using the AppName resource. In projects created
with the Split App project template, the AppName resource is in the App.xaml file:

1

<x:String x:Key="AppName">Jimmy's Comics</x:String>

Do this!

you are here 4   693

querying data and building apps with LINQ

Now run the app. A Split App has two pages.
The first page is the items page, which shows
you groups of items that you can drill down into:

The XAML for the items page is in
the ItemsPage.xaml file. The XAML

for the page is set up to display
groups using a GridView control.
Have a look at the XAML for the

page—it should look very familiar.

Clicking on an item in the items page
causes the app to navigate to the split

page, which is in SplitPage.xaml. It displays
the contents of the group on the left using
a ListView control. Details for the selected
item are displayed on the right. This XAML
should look familiar, too—the app that you
built for Jimmy uses almost identical XAML.

The XAML for the split
page automatically adjusts
itself when the screen is
rotated to portrait. You
can try this yourself: run
the app in the simulator
and use the and
buttons to rotate the
simulated device.

Click on one of the items to navigate to the split page:

The large block of text is a single TextBlock,
which you’ll replace in step 6 with the XAML
code from your app that displays comic details.

694   Chapter 14

same data new app

Add data classes to the DataModel folder.
Right-click on the DataModel folder in the Solution Explorer and choose Add→Class... to add a
new class to the folder.

Create the ComicQueryManager class. When you create a class inside a folder, the IDE
automatically generates it using a namespace that includes the folder name:

namespace JimmysComicsSplitApp.DataModel
{
 class ComicQueryManager
 {

 }
}

Copy the contents of the ComicQueryManager class
from your working Jimmy’s Comics app and paste
them into the newly generated ComicQueryManager.cs
file in the DataModel folder. Make sure you keep the
JimmysComicsSplitApp.DataModel namespace.
(Don’t forget the using statement!)

Next, repeat the same steps to create the Comic,
ComicQuery, and Purchase classes, as well as the
PriceRange enum. They should all be created inside the
DataModel folder, which means they should all be in the same
JimmysComicsSplitApp.DataModel namespace.
Here’s what your Solution Explorer should look like after the
files are all added:

2

you are here 4   695

querying data and building apps with LINQ

There was already a file inside the DataModel folder called
SampleDataSource.cs, which contains code to generate all of the
sample data that you saw when you ran the app.

Open it up—it actually works a lot like the data classes
app you built for Jimmy. The file contains several classes,
including a SampleDataGroup class (which represents
higher-level groups, similar to your ComicQuery class) and
a SampleDataItem class (which represents individual items,
like your Comic class). The actual sample data is created in
the constructor of the SampleDataSource class at the very
bottom of the file.

The code-behind for the items page creates a new instance
of the SampleDataSource class, and uses it to populate a
dictionary called DefaultViewModel.

You’ll learn more
about what a
ViewModel is and
how to build one
in Chapter 16. Wait a minute!

If the data from the comic app is
structured like the sample data,
it should be easy to add it to the

split app.

That’s right. The Split App template is built
to make it easy for you to add your data.

All you need to do to get your data into the Split App is make
a few tweaks to the code-behind in the items page and split
page, so that’s what we’ll do next. We’ll also modify the split
page so that it uses the same XAML to display the comic
book cover and information in the detail page.

You've already seen how
objects can be serialized
to binary objects and XML.

The Split App uses yet
another format called JSON.

The SampleDataSource
class has a method called

GetSampleDataAsync() that
reads the JSON data from a
file called SampleData.json.
Double-click on the data file
and look at the JSON data in
the IDE. Can you figure out
how JSON works just from
looking at that file? You can

learn more about JSON here:
http://json.org/

696   Chapter 14

your app’s todo list

private async void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
{
 //var group = await SampleDataSource.GetGroupAsync((String)e.NavigationParameter);
 //this.DefaultViewModel["Group"] = group;
 //this.DefaultViewModel["Items"] = group.Items;DataModel.ComicQueryManager
 DataModel.ComicQueryManager comicQueryManager = new DataModel.ComicQueryManager();
 DataModel.ComicQuery query = e.NavigationParameter as DataModel.ComicQuery;
 comicQueryManager.UpdateQueryResults(query);
 this.DefaultViewModel["Group"] = query;
 this.DefaultViewModel["Items"] = comicQueryManager.CurrentQueryResults;

protected override void SaveState(Dictionary<String, Object> pageState) {
 // Comment out all of the code in this method
}

// TODO: Create an appropriate data model for your problem domain to replace the sample data
// var sampleDataGroups = await SampleDataSource.GetGroupsAsync();
// this.DefaultViewModel["Items"] = sampleDataGroups;
this.DefaultViewModel["Items"] = new DataModel.ComicQueryManager().AvailableQueries;

void ItemView_ItemClick(object sender, ItemClickEventArgs e) {
 // Navigate to the appropriate destination page, configuring the new page
 // by passing required information as a navigation parameter
 //var groupId = ((SampleDataGroup)e.ClickedItem).UniqueId;
 //this.Frame.Navigate(typeof(SplitPage), groupId);
 DataModel.ComicQuery query = e.ClickedItem as DataModel.ComicQuery;
 if (query != null)
 this.Frame.Navigate(typeof(SplitPage), query);
}

You created
ComicQuery
and the other
classes in the
DataModel
folder, so they
live in the
DataModel
namespace.

Modify the code-behind in ItemsPage.xaml.cs.
Open ItemsPage.xaml.cs and use Edit→Find and Replace to search for “TODO:” in the
code. Have a look at the comments—the template is letting you know that this is where you
replace the sample data. Comment out the next two lines that set the Items value in the
DefaultViewModel dictionary, and replace them with your own code that reads the
AvailableQueries property from a new ComicQueryManager object:

3

You’ll also need to comment out the code in the ItemView_ItemClick() event handler
method, which attempts to cast the item that was clicked on to the SampleDataGroup type (it’s
passed into the event arguments as e.ClickedItem). The AvailableQueries property
returns a collection of ComicQuery objects, so here’s the new ItemClick() event handler:

Comment
out these
lines.

Add this line

Modify the code-behind in SplitPage.xaml.cs.
The split page has a method called navigateionHelper_LoadState() that uses the
navigation parameter to the Group and Items values in the DefaultViewModel dictionary.
Modify it with code to set the group and items for the page using your comic book data model:

4

There’s one other thing you need to do. The split page overrides the SaveState method, which
allows it to remember which item was clicked on. The code that’s generated casts the selected item
to SampleDataItem, so comment out all of the code in the method to avoid casting exceptions.

you are here 4   697

querying data and building apps with LINQ

Add the image files to the Assets folder.
You’ll need all of the image files from the app you built for
Jimmy. Right-click on the Assets folder and choose
Add→Existing Item... to bring up the Add Existing Item
window. Navigate to the folder that has the code for the app you
created earlier in the chapter and use Control-click to multiselect
all of the files except for Logo.scale-100.png, SmallLogo.scale-100.png,
SplashScreen.scale-100.png, and StoreLogo.scale-100.png. Click Add to
add all of the files to your project’s Assets folder.

5

Your app now runs! The items page
displays the available queries from
the ComicQueryManager object...

...and the split page shows
you the query results and
lets you drill down into
the details of each item.

There’s nothing displayed here
because the TextBlock that shows
the details is bound to a property
called Content, and your queries
don’t return objects that have that
property. Before you flip the page,
think about how you might display
something here.

698   Chapter 14

that was quick

<Grid Grid.Row="2" Grid.ColumnSpan="2" Margin="0,20,0,0"
 Height="780" HorizontalAlignment="Left">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Image Source="{Binding Comic.Cover}" Margin="0,0,20,0"
 Stretch="UniformToFill" Width="326" Height="500"
 VerticalAlignment="Top"/>

 <StackPanel Grid.Column="1">
 <TextBlock Text="Name"
 Style="{StaticResource CaptionTextBlockStyle}" />
 <TextBlock Text="{Binding Comic.Name}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Issue"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Issue}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Year"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Year}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Cover Price"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.CoverPrice}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Main Villain"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.MainVillain}"
 Style="{StaticResource SubtitleTextBlockStyle}" />
 <TextBlock Text="Synopsis"
 Style="{StaticResource CaptionTextBlockStyle}" Margin="0,10,0,0" />
 <TextBlock Text="{Binding Comic.Synopsis}"
 Style="{StaticResource SubtitleTextBlockStyle}" />

 </StackPanel>
</Grid>

Modify SplitPage.xaml to show the comic book details.
The XAML in SplitPage.xaml uses templates to display the items on the lefthand side of the split,
but it just uses straightforward, out-of-the-box XAML with data binding to show the details for the
selected item on the righthand side. It includes this TextBlock that’s bound to a Content property:

<TextBlock Grid.Row=”2” Grid.ColumnSpan=”2” Margin=”0,20,0,0”
 Text=”{Binding Content}” Style=”{StaticResource BodyTextBlockStyle}”/>

The sample data in SampleDataSource.cs exposes a Content property that contains a large block of
text. But we want our app to display information about comics in Jimmy’s collection. Luckily, we
already have a block of XAML that displays information nicely when it’s bound to a Comic object.
Find the content TextBlock and replace it with the comic detail XAML. Make sure you
add the Grid.Row, Grid.ColumnSpan, and Margin properties to the inner <Grid>:

6

We’ll reuse
these
properties
so the comic
information
appears in the
same place on
the page.

Since you're replacing
a TextBlock with this
Grid, by keeping these
properties from the
TextBlock you make sure
that the Grid ends up
in the same place on the
page as the TextBlock.

you are here 4   699

querying data and building apps with LINQ

Some of the queires don’t return a Comic, so any field bound to the
field will be empty. In Chapter 16, you’ll learn about value converters,
which you can use to hide these fields or display a default value.

You can also add pages to your project using Items Page and Split Page templates using the same Add New
Item feature in the IDE that you use to add the Basic Page. And there’s another valuable template called Grid
App that has three levels of navigation. You can learn more about the Grid App and Split App templates here:

http://msdn.microsoft.com/en-us/library/windows/apps/hh768232.aspx

Now your Split App lets you drill down into the results
of any query that returns comics, displaying the
details of the selected comic on the split page.

The Expensive
Comics query returns
a sequence of
anonymous objects
that just have Title
and Image properties.

These controls are bound to
properties that are not in
the data context, so they
show up as blank on the page.
Later in the book, you’ll
learn about tools that you
can use to hide the labels or
display a default value.

this is a new chapter   701

events and delegates15

What your code does when
you’re not looking

Your objects are starting to think for themselves.�
You can’t always control what your objects are doing. Sometimes things…happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is great,

until you want your object to take control over who can listen. That’s when callbacks will

come in handy.

I’d better
subscribe to that

TreePopsUpOutOfNowhere
event, or I’ll have to
call my OnBrokenLeg()

method.

702   Chapter 15

Ever wish your objects could think for themselves?
Suppose you’re writing a baseball simulator. You’re going to model a game, sell the
software to the Yankees (they’ve got deep pockets, right?), and make a million bucks.
You create your Ball, Pitcher, Umpire, and Fan objects, and a whole lot more.
You even write code so that the Pitcher object can catch a ball.

Now you just need to connect everything together. You add an OnBallInPlay()
method to Ball, and now you want your Pitcher object to respond with its event
handler method. Once the methods are written, you just need to tie the separate
methods together:

We want the pitcher to
catch this ball.Ball.OnBallInPlay(70, 82)

Pitcher.CatchBall()

Here’s the problem. You really want your Ball object to only worry about
getting hit, and your Pitcher object to only worry about catching balls
that come its way. In other words, you really don’t want the Ball telling the
Pitcher, “I’m coming to you.”

When the ball gets
hit, OnBallInPlay()
gets called.

The ball was hit with a 70 degree trajectory from home plate, and it’s going to travel 82 feet.

The pitcher tries to catch the ball based on the angle it was hit and the distance.

But how does an object KNOW to respond?

The Ball doesn’t know which fielder will pick it up…maybe the Pitcher, or maybe the Catcher, or maybe the ThirdBaseman who decided to ScootIn().

You want an
object to worry
about itself, not
other objects.
You’re separating
the concerns of
each object.

This doesn’t mean that objects ca
n’t

interact. It just means that a Ball

shouldn’t determine who fields it.

That’s not the Ball’s job.

Ball object

Pitcher object

Ball object

That’s a commonly used way
of naming methods—we’ll
talk more about it later.

publisher, meet subscriber

you are here 4   703

events and delegates

Fan object
Pitcher object

Umpire object

What you need to do when the ball is hit is to use an event. An event is simply
something that’s happened in your program. Then, other objects can
respond to that event—like our Pitcher object.

Even better, more than one object can listen for events. So the Pitcher could
listen for a ball-being-hit event, as well as a Catcher, a ThirdBaseman, an
Umpire, even a Fan. And each object can respond to the event differently.

So what we want is a Ball object that can raise an event. Then, we want
to have other objects to subscribe to that particular type of event—that
just means to listen for it, and to get notified when that event occurs.

BallInPlay event raised

When an EVENT occurs…objects listen

~ If we
subscribe

to the BallInPlay
event, we’ll always
get notified when the

ball’s in play.

event, noun.
a thing that happens,
especially something of
importance. The solar
eclipse was an amazing
event to behold.

The pitcher and other
players want to try to
field the ball.

The Fan object
subscribes in case a ball goes into the seats.

The umpire checks every ball to see if it’s fair or foul, and monitors what happens.

Events look like lightning
bolts in the IDE too.
You’ll see an icon like
this next to events in
IntelliSense and in the
properties window.

When a Ball gets
hit, it raises a
BallInPlay event.

Any object can subscribe to this event…and the Ball object doesn’t need to know which objects are subscribed.

Once your object “hears” about an event, you can set up some code to run.
That code is called an event handler. An event handler gets information
about the event, and runs every time that event occurs.

Remember, all this happens without your intervention at runtime. So you
write code to raise an event, and then you write code to handle those events,
and fire up your application. Then, whenever an event is raised, your handler
kicks into action…without you doing anything. And, best of all, your objects have
separate concerns. They’re worrying about themselves, not other objects.

Want to DO SOMETHING with an
event? You need an event handler

We’ve been doing t
his

all along. Every time

you click a butto
n, an

event is raised, a
nd

your code respon
ds to

that event.

Ball object

704   Chapter 15

BallEventArgs

One object raises its event, others listen for it…
An event has a publisher and can have multiple subscribers. Let’s take
a look at how events, event handlers, and subscriptions work in C#:

�Something triggers an event.
The ball gets hit. It’s time for the Ball object to raise a new event.

2

�The ball raises an event.
A new event gets raised (we’ll talk about exactly how that works in just a minute). That
event also has some arguments, like the velocity of the ball, as well as its trajectory.
Those arguments are attached to the event as an instance of an EventArgs object,
and then the event is sent off, available to anyone listening for it.

3

The Ball object starts ev
erything

rolling. Its job is to
 raise an event

when it gets hit and
 goes into play.

BallInPlay is an event that gets fired off by Ball. BallInPlay referenc
es a new

object, BallEventArgs, which is

just a class
that define

s fields

for Velocity
 and Trajectory.

~
BallInPlay

event

Ball object

Ball object

Sometimes we’ll talk
about raising an event,
or firing it, or invoking
it—they’re all the same
thing. People just use
different names for it.

Pitcher obje
ct

Umpire obje
ct

Fan object

�First, other objects subscribe to the event.
Before the Ball can raise its BallInPlay event, other objects need to
subscribe to it. That’s their way of saying that any time a BallInPlay
event occurs, we want to know about it.

1

These objects a
re saying they

want to know any time a

BallInPlay event is r
aised.Every object adds its own event handler to listen for the event—just like you add button1_Click() to your programs to listen for Click events.

~
BallInPlay event

if a tree falls in the woods…

you are here 4   705

events and delegates

Fan object

Pitcher object

Umpire object

BallEventArgs

~
BallInPlay event

Pitcher obje
ct

Umpire obje
ct

Fan object

BallEventArgs

~
BallInPlay eventBall object

Then, the other objects handle the event

Subscribers get notification.
Since the Pitcher, Umpire, and Fan object subscribed to the Ball
object’s BallInPlay event, they all get notified—all of their event
handler methods get called one after another.

4

Once an event is raised, all the objects subscribed to that event get
notification, and can do something:

As soon as the ball raises its event, it creates a BallEventArgs object with the ball’s trajectory and distance so it can pass it to the subscribers’ event handlers.

Each object handles the event.
Now, Pitcher, Umpire, and Fan can all handle the BallInPlay event in their
own way. But they don’t all run at the same time—their event handlers get called
one after another, with a reference to a BallEventArgs object as its parameter.

5

The Pitcher object chec
ks

BallEventArgs, and if the ba
ll

is close, it fields t
he ball.

The Umpire watches. It might even subscribe to other events, like BallFielded or BallThrown, to further react to what happens.

The Fan object checks BallEventArgs to see if the ball is close enough to catch.

Here’s what each object that han
dles the

event gets to work with. It should also get a

reference to the object
that raised the event.

Events are handled on a
first-come, first-served
basis—the object that
subscribes first gets
notified first.

An event handler is just the method in the subscriber object that gets run when the event is raised.

706   Chapter 15

Connect ing the dots
Now that you’ve got a handle on what’s going on,
let’s take a closer look at how the pieces fit together.
Luckily, there are only a few moving parts.

�We need an object for the event arguments.
Remember, our BallInPlay event has a few arguments that it
carries along. So we need a very simple object for those arguments.
.NET has a standard class for it called EventArgs, but that class
has no members. Its sole purpose is to allow your event arguments
object to be passed to the event handlers that use it. Here’s the class
declaration:

 class BallEventArgs : EventArgs

1

BallEventArgs
Trajectory
Distance

EventArgs

It’s a good idea (althoug
h not required)

for your event argument objects to

inherit from EventArgs. That’s an

empty class—it has no public members.

The ball will use these
properties to pass
information to the
event handlers about
where the ball’s been hit.

Next we’ll need to define the event in the class that’ll raise it.
The ball class will have a line with the event keyword—this is how it informs other
objects about the event, so they can subscribe to it. This line can be anywhere in the
class—it’s usually near the property declarations. But as long as it’s in the Ball class,
other objects can subscribe to a ball’s event. You saw the event keyword when you
fired PropertyChanged events. Here’s the BallInPlay event declaration:

 public event EventHandler BallInPlay;

2

Events are usually public. This
event is defined in the Ball
class, but we’ll want Pitcher,
Umpire, etc., to be able to
reference it. You could make
it private if you only wanted
other instances of the same
class to subscribe to it.

After the event keyword comes EventHandler. That’s not a reserved C# keyword—it’s defined as part of .NET. The reason you need it is to tell the objects subscribing to the event what their event handler methods should look like.

When you use EventHandler, you’re telling other methods that their event handlers need to take two parameters: an object named sender and an EventArgs reference named e. sender is a reference to the object that raised the event, and e is a reference to an EventArgs object.

It means that you can
upcast your EventArgs
object in case you
need to send it to an
event that doesn’t
handle it in particular.

i came here for an argument

you are here 4   707

events and delegates

The subscribing classes need event handler methods.
Every object that has to subscribe to the Ball’s BallInPlay event needs to have an
event handler. You already know how event handlers work—every time you added a
method to handle a button’s Click event or a NumericUpDown’s ValueChanged
event, the IDE added an event handler method to your class. The Ball’s
BallInPlay event is no different, and an event handler for it should look pretty familiar:

 void ball_BallInPlay(object sender, EventArgs e)

3

There’s no C# rule that says your event handlers
need to be named a certain way, but there’s a
pretty standard naming convention: the name of
the object reference, followed by an underscore,
followed by the name of the event.

The class that has this particular event
handler method has a Ball reference variable
called ball, so its BallInPlay event handler
starts with “ball_”, followed by the name of
the event being handled, “BallInPlay”.

The BallInPlay event declaration listed its event
type as EventHandler, which means that it needs
to take two parameters—an object called sender
and an EventArgs called e—and have no return
value.

Each individual object subscribes to the event.
Once we’ve got the event handler set up, the various Pitcher, Umpire, ThirdBaseman, and
Fan objects need to hook up their own event handlers. Each one of them will have its own specific
ball_BallInPlay method that responds differently to the event. So if there’s a Ball object
reference variable or field called ball, then the += operator will hook up the event handler:

 ball.BallInPlay += new EventHandler(ball_BallInPlay);

4

Turn the page; there’s a little more....

This tells C# to hook the event handler up to the BallInPlay event of whatever object the ball reference is pointing to.

The += operator tells
C# to subscribe an
event handler to an
event.

This part specifies which
event handler method to
subscribe to the event.

The event handler method’s signature
(its parameters and return value) has to
match the one defined by EventHandler
or the program won’t compile.

708   Chapter 15

	 If you raise an
event with no
handlers, it’ll
throw an
exception.

If no other objects have
added their event handlers
to an event, it’ll be null. So
always check to make sure
your event handler isn’t
equal to null before you raise
it. If you don’t, it’ll throw a
NullReferenceException.
That’s also why you should
copy the event to a variable
before you check to see if it’s
null—in extremely rare cases,
the event can become null
between the null check and
the time that it’s called.

Pitcher object

Ball object

BallInPlay(this, e)

ball_BallInPlay()

The ball gets hit, and
the Ball object goes
into action…

…by creating a new BallEventArgs object with the right data…
…and
passing
it to the
event being
raised.

Now the
event is
active. Who’s
subscribed?The pitcher hooked up its

event handler to the ball’s
BallInPlay event.

So the pitc
her’s

method gets
called

with the righ
t data,

and can do
what it

wants with the eve
nt.

~
BallInPlay event

BallEventArgs

A Ball object raises its event to notify subscribers that it’s in play.
Now that the events are all set up, the Ball can raise its event in response to something else
that happens in the simulator. Raising an event is easy—it just calls the BallInPlay event.

EventHandler ballInPlay = BallInPlay;

if (ballInPlay != null)

 ballInPlay(this, e);

5

Use a standard name when you add a method to raise an event
Take a minute and go to the code for any page in a Windows Store app, and type the keyword override any
place you’d declare a method. As soon as you press space, an IntelliSense window pops up:

There are a huge number of events that a XAML Page object can raise, and every one of them has its own
method that raises it. The page’s OnDoubleTapped() raises the DoubleTappedEvent event (which
it inherits from a superclass called UIElement), and that’s the whole reason it’s there. So the Ball event
will follow the same convention: we’ll make sure it has a method called OnBallInPlay that takes a
BallEventArgs object as a parameter. The baseball simulator will call that method any time it needs the
ball to raise its BallInPlay event—so when the simulator detects that the bat hit the ball, it’ll create a new
instance of BallEventArgs with the ball’s trajectory and distance and pass it to OnBallInPlay().

Notice how each of these methods takes
an EventArgs subclass as a parameter?
They all pass that parameter on to the
event when they raise it.

e is a new
BallEventArgs object.

don’t call me; i’ll call you

BallInPlay is copied to a variable, ballInPlay, which is null-checked and used to raise the event.

you are here 4   709

events and delegates

Q: Why do I need to include the word
EventHandler when I declare an
event? I thought the event handler was
what the other objects used to subscribe
to the events.

A: That’s true—when you need to
subscribe to an event, you write a method
called an event handler. But did you notice
how we used EventHandler in the
event declaration (step #2) and in the line
to subscribe the event handler to it (step
#4)? What EventHandler does is
define the signature of the event—it tells
the objects subscribing to the event exactly
how they need to define their event handler
methods. Specifically, it says that if you want
to subscribe a method to this event, it needs
to take two parameters (an object and
an EventArgs reference) and have a
void return value.

Q: What happens if I try to use a
method that doesn’t match the ones that
are defined by EventHandler?

A: Then your program won’t compile.
The compiler will make sure that you
don’t ever accidentally subscribe an
incompatible event handler method to an
event. That’s why the standard event handler,
EventHandler, is so useful—as soon
as you see it, you know exactly what your
event handler method needs to look like.

Q:Wait, “standard” event handler?
There are other kinds of event handlers?

A:Yes! Your events don’t have to
send an object and an EventArgs.

In fact, they can send anything at all—or
nothing at all! Look at the IntelliSense
window at the bottom of the facing page.
Notice how the OnDragEnter
method takes a DragEventArgs
reference instead of an EventArgs
reference? DragEventArgs
inherits from EventArgs, just
like BallEventArgs does. The
page’s DragDrop event doesn’t use
EventHandler. It uses something else,
DragEventHandler, and if you want
to handle it, your event handler method needs
to take an object and a DragEventArgs
reference.

The parameters of the event are defined
by a delegate—EventHandler
and DragEventHandler are two
examples of delegates. But we’ll talk more
about that in a minute.

Q: So I can probably have my event
handlers return something other than
void, too, right?

A: Well, you can, but it’s often a bad idea.
If you don’t return void from your handler,
you can’t chain event handlers. That means
you can’t connect more than one handler
to each event. Since chaining is a handy
feature, you’d do best to always return
void from your event handlers.

Q:Chaining? What’s that?

A: It’s how more than one object can
subscribe to the same event—they chain
their event handlers onto the event, one after
another. We’ll talk a lot more about that in a
minute, too.

Q: Is that why I used += when when
I added my event handler? Like I’m
somehow adding a new handler to
existing handlers?

A: Exactly! Any time you add an event
handler, you want to use +=. That way, your
handler doesn’t replace existing handlers.
It just becomes one in what may be a very
long chain of other event handlers, all of
which are listening to the same event.

Q:Why does the ball use “this” when
it raises the BallInPlay() event?

A:Because that’s the first parameter
of the standard event handler. Have you
noticed how every Click event handler
method has a parameter “object sender”?
That parameter is a reference to the
object that’s raising the event. So if
you’re handling a button click, sender
points to the button that was clicked. And
if you’re handling a BallInPlay
event, sender will point to the Ball
object that’s in play—and the ball sets that
parameter to this when it raises the event.

A SINGLE event is
always raised by a
SINGLE object.

But a SINGLE
event can be
responded to by
MULTIPLE objects.

710   Chapter 15

The IDE generates event handlers for you automatically
Many programmers follow the same convention for naming their event handlers. If
there’s a Ball object that has a BallInPlay event and the name of the reference
holding the object is called ball, then the event handler would typically be named
ball_BallInPlay(). That’s not a hard-and-fast rule, but if you write your code
like that, it’ll be a lot easier for other programmers to read.

Luckily, the IDE makes it really easy to name your event handlers this way. It has a
feature that automatically adds event handler methods for you when you’re
working with a class that raises an event. It shouldn’t be too surprising that the IDE can
do this for you—after all, this is exactly what it does when you double-click on a button
in the designer. (This may seem familiar because you’ve done it in earlier chapters.)

Start a new blank Windows Store app and add the Ball and BallEventArgs.
Here’s the Ball class:

class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 EventHandler ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }
}

And here’s the BallEventArgs class:

class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int trajectory, int distance) {
 this.Trajectory = trajectory;
 this.Distance = distance;
 }
}

1

Do this

Start adding the Pitcher’s constructor.
Add a new Pitcher class to your project. Then give it a constructor that takes a Ball reference
called ball as a parameter. There will be one line of code in the constructor to add its event
handler to ball.BallInPlay. Start typing the statement, but don’t type += yet.

public Pitcher(Ball ball) {
 ball.BallInPlay
}

2

that’ll save you some typing

you are here 4   711

events and delegates

The IDE will add your event handler, too.
You’re not done—you still need to add a method to chain onto the event. Luckily, the IDE takes care
of that for you, too. After the IDE finishes the statement, it shows you another box:

ball.BallInPlay +=

Hit the Tab key again to make the IDE add this event handler method to your Pitcher class. The
IDE will always follow the objectName_HandlerName() convention:

void ball_BallInPlay(object sender, EventArgs e) {

 throw new NotImplementedException();

}

4

Type += and the IDE will finish the statement for you.
As soon as you type += in the statement, the IDE displays a very useful little box:

public Pitcher(Ball ball) {
 ball.BallInPlay +=
}

3

When you press the Tab key, the IDE will finish the statement for you. It’ll look like this:

public Pitcher(Ball ball) {
 ball.BallInPlay += ball_BallInPlay;
}

Finish the pitcher’s event handler.
Now that you’ve got the event handler’s skeleton added to your class, fill in the rest of its code. The
pitcher should catch any low balls; otherwise, he covers first base.

void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
}

5

The IDE always fills in this
NotImplementedException() as a placeholder,
so if you run the code it’ll throw an exception
that tells you that you still need to implement
something it filled in automatically.

You’ll add these methods
in a minute.

Since BallEventArgs is a subclass of
EventArgs, we’ll downcast it using the
as keyword so we can use its properties.

712   Chapter 15

2 It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and
Pitcher classes, add a Fan class, and make sure they all work together with a very basic
version of your baseball simulator.

Complete the Pitcher class.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase()
methods. Both should create a string saying that the catcher has either caught the ball or run
to first base, and add that string to a public ObservableCollection<string> called
PitcherSays.

1

class Pitcher {
 public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }

 void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs){
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
}

Write a Fan class.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its
constructor. The fan’s event handler should see if the distance is greater than 400 feet and the
trajectory is greater than 30 (a home run), and grab for a glove to try to catch the ball if it is. If
not, the fan should scream and yell. Everything that the fan screams and yells should be added
to an ObservableCollection<string> called FanSays.

2

You’ll need to implement these two
methods to add a string to the
PitcherSays ObservableCollection.

Pitcher object

Fan object

?Look at the output on the
facing page to see exactly
what it should print.

put it all together

you are here 4   713

events and delegates

2

Build a very simple simulator.
If you didn’t do it already, create a new Windows Store Blank App, replace MainPage.xaml with a Basic
Page, and add the following BaseballSimulator class. Then add it as a static resource to the page.

3

Build the main page.
Can you come up with the XAML
just from looking at the screenshot to
the right? The two TextBox controls
are bound to the Trajectory
and Distance properties of the
BaseballSimulator static
resource, and the pitcher and fan
chatter are ListView controls bound to
the two ObservableCollections.

See if you can make your simulator
generate the above fan and pitcher
chatter with three successive balls put
into play. Write down the values you
used to get the result below:

4

Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

using System.Collections.ObjectModel;

class BaseballSimulator {
 private Ball ball = new Ball();
 private Pitcher pitcher;
 private Fan fan;
 public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
 public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays; } }
 public int Trajectory { get; set; }
 public int Distance { get; set; }
 public BaseballSimulator() {
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }
 public void PlayBall() {
 BallEventArgs ballEventArgs = new BallEventArgs(Trajectory, Distance);
 ball.OnBallInPlay(ballEventArgs);
 }
}

Don’t forget the
Click event handler
for the button.

714   Chapter 15

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 EventHandler ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }
}

class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int trajectory, int distance)
 {
 this.Trajectory = trajectory;
 this.Distance = distance;
 }
}

using System.Collections.ObjectModel;
class Fan {
 public ObservableCollection<string> FanSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Fan(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if (ballEventArgs.Distance > 400 && ballEventArgs.Trajectory > 30)
 FanSays.Add("Pitch #" + pitchNumber
 + ": Home run! I'm going for the ball!");
 else
 FanSays.Add("Pitch #" + pitchNumber + ": Woo-hoo! Yeah!");
 }
 }
}

The only code-behind that the page needs is this Button_Click() event handler method:

private void Button_Click(object sender, RoutedEventArgs e) {
 baseballSimulator.PlayBall();
}

It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and
Pitcher classes, add a Fan class, and make sure they all work together with a very basic
version of your baseball simulator.

Read-only
automatic
properties
work really
well in event
arguments
because
the event
handlers only
read the
data passed
to them.

The OnBallInPlay() method just raises the BallInPlay event—but it has to check to make sure it’s not null; otherwise, it’ll throw an exception.

The Fan object’s constructor
chains its event handler
onto the BallInPlay event.

The fan’s BallInPlay
event handler looks
for any ball that’s
high and long.

exercise solution

you are here 4   715

events and delegates

75
105

48
80

Here are the values we used to get the output. Yours might be a little different.Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

40
435

This static resource goes in
the Page.Resources section.

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Name="baseballSimulator"/>

<Grid Grid.Row="1" Margin="120,0" DataContext="{StaticResource ResourceKey=baseballSimulator}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Margin="0,0,40,0">
 <TextBlock Text="Trajectory" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <TextBox Text="{Binding Trajectory, Mode=TwoWay}" Margin="0,0,0,20"/>
 <TextBlock Text="Distance" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <TextBox Text="{Binding Distance, Mode=TwoWay}" Margin="0,0,0,20"/>
 <Button Content="Play ball!" Click="Button_Click"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <TextBlock Text="Pitcher says" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <ListView ItemsSource="{Binding PitcherSays}" Height="150"/>
 <TextBlock Text="Fan says" Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,0,0,20"/>
 <ListView ItemsSource="{Binding FanSays}" Height="150"/>
 </StackPanel>
</Grid>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):
class Pitcher {
 public ObservableCollection<string> PitcherSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Pitcher(Ball ball) {
 ball.BallInPlay += ball_BallInPlay;
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
 private void CatchBall() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I caught the ball");
 }
 private void CoverFirstBase() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I covered first base");
 }
}

We gave you the pitcher’s
BallInPlay event handler.
It looks for any low balls.

716   Chapter 15

C# does implicit conversion when you leave out the new keyword and type
You used the IDE to automatically create this event handler method a few pages ago:

 ball.BallInPlay += ball_BallInPlay;

When you use this syntax, C# does an implicit conversion and figures out the type for you. Try replacing that
line in the Pitcher or Fan class with it:

 ball.BallInPlay += new EventHandler<BallEventArgs>(ball_BallInPlay);

Your program still runs just fine because the IDE automatically generated code that used implicit conversion. That
way, you didn’t have to modify the type when you changed the type of the event.

introducing the events page

Take a look at the event declaration in your Ball class:

 public event EventHandler BallInPlay;

Now open up any Windows Forms app and take a look at the Click event declaration from a
button form, and most of the other controls you used in the first part of this book:

 public event EventHandler Click;

Notice anything? They have different names, but they’re declared exactly the same way. And while
that works just fine, someone looking at your class declaration doesn’t necessarily know that the
BallEventHandler will always pass it a BallEventArgs when the event is fired. Luckily,
.NET gives us a great tool to communicate that information very easily: a generic EventHandler.
Change your ball’s BallInPlay event handler so it looks like this:

You’ll also need to change the OnBallInPlay method to replace EventHandler with
EventHandler<BallEventArgs>. Now rebuild your code. You should see this error:

Generic EventHandlers le t you def ine your own event types

public event EventHandler<BallEventArgs> BallInPlay;

Now that you changed the event declaration, your reference to it in the Ball class needs to be updated too:

 EventHandler<BallEventArgs> ballInPlay = BallInPlay;
 if (ballInPlay != null)

 ballInPlay(this, e);

The generic
argument to
EventHandler has
to be a subclass
of EventArgs.

you are here 4   717

events and delegates

Windows Forms use many different events
We’re going to switch gears and go back to desktop applications for the next two projects,
because they give us a really good learning tool. That’s because every time you’ve created a
button, double-clicked on it in the designer, and written code for a method like button1_
Click(), you’ve been working with events. (Windows Store apps use events too.)

Do this

Visual Studio did more than just write a little method declaration for you, though. It also hooked
the event handler up to the Form object’s Click event. Open up Form1.Designer.cs and use the
Quick Find (Edit→Find and Replace→Quick Find) feature in the IDE to search for the text
Form1_Click in the current project. You’ll find this line of code:

 this.Click += new System.EventHandler(this.Form1_Click);

Now run the program and make sure your code works!

3

Create a new Windows Forms Application project. Go to the Properties window for the
form. Remember those icons at the top of the window? Click on the Events button (it’s the
one with the lightning bolt icon) to bring up the events page in the Properties window:

1

Scroll down to Click and double-
click on the word Click to make
the IDE add a new click event
handler to your form that gets
fired every time you click on
it. And it’ll add a line to Form1.
Designer.cs to hook the event
handler up to the event.

You can see all of the
events for a control:
just click on it and
then click on this
Events button in the
Properties window.

You can create an event that
will fire every time someone
clicks on the form by selecting
Form1_Click next to Click in the
events window.

Double-click on the Click row in the events page. The IDE will automatically add an event
handler method to your form called Form1_Click. Add this line of code to it:

 private void Form1_Click(object sender, EventArgs e) {
 MessageBox.Show("You just clicked on the form");
 }

2

You’re not done yet—flip the page!

718   Chapter 15

	 Event handlers always need to be “hooked up.”

If you drag a button onto your form and add a method
called button1_Click() that has the right parameters
but isn’t registered to listen to your button, the method
won’t ever get called. Double-click on the button in the

designer—the IDE will see the default event handler name is taken, so
it’ll add an event handler for the button called button1_Click_1().

introducing the events page

Here’s a really useful thing that you can do with events: you can chain them
so that one event or delegate calls many methods, one after another. Let’s
add a few buttons to your application to see how it works.

Add these two methods to your form class:

 private void SaySomething(object sender, EventArgs e) {

 MessageBox.Show("Something");

 }

 private void SaySomethingElse(object sender, EventArgs e) {

 MessageBox.Show("Something else");

 }

Now add two buttons to your form. Double-click on each button to add its event
handler. Here’s the code for both event handlers:

 private void button1_Click(object sender, EventArgs e) {

 this.Click += new EventHandler(SaySomething);

 }

 private void button2_Click(object sender, EventArgs e) {

 this.Click += new EventHandler(SaySomethingElse);

 }

4

5

One event, mult iple handlers
Q: When I added a new
event handler to the Pitcher
object, why did the IDE make it
throw an exception?

A: It added code to throw
a NotImplementedException
to remind you that you still
need to implement code there.
That’s a really useful exception,
because you can use it as a
placeholder just like the IDE did.
For example, you’ll typically use
it when you need to build the
skeleton of a class but you don’t
want to fill in all the code yet.
That way, if your program throws
that exception, you know it’s
because you still need to finish
the code, and not because your
program is broken.

Before you go on, take a minute and think about what those two buttons do. Each button hooks up a
new event handler to the form’s Click event. In the first three steps, you used the IDE to add an
event handler as usual to pop up a message box every time the form fired its Click event—it added code
to Form1.Designer.cs that used the += operator to hook up its event handler.

Now you added two buttons that use the exact same syntax to chain additional event handlers onto the
same Click event. So before you go on, try to guess what will happen if you run the program, click
the first button, then click the second button, and then click on the form. Can you figure it out before you
run the program?

We’re using a Windows
Forms application for

this project to take
advantage of the way
Windows Forms use

events. This will work
with any event, but the
button’s Click event
makes it very easy to

explore how this works.

you are here 4   719

events and delegates

So what happened?

Every time you clicked one of the buttons, you chained another method—either Something()
or SomethingElse()—onto the form’s Click event. You can keep clicking the buttons, and
they’ll keep chaining the same methods onto the event. The event doesn’t care how many
methods are chained on, or even if the same method is in the chain more than once. It’ll just call
them all every time the event fires, one after another, in the order they were added.

SaySomething()

SaySomethingElse()

Form1 object

~
Click event

Form1_Click()

SaySomethingElse()
The same method
can be chained on
to an event more
than once.

When you click these
buttons, they chain
different event handlers
onto the form’s Click event.
That means you won’t see
anything when you click the
buttons! You’ll need to click
on the form, because the
buttons change the form’s
behavior by modifying its
Click event.

Now run your program and do this:

≥≥ Click the form—you’ll see a message box pop up that says, “You just clicked on the form.”

≥≥ Now click button1 and then click on the form again. You’ll see two message boxes
pop up: “You just clicked on the form” and then “Something.”

≥≥ Click button2 twice and then click on the form again. You’ll see four message boxes:
“You just clicked on the form,” “Something,” “Something else,” and “Something else.”

Just what you’d expect–the form’s Click event handler pops up a message box.

But every
time you click
a button, it
causes yet
another
message box
to pop up the
next time you
click on the
form!

720   Chapter 15

a day in the life of an app

Windows Store apps use events for
process lifetime management
How do you close a Windows Store app? You can click the button in the upper right-hand corner or
right-click on the app in the deslktop taskbar and choose . But are you really closing the
app? Try this: “close” a Windows Store app, then right-click on the time in the desktop and choose Task
Manager to see the processes that are currently running. You’ll probably see the app you just “closed.”

When you switch away from an app, Windows suspends it, and while an app is suspended it stays
in memory, with all of the objects and resources it needs kept alive. If Windows needs to free up that
memory, it will terminate the app, unloading it and freeing up any resources it’s using. But as a user,
do you really care if your app is suspended or terminated? In most cases, users actually don’t care—as
long as when the app resumes, it returns to a state that makes sense to the user. When an app responds
to Windows suspending and resuming it, that’s called process lifetime management.

It's possible for a Windows Store app to terminate itself by calling Application.Current.Exit(), but a well-designed Windows Store app doesn’t need to because it can use process lifetime management.

Use the IDE to explore process life t ime management events
Open up any Windows Store app and double-click on App.xaml.cs in the Solution Explorer.
Find the App constructor:

You should recognize what’s going on here. App, which is a subclass of the Application
class in the Windows.UI.Xaml namespace, has an event called Suspending, and it’s
being hooked up in the constructor to an event handler called OnSuspending. Right-click on

 and choose Go To Definition to open the tab with the
members of the Application class, and jump to the Suspending event:

This event is fired any time the user switches away from your app. This means that the OnSuspending() method
in App.xaml.cs is called every time your app is suspended. And similarly, the OnLaunched() method in App.xaml.cs is
called every time your app is launched.

Once your app is suspended, Windows can terminate the app at any time. So you should build your app to act like
it’s going to be terminated every time it’s suspended by saving its current state. The OnLaunched()
method can check its arguments to see if it’s starting again after a previous suspension.

Every time
Windows
suspends
a Windows
Store app,
the app’s
Suspending
event is fired
so that it can
save its state.

you are here 4   721

events and delegates

Add process lifetime management to Jimmy’s comics
Let’s modify Jimmy’s comic book app to save and restore the current page. We’ll modify its
Suspending event handler so it writes the name of the current query to a file in the app’s
local folder when Jimmy switches away from the app. If Windows terminates the app, we’ll
make sure to switch back to that page when it’s launched again.

using Windows.Storage;
 class SuspensionManager {
 public static string CurrentQuery { get; set; }

 private const string filename = "_sessionState.txt";

 static async public Task SaveAsync() {
 if (String.IsNullOrEmpty(CurrentQuery))
 CurrentQuery = String.Empty;
 IStorageFile storageFile =
 await ApplicationData.Current.LocalFolder.CreateFileAsync(
 filename, CreationCollisionOption.ReplaceExisting);
 await FileIO.WriteTextAsync(storageFile, CurrentQuery);
 }

 static async public Task RestoreAsync() {
 IStorageFile storageFile =
 await ApplicationData.Current.LocalFolder.GetFileAsync(filename);
 CurrentQuery = await FileIO.ReadTextAsync(storageFile);
 }
}

Do this!

Add a class to manage saving and loading the state.
Add a class called SuspensionManager. It has a static property to keep
track of the current query, and two static methods to read and write the name of
the query to a file called _sessionState.txt in the app’s local folder.

1

private void ListView_ItemClick(object sender, ItemClickEventArgs e) {
 ComicQuery query = e.ClickedItem as ComicQuery;
 if (query != null) {
 SuspensionManager.CurrentQuery = query.Title;
 if (query.Title == "All comics in the collection")
 this.Frame.Navigate(typeof(QueryDetailZoom), query);
 else
 this.Frame.Navigate(typeof(QueryDetail), query);
 }
}

Make the main page update SuspensionManager when a query is loaded.
The ListView in MainPage.xaml causes the app to navigate when an item is clicked, so
add a line to its ItemClick event handler to set SuspensionManager’s static
CurrentQuery property to the title of the query being loaded:

2

Every time a query
is clicked, the event
handler updates the
static CurrentQuery
property.

722   Chapter 15

app interrupted

private async void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();
 await SuspensionManager.SaveAsync();
 deferral.Complete();
}

protected override void OnNavigatedFrom(NavigationEventArgs e) {

 SuspensionManager.CurrentQuery = null;
 base.OnNavigatedFrom(e);

}

Modify the detail pages’ OnNavigatedFrom() methods to clear the saved query.
When the user clicks the back arrow to navigate away from a page, one of the things that it does is fire the
NavigatedFrom event. In Chapter 14, you modified the OnNavigatedFrom() method in code-behind
for the detail pages by expanding in the code editor. Now you should
recognize the pattern—the Basic Page template overrides these methods, just you saw a few pages ago.

We want the two Query Detail pages to clear the SuspensionManager.CurrentQuery property any time the
user navigates back to the main page. That way, CurentQuery is only set to a value if the user suspends the
app while it’s displaying a detail page. Go ahead and expand and add
this line to the OnNavigatedFrom() method in QueryDetail.xaml.cs:

3

When the QueryDetail and QueryDetailZoom
pages fire their OnNavigatedFrom events to
navigate back to the main page, this will clear
the SuspensionManager’s CurrentQuery property.

Modify the Suspending event handler to save the state.
Open App.xaml.cs and find the OnSuspending() event handler method that was hooked up to
the Suspending event. It has a comment that starts with TODO:

Replace the TODO line with a call to SaveAsync(). Make sure you add async to the
beginning of the declaration so you can use the await keyword to make an asynchronous call:

4

Some of the
IDE’s templates
include these

“TODO” lines to
tell you where
it’s safe to add
code.

Next, do the same thing for QueryDetailZoom.xaml.cs.

You’re building your own suspension manager to help you learn how Windows Store apps use events to save
and restore their state. But have a look in the Common folder—it already has a SuspensionManager class
with its own OnSuspending() method. When you add a Basic Page to your app, it automatically adds its

own suspension manager into the Common folder and namespace. Have a look at this page to learn how the
common SuspensionManager works (it will get in your brain faster now that you’ve written one yourself!):

http://msdn.microsoft.com/en-us/library/windows/apps/Hh986968.aspx

Have a look at App.xaml.cs in the Split App you added at the end of Chapter 14. It calls the SuspensionManager’s SaveAsync() method in exactly the same way.

you are here 4   723

events and delegates

 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 if (!String.IsNullOrEmpty(SuspensionManager.CurrentQuery)) {
 var currentQuerySequence =
 from query in new ComicQueryManager().AvailableQueries
 where query.Title == SuspensionManager.CurrentQuery
 select query;

 if (currentQuerySequence.Count() == 1) {
 ComicQuery query = currentQuerySequence.First();
 if (query != null) {
 if (query.Title == "All comics in the collection")
 rootFrame.Navigate(typeof(QueryDetailZoom), query);
 else
 rootFrame.Navigate(typeof(QueryDetail), query);
 }
 }
 }

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated) {
 await SuspensionManager.RestoreAsync();
 }

Add ths code
to compare the
previously saved
state to the
list of queries.
If it matches a
known query, the
app navigates
to that query’s
detail page.

Update the OnLaunched method to restore the state.
All of the changes you’ve made so far keep the SuspensionManager’s static CurrentQuery
property up to date. Now ou can update the Launched event handler in App.xaml.cs
to restore the state. You used the IDE to explore app page navigation in Chapter 14 and saw
how the OnLaunched() method created a new Frame and navigated to it. Now you’ll use the
SuspensionManager to restore the state and navigate to the last query that was displayed.

Start by adding the async keyword to the method declaration:

5

You’ll need
this to add
the async
operator
because
you’re using
await.

Take a close look
at this LINQ
query. Do you see
how it works?

You can use the Suspend dropdown to test the app. It’s in the Debug Location
toolbar, which only shows up when the app is running in the debugger (if you
don’t see it, select it from View→Toolbars). Click Suspend and shutdown to
terminate the app and call its OnSuspending event. You can also suspend
the app using the button closing the window from the taskbar. Use your

modified app to see how apps are suspended without being terminated.

async protected override void OnLaunched(LaunchActivatedEventArgs args)
{

Next, find this comment:

That’s where you can add code to have the SuspensionManager restore the application state.
Replace the TODO line with a call to SuspensionManager.RestoreAsync():

Now that the SuspensionManager has restored the state, its CurrentQuery property will contain the
name of the last query that the user dispalyed (or null if the user was on the main page when the
app was supsended). Modify the code in OnLaunched() that navigates to the root frame
so that it navigates to the QueryDetail or QueryDetailZoom page if CurrentQuery is not null:

724   Chapter 15

bubble bubble, toil and trouble

XAML controls use routed events
Flip back a few pages and have a closer look at the IntelliSense window that popped up when you typed
override into the IDE. Two of the names of the event argument types are a little different than the others.
The DoubleTapped event’s second argument has the type DoubleTappedRoutedEventArgs, and
the GotFocus event’s is a RoutedEventArgs. The reason is that the DoubleTapped and GotFocus
events are routed events. These are like normal events, except for one difference: when a control object
responds to a routed event, first it fires off the event handler method as usual. Then it does something else:
if the event hasn’t been handled, it sends the routed event up to its container. The container fires the
event, and then if it isn’t handled, it sends the routed event up to its container. The event keeps bubbling
up until it’s either handled or it hits the root, or the container at the very top. Here’s a typical routed event
handler method signature.

private void EventHandler(object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to indicate
that it’s handled the event. Setting this property to true stops the event from bubbling up.

In both routed and standard events, the sender parameter always contains a reference to the object that
called the event handler. So if an event is bubbled up from a control to a container like a Grid, then when
the Grid calls its event handler, sender will be a reference to the Grid control. But what if you want
to find out which control fired the original event? No problem. The RoutedEventArgs object has a
property called OriginalSource that contains a reference to the control that initially fired the event. If
OriginalSource and sender point to the same object, then the control that called the event handler is
the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an e lement is “v isible”
to the pointer or mouse
Typically, any element on the page can be “hit” by the pointer or mouse—as
long as it meets certain criteria. It needs to be visible (which you can change
with the Visibility property), it has to have a Background or Fill
property that’s not null (but can be Transparent), it must be enabled (with
the IsEnabled property), and it has to have a height and width greater
than zero. If all of these things are true, then the IsHitTestVisible
property will return True, and that will cause it to respond to pointer or
mouse events.

This property is especially useful if you want to make your events “invisible”
to the mouse. If you set IsHitTestVisible to False, then any pointer
taps or mouse clicks will pass right through the control. If there’s another
control below it, that control will get the event instead.

The structure of
controls that contain
other controls that
in turn contain yet
more controls is called
an object tree, and
routed events bubble
up the tree from the
child to parent until
they hit the root
element at the top.

You can see a list of input events that are routed events here:
http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

you are here 4   725

events and delegates

<Grid Grid.Row="1" Margin="120,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel x:Name="panel" PointerPressed="StackPanel_PointerPressed">
 <Border BorderThickness="10" BorderBrush="Blue" Width="155" x:Name="border"
 Margin="20" PointerPressed="Border_PointerPressed">
 <Grid x:Name="grid" PointerPressed="Grid_PointerPressed">
 <Ellipse Fill="Red" Width="100" Height="100"
 PointerPressed="Ellipse_PointerPressed"/>
 <Rectangle Fill="Gray" Width="50" Height="50"
 PointerPressed="Rectangle_PointerPressed" x:Name="grayRectangle"/>
 </Grid>
 </Border>
 <ListBox BorderThickness="1" Width="300" Height="250" x:Name="output" Margin="0,0,20,0"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <ToggleSwitch Header="Border sets handled" x:Name="borderSetsHandled"/>
 <ToggleSwitch Header="Grid sets handled" x:Name="gridSetsHandled" />
 <ToggleSwitch Header="Ellipse sets handled" x:Name="ellipseSetsHandled"/>
 <ToggleSwitch Header="Rectangle sets handled" x:Name="rectangleSetsHandled"/>
 <Button Content="Update Rectangle IsHitTestVisible"
 Click="UpdateHitTestButton" Margin="0,20,20,0"/>
 <ToggleSwitch IsOn="True" Header="New IsHitTestVisible value"
 x:Name="newHitTestVisibleValue" />
 </StackPanel>
</Grid>

Create an app to explore routed events
Here’s a Windows Store app that you can use to experiment with routed events. It’s got a
StackPanel that contains a Border, which contains a Grid, and inside that grid are an Ellipse
and a Rectangle. Have a look at the screenshot. See how the Rectangle is on top of the Ellipse?
If you put two controls into the same cell, they’ll stack on top of each other. But both of those
controls have the same parent: the Grid, whose parent
is the Border, and the Border’s parent is the StackPanel.
Routed events from the Rectangle or Ellipse bubble up
through the parents to the root of the object tree.

This is a ToggleSwitch control,
which you can use to toggle a value on
and off. The header text is set with the
Header property, and you can set and
get its value using the IsOn property.

Routed events
bubble up the
object tree.

IsOn defaults to False. This switch has it
set to True because controls always have
IsHitTestVisible set to true by default.

Make sure you replace
MainPage.xaml with a
new Basic Page.

Flip the page to finish the app

726   Chapter 15

climbing the object tree

public sealed partial class MainPage : Page {
 ObservableCollection<string> outputItems = new ObservableCollection<string>();

public MainPage() {
 this.InitializeComponent();
 this.navigationHelper = new NavigationHelper(this);
 this.navigationHelper.LoadState += navigationHelper_LoadState;
 this.navigationHelper.SaveState += navigationHelper_SaveState;
 output.ItemsSource = outputItems;
}

private void Ellipse_PointerPressed(object sender, PointerRoutedEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The ellipse was pressed");
 if (ellipseSetsHandled.IsOn) e.Handled = true;
}
 private void Rectangle_PointerPressed(object sender, PointerRoutedEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The rectangle was pressed");
 if (rectangleSetsHandled.IsOn) e.Handled = true;
}
 private void Grid_PointerPressed(object sender, PointerRoutedEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The grid was pressed");
 if (gridSetsHandled.IsOn) e.Handled = true;
}
 private void Border_PointerPressed(object sender, PointerRoutedEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The border was pressed");
 if (borderSetsHandled.IsOn) e.Handled = true;
}
 private void StackPanel_PointerPressed(object sender, PointerRoutedEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The panel was pressed");
}
 private void UpdateHitTestButton(object sender, RoutedEventArgs e) {
 grayRectangle.IsHitTestVisible = newHitTestVisibleValue.IsOn;
}

Some routed event handlers will receive a subclass of
RoutedEventArgs, such as PointerRoutedEventArgs
for the PointerPressed event.

You’ll need this ObservableCollection to display output in the ListBox.
Make a field called outputItems and set the ListBox.ItemsSource property in the page constructor. And don’t
forget to add the using System.Collections.ObjectModel; statement for ObservableCollection<T>.

Here’s the rest of the code-behind. Each control’s PointerPressed event handler clears the output if it’s the original
source, then it adds a string to the output. If its “handled” toggle switch is on, it uses e.Handled to handle the event.

The Click event handler for the button uses the IsOn
property of the toggle switch to turn IsHitTestVisible
on or off for the Rectangle control.

Modify the MainPage contsructor to set the output ListBox’s ItemsSource to this new ObservableCollection. This
will let the app display output to the user by clearing and adding items to outputItems.

you are here 4   727

events and delegates

ToggleSwitc
h

StackPan
el

ob
je

ct

Border o

bj
ec

t

Ellipse ob
je

ct

Grid objec
t

Rectangle
 o

bj
ec

t

MainPage objec
t

This is the grid with the header row that’s
part of the Basic Page template.

Here’s the StackPanel that contains the
Border, Grid, Ellipse, and Rectangle.

This grid can receive routed
PointerPressed events,
but it won’t raise them. Its
IsHitTestVisible property
defaults to False because it doesn’t
have a Background or Fill
property. If you update the XAML
to add a Background property,
its IsHitTestVisible property
will default to true—even if you
set that property to Transparent.
That will cause it to respond to
pointer presses.

Grid objec
t

Button objec
t

ToggleSwitc
h

ob
je

ct
s

StackPan

el
ob

je
ct

Here’s the object graph for your main page.
The MainPage class is at the root of the object tree. MainPage.xaml and MainPage.xaml.cs
define a subclass of the Page class called MainPage. When you use the Basic
Page template, it includes code-behind in MainPage.xaml to help with navigation (like you
saw in Chapter 14). You’ll add your own ObservableCollection to the MainPage to manage
the output and use it as the ItemsSource for the ListBox that displays the output.

Flip the page to use your new app to explore routed events

728   Chapter 15

the bubbles go straight to your head

Turn IsHitTestVisible off, press the “Update”
button, and then click or tap the rectangle.

 You should see this output.

Wait a minute! You pressed the
Rectangle, but the Ellipse control’s PointerPressed event handler
fired. What’s going on?

When you pressed the button, its Click event handler updated
the Rectangle control’s IsHitTestVisible property to false,
which made it “invisible” to pointer presses, clicks, and other pointer
events. So when you tapped the rectangle, your tap passed right
through it to the topmost control underneath it on the page that has
IsHitTestVisible set to true and has a Background property
that’s set to a color or Transparent. In this case, it finds the Ellipse
control and fires its PointerPressed event.

Run the app and click or tap the gray
Rectangle.

You should see the output in the screenshot to the right.

You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle_PointerPressed(), the Rectangle control’s PointerPressed
event handler:

Click the gray rectangle again—this time the breakpoint should fire. Use Step
Over (F10) to step through the code line by line. First you’ll see the if block
execute to clear the outputItems ObservableCollection that’s bound to
the ListBox. This happens because sender and e.OriginalSource reference
the same Rectangle control, which is only true inside the event handler method for the control that originated the
event (in this case, the control that you clicked or tapped), so sender == e.OriginalSource is true.

When you get to the end of the method, keep stepping through the program. The event will bubble up
through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler, then the Border’s,
and then the Panel’s, and finally it runs an event handler method that’s part of LayoutAwarePage—this is
outside of your code and not part of the routed event, so it will always run. Since none of those controls are the
original source for the event, none of their senders will be the same as e.OriginalSource, so none of them
clear the output.

you are here 4   729

events and delegates

Use the app to experiment with routed events.
Here are a few things to try:

≥≥ Click on the gray rectangle and the red ellipse and watch the output
to see how the events bubble up.

≥≥ Turn on each of the toggle switches, starting at the top, to cause the
event handlers to set e.Handled to true. Watch the events stop
bubbling when they’re handled.

≥≥ Set breakpoints and debug through all of the event handler methods.

≥≥ Try setting a breakpoint in the Ellipse’s event handler method, then
turn the gray rectangle’s IsHitTestVisible property on and off
by toggling the bottom switch and pressing the button. Step through
the code for the rectangle when IsHitTestVisible is set to
false.

≥≥ Stop the program and add a Background property to the Grid to
make it visible to pointer hits.

Toggle the “Grid
sets handled” switch
on and click or tap
the gray Rectangle.

You should see this output.

So why did only two lines get
added to the output ListBox?
Step through the code again
to see what’s going on. This time,
gridSetsHandled.IsOn
was true because you toggled the
gridSetsHandled to On, so
the last line in the Grid’s event
handler set e.IsHandled to
true. As soon as a routed event
handler method does that, the
event stops bubbling up. As soon
as the Grid’s event handler completes,
the app sees that the event has
been handled, so it doesn’t call the Border or Panel’s event handler method, and instead skips to the event
handler method in LayoutAwarePage that’s outside of the code you added.

A routed event
first fires the
event handler for
the control that
originated the event,
and then bubbles up
through the control
hierarchy until it
hits the top—or an
event handler sets
e.Handled to true.

730   Chapter 15

Connecting event senders with event listeners
One of the trickiest things about events is that the sender of the event has
to know what kind of event to send—including the arguments to pass to the
event. And the listener of the event has to know about the return type and the
arguments its handler methods must use.

But—and here’s the tricky part—you can’t tie the sender and receiver together.
You want the sender to send the event and not worry about who receives it. And the
receiver cares about the event, not the object that raised the event. So both sender
and receiver focus on the event, not each other.

del-e-gate, noun.
a person sent or
authorized to represent
others. The president sent a
delegate to the summit.

Ball needs to know
about BallInPlay,
because it needs to
raise that event.

Pitcher needs to know about BallInPlay, so it can respond to that event, and build an appropriate event handler.

Ball does NOT want to worry
about Pitcher. It doesn’t care
what type of object works with it:
Fan, Pitcher, Umpire, etc.

~
BallInPlay event

“My people wil l get in touch with your people .”

You know what this code does:

 Ball currentBall;

It creates a reference variable that can point to any Ball object. It’s
not tied to a single Ball. Instead, it can point to any ball object—or it
can be null, and not point to anything at all.

An event needs a similar kind of reference—except instead of pointing
to an object, it needs one that points to a method. Every event needs
to keep track of a list of methods that are subscribed to it. You’ve already
seen that they can be in other classes, and they can even be private. So
how does it keep track of all of the event handler methods that it needs
to call? It uses something called a delegate.

Pitcher object

Ball object

givers and receivers

you are here 4   731

events and delegates

A delegate STANDS IN for an actual method
One of the most useful aspects of events is that when an event fires, it has no idea
whose event handler methods it’s calling. Anyone who happens to subscribe to an event
gets his event handler called. So how does the event manage that?

It uses a C# type called a delegate. A delegate is a special kind of reference type that
lets you refer to a method inside a class…and delegates are the basis for events.

You’ve actually already been using delegates throughout this chapter! When you created
the BallInPlay event, you used EventHandler. Well, an EventHandler is
just a delegate. If you right-click on EventHandler in the IDE and select Go To
Definition, this is what you’ll see (try it yourself):

public delegate void EventHandler(object sender, EventArgs e);

A delegate adds a new type to your project
When you add a delegate to your project, you’re adding a delegate type. And when you use it to create a field or variable,
you’re creating an instance of that delegate type. So create a new Console Application project. Then add a new
class file to the project called ConvertsIntToString.cs. But instead of putting a class inside it, add a single line:

 delegate string ConvertsIntToString(int i);

Next, add a method called HiThere() to your Program class:

private static string HiThere(int i)
{
 return "Hi there! #" + (i * 100);
}

Finally, fill in the Main() method:

static void Main(string[] args)
{
 ConvertsIntToString someMethod = new ConvertsIntToString(HiThere);
 string message = someMethod(5);
 Console.WriteLine(message);
 Console.ReadKey();
}

The someMethod variable is pointing to the HiThere() method. When your program calls someMethod(5), it calls
HiThere() and passes it the argument 5, which causes it to return the string value “Hi there! #500”—exactly as if it
were called directly. Take a minute and step through the program in the debugger to see exactly what’s going on.

Do this

So this delegate can be
used to reference any
method that takes an
object and an EventArgs
and has no return value.

When you create a
delegate, all you need
to do is specify the
signature of methods
that it can point to.

This specifies the return value of the delegate’s
signature—which means an EventHandler can only
point to methods with void return values.

The name of this delegate is EventHandler.

You can set someMethod just like any other
variable. When you call it like a method, it calls
whatever method it happens to point to.

This method’s signature
matches ConvertsIntToString.

ConvertsIntToString is a delegate type that
you’ve added to your project. Now you can
use it to declare variables. This is just like
how you can use a class or interface as a
type to define variables.

someMethod is a variable whose type is ConvertsIntToString. It’s a lot like a reference variable, except instead of putting a label on an object on the heap you’re putting a label on a method.

732   Chapter 15

Do this

Delegates in act ion
There’s nothing mysterious about delegates—in fact, they
don’t take much code at all to use. Let’s use them to help a
restaurant owner sort out his top chef ’s secret ingredients.

Create a new Windows Forms Application project and add a delegate.
Delegates usually appear outside of any other classes, so add a new class file to your project and
call it GetSecretIngredient.cs. It will have exactly one line of code in it:

 delegate string GetSecretIngredient(int amount);

(Make sure you delete the class declaration entirely.) This delegate can be used to create a variable
that can point to any method that takes one int parameter and returns a string.

1

Add a class for the first chef, Suzanne.
Suzanne.cs will hold a class that keeps track of the first chef ’s secret ingredient. It has a
private method called SuzannesSecretIngredient() with a signature that matches
GetSecretIngredient. But it also has a read-only property—and check out that property’s
type. It returns a GetSecretIngredient. So other objects can use that property to get a
reference to her SuzannesSecretIngredient() method—the property can return a
delegate reference to it, even though it’s private.

 class Suzanne {
 public GetSecretIngredient MySecretIngredientMethod {
 get {
 return new GetSecretIngredient(SuzannesSecretIngredient);
 }
 }
 private string SuzannesSecretIngredient(int amount) {
 return amount.ToString() + " ounces of cloves";
 }
 }

2

Then add a class for the second chef, Amy.
Amy’s method works a lot like Suzanne’s:

class Amy {
 public GetSecretIngredient AmysSecretIngredientMethod {
 get {
 return new GetSecretIngredient(AmysSecretIngredient);
 }
 }
 private string AmysSecretIngredient(int amount) {
 if (amount < 10)
 return amount.ToString()
 + " cans of sardines -- you need more!";
 else
 return amount.ToString() + " cans of sardines";
 }
}

3

The AmysSecretIngredientMethod
property returns a new instance of the
GetSecretIngredient delegate that’s
pointing to her secret ingredient method.

Amy’s secret
ingredient method
also takes an int
called amount and
returns a string,
but it returns a
different string
from Suzanne’s.

Suzanne’s secret
ingredient method
takes an int
called amount and
returns a string
that describes her
secret ingredient.

exploring delegates
Here's another
program where
we're using a

Windows Forms
app. This time
it's because
MessageBox.
Show() blocks,
which makes it

easy to see what's
going on.

Delete the class
declaration from
the new class file
and replace it with
this line of code.

you are here 4   733

events and delegates

Build this form.
Here’s the code for the form:

GetSecretIngredient ingredientMethod = null;
Suzanne suzanne = new Suzanne();
Amy amy = new Amy();

private void useIngredient_Click(object sender, EventArgs e) {
 if (ingredientMethod != null)
 MessageBox.Show("I'll add " + ingredientMethod((int)amount.Value));
 else
 MessageBox.Show("I don't have a secret ingredient!");
}

private void getSuzanne_Click(object sender, EventArgs e) {
 ingredientMethod = new GetSecretIngredient(suzanne.MySecretIngredientMethod);
}

private void getAmy_Click(object sender, EventArgs e) {
 ingredientMethod = new GetSecretIngredient(amy.AmysSecretIngredientMethod);
}

4

Use the debugger to explore how delegates work.
You’ve got a great tool—the IDE’s debugger—that can really help you get a handle on how delegates work:

≥≥ Start by running your program. First click the “Get the ingredient” button—it should pop up a
message box that says, “I don’t have a secret ingredient!”

≥≥ Click the “Get Suzanne’s delegate” button—that takes the form’s ingredientMethod field
(which is a GetSecretIngredient delegate)—and sets it equal to whatever Suzanne’s
MySecretIngredientMethod property returns. That property returns a new instance of the
GetSecretIngredient type that’s pointing to the SuzannesSecretIngredient() method.

≥≥ Click the “Get the ingredient” button again. Now that the form’s ingredientMethod field
is pointing to SuzannesSecretIngredient(), it calls that, passing it the value in the
numericUpDown control (make sure it’s named amount) and showing it in a message box.

≥≥ Click the “Get Amy’s delegate” button. It uses the Amy.AmysSecretIngredientMethod
property to set the form’s ingredientMethod field to point to the AmysSecretIngredient()
method.

≥≥ Click the “Get the ingredient” button one more time. Now it calls Amy’s method.

≥≥ Now use the debugger to see exactly what’s going on. Place a breakpoint on the first line of each of
the three methods in the form. Then restart the program (which resets the ingredientMethod
so that it’s equal to null), and start over with the above five steps. Use the Step Into (F11) feature
of the debugger to step through every line of code. Watch what happens when you click “Get the
ingredient.” It steps right into the Suzanne and Amy classes, depending on which method the
ingredientMethod field is pointing to.

5

Make sure your NumericUpDown control is named “amount”.

You can use implicit conversion with delegates, just like you did with events earlier in the chapter.
Try replacing this: = new GetSecretIngredient(suzanne.MySecretIngredientMethod);

with this: = suzanne.MySecretIngredientMethod;

734   Chapter 15

Pool Puzzle

Your job is to take snippets from the pool
and place them into the blank lines in the
code. You can use the same snippet more
than once, and you won’t need to use all
the snippets. Your goal is to complete the
code for a form that writes this output to
the console when its button1 button is
clicked.

Output
Fingers is coming to get you!

Note: Each thing from
the pool can be used
more than once.

public Form1() {

 InitializeComponent();

 this.______ += new EventHandler(Minivan);

 this.______ += new EventHandler(____________);

}

void Towtruck(object sender, EventArgs e) {

 Console.Write("is coming ");

}

void Motorcycle(object sender, EventArgs e) {

 button1.______ += new EventHandler(____________);

}

void Bicycle(object sender, EventArgs e) {

 Console.WriteLine("to get you!");

}

void ____________(object sender, EventArgs e) {

 button1.______ += new EventHandler(Dumptruck);

 button1.______ += new EventHandler(____________);

}

void ____________(object sender, EventArgs e) {

 Console.Write("Fingers ");

}

Load
Save
Open
Close
Click
Scroll

+
++
==
-=
!=

Van
Car

Minivan
Motorcycle

Tricycle

Airplane
Bicycle

Dumptruck
Towtruck
Flatbed

event
delegate

int
private
public

some events are too public

Solution on page 721

you are here 4   735

events and delegates

BatEventA
rg

s

Ball object

Bat object

An object can subscribe to an event…
Suppose we add a new class to our simulator, a Bat class, and that class adds a
HitTheBall event into the mix. Here’s how it works: if the simulator detects that the
player hit the ball, it calls the Bat object’s OnHitTheBall() method, which raises a
HitTheBall event.

So now we can add a bat_HitTheBall() method to the Ball class that subscribes to
the Bat object’s HitTheBall event. Then, when the ball gets hit, its own event handler
calls its OnBallInPlay() method to raise its own event, BallInPlay, and the chain
reaction begins. Fielders field, fans scream, umpires yell…we’ve got a ball game.

bat.OnHitTheBall() bat_HitTheBall()

Now its event handler can
take information about
how hard the swing was,
figure out the distance
and trajectory, and raise a
BallInPlay event.

~
HitTheBall event

The simulator detects that
the bat collided with the ball,
so it calls the bat object’s
OnHitTheBall() method.

Ball subscribed to the
HitTheBall event.

…but that’s not always a good thing!
There’s only ever going to be one ball in play at any time. But if the Bat
object uses an event to announce to the ball that it’s been hit, then any
Ball object can subscribe to it. And that means we’ve set ourselves up for
a nasty little bug—what happens if a programmer accidentally adds three
more Ball objects? Then the batter will swing, hit, and four different
balls will fly out into the field!

Ball object

Ball object

bat_HitTheBall()bat_HitTheBall()

Uh oh! These balls were
supposed to be held in reserve
in case the first one was hit
out of the park.

BatEventA
rg

s

~
HitTheBall event

Ball object

bat_HitTheBall()

Ball object

bat_HitTheBall()

But a careless programmer subscribed
them all to the bat’s HitTheBall
event…so when the bat hit the ball
that the pitcher threw, all four of
them flew out into the field!

736   Chapter 15

callbacks to the rescue

Ball object

Ball object

Ball object

Ball object
Bat object

Use a callback to control who’s listening
Our system of events only works if we’ve got one Ball and one Bat. If you’ve got several
Ball objects, and they all subscribe to the public event HitTheBall, then they’ll all go
flying when the event is raised. But that doesn’t make any sense…it’s really only one Ball
object that got hit. We need to let the one ball that’s being pitched hook itself up to the bat,
but we need to do it in a way that doesn’t allow any other balls to hook themselves up.

That’s where a callback comes in handy. It’s a technique that you can use with delegates.
Instead of exposing an event that anyone can subscribe to, an object uses a method (often a
constructor) that takes a delegate as an argument and holds onto that delegate in a private
field. We’ll use a callback to make sure that the Bat notifies exactly one Ball:

HitTheBall() OnBallInPlay()

HitTheBall()

HitTheBall()
HitTheBall()

The Bat will keep its delegate field private.
The easiest way to keep the wrong Ball objects from chaining themselves onto the Bat’s
delegate is for the bat to make it private. That way, it has control over which Ball object’s
method gets called.

1

The Bat’s constructor takes a delegate that points to a method in the ball.
When the ball is in play, it creates the new instance of the bat, and it passes the Bat object a
pointer to its OnBallInPlay() method. This is called a callback method because the
Bat is using it to call back to the object that instantiated it.

2

When the bat hits the ball, it calls the callback method.
But since the bat kept its delegate private, it can be 100% sure that no other ball has been hit.
That solves the problem!

3

private

hitBallCallback

Bat object

hitBallCallback
The Ball object passes a delegate
reference to its own OnBallInPlay()
method to the Bat’s constructor.
The bat saves that delegate in its
private hitBallCallback field.

The other balls can’t
chain themselves onto
the delegate because
it’s a private field in
the Bat object.

Now the Bat object can
call its hitBallCallback
delegate, which calls
the Ball object’s
OnBallInPlay() method.

you are here 4   737

events and delegates

public Form1() {
 InitializeComponent();
 this.Load += new EventHandler(Minivan);
 this.Load += new EventHandler(Motorcycle);
}
void Towtruck(object sender, EventArgs e) {
 Console.Write("is coming ");
}
void Motorcycle(object sender, EventArgs e) {

 button1.Click += new EventHandler(Bicycle);
}
void Bicycle(object sender, EventArgs e) {
 Console.WriteLine("to get you!");
}
void Minivan(object sender, EventArgs e) {
 button1.Click += new EventHandler(Dumptruck);
 button1.Click += new EventHandler(Towtruck);
}
void Dumptruck(object sender, EventArgs e) {
 Console.Write("Fingers ");
}

The constructor
chains two event
handlers onto
the load events.
They get fired
off as soon
as the form is
loaded. The two Load event handlers hook up three separate event handlers to the button’s Click event handler.When the button

is clicked, it calls
the three event
handlers that are
chained to it.

The Case of the Golden Crustacean
Henry “Flatfoot” Hodgkins is a TreasureHunter. He’s hot on the trail of one of the most
prized possessions in the rare and unusual aquatic-themed jewelry markets: a jade‑encrusted
translucent gold crab. But so are lots of other TreasureHunters. They all got a reference to
the same crab in their constructor, but Henry wants to claim the prize first.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises a
RunForCover event every time anyone gets close to it. Even better, the event includes

NewLocationArgs, which detail where the crab is moving to. But none of the other
treasure hunters know about the event, so Henry figures he can cash in.

Henry adds code to his constructor to register his treasure_RunForCover( )
method as an event handler for the RunForCover event on the crab reference he’s got.

Then, he sends a lowly underling after the crab, knowing it will run away, hide, and raise
the RunForCover event—giving Henry’s treasure_RunForCover( ) method all the
information he needs.

Everything goes according to plan, until Henry gets the new location and rushes to grab the
crab. He’s stunned to see three other TreasureHunters already there, fighting over the crab.

How did the other treasure hunters beat Henry to the crab?

Pool Puzzle
Solution

Answers on page 741.

Five Minute
Mystery

Remember, in a WinForms app the
Console.WriteLine() writes to the
Output window in the IDE. You’ll
have to open it up from the View
menu if it’s not already open.

738   Chapter 15

A callback is just a way to use de legates
A callback is a different way of using a delegate. It’s not a new
keyword or operator. It just describes a pattern—a way that you use
delegates with your classes so that one object can tell another object,

“Notify me when this happens—if that’s OK with you!”

We set the callback in the Bat object’s constructor. But in some cases, it makes more sense to set up the callback method using a public method or property’s set accessor.

Do this

Define another delegate in your baseball project.
Since the Bat will have a private delegate field that points to the Ball object’s OnBallInPlay()
method, we’ll need a delegate that matches its signature:

 delegate void BatCallback(BallEventArgs e);

1

Add the Bat class to the project.
The Bat class is simple. It’s got a HitTheBall() method that the simulator will call every time
a ball is hit. That HitTheBall() method uses the hitBallCallback delegate to call the
ball’s OnBallInPlay() method (or whatever method is passed into its constructor).

 class Bat {
 private BatCallback hitBallCallback;
 public Bat(BatCallback callbackDelegate) {
 this.hitBallCallback = new BatCallback(callbackDelegate);
 }
 public void HitTheBall(BallEventArgs e) {
 if (hitBallCallback != null)
 hitBallCallback(e);
 }
 }

2

We’ll need to hook the bat up to a ball.
So how does the Bat’s constructor get a reference to a particular ball’s OnBallInPlay() method?
Easy—just call that Ball object’s GetNewBat() method, which you’ll have to add to Ball:

 public Bat GetNewBat() {
 return new Bat(new BatCallback(OnBallInPlay));
 }

3

The Bat object’s callback will point to a Ball
object’s OnBallInPlay() method, so the callback’s
delegate needs to match the signature of
OnBallInPlay()—so it needs to take a BallEventArgs
parameter and have a void return value.

Make sure you
check every
delegate to
make sure
it’s not null—
otherwise, it
could throw a
null reference
exception.

The Ball’s new GetNewBat() method creates a new Bat object, and it uses the BatCallBack delegate to pass a reference to its own OnBallInPlay() method to the new bat. That’s the callback method the bat will use when it hits the ball.

leave a message; i’ll call you back

Delegates don’t always need to live in their own files.
Try putting this one in the same file as Bat. Make sure
it’s inside the namespace but outside the Bat class.

We used = instead of += because in this case, we only want one bat to listen to any
one ball, so this delegate only gets set once. But there’s nothing stopping you from

writing a callback that uses += to call back to multiple methods. The point of the
callback is that the object doing the calling is in control of who’s listening. In an

event, other objects demand to be notified by adding event handlers. In a callback,
other objects simply turn over their delegates and politely ask to be notified.

you are here 4   739

events and delegates

¢¢ When you add a delegate to your project, you’re
creating a new type that stores references to methods.

¢¢ Events use delegates to notify objects that actions have
occurred.

¢¢ Objects subscribe to an object’s event if they need to
react to something that happened in that object.

¢¢ An EventHandler is a kind of delegate that’s really
common when you work with events.

¢¢ You can chain several event handlers onto one event.
That’s why you use += to assign a handler to an event.

¢¢ Always check that an event or delegate is not null before
you use it to avoid a NullReferenceException.

¢¢ All of the controls in the toolbox use events to make
things happen in your programs.

¢¢ When one object passes a reference to a method to
another object so it—and only it—can return information,
it’s called a callback.

¢¢ Events let any method subscribe to your object’s events
anonymously, while callbacks let your objects exercise
more control over which delegates they accept.

¢¢ Both callbacks and events use delegates to reference
and call methods in other objects.

¢¢ The debugger is a really useful tool to help you
understand how events, delegates, and callbacks work.
Take advantage of it!

Now we can encapsulate the Ball class a little better.
It’s unusual for one of the On... methods that raise an event to be public. So let’s follow that
pattern with our ball, too, by making its OnBallInPlay() method protected:

 protected void OnBallInPlay(BallEventArgs e) {
 EventHandler<BallEventArgs> ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }

Try running your app again—you’ll get an error because OnBallInPlay() is inaccessible.

4

All that’s left to do is fixing the BaseballSimulator class.
BaseballSimulator can’t call the Ball object’s OnBallInPlay() method anymore—
which is exactly what we wanted (and why the IDE now shows an error). Instead, it needs to ask
the Ball for a new bat in order to hit the ball. And when it does, the Ball object will make sure
that its OnBallInPlay() method is hooked up to the bat’s callback.

 public void PlayBall() {
 Bat bat = ball.GetNewBat();
 BallEventArgs ballEventArgs =
 new BallEventArgs(Trajectory, Distance);
 bat.HitTheBall(ballEventArgs);

 }

Now run the program—it should work exactly like it did before. But it’s now protected from
any problems that would be caused by more than one ball listening for the same event.

5

This is a really standard pattern
that you’ll see over and over
again when you work with .NET
classes. When a .NET class has
an event that gets fired, you’ll
almost always find a protected
method that starts with “On”.

If the BaseballSimulator wants to hit
a Ball object, it needs to get a new
Bat object from that ball. The ball will
make sure that the callback is hooked up
to the bat. Now when it calls the bat’s
HitTheBall() method, it calls the ball’s
OnBallInPlay() method, which fires its
BallInPlay event.

But don’t take our word for it—pop it open in the debugger!

740   Chapter 15

Q: How are callbacks different from events?

A: Events and delegates are part of .NET. They’re a way for one
object to announce to other objects that something specific has
happened. When one object publishes an event, any number of other
objects can subscribe to it without the publishing object knowing or
caring. When an object fires off an event, if anyone happens to have
subscribed to it, then it calls each of their event handlers.

Callbacks are not part of .NET at all—instead, callback is just a name
for the way we use delegates (or events—there’s nothing stopping
you from using a private event to build a callback). A callback is just a
relationship between two classes where one object requests that it be
notified. Compare this to an event, where one object demands that it
be notified of that event.

Q: So a callback isn’t an actual type in .NET?

A: No, it isn’t. A callback is a pattern—it’s just a novel way of
using the existing types, keywords, and tools that C# comes with. Go
back and take another look at the callback code you just wrote for
the bat and ball. Did you see any new keywords that we haven’t used
before? Nope! But it does use a delegate, which is a .NET type.

It turns out that there are a lot of patterns that you can use. In fact,
there’s a whole area of programming called design patterns. A lot of
problems that you’ll run into have been solved before, and the ones
that pop up over and over again have their own design patterns that
you can benefit from.

Q: So callbacks are just private events?

A: Not quite. It seems easy to think about it that way, but
private events are a different beast altogether. Remember what
the private access modifier really means? When you mark
a class member private, only instances of that same class
can access it. So if you mark an event private, then other
instances of the same class can subscribe to it. That’s different from
a callback, because it still involves one or more objects anonymously
subscribing to an event.

Q: But it looks just like an event, except with the event
keyword, right?

A: The reason a callback looks so much like an event is that
they both use delegates. And it makes sense that they both use
delegates, because that’s C#’s tool for letting one object pass
another object a reference to one of its methods.

But the big difference between normal events and callbacks is
that an event is a way for a class to publish to the world that some
specific thing has happened. A callback, on the other hand, is never
published. It’s private, and the method that’s doing the calling keeps
tight control over who it’s calling.

those design patterns sound useful

You’ll often see delegates used with anonymous methods and lambda
expressions. Flip to leftover #9 in the appendix to learn more about them.

MessageDialog uses the callback pattern
When you create a UICommand for a MessageDialog, you can give it a callback using the
UICommandInvokedHandler delegate. You can also pass it an optional identifier object, and the
label and identifier are accessible through the IUICommand delegate parameter.

Try adding these
lines to an app

(don’t forget to add
using Windows.
UI.Popups;).

You can use the
Generate Method

Stub IDE command
to generate a stub

for the callback
method.

This can be any object,
not just a string.

Check out “Head First Design Patterns” at the Head First Labs website. It’s a great
way to learn about different patterns that you can apply to your own programs. The
first one you’ll learn about is called the Observer (or Publisher-Subscriber) pattern,
and it’ll look really familiar to you. One object publishes information, and other
objects subscribe to it. Events are the C# way of implementing the Observer pattern.

you are here 4   741

events and delegates

The Case of the Golden Crustacean
How did the other treasure hunters beat Henry to the crab?
The crux of the mystery lies in how the treasure hunter seeks his quarry. But
first we’ll need to see exactly what Henry found in the stolen diagrams.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises
a RunForCover event every time anyone gets close to it. Even better, the event includes
NewLocationArgs, which detail where the crab is moving to. But none of the other
treasure hunters know about the event, so Henry figures he can cash in.

Five Minute
Mystery

Solved

class GoldenCrab {
 public delegate void Escape(object sender, NewLocationArgs e);
 public event Escape RunForCover;
 public void SomeonesNearby() {
 Escape runForCover = RunForCover;
 if (runForCover != null)
 runForCover(this, new NewLocationArgs("Under the rock");
 }
}
class NewLocationArgs {
 public NewLocationArgs(HidingPlace newLocation) {
 this.newLocation = newLocation;
 }
 private HidingPlace newLocation;
 public HidingPlace NewLocation { get { return newLocation; } }
}

So how did Henry take advantage of his newfound insider information?

Henry adds code to his constructor to register his treasure_RunForCover() method as an event handler for the
RunForCover event on the crab reference he’s got. Then, he sends a lowly underling after the crab, knowing it
will run away, hide, and raise the RunForCover event—giving Henry’s treasure_RunForCover() method all the
information he needs.

class TreasureHunter {
 public TreasureHunter(GoldenCrab treasure) {
 treasure.RunForCover += treasure_RunForCover;
 }
 void treasure_RunForCover(object sender, NewLocationArgs e) {
 MoveHere(e.NewLocation);
 }
 void MoveHere(HidingPlace location) {
 // ... code to move to a new location ...
 }
}

And that explains why Henry’s plan backfired. When he added the event handler to the
TreasureHunter constructor, he was inadvertently doing the same thing for all of the treasure
hunters! And that meant that every treasure hunter’s event handler got chained onto the same
RunForCover event. So when the Golden Crustacean ran for cover, everyone was notified about the
event. And all of that would have been fine if Henry were the first one to get the message. But Henry had
no way of knowing when the other treasure hunters would have been called—if they subscribed before he
did, they’d get the event first.

Any time someone comes close to the golden crab, its SomeonesNearby() method fires off a RunForCover event, and it finds a place to hide.

Henry thought he was being clever by altering his
class’s constructor to add an event handler that calls
his MoveHere() method every time the crab raises its
RunForCover event. But he forgot that the other
treasure hunters inherit from the same class, and his
clever code adds their event handlers to the chain, too!

742   Chapter 15

how charming

Use delegates to use the Windows settings charm
Go to the Windows 8 Start Page and tap the Internet Explorer icon, then open up the charms and tap
Settings. Internet Explorer told Windows 8 to add options like Internet Options and About to the Settings
charm menu. But when you click the IE About option, it looks very different from the About page for the
Maps, Mail, or Windows Store apps. That’s because it’s up to each app—and, in fact, each page—to tell
Windows about its Settings charm options and register a callback that gets called when the user chooses the
option. C# Windows Store apps use delegates to do this. Let’s use the IDE to explore how this works and
add an About command to the Settings charm for Jimmy’s app.

Open up MainPage.xaml.cs and add these two using statements and this code to the code-behind:

using Windows.UI.ApplicationSettings;

using Windows.UI.Popups;

public sealed partial class MainPage : Page {

 static bool aboutCommandAdded = false;

...

 public MainPage() {

 this.InitializeComponent();

 this.navigationHelper = new NavigationHelper(this);

 this.navigationHelper.LoadState += navigationHelper_LoadState;

 this.navigationHelper.SaveState += navigationHelper_SaveState;

 if (!aboutCommandAdded) {

 SettingsPane.GetForCurrentView().CommandsRequested += MainPage_CommandsRequested;

 aboutCommandAdded = true;

 }

 }

When you type += the IDE will prompt you to automatically create the event handler method stub. Here’s
what should go into that event handler. It uses a delegate called UICommandInvokedHandler, so add a
method called AboutInvokedHandler(). That’s the method that will get called by the new About setting.

void MainPage_CommandsRequested(SettingsPane sender, SettingsPaneCommandsRequestedEventArgs args) {
 UICommandInvokedHandler invokedHandler =
 new UICommandInvokedHandler(AboutInvokedHandler);
 SettingsCommand aboutCommand = new SettingsCommand("About", "About Jimmy's Comics",
 invokedHandler);
 args.Request.ApplicationCommands.Add(aboutCommand);
}

async void AboutInvokedHandler(IUICommand command) {
 await new MessageDialog("An app to help Jimmy manage his comic collection",
 "Jimmy's Comics").ShowAsync(); }

SettingsPane is a static class that lets your app add
or remove commands to the Settings charm. It’s in the
Windows.UI.ApplicationSettings namespace.

We’re using a static bool field to make sure the
command is only added once. Try removing the line that sets aboutCommandAdded to true—you’ll see multiple “About” commands added to the Settings charm.

you are here 4   743

events and delegates

Apps can interact with the Search and Share charms, too! Flip to leftover #1
in the appendix to find out where to learn more about it.

Now run your app. Open up the charms, tap Settings, and then choose the About menu option. Your app will
call AboutInvokedHandler and display the MessageDialog.

Now let’s use the IDE to explore how this works. Stop the program and use Go To Definition to get the
definition of SettingsCommand from metadata. It should look like this when you collapse the comments:

Now use Go To Definition again to see the definition of UICommandInvokedHandler:

Walk through the various objects so you can see exactly how this works:

≥≥ The SettingsPane.GetForCurrentView() method returns an object that has
a CommandsRequested event. Go back to your code and then go to the definition of
CommandsRequested to see the event definition.

≥≥ The event handler has a SettingsPaneCommandsRequestedEventArgs argument. Go into its
definition to see the Request object that’s used in the third line of your event handler.

≥≥ The Request object has one property: a collection called ApplicationCommands that contains
SettingsCommand objects.

≥≥ Go back to your event handler again, because now you can see what it does. When the user taps the
Settings charm, the settings pane fires its CommandsRequested event to ask apps for commands and
callbacks. You hooked a listener up to this event, and had that listener return a SettingsCommand
that defined the About option, with a delegate that pointed to a method to pop up a MessageDialog.
When you tap About, the settings pane uses that delegate to call back to AboutInvokedHandler().

≥≥ Still not 100% clear? Don’t worry. Use the navigation buttons in the toolbar to navigate back
and forth through the definitions. Try putting a breakpoint in the constructor and the two methods.
Sometimes you need to flip back and forth through the definitions before it all “clicks” in your brain.

You can use the
Windows Key + I
shortcut to pop
up the Settings
charm.

When you go to the main
page, tap the Settings
charm, the app now shows
an “About option” that
pops up a MessageDialog
when you choose it.

You can use the Windows key ()
to access the charms and app bar.

≥≥ Bring up the charms with + C

≥≥ Pop up the Settings charm with + I

≥≥ Display the App Bar with + Z

this is a new chapter   745

Yes, Frank, I understand that
you don’t want us seeing other
people, but every girl knows
that objects work best when
they’re loosely coupled...

architecting apps with the mvvm pattern16

Great apps on the inside and outside

Your apps need to be more than just visually stunning.�
When you think of design, what comes to mind? An example of great building

architecture? A beautifully-laid-out page? A product that’s as aesthetically

pleasing as it is well engineered? Those same principles apply to your apps.

In this chapter you’ll learn about the Model-View-ViewModel pattern and

how you can use it to build well-architected, loosely coupled apps. Along the

way you’ll learn about animation and control templates for your apps’ visual

design, how to use converters to make data binding easier, and how to pull it

all together to lay a solid C# foundation to build any app you want.

746   Chapter 16

brian and jimmy get chippy

The Head First Basketball Conference needs an app
Jimmy and Brian are the captains of the two top teams in the Head First Basketball Conference,
Objectville’s amateur basketball league. They’ve got some great players, and those players
deserve a great app to keep track of who’s starting and who’s on the bench.

Each team has starting players
and bench players, and each
player has a name and a number.

There are four different ListView
controls on this page, so each one
needs its own ObservableCollection
to bind its ItemsSource to.

you are here 4   747

architecting apps with the mvvm pattern

But can they agree on how to build it?
Uh oh—Brian and Jimmy have different ideas about how to build this app, and the
argument’s starting to get a little heated. It sounds like Brian really wants it to be
easy to manage the data that’s displayed on the page, while Jimmy cares a lot about
simplifying the data binding. This may make for a great off-court rivalry, but it’s not
going to make it any easier to build the app!

Jimmy: Hold on there, cowboy. Sounds a little short-sighted.

Brian: I’m sure you just don’t understand what I’m telling you, so I’ll
talk real slow and spell it out for you. We’ll start with a simple Player
class that has properties for the name, number, and whether the player’s a
starter.

Jimmy: Yes, I understand what you’re saying. But you’re not listening to me.
You’re thinking about how to model the data.

Brian: Clearly. That’s where everything starts.

Jimmy: That makes it convenient to create the data.

Brian: You’re getting it—

Jimmy: I’m not done. What about the rest of the app? We’ve got
ListView and TextBlock controls that need to display the data. If we don’t
have collections for the controls to bind to, they won’t work.

Brian: Um...

Jimmy: Exactly. So we may need to make a couple of, ah, tactical
decisions in our object model.

Brian: You mean, we need to compromise by creating a lousy object
model that’s hard to work with, because we need something to bind to.

Jimmy: Unless you’ve got a better idea.

It seems pretty
obvious to me that we
need to make it easy to

add data, right?

How can you create classes that are easy to bind to, but still
have an object model that makes it easy to work with the data?

748   Chapter 16

that’s not a hammer

Do you design for binding or for working with data?
You already know how important it is to build an object model that makes your data easy to work
with. But what if you need to do two different things with those objects? That’s one of the most
common problems that you face as an app designer. Your objects need to have public properties
and ObservableCollections to bind to your XAML controls. But sometimes that makes your
data harder to work with, because it forces you to build an unintuitive object model that’s difficult to
work with.

Player
Name: string
Number: int
Starter: bool

Roster
TeamName: string
Players: IEnumerable<Player>

Roster
TeamName: string
Starters:
 ObservableCollection
Bench:
 ObservableCollection

League
JimmysTeam: Roster
BriansTeam: Roster

It would be really
convenient to have
private methods
here to create
dummy data.

Player
Name: string
Number: int

It’s hard to optimize your classes
to make it easy to slice and dice
your data with LINQ queries...

...if you also need to be able
to bind that data to the XAML
controls on your app’s pages.

It’s easy to build the
wrong tool for the job!

ListView obje
ct ObservableCo
lle

ct
io

nBinding

ItemsSource="{Binding}"

If you model your
data like this, it
limits your ability to
build the pages that
you want.

If you model your
data like this, it’s
easier to build your
pages but harder to
write code to query
and manage the data.

you are here 4   749

architecting apps with the mvvm pattern

MVVM lets you design for binding and data
Almost all apps that have a large or complex enough object model face the problem
of having to either compromise the class design or compromise the objects
available for binding. Luckily, there’s a design pattern that app developers use to
solve this problem. It’s called Model-View-ViewModel (or MVVM), and it
works by splitting your app into three layers: the Model to hold the data and state
of the app, the View that contains the pages and controls that the user interacts
with, and the ViewModel that converts the data in the Model into objects that can
be bound and listens for events in the View that the model needs to know about.

VIEW
MODE

L

VIEW

MODE
L

MVVM is a pattern
that uses the existing
tools you already have,
just like the callback
and Observer patterns
in the last chapter.

Any object that the user directly
interacts with goes in the View.

That includes pages, buttons, text, grids,
StackPanels, ListViews, and any other
controls that can be laid out using XAML.
The controls are bound to objects in the
ViewModel, and the controls’ event handlers
call methods in the ViewModel objects.

The ViewModel has the properties
that can bind to the controls in
the View.

The properties in the view get their data
from the objects in the Model, convert that
data into a form that the View’s controls can
understand, and notify the View when the
data changes.

All of the objects that hold the
state of the app live in the Model.

This is where your app keeps its data. The
ViewModel calls the properties and methods
in the Model. If there are objects that change
over the course of the app’s lifetime, or if data
needs to be saved or loaded from files, those
things go here.

The
ViewModel
is like the
plumbing
that connects
the objects in
the View to
the objects
in the Model,
using tools
you already
know how to
work with.

750   Chapter 16

apply the pattern

Use the MVVM pattern to start building
the basketball roster app
Create a new Windows Store app and make sure it’s called BasketballRoster
(because we’ll be using the namespace BasketballRoster in the code, and this
will make sure your code matches what’s on the next few pages). Do this

Create the Model, View, and ViewModel folders in the project.
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

Add a Model folder. Then do it two more times to add
the View and ViewModel folders, so your project looks
like this:

1

These folders will hold
the classes, controls,
and pages for your app.

When you use the Solution
Explorer to add a new
folder to your project,

the IDE creates a new
namespace based on the
folder name. This causes
the Add→Class... menu
option to create classes

with that namespace.So if
you add a class to the Model

folder, the IDE will add
BasketballRoster.Model

to the namespace line at
the top of the class file.

Don’t replace MainPage.xaml with a Basic
Page yet. You’ll do that in step #4.

you are here 4   751

architecting apps with the mvvm pattern

Player
Name: string
Number: int
Starter: bool

Roster
TeamName: string
Players: IEnumerable<Player>

namespace BasketballRoster.Model {
 class Player {
 public string Name { get; private set; }
 public int Number { get; private set; }
 public bool Starter { get; private set; }

 public Player(string name, int number, bool starter) {
 Name = name;
 Number = number;
 Starter = starter;
 }
 }
}

namespace BasketballRoster.Model {
 class Roster {
 public string TeamName { get; private set; }

 private readonly List<Player> _players = new List<Player>();
 public IEnumerable<Player> Players {
 get { return new List<Player>(_players); }
 }

 public Roster(string teamName, IEnumerable<Player> players) {
 TeamName = teamName;
 _players.AddRange(players);
 }
 }
}

Start building the model by adding the Player class.
Right-click on the Model folder and add a class called Player. When you add
a class into a folder, the IDE updates the namespace to add the folder name to the
end. Here’s the Player class:

2

Finish the model by adding the Roster class
Next, add the Roster class to the Model folder. Here’s the code for it.

3

Your Model folder should now look like this:

When you add a class file into
a folder, the IDE adds the
folder name to the namespace.

We’ll add the view on the next page

These classes are small because they’re only
concerned with keeping track of which players are
in each roster. None of the classes in the Model are

concerned with displaying the data, just managing it.

MODE
L

We added an underscore to the beginning
of the name of the _players field. Adding
an underscore to the beginning of private

fields is a very common naming convention.
We’re going to use it throughout this

chapter so you can get used to seeing it.

The _ tells you
that this field
is private.

Different classes concerned
with different things?
This sounds familiar...

752   Chapter 16

take control of your controls

Add the main page to the View folder.
Right-click on the View folder and add a new Basic Page called LeaguePage.xaml. You’ll
be prompted to add missing pages and will need to rebuild the solution, just like when you
replace MainPage.xaml with a new Basic Page. Edit the XAML and give the page the title

“Head First Basketball Conference” by changing the AppName static resource (as usual).
We’re not going to use MainPage.xaml, so you’ll delete it in the next step.

4

Delete the main page and replace it with your new LeaguePage.xaml page.
Delete the MainPage.xaml file from the project. Now try rebuilding your project—you’ll get an error:

Double-click on the error to jump to the line that broke when you deleted MainPage.xaml:

Wait a minute, you know what that code does! You modified it when you built the app for Jimmy. It’s looking for
a MainPage class to navigate to when the app launches, but you just deleted the XAML file that defines that
class. No problem! Just specify the class that you want to launch:

Hmm, that’s strange. You added the LeaguePage to the project, but it’s not being recognized. That’s because
you added it to a folder, so the IDE added it to the View namespace. So all you need to do is specify the
namespace when you refer to the class:

Now try rebuilding your app. It compiles! You can run it to see your new main page show up.

5

VIEW

you are here 4   753

architecting apps with the mvvm pattern

User controls le t you create your own controls
Take a look at the basketball roster program that you’re building. Each team gets an
identical set of controls: a TextBlock, another TextBlock, a ListView, another TextBlock,
and another ListView, all wrapped up by a StackPanel inside a Border. Do we really need
to add two identical sets of controls to the page? What if we want to add a third and fourth
team—that’s going to mean a whole lot of duplication. And that’s where user controls
come in. A user control is a class that you can use to create your own controls. You use
XAML and code-behind to build a user control, just like you do when you build a page.
Let’s get started and add a user control to your BasketballRoster project.

Before you flip the page, see if you can figure out what
XAML should go into the new RosterControl by looking
at the screenshot of the program that you’re building.

≥≥ It will have a <StackPanel> to stack up the controls that live
inside a blue <Border>. Can you figure out which property gives
a Border control rounded corners?

≥≥ It has two ListView controls that display data for players, so it also
needs a <UserControl.Resources> section that contains a
DataTemplate. We called it PlayerItemTemplate.

≥≥ Bind the ListView items to properties called Starters and
Bench, and the top TextBlock to a property called TeamName.

≥≥ The Border control lives inside a <Grid> with a single row that
has Height="Auto" to keep it from expanding past the bottom
of the ListView controls to fill up the entire page.

“Teach a man to fish...”

We're nearing the end of the book,
so we want to challenge you with
problems that are similar to ones

you’ll face in the real world. A good
programmer takes a lot of educated
guesses, so we’re giving you barely

enough information about how
a UserControl works. You don’t
even have binding set up, so you

won’t see data in the designer! How
much of the XAML can you build

before you flip the page to see the
code for RosterControl?

UserControl
is a base class
that gives
you a way to
encapsulate
controls that
are related
to each other,
and lets you
build logic
that defines
the behavior
of the control.

 Add a new user control to your View folder.

Right-click on the View folder and add a new item. Choose from
the dialog and call it RosterControl.xaml.

1

 Look at the code-behind for the new user control.

Open up RosterControl.xaml.cs. Your new control extends the UserControl base
class. Any code-behind that defines the user control’s behavior goes here.

2

 Look at the XAML for the new user control.

The IDE added a user control with an empty <Grid>. Your XAML will go here.

3

754   Chapter 16

model view viewmodel

<UserControl
 x:Class="BasketballRoster.View.RosterControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BasketballRoster.View"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">

 <UserControl.Resources>
 <DataTemplate x:Key="PlayerItemTemplate">
 <TextBlock Style="{StaticResource CaptionTextBlockStyle}">
 <Run Text="{Binding Name}"/>
 <Run Text=" #"/>
 <Run Text="{Binding Number}"/>
 </TextBlock>
 </DataTemplate>
 </UserControl.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Border BorderThickness="2" BorderBrush="Blue" CornerRadius="6" Margin="0,0,40,0">
 <StackPanel Margin="20">
 <TextBlock Text="{Binding TeamName}"
 Style="{StaticResource HeaderTextBlockStyle}"/>
 <TextBlock Text="Starting Players"
 Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,20,0,0"/>
 <ListView ItemsSource="{Binding Starters}"
 ItemTemplate="{StaticResource PlayerItemTemplate}" Margin="0,20,0,0"/>
 <TextBlock Text="Bench Players"
 Style="{StaticResource SubheaderTextBlockStyle}" Margin="0,20,0,0"/>
 <ListView ItemsSource="{Binding Bench}"
 ItemTemplate="{StaticResource PlayerItemTemplate}" Margin="0,20,0,0"/>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

Here’s the template for
the items in the ListView
controls. Each line has
a single TextBlock with
three runs to display the
player’s name and number.

You already know that controls change size based on their Height and
Width properties. You can change these numbers to alter how the control
is displayed in the IDE’s Designer window when you’re modifying it.

You can use the CornerRadius
property to give a Border
rounded corners.

Both ListView
controls use the
same template
defined as a
static resource.

 Finish the RosterControl XAML.

Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The two
controls on the page show different data, so the page will set different data contexts for each of them.

4

you are here 4   755

architecting apps with the mvvm pattern

RosterViewModel
TeamName: string

Starters: ObservableCollection
 <PlayerViewModel>

Bench: ObservableCollection
 <PlayerViewModel>

constructor:
 RosterViewModel(Model.Roster)

private UpdateRosters()

LeagueViewModel
JimmysTeam: RosterViewModel
BriansTeam: RosterViewModel

private GetBomberPlayers():
 IEnumerable<Player>
private GetAmazinPlayers():
 IEnumerable<Player>

PlayerViewModel
Name: string
Number: int

VIEW
MODE

L

Build the ViewModel for the BasketballRoster app by looking at the data in the
Model and the bindings in the View, and figuring out what “plumbing” the app
needs to connect them together.

<Page.Resources>
 <viewmodel:LeagueViewModel x:Name="LeagueViewModel"/>
 <x:String x:Key="AppName">Head First Basketball Conference</x:String>
</Page.Resources>

<StackPanel Orientation="Horizontal" Margin="120,0,0,0" Grid.Row="1"
DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
 <view:RosterControl DataContext="{Binding JimmysTeam}" Margin="0,0,20,0"/>
 <view:RosterControl DataContext="{Binding BriansTeam}" Margin="0,0,20,0"/>
</StackPanel>

xmlns:view="using:BasketballRoster.View"
xmlns:viewmodel="using:BasketballRoster.ViewModel"

Update LeaguePage.xaml to add the Roster controls.
First add these xmlns properties to the page so it recognizes the new namespaces:

1

Then add an instance of LeagueViewModel as a static resource:

Now you can add a StackPanel with two RosterControls to the page:

If the IDE gives you an error message in the XAML designer that LeagueViewModel
does not exist in the ViewModel namespace, but you’re 100% certain you added

it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it.

Create the ViewModel classes.
Create these three classes in the ViewModel folder.

2

Make the ViewModel classes work.
≥≥ The PlayerViewModel class is a simple data object with two read-only properties.

≥≥ The LeagueViewModel class has two private methods to create dummy data for the page. It
creates Model.Roster objects for each team that get passed to the RosterViewModel constructor.

≥≥ The RosterViewModel class has a constructor that takes a Model.Roster object. It sets the
TeamName property, and then it calls its private UpdateRosters() method, which uses LINQ
queries to extract the starting and bench players and update the Starters and Bench properties.
Add using Model; to the top of the classes so you can use objects in the Model namespace.

3

Make sure you created the classes and pages
in the right folders; otherwise, the namespaces
won’t match the code in the solution.

Flip a
few pages
back for a
hint about
the LINQ
query...

756   Chapter 16

exercise solution

v

namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;

 class LeagueViewModel {
 public RosterViewModel BriansTeam { get; private set; }
 public RosterViewModel JimmysTeam { get; private set; }

 public LeagueViewModel() {
 Roster briansRoster = new Roster("The Bombers", GetBomberPlayers());
 BriansTeam = new RosterViewModel(briansRoster);

 Roster jimmysRoster= new Roster("The Amazins", GetAmazinPlayers());
 JimmysTeam = new RosterViewModel(jimmysRoster);
 }

 private IEnumerable<Player> GetBomberPlayers() {
 List<Player> bomberPlayers = new List<Player>() {
 new Player("Brian", 31, true),
 new Player("Lloyd", 23, true),
 new Player("Kathleen",6, true),
 new Player("Mike", 0, true),
 new Player("Joe", 42, true),
 new Player("Herb",32, false),
 new Player("Fingers",8, false),
 };
 return bomberPlayers;
 }

 private IEnumerable<Player> GetAmazinPlayers() {
 List<Player> amazinPlayers = new List<Player>() {
 new Player("Jimmy",42, true),
 new Player("Henry",11, true),
 new Player("Bob",4, true),
 new Player("Lucinda", 18, true),
 new Player("Kim", 16, true),
 new Player("Bertha", 23, false),
 new Player("Ed",21, false),
 };
 return amazinPlayers;
 }
 }
}

namespace BasketballRoster.ViewModel {
 class PlayerViewModel {
 public string Name { get; private set; }
 public int Number { get; private set; }

 public PlayerViewModel(string name, int number) {
 Name = name;
 Number = number;
 }
 }
}

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel,
PlayerViewModel, and RosterViewModel. They all live in the ViewModel folder.

This private method
generates dummy
data for the
Bombers by creating
a new List of
Player objects.

You use classes from
the View to store
your data, which
is why this method
returns Player
objects and not
PlayerViewModel
objects.

LeagueViewModel exposes
RosterViewModel objects
that a RosterControl can
use as its data context.
It creates the Roster
model object for the
RosterViewModel to use.

Here’s the PlayerViewModel. It’s just a simple data object with properties for the data template to bind to.

Dummy data typically goes in
the ViewModel because the

state of an MVVM application
is managed using instances

of the Model classes that
are encapsulated inside the

ViewModel objects.

If you left out the using Model; line
then you’d have to use Model.Roster

instead of Roster everywhere.

you are here 4   757

architecting apps with the mvvm pattern

v namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;
 using System.ComponentModel;

 class RosterViewModel {
 public ObservableCollection<PlayerViewModel> Starters { get; private set; }
 public ObservableCollection<PlayerViewModel> Bench { get; private set; }

 private Roster _roster;

 private string _teamName;
 public string TeamName {
 get { return _teamName; }
 set {
 _teamName = value;
 }
 }

 public RosterViewModel(Roster roster) {
 _roster = roster;

 Starters = new ObservableCollection<PlayerViewModel>();
 Bench = new ObservableCollection<PlayerViewModel>();

 TeamName = _roster.TeamName;

 UpdateRosters();
 }

 private void UpdateRosters() {
 var startingPlayers =
 from player in _roster.Players
 where player.Starter
 select player;

 foreach (Player player in startingPlayers)
 Starters.Add(new PlayerViewModel(player.Name, player.Number));

 var benchPlayers =
 from player in _roster.Players
 where player.Starter == false
 select player;

 foreach (Player player in benchPlayers)
 Bench.Add(new PlayerViewModel(player.Name, player.Number));
 }
 }
}

This LINQ query
finds all the starting
players and adds
them to the Starters
ObservableCollection
property.

Here’s a similar LINQ
query to find the
bench players.

Whenever the TeamName property
changes, the RosterViewModel fires off
a PropertyChanged event so any object
bound to it will get updated.

This is where the app stores its state—in Roster objects
encapsulated inside the ViewModel. The rest of the class translates
the Model data into properties that the View can bind to.

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged.
That's because the ViewModel contains the only objects that XAML controls are bound to. In this

project, however, we didn't need to implement INotifyPropertyChanged because the bound properties
are updated in the constructor. If you wanted to modify the project to let the Brian and Jimmy change

their team names, you'd need to fire a PropertyChanged event in the TeamName set accessor.

758   Chapter 16

oop really works

That’s right! The Model, View, and ViewModel
divide up the concerns of the program.

One of the most challenging parts of designing a large, robust
app is choosing which objects do what. There are an almost
infinite number of ways to design your app. That’s great, because
it means that C# gives you flexible tools to work with. But it’s
also a challenge, because today’s decisions can make tomorrow’s
changes very difficult to manage. MVVM helps you separate the
concerns about the data in your app from the concerns about its
UI. This makes it easier to design your app by helping you figure
out exactly where data goes and where UI elements go, and by
giving you patterns to help connect them together.

Wait a minute...this stuff about
encapsulation and separating objects into
layers sounds really familiar. Does this have

something to do with separation of concerns?

User controls are fully functional
controls that you build.

And like every other control, a user control is an
object—in this case, an object that extends the
UserControl base class, which gives you familiar
properties like Height and Visibility, and
routed events like Tapped and PointerEntered.
You can also add your own properties, and you can use
the other XAML controls to make very intricate, even
visually stunning, user interfaces. But most importantly,
a user control lets you encapsulate those other
controls into a single XAML control that you can reuse.

Isn’t a user control basically just a way
to split your XAML across a few files?

When a change to one class requires changes
to two more, which then require more changes
to additional classes, there’s a name for that.
Programmers call it “shotgun surgery,” and it’s
very frustrating—especially when you’re in a hurry. Separation of concerns is a great way to prevent

problems like that, and MVVM is a very useful
tool to help you separate some important things
that almost every app is concerned with.

you are here 4   759

architecting apps with the mvvm pattern

 Q:So what’s stopping me from
putting controls in the ViewModel or
ObservableCollections in the
Model?

A:Nothing at all—except that once
you do, you’re no longer using the MVVM
pattern. Classes like controls and pages are
concerned with displaying the data. If you put
them in the View, that makes it easier for you
to manage your codebase as your app grows
larger. When you trust the MVVM pattern
today, your life is better tomorrow because
your code is easier to manage.

Q:I still don’t get what state means.

A:When people talk about state they
mean the objects in memory that determine
how your app functions: the text in a text
editor, the location of the enemies and player
and the score in a video game, the values
of the cells in a spreadsheet. This is actually
a tough concept to wrap your brain around,
because it’s sometimes difficult to say “this
object is part of the state” and “that object
isn’t.” One of the goals of the next project
in this chapter is to help you get a practical,
realistic handle on what state really means.

Q:Why do I need using Model; at
the top of my ViewModel classes?

A:When you created classes in the Model
folder, the IDE automatically created them
in the BasketballRoster.Model
namespace. The dot in the middle of that
namespace means that Model is underneath
BasketballRoster. Any other class in a
namespace under BasketballRoster can
access classes in Model by either adding
Model. to the beginning or adding a using
line. Outside the BasketballRoster
namespace, classes will need to add using
BasketballRoster.Model; instead.

Q:I keep seeing a triangle with an
exclamation point on my page. What’s
that about?

A:The IDE’s XAML designer is a pretty
sophisticated piece of machinery. It works
so well that we sometimes forget just how
much work it has to do to display a page and
update it as we modify the XAML. Now that
the BasketballRoster program is finished,
the designer shows you the dummy data
for both teams. But wait a minute—isn’t that
dummy data created in private methods in
the ViewModel? That means the designer
must be running those methods every time
it updates the page. So in order for it to be
able to run properly, those methods have to
be compiled. If you modify the controls that
are on the page, then the latest C# code
hasn’t been compiled yet, so the designer is
telling you that the page that it’s displaying
may be out of date. Rebuild the code and the
exclamation points usually disappear.

Q:The BasketballRoster app I just built
only has dummy data that’s created when
it starts up. What if I want to add a feature
to modify the data in the Model—how
would that work?

A:Let’s say you wanted to modify your
BasketballRoster program to let Jimmy
and Brian trade players. You already know
that the ListView controls in the View are
bound to ObservableCollection
objects, so the ViewModel communicates
with the View using PropertyChanged
and CollectionChanged events.
And you can have the Model communicate
with the ViewModel in exactly the
same way. You could add an event,
RosterUpdated, to the Roster
object. The RosterViewModel would
listen to that event, and its event handler
would refresh the Starters and Bench
collections, which would then fire off
CollectionChanged events, which
would update the ListView controls.

Events are a good way for the Model to
communicate to the rest of the app because
the Model doesn’t need to know if any
other classes are listening to the event. It
can go about its business managing the
state, and let some other class worry about
getting input and updating the user interface
because it’s decoupled from the classes in
the ViewModel and the View.

When you trust
the MVVM pattern
today, your project
will be better
tomorrow, because
your app’s code
will be easier to
manage.

The Model-View-ViewModel design
pattern is actually adapted from another

pattern called Model-View-Controller.
You can learn all about the MVC pattern

in the GDI+ PDF, which you can download
from the Head First Labs website.

760   Chapter 16

model versus viewmodel

Tonight’s talk: A Model and a ViewModel have a heated debate
over the critical issue of the day, “Who’s needed more?”

Model:

I’m not quite sure why we’re even having this discussion.
Where would you be without me? I’ve got the data; I’ve
got the important logic that determines how the app
works. Without me, you’d have nothing to do.

Well, as far as you’re concerned, I may as well be.

You wouldn’t dare.

Now you know why I only speak to you through events.
You’re just so annoying!

Of course I do! If I didn’t encapsulate my data, who
knows what damage you might cause?

Absolutely! I don’t trust anything except my own private
methods to manage my data; otherwise, the whole state
of our app could go haywire. But I’m not the only one
who plays this game! Why don’t you ever let me talk to
the View? He seems like a good guy.

How dare you! Raise PropertyChanged
events? No self-respecting Model has ever raised a
PropertyChanged event! I’m insulted you’d even
suggest I’m concerned with anything but data. What
kind of layer do you think I am?

ViewModel:

There you go again, thinking that you’re the center of the
universe.

Ha! What would happen if I decided to stay home?

Try me! Without me, you’d be useless. The View would
have no idea how to talk to you. The controls would be
empty, and the user would be left in the dark.

You know what? Let’s talk about that for a minute. Why is
it that you can’t even let me see your internals? You only
expose methods and properties to me, and you’ll only ever
send me messages through event arguments.

It sounds like someone has trust issues.

You barely even speak the same language as the View!
I’ve never seen you fire a PropertyChanged event—in
fact, I don’t think any of your objects even implement
INotifyPropertyChanged.

you are here 4   761

architecting apps with the mvvm pattern

The ref needs a stopwatch
Jimmy and Brian had to call off their last game because the
referee forgot his stopwatch. Can we use the MVVM pattern to
build a stopwatch app for them?

How’s the ref
going to enforce
the three-second
rule without it?

762   Chapter 16

what does state really mean?

MVVM means thinking about the state of the app
MVVM apps use the Model and View to separate the state from the user interface. So when you
start building an MVVM app, the first thing you usually do is think about exactly what it means to
manage the state of the app. Once you’ve got the state under control in your brain, you can start
building the Model, which will use fields and properties to keep track of the state—or everything
the app needs to keep track of to do its job. Most apps need to modify the state as well, so the
Model exposes public methods that change the state. The rest of the app needs to be able to see
the current state, so the Model provides public properties.

So what does it mean to manage the state of a stopwatch?

The stopwatch knows
whether or not it’s running.

You can see at a glance whether or
not the hands are moving, so the
stopwatch Model needs to have a
way to tell whether or not it’s running.

The elapsed time is
always available.

Whether it’s the hands on an
analog stopwatch or numbers
on a digital one, you can
always see the elapsed time.

The stopwatch can stop, start, and reset.

The app will need to provide a way to start the stopwatch,
stop it, and reset the time, which means the Model will
need to give the rest of the app a way to do this.

The Model keeps
track of the state
of the app: what
the app knows
right now. It
provides actions
that modify the
app’s state and
properties to
let the rest of
the app see the
current state.

The lap time can
be set and viewed.

Most stopwatches have a
lap time function that lets
you save the current time
without stopping the clock.
Analog stopwatches use an
extra set of hands to show
the lap time, while digital
stopwatches usually have a
separate lap time readout.

you are here 4   763

architecting apps with the mvvm pattern

class StopwatchModel {
 private DateTime? _started;

 private TimeSpan? _previousElapsedTime;

 public bool Running {
 get { return _started.HasValue; }
 }

 public TimeSpan? Elapsed {
 get {
 if (_started.HasValue) {
 if (_previousElapsedTime.HasValue)
 return CalculateTimeElapsedSinceStarted() + _previousElapsedTime;
 else
 return CalculateTimeElapsedSinceStarted();
 }
 else
 return _previousElapsedTime;
 }
 }

 private TimeSpan CalculateTimeElapsedSinceStarted() {
 return DateTime.Now - _started.Value;
 }

 public void Start() {
 _started = DateTime.Now;
 if (!_previousElapsedTime.HasValue)
 _previousElapsedTime = new TimeSpan(0);
 }

 public void Stop() {
 if (_started.HasValue) {
 _previousElapsedTime += DateTime.Now - _started.Value;
 _started = null;
 }
 }

 public void Reset() {
 _previousElapsedTime = null;
 _started = null;
 }

 public StopwatchModel() {
 Reset();
 }
}

Start building the stopwatch app’s Model
Now that we know what it means to define the state of a stopwatch, we have enough information to
start to build out the Model layer of the stopwatch app. Create a new Windows Store app. Name
the app Stopwatch so your namespaces match the code on the next few pages. Then create the
Model, View, and ViewModel folders. Add the StopwatchModel class to the Model folder:

Do this
Make sure you create the Stopwatch class in the Model
folder. We’ll leave out the extra namespace { } lines
because you know what they look like.

MODE
L

These two
private
fields hold
the state
of the
stopwatch.
They’re both
nullable.

We could use an extra Boolean field to keep track of
whether or not the stopwatch is running. But that field
would only be true if the _started field has a value, so
why not just use _started.HasValue instead?

TimeSpan and DateTime structs
There are two very useful structs for managing time in an app. You’ve already worked with DateTime, which stores a date. TimeSpan represents an interval of time. The interval is stored in ticks (a tick is one ten-millionth of a second, or 10,000 ticks per millisecond), so the TimeSpan has methods to convert it to seconds, milliseconds, days, etc.

This read-only property uses the
two private fields to calculate the
elapsed time. Look closely at it.
Can you figure out how it works?

The rest of the app needs to
be able to start and stop the
stopwatch, so the Model provides
methods to do that.

Resetting
the state
means
setting its
fields to
null.

This initializes each new instance of a
StopwatchModel as reset and stopped.

Here’s a hint: when you add or
subtract DateTime or TimeSpan
values, you always get a TimeSpan.

764   Chapter 16

layers communicate with events

The Model
can fire an
event to tell
the rest of
the app about
important
state changes
without any
references to
classes outside
the Model.
It’s easier to
build because
it’s decoupled
from the rest
of the MVVM
layers.

Events alert the rest of the app to state changes
The stopwatch needs to track the lap time, so it needs to store that time as part of the state. It also
needs a method to get the lap time. But what happens if we want the rest of the app to do a few
things when the lap time is triggered? The ViewModel may want to turn on an indicator or show
a quick animation. The Model will often use an event to tell the rest of the app about
important state changes. So let’s add an event to the Model that gets fired whenever the lap
time is updated. Start by adding the LapEventArgs to the Model folder:

public void Reset() {
 _previousElapsedTime = null;
 _started = null;
 LapTime = null;
}

public TimeSpan? LapTime { get; private set; }

public void Lap() {
 LapTime = Elapsed;
 OnLapTimeUpdated(LapTime);
}

public event EventHandler<LapEventArgs> LapTimeUpdated;

private void OnLapTimeUpdated(TimeSpan? lapTime) {
 EventHandler<LapEventArgs> lapTimeUpdated = LapTimeUpdated;
 if (lapTimeUpdated != null) {
 lapTimeUpdated(this, new LapEventArgs(lapTime));
 }
}

class LapEventArgs : EventArgs {

 public TimeSpan? LapTime { get; private set; }

 public LapEventArgs(TimeSpan? lapTime) {

 LapTime = lapTime;

 }

}

Here’s the LapEventArgs
class. Make sure to add it to
the Model folder so it ends
up in the correct namespace.

When the lap time is updated,
the app needs to know the time
elapsed, so it has a TimeSpan
property to store that.

Modify your StopwatchModel class to add a Lap() method that
sets the LapTime property and fires a LapTimeUpdated event.

Make sure the
LapTime property is
reset when the rest
of the stopwatch
state gets reset.

An automatic property will be just fine.
We don’t need a private backing field
because there aren’t any calculations
that need to be encapsulated.

The Lap()
method
updates the
property
and fires
the event.

This is just the usual code
to fire an event.

A nice side effect of decoupled
layers is that your project can build
as soon as the Model is complete.

If the IDE tells you that StopwatchViewModel does not exist in the ViewModel namespace
but you’re 100% sure that you put it there, try unloading and reloading the project.

you are here 4   765

architecting apps with the mvvm pattern

<UserControl
 x:Class="Stopwatch.View.BasicStopwatch"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Stopwatch.View"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400"
 xmlns:viewmodel="using:Stopwatch.ViewModel">

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 </UserControl.Resources>

 <Grid DataContext="{StaticResource ResourceKey=viewModel}">
 <StackPanel>
 <TextBlock>
 <Run>Elapsed time: </Run>
 <Run Text="{Binding Hours}"/>
 <Run>:</Run>
 <Run Text="{Binding Minutes}"/>
 <Run>:</Run>
 <Run Text="{Binding Seconds}"/>
 </TextBlock>
 <TextBlock>
 <Run>Lap time: </Run>
 <Run Text="{Binding LapHours}"/>
 <Run>:</Run>
 <Run Text="{Binding LapMinutes}"/>
 <Run>:</Run>
 <Run Text="{Binding LapSeconds}"/>
 </TextBlock>
 <StackPanel Orientation="Horizontal">
 <Button Click="StartButton_Click">Start</Button>
 <Button Click="StopButton_Click">Stop</Button>
 <Button Click="ResetButton_Click">Reset</Button>
 <Button Click="LapButton_Click">Lap</Button>
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

VIEW

Build the v iew for a simple stopwatch
Here’s the XAML for a simple stopwatch control. Add a user control to the View folder
called BasicStopwatch.xaml and add this code. The control has TextBlock controls to
display the elapsed and lap times, and buttons to start, stop, reset, and take the lap time.

The code for the ViewModel is on the next page. How much of the ViewModel code
can you build just from the View and Model code before you flip the page? Add a
BasicStopwatch control to the main page (for now) and see how far you can get.

You’ll need this xmlns property to add the
namespace. We called our project Stopwatch, so
the ViewModel namespace is Stopwatch.ViewModel.

This user control stores an
instance of the ViewModel as a

static resource and uses it as its
data context. It doesn’t need its
container to set a data context.
It keeps track of its own state.

This TextBlock is bound
to properties in the
ViewModel that return
the elapsed time.

This TextBlock
is bound to
properties that
expose the lap time.

The ViewModel
must be firing off PropertyChanged events to keep these values up to date.

This control is in the
View folder under your
project’s main namespace.

You’ll need to add Click event
handlers to the control and a
StopwatchViewModel class
to the ViewModel namespace

for this to compile.

Here’s a hint: use a DispatcherTimer to constantly
check the Model and update the properties.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the
XAML for one page (like a broken xmlns property) can cause all of the designers to break.

766   Chapter 16

class StopwatchViewModel : INotifyPropertyChanged {
 private StopwatchModel _stopwatchModel = new StopwatchModel();

 private DispatcherTimer _timer = new DispatcherTimer();

 public bool Running { get { return _stopwatchModel.Running; } }

 public StopwatchViewModel() {
 _timer.Interval = TimeSpan.FromMilliseconds(50);
 _timer.Tick += TimerTick;
 _timer.Start();
 Start();

 _stopwatchModel.LapTimeUpdated += LapTimeUpdatedEventHandler;
 }

 public void Start() {
 _stopwatchModel.Start();
 }

 public void Stop() {
 _stopwatchModel.Stop();
 }

 public void Lap() {
 _stopwatchModel.Lap();
 }

 public void Reset() {
 bool running = Running;
 _stopwatchModel.Reset();
 if (running)
 _stopwatchModel.Start();
 OnPropertyChanged("LapHours");
 OnPropertyChanged("LapMinutes");
 OnPropertyChanged("LapSeconds");
 }

 int _lastHours;
 int _lastMinutes;
 decimal _lastSeconds;
 void TimerTick(object sender, object e) {
 if (_lastHours != Hours) {
 _lastHours = Hours;
 OnPropertyChanged("Hours");
 }
 if (_lastMinutes != Minutes) {
 _lastMinutes = Minutes;
 OnPropertyChanged("Minutes");
 }
 if (_lastSeconds != Seconds) {
 _lastSeconds = Seconds;
 OnPropertyChanged("Seconds");
 }
 }

 public int Hours {
 get { return _stopwatchModel.Elapsed.HasValue ? _stopwatchModel.Elapsed.Value.Hours : 0; }
 }

build the viewmodel

VIEW
MODE

L

Add the stopwatch ViewModel
Here’s the ViewModel for the stopwatch. Make sure it goes in the ViewModel namespace.

using Model;
using System.ComponentModel;
using Windows.UI.Xaml;

This ?: syntax lets you fit a conditional
on a single line, and it works just like an
if statement. Flip to leftover #2 in the

appendix to learn more about how it works.

You’ll need these
using statements
for the class to
compile.

Every time the DispatcherTimer
ticks, the ViewModel checks to see
if the hours, minutes, and seconds
have changed. If they have, it fires
off the right PropertyChanged
event so the View can update itself.

The Start(), Stop(),
and Lap() methods
just pass through to
methods on the model.

The Reset() method first calls
the Model’s Reset() method, then
calls its Start() method if the
stopwatch was already running.

The Running
property checks
the Model to see
if the stopwatch
is running.

If you don’t want your stopwatch
to start immediately when you run
the app, don’t have the ViewModel
call Start() from the constructor.
That will prevent it from telling the
Model to start the clock. But you
still want the ViewModel to start
its timer. Can you figure out why?

Since the Model’s Reset()
method resets the lap time,
the ViewModel needs to fire
PropertyChanged events.

you are here 4   767

architecting apps with the mvvm pattern

 public int Minutes {
 get { return _stopwatchModel.Elapsed.HasValue ? _stopwatchModel.Elapsed.Value.Minutes : 0; }
 }

 public decimal Seconds {
 get {
 if (_stopwatchModel.Elapsed.HasValue) {
 return (decimal)_stopwatchModel.Elapsed.Value.Seconds
 + (_stopwatchModel.Elapsed.Value.Milliseconds * .001M);
 }
 else
 return 0.0M;
 }
 }

 public int LapHours {
 get { return _stopwatchModel.LapTime.HasValue ? _stopwatchModel.LapTime.Value.Hours : 0; }
 }

 public int LapMinutes {
 get { return _stopwatchModel.LapTime.HasValue ? _stopwatchModel.LapTime.Value.Minutes : 0; }
 }

 public decimal LapSeconds {
 get {
 if (_stopwatchModel.LapTime.HasValue) {
 return (decimal)_stopwatchModel.LapTime.Value.Seconds
 + (_stopwatchModel.LapTime.Value.Milliseconds * .001M);
 }
 else
 return 0.0M;
 }
 }

 int _lastLapHours;
 int _lastLapMinutes;
 decimal _lastLapSeconds;
 private void LapTimeUpdatedEventHandler(object sender, LapEventArgs e) {
 if (_lastLapHours != LapHours) {
 _lastLapHours = LapHours;
 OnPropertyChanged("LapHours");
 }
 if (_lastLapMinutes != LapMinutes) {
 _lastLapMinutes = LapMinutes;
 OnPropertyChanged("LapMinutes");
 }
 if (_lastLapSeconds != LapSeconds) {
 _lastLapSeconds = LapSeconds;
 OnPropertyChanged("LapSeconds");
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 protected void OnPropertyChanged(string propertyName) {
 PropertyChangedEventHandler propertyChanged = PropertyChanged;
 if (propertyChanged != null)
 propertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

Elapsed.Value returns a TimeSpan, and
its Minutes property returns an int.

The Seconds property returns the seconds
plus hundredths of a second as a decimal.
Set a breakpoint and use the debugger to
explore how it works.

These properties work
just like the elapsed
time properties, except
they’re based on LapTime
instead of Elapsed.

Here’s the event handler for the Model’s
LapTimeUpdated event. It works just like the
DispatcherTimer’s event handler by checking the
lap time properties and raising PropertyChanged
events for only the ones that have changed.

Here’s the familiar code
for PropertyChanged.

768   Chapter 16

tick tick tick

Finish the stopwatch app
There are just a few more loose ends to tie together. Your BasicStopwatch user control doesn’t have event
handlers, so you need to add them. And then you just need to add the control to your main page.

<view:BasicStopwatch Grid.Row="1" Margin="120,0"/>

xmlns:view="using:Stopwatch.View"

Open the new MainPage.xaml and add the XML namespace to the top-level tag:3

Modify the AppName resource in MainPage.xaml to set the page name.4

Add a BasicStopwatch control to the XAML code in MainPage.xaml:5

Your app should now run. Click the Start, Stop, Reset, and Lap buttons to see your
stopwatch work. And now you can use the frame rate counter to check your app's
performance. The numbers in the upper left-hand corner show you the app's frames
per second, and the CPU usage for your app's UI (the numbers in the upper right are
for the entire system). Try modifying the StopwatchViewModel constructor
to to change the Timer interval to TimeSpan.FromMilliseconds(100). What
happens to the frame rate? What happens if you set it to tick every 10 milliseconds?

Is something
missing? Here’s
what your Solution
Explorer should
look like.

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}
private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}
private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}
private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:1

The buttons in
the view just call
methods in the
ViewModel. This
is a pretty typical
pattern for the
View.

Next, delete the MainPage.xaml file and replace it with a Basic Page, just
like you’ve done in your other projects (don’t forget to rebuild the solution).

2

All of the behavior
is in the user
control, so there’s
no code-behind
for the main page.

you are here 4   769

architecting apps with the mvvm pattern

Using a pattern like MVVM means making decisions.

MVVM is a pattern, which means there are conventions, but not hard-and-

fast rules that can be checked with a compiler. And it’s a flexible pattern,

which means that there are a lot of different ways that you can implement it.

Throughout the examples in this chapter, we’ll show you some of the more

common things that you’ll see in an app with an MVVM architecture. And

where we do vary things, we’ll explain why we made those decisions. The

goal is to show you how much flexibility is—and isn’t—in the MVVM pattern,

so that you can make good decisions when you build your own apps.

OK, we need to take a minute and talk about
how you decided what goes where. Why did you decide
to put the page in the View folder for the basketball
program, but not for the stopwatch? why did you use a

timer for the elapsed time, but an event for the lap time? And
why did you put the timer in the ViewModel and not the Model?

it all seems so arbitrary!

Here are a few rules that we’re following
when building our MVVM apps:

≥≥ The Model, ViewModel, and View classes live in separate namespaces.

≥≥ Controls and pages in the View can keep references to the ViewModel, so
they can call its methods and bind to its properties with one- or two-way binding.

≥≥ Objects in the ViewModel don’t store any references to objects in the View.

≥≥ If the ViewModel has information to pass to the View, it uses PropertyChanged
and CollectionChanged events so the bindings can update automatically.

≥≥ ViewModel objects have references to Model objects, and can call their
methods, as well as get and set their properties.

≥≥ If the Model has information to pass to the ViewModel, it can raise an event.

≥≥ Objects in the Model don’t have references to objects in the ViewModel.

≥≥ The Model must be well encapsulated so that it only depends on other objects
in the Model. If you delete all of the other code in the program, everything in the
Model folder should still compile.

≥≥ DispatcherTimers and asynchronous code typically go in the ViewModel
and not the Model. Code related to timing usually drives how the state of the app
changes but is not actually part of the state of the app most of the time.

770   Chapter 16

useful tools for viewmodels

Converters automatically convert values for binding
Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should also show the seconds with
two digits, and round to the nearest hundredth of a second. We could modify the ViewModel to
expose string values that are formatted properly, but that would mean that we’d need to keep adding
more and more properties each time we wanted to reformat the same data. That’s where value
converters come in very handy. A value converter is an object that the XAML binding uses to
modify data before it’s passed to the control. You can build a value converter by implementing the
IValueConverter interface (which is in the Windows.UI.Xaml.Data namespace). Add a
value converter to your stopwatch now.

using Windows.UI.Xaml.Data;

class TimeNumberFormatConverter : IValueConverter {
 public object Convert(object value, Type targetType,
 object parameter, string language) {
 if (value is decimal)
 return ((decimal)value).ToString("00.00");
 else if (value is int) {
 if (parameter == null)
 return ((int)value).ToString("d1");
 else
 return ((int)value).ToString(parameter.ToString());
 }
 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, string language) {
 throw new NotImplementedException();
 }
}

Add the TimeNumberFormatConverter class to the ViewModel folder.
Add using Windows.UI.Xaml.Data; to the top of the class, then have it implement
the IValueConverter interface. Use the IDE to automatically implement the interface.
This will add two method stubs for the Convert() and ConvertBack() methods.

1

Implement the Convert() method in the value converter.
The Convert() method takes several parameters—we’ll use two of them. The value parameter is
the raw value that’s passed into the binding, and parameter lets you specify a parameter in XAML.

2

This converter
knows how to
convert decimal
and int values. For
int values, you can
optionally pass in
a parameter.

The ConvertBack() method is used for two-way
binding. We’re not using that in this project, so you
can leave the method stub as is.

VIEW
MODE

L

Converters
are useful
tools for
building your
ViewModel.

Is it a good idea to leave this NotImplementedException in your code? For
this project, this is code that is never supposed to be run. If it does get run,

is it better to fail silently, so the user never sees it? Or is it better to throw an
exception so that you can track down the problem? Which of those gives you

a more robust app? There’s not necessarily one right answer.

you are here 4   771

architecting apps with the mvvm pattern

<TextBlock>

 <Run>Elapsed time: </Run>

 <Run Text="{Binding Hours,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding Minutes,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding Seconds,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<TextBlock>

 <Run>Lap time: </Run>

 <Run Text="{Binding LapHours,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding LapMinutes,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding LapSeconds,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<UserControl.Resources>

 <viewmodel:StopwatchViewModel x:Name="viewModel"/>

 <viewmodel:TimeNumberFormatConverter x:Name="timeNumberFormatConverter"/>

</UserControl.Resources>

Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

3

Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

4

Use the ConverterParameter
syntax to pass a parameter
into the converter.

If there’s no parameter specified, don’t forget the extra closing bracket }}.

Now the stopwatch runs the values through
the converter before passing them into the
TextBlock controls, and the numbers are
formatted correctly on the page.

VIEW

The designer may make you rebuild the solution
after you add this line. In rare cases, you might
even need to unload and reload the project.

772   Chapter 16

converting different types

int _lastHours;
int _lastMinutes;
decimal _lastSeconds;
bool _lastRunning;
void TimerTick(object sender, object e) {
 if (_lastRunning != Running) {
 _lastRunning = Running;
 OnPropertyChanged("Running");
 }
 if (_lastHours != Hours) {
 _lastHours = Hours;
 OnPropertyChanged("Hours");
 }
 if (_lastMinutes != Minutes) {
 _lastMinutes = Minutes;
 OnPropertyChanged("Minutes");
 }
 if (_lastSeconds != Seconds) {
 _lastSeconds = Seconds;
 OnPropertyChanged("Seconds");
 }
}

Converters can work with many different types
TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property makes
sense. But there are many other properties, and you can bind to those as well. If your ViewModel has a
Boolean property, it can be bound to any true/false property. You can even bind properties that use
enums—the IsVisible property uses the Visibility enum, which means you can also write value
converters for it. Let’s add Boolean and Visibility binding and conversion to the stopwatch.

Modify the ViewModel’s Tick event handler.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if
the value of the Running property has changed:

1

We added the
Running check to
the timer. Would
it make more
sense to have the
Model fire an
event instead?

If you have trouble seeing your user
control in the designer, try switching to
the Light app theme in the Device window.

VIEW
MODE

L

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control
is enabled if the bound property is false. We’ll add a new converter called

BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a boolean property in
the data context. You can only bind the Visibility property of a control to a target property
that’s of the type Visibility (meaning it returns values like Visibility.Collapsed).

We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

you are here 4   773

architecting apps with the mvvm pattern

using Windows.UI.Xaml.Data;

class BooleanNotConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter, string language) {
 if ((value is bool) && ((bool)value) == false)
 return true;
 else
 return false;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language) {
 throw new NotImplementedException();
 }
}

using Windows.UI.Xaml;
using Windows.UI.Xaml.Data;

class BooleanVisibilityConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter, string language) {
 if ((value is bool) && ((bool)value) == true)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language) {
 throw new NotImplementedException();
 }
}

Add a converter that inverts Boolean values.
Here’s a value converter that converts true to false and vice versa. You can use it with
Boolean properties on your controls like IsEnabled.

2

<StackPanel Orientation="Horizontal">
 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
 Click="StartButton_Click">Start</Button>
 <Button IsEnabled="{Binding Running}" Click="StopButton_Click">Stop</Button>
 <Button Click="ResetButton_Click">Reset</Button>
 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>
</StackPanel>
<TextBlock Text="Stopwatch is running"
 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"/>

Add a converter that converts Booleans to Visibility enums.
You’ve already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the Windows.UI.Xaml
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility values:

3

Modify your basic stopwatch control to use the converters.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:

4

<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>

Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s Running
property:

This enables the
Start button only
if the stopwatch
is not running.

This causes a TextBlock to become
visible when the stopwatch is running.

VIEW
MODE

L

VIEW

774   Chapter 16

looking stylish

Styles set propert ies on mult iple controls
When you build out the View layer of your app, you’re typically writing mostly XAML code.
Those XAML controls are just objects, so it’s definitely possible to build the entire View using
nothing but C# code, but XAML is really optimized to make that job a lot easier.

You create a style using the <Style> tag. Inside the style, you can use <Setter> tags to
set properties on any controls that the style is applied to. Let’s take a closer look at how this
works, using a simple example of a style that alters all TextBlock controls.

VIEW

<UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 <viewmodel:TimeNumberFormatConverter x:Name="timeNumberFormatConverter"/>
 <viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <Style TargetType="TextBlock" BasedOn="{StaticResource SubtitleTextBlockStyle}">
 <Setter Property="FontStyle" Value="Italic"/>
 </Style>
</UserControl.Resources>

Watch the IntelliSense windows that pop up as you enter the XAML. The TargetType for the style is TextBlock,
which means this style applies to TextBlock controls—so when you start to enter the Property in the Setter, the
IDE shows you TextBlock properties:

As soon as you finish adding the <Style> to the
user control resources, you’ll see a change in the
designer. The style automatically gets applied
to every TextBlock in the user control.

Start by modifying the <UserControl.Resources> in BasicStopwatch.xaml to
add the <Style> tag. You’ll use a <Setter> to set the FontStyle to Italic, and set
the style’s BasedOn property to base the style on SubtitleTextBlockStyle.

1 Do this!

Adding the style to the user control’s
resources causes all of the TextBlocks
to become italic and have bigger text.

you are here 4   775

architecting apps with the mvvm pattern

But what if we don’t want to alter every TextBlock control? What if we only want to alter specific ones?
No problem. We just need to an x:Key property to the Style:

2

 <Style TargetType="TextBlock" BasedOn="{StaticResource SubtitleTextBlockStyle}"
 x:Key="StopwatchRunningTextBlockStyle">
 <Setter Property="FontStyle" Value="Italic"/>
 </Style>

As soon as you make the change, the TextBlock controls go back to the way they were. Right-click on
the “Stopwatch is running” TextBlock and choose Edit Style→Apply Resource from the menu

When you give the style resource a key
(or a name), it automatically shows up
in the list of styles that you can apply
to a control with its target type.

<TextBlock Text="Stopwatch is running"

 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

 Style="{StaticResource StopwatchRunningTextBlockStyle}"/>

Use the IDE to apply your new style resource to the
“Stopwatch is running” label, just like you’ve done with
the built-in styles. Here’s what its XAML should look
like after you apply the style:

Now the style is applied only to the “Stopwatch is running”
TextBlock on the bottom—the rest of the TextBlock
controls have reverted back to how they looked before.

Your new style is based on an existing style
called SubtitleTextBlockStyle. Where do you
think that style is defined?

When you right-click on a contol and choose Edit
Style, the IDE displays all of the named styles
that apply to the control in the “Apply Resource”
list—including any styles that you created.

Flip the page to keep going!

776   Chapter 16

elements of style

Use a resource dict ionary to share resources bet ween pages
When you add styles and other static resources to the <Resources> section of a page or user control, you’re
adding an object to a resoucre dictionary. A ResourceDictionary works like a Dictionary<object, object>.
The dictionary key is defined with x:Key (or x:Name if you want a variable name), and the value is the static
resource object (like a Style, StopwatchViewModel, or BooleanNotConverter). You can see this for yourself: put
a breakpoint in your code, run it, and add a watch for this.Resources["viewModel"]. Let’s keep going
with the basic stopwatch. Next, you’ll move your new style to a resource dictionary in the View folder.

Right-click on the View folder, choose Add→New Item..., and choose . Give it the
name StopwatchStyles.xaml. Cut the style from the user control and paste it into the resource dictionary:

3

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Stopwatch.View">

 <Style TargetType="TextBlock" BasedOn="{StaticResource SubtitleTextBlockStyle}"
 x:Key="StopwatchRunningTextBlockStyle">
 <Setter Property="FontStyle" Value="Italic"/>
 </Style>

</ResourceDictionary>

Your app has its own resource dictionary, and any resources that your controls use come from other
resource dictionaries that have been merged into it. Merge your newly added dictioanry into your app’s
resource dictionary—open App.xaml and add a new <Application.Resources> section:

4

<Application
 x:Class="Stopwatch.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Stopwatch">

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="View/StopwatchStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>

</Application>

Let’s do some more experimenting. Open StopwatchStyles.xaml, find the BasedOn property for your
style, then right-click on SubtitleTextBlockStyle and choose Go To Definition. This will
open up a file called generic.xaml and jump to the style definition for SubtitleTextBlockStyle. Scroll
to the top of generic.xaml to find the opening tag—it’s a <ResourceDictionary>, and all of its styles
are merged into your app automatically.

5

Hover your
cursor over
the generic.
xaml tab in
the IDE to
see a tooltip
that shows
the location
of the file.

Move this style from the user control’s resoucres to the resource dictionary.

This is the XAML tag for your app’s resource
dictionary. You can merge your new resource dictionary into it by adding a MergedDictionaries section.

you are here 4   777

architecting apps with the mvvm pattern

Yes! You used the IDE to create a template for the enemies.

Take a minute and look back at that code to see exactly how this worked. The
IDE added the control template as a static resource named EnemyTemplate, and
you were able to make the enemy control look like an alien by setting its Template
property to point to the template. The IDE created the template with an x:Key (and
not an x:Name), so your code used the Resources dictionary to look it up by name.

Wait a minute, this seems familiar. Didn’t I
use a ControlTemplate in chapter 1?

Search inside generic.xaml for <Style TargetType="Button"> to find the base style that’s applied
to all buttons. It’s a large style, but it’s easier to understand if you collapse the <ControlTemplate> tag:

Select the entire style, copy it, and paste it into StopwatchStyles.xaml (right before the
closing </ResourceDictionary> tag). Here’s what you copied and pasted:

6

This <Setter> sets the Template property to
a ControlTemplate. This defines the template

for the control. When a button is drawn
on the page, Windows looks in the control
template to see what to draw, and it shows

all of the controls contained in the template.

Collapse
this.

Here’s the
collapsed
control
template
tag.

Now that you’ve copied the button style into your resource dictionary, you can edit it. Add this setter:7
<Setter Property="Margin" Value="10"/>

Now go back to the app designer. All of your stopwatch buttons are now farther apart, because
you’ve added a 10 pixel margin to each one. Your style now controls the buttons.

Run your program and press Tab to switch the focus between the buttons.

Expand the Control Template and locate the two <Rectangle> controls near the bottom—they’re named
FocusVisualWhite and FocusVisualBlack. Both controls have an Opacity property set to 0,
which makes them invisible. When the button is focused, it sets that Opacity to 1, and the rectangle shows.

8

A button shows that it’s focsed by drawing a dashed rectangle
around itself. That rectangle is part of the control template.

778   Chapter 16

controls have states too

Visual states make controls respond to changes
When you hover over a button, it changes from being transparent to being opaque. When you
tab to switch focus to the button, a dashed line appears around it. These things happen because
you changed the state of the button. When you hover over it, that puts it into a state called
PointerOver, and when you change focus it puts it into a focus state. There are lots of different
states that a control can be in, and most controls don’t need to respond to every state.

Controls and control templates use visual state groups to change the way the control looks and acts
when it’s in a specific state. Buttons have a visual state group called CommonStates that include a
state called Normal, one called PointerOver (when the pointer is hovering over the button), one
called Pressed (when the user is actually pressing the button), and one called Disabled (when the
button is disabled). The button style you copied has a <VisualStateGroup> section that determines
how the button’s properties change when it’s in one of those common states. Here’s how it works:

<VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="PointerOver">
 <Storyboard>
 Animation for a property when the pointer is over the button
 Another animation for a different property for the same state
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Pressed">
 <Storyboard>
 Animation for a property when the button is pressed
 Another animation for a different property for the same state
 And another—it can have many animations for properties
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard>
 Animation for a property when the button is pressed
 Another animation for a different property for the same state
 etc.
 </Storyboard>
 </VisualState>
</VisualStateGroup>

VIEW

The control doesn’t need
to do anything special when
it’s in the normal state.

Each state is handled with a <VisualState> tag,
which contains a Storyboard. Storyboards
control animations, and can use a timeline to
determine when animations begin and end.

Each Storyboard uses animations to modify
properties. When the control enters the

state, the Storyboard starts the animations,
which change the values of the properties.

Take a minute and look closely at the button style that you copied
into your resource dictionary. All it has are <Setter> tags, including
one that sets the Template property to a ControlTemplate. Try
using the button in the IDE to collapse the <VisualStateManager.
VisualStateGroups> tag. Once you do that, you can see that the
control template just has a Grid that contains a Border with a
ContentPresenter (which displays the contents of the button) and two
Rectangles. Add the visual state management, and you get a button!

Try changing the Border to
give it rounded corners. What
happens to your app’s buttons?

you are here 4   779

architecting apps with the mvvm pattern

<VisualState x:Name="Focused">
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="FocusVisualWhite"
 Storyboard.TargetProperty="Opacity"
 To="1"
 Duration="0"/>
 <DoubleAnimation
 Storyboard.TargetName="FocusVisualBlack"
 Storyboard.TargetProperty="Opacity"
 To="1"
 Duration="0"/>
 </Storyboard>
</VisualState>

Use DoubleAnimation to animate double values
When you set a numeric property like Width or Height on a control in XAML, that sets the value of a
double property on the control object. DoubleAnimation gives you a way to gradually change that
double value from one value to another over a time period, and is often used to modify the control
when it enters a visual state. The control template the button style that you copied uses DoubleAnimation
to animate the focused state by changing the opacity of the two rectangles around the edge of the control
from 0 (clear) to 1 (opaque). The duration is zero, which means the animation happens instantly:

A Storyboard is a
container that’s

used to organize and
apply animateions.
When the button

gets focus, the visual
state manager looks

for a VisualState
called “Focused”
and executes its

Storyboard to trigger
the animations. When
the button leaves the

Focused state, the
Storyboard resets,

and all animations go
back to their initial
state, which in this

case means the
Opacity is set back to

0 (invisible).

Let’s experiment with this animation to get a feel for how it works:

Modify the DoubleAnimation tags in the Focused visual state to change it from a
zero-duration animation to one that takes five seconds. Durations are always in the form
hours:minutes:seconds, so change it to Duration="0:0:5" (in both animations, so it
works with light and dark themes).

1

Start your program, then use the Tab key to change focus between the buttons. The dashed outline should
now fade in very slowly over five seconds. Try the duration to half a second: Duration="0:0:0.5"

2

Stop the program so we can modify the animation again. This time, modify the Duration and
add two more properties. Setting AutoReverse to true reverses the animation after it’s complete,
and setting RepeatBehavior to Forever causes it to loop for as long as the target control is displayed:

3

Run your program again. Now the focus rectangle pulses by fading in for half a second, then fading
out for half a second, and repeats as long as the button is in focus.

4

The storyboard’s target is the object
with the property being animated.
This animation is being applied to one
of the Rectangle controls that you
found in Step 8 earlier.

The Opacity
property is being
animated from
its default value
to 1 in 0 seconds
(instantly).

Here’s the other Rectangle. The
Storyboard triggers both animations
for the Focused visual state—that’s
what makes the Rectangles appear
when the button gets focus.

Duration="0:0:0.5" AutoReverse="true" RepeatBehavior="Forever"

780   Chapter 16

animate all the things

Here’s an example of how a control template for a checkbox uses visual states:
http://msdn.microsoft.com/library/windows/apps/hh465374.aspx

Use object animations to animate object values
While some properties on your controls use double values, others use objects. For example, when
you set the Foreground property to Black, you're actually setting it to a SolidColorBrush
object. You can see an example of this in the animation for your button style’s Pressed visual
state, which uses an ObjectAnimationUsingKeyFrames animation to change the color of
the the Border control that makes up the rectangular button body when the button is pressed:

<VisualState x:Name="Pressed">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="Border"
 Storyboard.TargetProperty="Background">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource ButtonPressedBackgroundThemeBrush}" />
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="ContentPresenter"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{ThemeResource ButtonPressedForegroundThemeBrush}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
</VisualState>

<ObjectAnimationUsingKeyFrames RepeatBehavior="Forever"
 Storyboard.TargetName="Border" Storyboard.TargetProperty="BorderBrush">
 <DiscreteObjectKeyFrame KeyTime="0:0:0"
 Value="{TemplateBinding BorderBrush}"/>
 <DiscreteObjectKeyFrame KeyTime="0:0:0.2" Value="White"/>
 <DiscreteObjectKeyFrame KeyTime="0:0:0.4"
 Value="{TemplateBinding BorderBrush}"/>
 <DiscreteObjectKeyFrame KeyTime="0:0:0.6" Value="Blue"/>
 <DiscreteObjectKeyFrame KeyTime="0:0:0.8"
 Value="{TemplateBinding BorderBrush}"/>
</ObjectAnimationUsingKeyFrames>

Key frame animations work by creating key frames. A key frame is a discrete event that happens at
a specific times during the animation. You can see how this works by adding a third animation
to the Pressed storyboard. Add this right above the closing </Storyboard> tag:

Run your program again. Now when you press a button, the border around the button will flash
different colors. Notice how the animation stops partway through if you stop pressing the button?
That's because the state changed back to Normal, so the animation reset to its starting point.

VIEW

If you scroll down
and look at the
<Border> you’ll see
this value, which is
set to the value
of the Button’s
BorderBrush
property.

you are here 4   781

architecting apps with the mvvm pattern

 d:DesignHeight="300"
 d:DesignWidth="400"
 xmlns:viewmodel="using:Stopwatch.ViewModel">

Build an analog stopwatch using the same ViewModel

using Windows.UI.Xaml.Data;

class AngleConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter, string language) {
 double parsedValue;
 if ((value != null)
 && double.TryParse(value.ToString(), out parsedValue)
 && (parameter != null))
 switch (parameter.ToString()) {
 case "Hours":
 return parsedValue * 30;
 case "Minutes":
 case "Seconds":
 return parsedValue * 6;
 }
 return 0;
 }

 public object ConvertBack(object value, Type targetType, object parameter, string language) {
 throw new NotImplementedException();
 }
}

An hour value ranges from 0 to
11, so to convert to an angle it’s
multiplied by 30.

Minutes and seconds range from
0 to 59, so the angle conversion
means multiplying by 6.

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Name="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>
 </UserControl.Resources>

And add the ViewModel and two converters to the user control’s static resources.

VIEW
MODE

L

VIEW

Add a converter to convert time to angles.
Add the AngleConverter class to the ViewModel folder. You’ll use it for the hands on the face.

1

Add the new UserControl.
Add a new user control called AnalogStopwatch.xaml to the View folder and add the
ViewModel namespace to the <UserControl> tag:

2

Remember how you used the
data classes you built for
Jimmy’s Comics in Chapter
14 and reused them to
create a Split App without
making any changes? This is
the same idea.

Do this!

The MVVM pattern decouples the View from the ViewModel, and the
ViewModel from the Model. This is really useful if you need to make changes to
one of the layers. Because of that decoupling, you can be very confident that the
changes you make will not cause the “shotgun surgery” effect and ripple into the
other layers. So did we do a good job decoupling the stopwatch program’s View
from its ViewModel? There’s one way to be sure: let’s build an entirely new View
without changing the existing classes in the ViewModel. The only change you’ll
need in the C# code is a new converter in the ViewModel that converts
minutes and seconds into angles.

782   Chapter 16

transform your controls

<Grid x:Name="baseGrid" DataContext="{StaticResource ResourceKey=viewModel}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400"/>
 </Grid.ColumnDefinitions>
 <Ellipse Width="300" Height="300" Stroke="Black" StrokeThickness="2">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <LinearGradientBrush.RelativeTransform>
 <CompositeTransform CenterY="0.5" CenterX="0.5" Rotation="45"/>
 </LinearGradientBrush.RelativeTransform>
 <GradientStop Color="#FFB03F3F"/>
 <GradientStop Color="#FFE4CECE" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="150" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="4" Height="100" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding Minutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="1" Height="150" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding LapSeconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="100" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding LapMinutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Ellipse Width="10" Height="10" Fill="Black"/>
</Grid>

This draws an extra circle in the middle to cover up where the hands overlap. Since it’s at the bottom of the Grid, it’s drawn last and ends up on top.

This is the face of the stopwatch.
It has a black outline and a
grayish gradient background.

Setting
the column
width keeps
it from
expanding to
fill whatever
container
it’s in.

Here’s the second
hand. It’s a long,
thin Rectangle
with a translate
and rotate
transform.

VIEW
Add the face and hands to the Grid.
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

3

Here’s the
minute
hand.

There are
two yellow
hands for
the lap
time.

Every control can have one
RenderTransform section.

The TransformGroup tag lets
you apply multiple transforms
to the same control.

you are here 4   783

architecting apps with the mvvm pattern

<TranslateTransform Y="-60"/>

<RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>

The stopwatch face is filled
with a gradient brush, just

like the background you
used in Save the Humans.

Every control can have one
RenderTransform element

that changes how it’s
displayed. This can include
rotating, moving to an offset,
skewing, scaling its size up

or down, and more.

You used transforms in Save
the Humans to change the

shape of the ellipses in the
enemy to make it look like

an alien.

Each hand is transformed twice. It starts out
centered in the face, so the first transform
shifts it up so that it’s in position to rotate.

The second transform rotates the hand to
the correct angle. The Angle property of the
rotation is bound to seconds or minutes in the
ViewModel, and uses the angle converter to
convert it to an angle.

Your stopwatch will start
ticking as soon as you add the
second hand, because it creates
an instance of the ViewModel
as a static resource to render
the control in the designer.
The designer may stop it
updating, but you can restart
it by switching away from the
designer window and back again.

784   Chapter 16

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center"
 VerticalAlignment="Bottom" Margin="0,0,0,30">
 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
 Click="StartButton_Click" FontFamily="Segoe UI Symbol"></Button>
 <Button IsEnabled="{Binding Running}"
 Click="StopButton_Click" FontFamily="Segoe UI Symbol"></Button>
 <Button Click="ResetButton_Click" FontFamily="Segoe UI Symbol"></Button>
 <Button IsEnabled="{Binding Running}" FontFamily="Segoe UI Symbol"
 Click="LapButton_Click" ></Button>
</StackPanel>

<TextBlock Text="Stopwatch is running" HorizontalAlignment="Left"
 VerticalAlignment="Bottom" Margin="10"
 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"
 Style="{StaticResource StopwatchRunningTextBlockStyle}"/>

adding resources

Add the buttons to the stopwatch.
If you haven’t already, modify the button style in your resource dictionary to give the
buttons rounded corners:

4

<UserControl.Resources>

 <viewmodel:StopwatchViewModel x:Name="viewModel"/>

 <viewmodel:BooleanNotConverter x:Key="notConverter"/>

 <viewmodel:AngleConverter x:Key="angleConverter"/>

 <viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
</UserControl.Resources>

We can use the same “Stopwatch is running” TextBlock, so we’ll need to add the
Visibility converter as a static resource:

We used Character Map
to find appropriate
button symbols.

The UserControl is just a Grid with a single cell, so all of
these controls are in the same cell. We’ll use the alignment
and margin properties to position the TextBlock.

<Border x:Name="Border"
 Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Margin="3"
 CornerRadius="15">

Now you can add the buttons. Since it’s an analog stopwatch, let’s use symbols instead
of text by setting the font to Segoe UI Symbol and using the Unicode character codes:

Setting the Border control’s
CornerRadius property to 15
will give the buttons rounded
corners. Combine that with
the flashing border when the
button is pressed, and you’ve
got a pretty interesting
customized button.

We like the way the buttons look when they overlap the face, so we gave them a bottom vertical alignment and 30 pixel bottom margin.

you are here 4   785

architecting apps with the mvvm pattern

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}
private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}
private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}
private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

Modify the code-behind and update the main page.
You added buttons, but you still need to add their event handler methods. The code-behind for
the buttons is the same as in the basic stopwatch:

5

Now you just need to modify your MainPage.xaml to add an AnalogStopwatch control:

<StackPanel Orientation="Vertical" Grid.Row="1" Margin="120,0">
 <view:BasicStopwatch Margin="0,0,0,40" />
 <view:AnalogStopwatch/>
</StackPanel>

Run your app. Now you have two stopwatch controls on the page.

Each stopwatch keeps
its own time, because
each one has its own
separate instance of
the ViewModel as a
static resource.

Are you wondering why you didn’t
add the ViewModel resource to
your resource dictionary? Try

changing the ViewModel to make
the _stopwatchModel field static.

What does this change about how
the stopwatch app behaves? Can
you figure out why that happens?

This is exactly what would happen
if you had a single static resource
in the app’s resource dictionary.

But don’t take our word for it—try
it yourself and see what happens!

The animation for the
Focused visual state
causes the rectangle
around the button in
focus to pulsate.

The buttons are
rounded, and have a
flashing border while
they’re being pressed.

786   Chapter 16

in the end, it’s all just code

using Windows.UI;
using Windows.UI.Xaml.Shapes;
using Windows.UI.Xaml.Media;
public sealed partial class AnalogStopwatch : UserControl {

 public AnalogStopwatch() {
 this.InitializeComponent();
 AddMarkings();
 }

 private void AddMarkings() {
 for (int i = 0; i < 360; i += 3) {
 Rectangle rectangle = new Rectangle();
 rectangle.Width = (i % 30 == 0) ? 3 : 1;
 rectangle.Height = 15;
 rectangle.Fill = new SolidColorBrush(Colors.Black);
 rectangle.RenderTransformOrigin = new Point(0.5, 0.5);

 TransformGroup transforms = new TransformGroup();
 transforms.Children.Add(new TranslateTransform() { Y = -140 });
 transforms.Children.Add(new RotateTransform() { Angle = i });
 rectangle.RenderTransform = transforms;
 baseGrid.Children.Add(rectangle);
 }
 }
 // ... the button event handlers stay the same

UI controls can be instant iated with C# code, too
You already know that your XAML code instantiates classes in the Windows.UI namespace,
and you even used the Watch window in the IDE back in Chapter 10 to explore them. But
what if you want to create controls from inside your code? Well, controls are just objects, so you
can create them and work with them just like you would with any other object. Go ahead and
modify the code-behind to add markings to the face of your analog stopwatch.

You need the Windows.UI namespace for the Colors class, the
Windows.UI.Xaml.Shapes namespace for the Rectangle and transforms,
and the Windows.UI.Xaml.Media namespace for SolidColorBrush.

Modify the constructor
to call a method that
adds the markings.

This creates
instances of the
same Rectangle
object that you
created with the
<Rectangle> tag.

This statement uses the
% modulo operator to

make the marks for the
hours thicker than the

ones for the minutes. i %
30 returns 0 only if i is

divisible by 30.

Flip back to the XAML for the
hour and minute hands. This code
sets up exactly the same transform,
except instead of binding the Angle
property it sets it to a value.

Controls like Grid, StackPanel, and
Canvas have a Children collection with

references to all of the other controls
contained inside them. You can add

controls to the grid with its Add() method,
and remove all controls by calling its

Clear() method. You add transforms to a
TransformGroup the same way.

You used a Binding object to set up data
binding in C# code back in Chapter 11.
Can you figure out how to remove the
XAML to create the Rectangle controls for
the hour and minute hands and replace it
with C# code to do the same thing?

you are here 4   787

architecting apps with the mvvm pattern

Thanks for giving
us everything we need
for our game! Now we
can compete for the

prestigious objectville
trophy.

Now that you added the
markings to the stopwatch, the
ref will make all the right calls.

Which team will dominate
the conference and win
the Objectville Trophy?
Nobody’s sure. All we know
is that Joe, Bob, and Ed
will be betting on it!

788   Chapter 16

lively and animated

C# can build “real” animations, too
In the C# and XAML world, animation can refer to any property
that changes over a specific time period. But in the real world, it
means drawings that move and change. So let’s build a simple
program to do some “real” animation.

1
2

3

4

Each of these animated bees is a single frame of animation that’s slightly different than the one before and after it. If we show them quickly in order and back (frame #1, then #2, #3, #4, and then back to #3 and #2), it will look like it’s flapping its wings.

Create a project and add the pictures
Let’s get started with the project. Create a new
Windows Store project called AnimatedBee.
Download the four images (they’re .png files) from the
Head First Labs website. Then add each one to the
Assets folder. You’ll also need to create View, Model,
and ViewModel folders. Right-click on the Assets folder
and choose Add→Existing Item... just like you did
in Chapter 14.

Download the images for this chapter
from the Head First Labs website:
www.headfirstlabs.com/hfcsharp/

Your bees will be happily flapping

their wings when you flip the page.

Keep an open mind about animation.

Watch carefully when you bring up the Windows
Start page, open an About window, hover over a
button, or do any number of things in Windows
apps. Animations are everywhere, and once you
start looking for them, you’ll keep seeing them.

This is more like what
comes to mind when I think

animation...

Do this!

you are here 4   789

architecting apps with the mvvm pattern

Create a user control to animate a picture
Let’s encapsulate all of the frame-by-frame animation code. Add a user control called
AnimatedImage to your View folder. It has very little XAML—all of the intelligence
is in the code-behind. Here’s everything inside the <UserControl> tag in the XAML:

using Windows.UI.Xaml.Media.Animation;
using Windows.UI.Xaml.Media.Imaging;

public sealed partial class AnimatedImage : UserControl {
 public AnimatedImage() {
 this.InitializeComponent();
 }

 public AnimatedImage(IEnumerable<string> imageNames, TimeSpan interval)
 : this()
 {
 StartAnimation(imageNames, interval);
 }

 public void StartAnimation(IEnumerable<string> imageNames, TimeSpan interval) {
 Storyboard storyboard = new Storyboard();
 ObjectAnimationUsingKeyFrames animation = new ObjectAnimationUsingKeyFrames();
 Storyboard.SetTarget(animation, image);
 Storyboard.SetTargetProperty(animation, "Source");

 TimeSpan currentInterval = TimeSpan.FromMilliseconds(0);
 foreach (string imageName in imageNames) {
 ObjectKeyFrame keyFrame = new DiscreteObjectKeyFrame();
 keyFrame.Value = CreateImageFromAssets(imageName);
 keyFrame.KeyTime = currentInterval;
 animation.KeyFrames.Add(keyFrame);
 currentInterval = currentInterval.Add(interval);
 }
 storyboard.RepeatBehavior = RepeatBehavior.Forever;
 storyboard.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }

 private static BitmapImage CreateImageFromAssets(string imageFilename) {
 return new BitmapImage(new Uri("ms-appx:///Assets/" + imageFilename));
 }
}

<Grid>
 <Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the StartAnimation() method,
which creates storyboard and key frame animation objects to animate the Source property of the Image control.

BitmapImage is in the
Media.Imaging namespace.
Storyboard and the other
animation classes are
in the Media.Animation
namespace.

Every control must have a parameterless constructor if
you want to create an instance of the control using XAML.
You can still add overloaded constructors, but that’s only

useful if you’re writing code to create the control.

The static
SetTarget() and

SetTargetProperty()
methods from the

Storyboard class set
the target object being

animated ("image") and
the property that will
change ("Source").

Once the Storyboard object is set up and animations
have been added to its Children collection, call its

Begin() method to start the animation.

The CreateImageFromAssets() method takes an image filename and turns it into a BitmapImage object.
In Chapter 14 you bound an Image’s Source property to a path like "Assets/picture.jpg", but that

won’t work with key frame animations—it would be really slow to load an image from a file every time a
frame is displayed. Using BitmapImage objects lets us load each file once when we set up the animation.

790   Chapter 16

bees gotta fly

Make your bees f ly around a page
Let’s take your AnimatedImage control out for a test flight.

<Canvas Grid.Row="1" Background="SkyBlue" Width="600"

 HorizontalAlignment="Left" Margin="120,0,120,120">

 <local:AnimatedImage Canvas.Left="50" Canvas.Top="40"

 x:Name="firstBee" Width="50" Height="50"/>

 <local:AnimatedImage Canvas.Left="80" Canvas.Top="260"

 x:Name="secondBee" Width="200" Height="200"/>

 <local:AnimatedImage Canvas.Left="230" Canvas.Top="100"

 x:Name="thirdBee" Width="300" Height="125"/>

</Canvas>

Replace MainPage.xaml with a basic page in the View folder.
Add a Basic Page to your View folder called FlyingBees.xaml. Delete MainPage.xaml from the project.
Then modify App.xaml.cs to navigate to your new page on startup:

 rootFrame.Navigate(typeof(View.FlyingBees), e.Arguments);

1

The bees will fly around a Canvas control.
You’ll need a container for the AnimatedImage controls. So the next thing to do is
add a Canvas control to FlyingBees.xaml. A Canvas control is a container,
so it can contain other controls like a Grid or StackPanel. The difference is that a
Canvas lets you set the coordinates of the controls using the Canvas.Left and
Canvas.Top properties. You used a Canvas back in Chapter 1 to create the play
area for Save the Humans. Here’s the XAML to add to FlyingBees.xaml:

2

The AnimatedImage control is invisible until
its StartAnimation() method is called, so
the controls in the Canvas will only show up
as outlines. You can select them using the

Document Outline. Try dragging the controls
around the canvas to see the Canvas.Left

and Canvas.Top properties change.

Do this!

This bee’s AnimatedImage
control starts with its
Canvas.Left set to 50
and its Canvas.Top set
to 40, so it will be
drawn at (50, 40) on
the canvas. But it won’t
stay there for long,
because we’ll use a double
animation to animate
Canvas.Left from 50 to
450 and back.

you are here 4   791

architecting apps with the mvvm pattern

public FlyingBees() {
 this.InitializeComponent();
 this.navigationHelper = new NavigationHelper(this);
 this.navigationHelper.LoadState += navigationHelper_LoadState;
 this.navigationHelper.SaveState += navigationHelper_SaveState;

 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 firstBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(50));
 secondBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(10));
 thirdBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(100));

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, firstBee);
 Storyboard.SetTargetProperty(animation, "(Canvas.Left)");
 animation.From = 50;
 animation.To = 450;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
}

using Windows.UI.Xaml.Media.Animation;

Add the code-behind for the page.
You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

3

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also
create a DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a
storyboard and animation to the XAML code with <DoubleAnimation> earlier in the chapter.

Run your program. Now you can see three bees flapping
their wings. You gave them different intervals, so they flap at
different rates because their timers are waiting for different
timespans before changing frames. The top bee has its Canvas.
Left property animated from 50 to 450 and back, which causes
it to move around the page. Take a close look at the properties
that are set on the DoubleAnimation object and compare
them to the XAML properties you used earlier in the chapter.

The AnimatedImage control has a
construtor that takes a sequence
of image names and a TimeSpan,
and uses them to animate an image.

Instead of using
a <Storyboard>
tag and a
<DoubleAnimation>
tag like earlier in
the chapter, you
can create the
Storyboard and
DoubleAnimation
objects and set
their properties
in code.

Something’s not right about this project. Can you spot it?

The Storyboard is
garbage-collected
after the animation

completes. You can see
this for yourself by using

 to watch it
and clicking to refresh

it after the animation
ends—but first change its

RepeatBehavior to new
RepeatBehavior(2) so
it doesn’t repeat forever

and never get GC’d.

792   Chapter 16

remember, mvvm is a pattern

That won't work. Data binding doesn’t work with
container controls’ Children property—and for
good reason.

Data binding is built to work with attached properties, which are
the properties that show up in the XAML code. The Canvas object
does have a public Children property, but if you try to set it using
XAML (Children="{Binding ...}") your code won’t compile.

However, you already know how to bind a collection of objects to a
XAML control, because you did that with ListView and GridView
controls using the ItemsSource property. We can take advantage
of that data binding to add child controls to a Canvas.

This is easy. Just add an
ObservableCollection of controls, and bind

the Children property of the Canvas to it. Why
are you making such a big deal about it?

VIEW
MODE

L

VIEW

MODE
L

???

Something’s not right: there’s nothing in your
Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!
If we wanted to add more bees, we’d have to create more controls
in the View and then initialize them individually. What if we want
different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier.
How can we make this project follow the MVVM pattern?

you are here 4   793

architecting apps with the mvvm pattern

Use ItemsPanelTemplate to bind controls to a Canvas
When you used the ItemsSource property to bind items to a ListView, GridView, or ListBox it didn’t
matter which one you were binding to, because the ItemsSource property always worked the same way.
If you were going to build three classes that had exactly the same behavior, you would put that behavior
in a base class and have the three classes extend it, right? Well, the Microsoft team did exactly the same
thing when they built the selector controls. The ListView, GridView, and ListBox all extend a class called
Selector, which is a subclass of the ItemsControl class that displays a collection of items.

<ItemsControl DataContext="{StaticResource viewModel}"

 ItemsSource="{Binding Path=Sprites}"

 Grid.Row="1" Margin="120,0,120,120">

 <ItemsControl.ItemsPanel>

 <ItemsPanelTemplate>

 <Canvas Background="SkyBlue" />

 </ItemsPanelTemplate>

 </ItemsControl.ItemsPanel>

</ItemsControl>

xmlns:viewmodel="using:AnimatedBee.ViewModel"

<viewmodel:BeeViewModel x:Key="viewModel"/>

Next, add an empty class called BeeViewModel to your ViewModel folder,
and then add an instance of that class as a static resource to FlyingBees.xaml:

2

We’re going to use its ItemsPanel property to set up a template for
the panel that controls the layout of the items. Start by adding the
ViewModel namespace to FlyingBees.xaml:

1

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees() constructor in the FlyingBees control. Make sure that you
don’t delete the InitializeComponents() method or the three lines after it
that initialize the NavigationHelper object! (If you’re not sure which lines to
delete, you can just delete the whole FlyingBees.xaml page and add a new one.)

Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the
<Canvas> tag you added, and replace it with this ItemsControl:

43

Use the ItemsPanel
property to set up an

ItemsPanelTemplate. This
contains a single Panel

control, and both Grid and
Canvas extend the Panel
class. Any items bound to
ItemsSource will be added

to the Panel’s Children.

You can set up the
panel however you
want. We’ll use a
Canvas with a sky
blue background.

Use the static
ViewModel resource as
the data context, and
bind the ItemsSource
to a property called
Sprites.

When the ItemsControl is created, it creates
a Panel to hold all of its items and uses the

ItemsPanelTemplate as the control template.

If you used a
different project
name, change
AnimatedBee to the
correct namespace.

794   Chapter 16

bee factory

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Animation;

static class BeeHelper {
 public static AnimatedImage BeeFactory(
 double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetBeeLocation(AnimatedImage bee, double x, double y) {
 Canvas.SetLeft(bee, x);
 Canvas.SetTop(bee, y);
 }

 public static void MakeBeeMove(AnimatedImage bee,
 double fromX, double toX, double y) {
 Canvas.SetTop(bee, y);
 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, bee);
 Storyboard.SetTargetProperty(animation, "(Canvas.Left)");
 animation.From = fromX;
 animation.To = toX;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }
}

Create a new class in the View folder
called BeeHelper. Make sure it’s a static class,
because it’ll only have static methods to help your
ViewModel manage its bees.

4

This is the same code
that was in the page’s
constructor. Now it’s in
a static helper method.

The factory method pattern
MVVM is just one of many design patterns. One
of the most common—and most useful—patterns is
the factory method pattern, where you have a
“factory” method that creates objects. The factory
method is usually static, and the name often ends
with “Factory” so it’s obvious what’s going on.

This factory
method creates
Bee controls. It
makes sense to
keep this in the
View, because it’s
all UI-related
code. When you take a small block of code that’s reused a lot and put

it in its own (often static) method, it’s sometimes called a helper
method. Putting helper methods in a static class with a name that

ends with “Helper” makes your code easier to read.

you are here 4   795

architecting apps with the mvvm pattern

using View;
using System.Collections.ObjectModel;
using System.Collections.Specialized;

class BeeViewModel {
 private readonly ObservableCollection<Windows.UI.Xaml.UIElement>
 _sprites = new ObservableCollection<Windows.UI.Xaml.UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 public BeeViewModel() {
 AnimatedImage firstBee =
 BeeHelper.BeeFactory(50, 50,
 TimeSpan.FromMilliseconds(50));
 _sprites.Add(firstBee);

 AnimatedImage secondBee =
 BeeHelper.BeeFactory(200, 200, TimeSpan.FromMilliseconds(10));
 _sprites.Add(secondBee);

 AnimatedImage thirdBee =
 BeeHelper.BeeFactory(300, 125, TimeSpan.FromMilliseconds(100));
 _sprites.Add(thirdBee);

 BeeHelper.MakeBeeMove(firstBee, 50, 450, 40);
 BeeHelper.SetBeeLocation(secondBee, 80, 260);
 BeeHelper.SetBeeLocation(thirdBee, 230, 100);
 }
} The readonly keyword

An important reason that we use encapsulation is to prevent one class from accidentally overwriting another class’s data. But what’s preventing a class from overwriting its own data? The readonly keyword can help with that. Any field that you mark readonly can only be modified in its declaration or in the constructor.

We’re taking two steps to encapsulate
Sprites property. The backing field
is marked readonly so it can’t be
overwritten later, and we expose
it as an INotifyCollectionChanged
property so other classes can only
observe it but not modify it.

When the AnimatedImage control is added to
the _sprites ObservableCollection that’s bound
to the ItemsControl’s ItemsSource property,
the control is added to the item panel, which
is created based on the ItemsPanelTemplate.

A sprite is
the term for

any 2D image
or animation

that gets
incorporated
into a larger

game or
animation.

Run your app. It should look exactly the
same as before, but now the behavior is
split across the layers, with UI-specific
code in the View and code that deals
with bees and moving in the ViewModel.

6

Here’s the code for the empty BeeViewModel class that you
added to the ViewModel folder. By moving the UI-specific code
to the View, we can keep the code in the ViewModel simple
and specific to managing bee-related logic.

5

All XAML controls inherit from the UIElement base class in the Windows.UI.Xaml namespace. We
explicitly used the namespace (Windows.UI.Xaml.UIElement) in the body of the class instead of

adding a using statement to limit the amount of UI-related code we added to the ViewModel.

We used UIElement because it’s the most abstract class that all of the sprites extend. For some
projects, a subclass like FrameworkElement may be more appropriate, because that’s where many

properties are defined, including Width, Height, Opacity, HorizontalAlignment, etc.

You’re changing properties
and adding animations on the
controls after they were added
to the ObservableCollection.
Why does that work?

This will come
in handy in
the last lab.

796   Chapter 16

stars and stripes

This is the last exercise in the book. Your job is to build a program that animates bees and stars.
There’s a lot of code to write, but you’re up to the task...and once you have this working, you’ll
have all the tools you need to build a complete video game. (Can you guess what’s in Lab #3?)

Here’s the app you’ll create.

Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll build
a View that contains the bees, stars, and page to display them, a Model that keeps track of where they are
and fires off events when bees move or stars change, and a ViewModel to connect the two together.

1

The bees fly
around the sky to
random locations.
If the canvas
size changes, the
bees fly to new
positions on the
canvas.

Stars fade in and out.

If the canvas play area size changes, the stars instantly move and bees slowly fly to their new locations.
You can test this by running this program in the simulator and using the button to change the resolution.

<Canvas Background="Blue" SizeChanged="SizeChangedHandler" />

Add the ViewModel as a static resource and change the page name:

Visual Studio comes with a fantastic tool to help you experiment with shapes!
Fire up Blend for Visual Studio 2013 and use the pen, pencil, and toolbox to

create XAML shapes that you can copy and paste into your C# projects.

Create a new Basic Page in the View folder.
Add a Basic Page in the View folder called BeesOnAStarryNight.xaml. Add the namespace to the top-
level tag in the BeesOnAStarryNight.xaml (it should match your project’s name, StarryNight):

3

Create a new Windows Store app project.
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders. Once
that’s done, you’ll need to add an empty class called BeeStarViewModel to the ViewModel folder.

2

The
SizeChanged
event is fired

when a control
changes
size, with
EventArgs

properties for
the new size.

<Page.Resources>
 <viewmodel:BeeStarViewModel x:Name="viewModel"/>
 <x:String x:Key="AppName">Bees on a Starry Night</x:String>
</Page.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except
the Canvas control’s background is Blue and it has a SizeChanged event handler:

xmlns:viewmodel="using:StarryNight.ViewModel"

you are here 4   797

architecting apps with the mvvm pattern

Add code-behind for the page and the app.
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:

4

private void SizeChangedHandler(object sender, SizeChangedEventArgs e) {
 viewModel.PlayAreaSize = new Size(e.NewSize.Width, e.NewSize.Height);
}

The code in step 4 won’t compile until you add the PlayAreaSize property to the ViewModel in step 9. You can use the IDE to generate a property stub for it for now.

<UserControl
 // The usual XAML code that the IDE generates is fine,
 // no extra namespaces are needed for this User Control.
 >

 <UserControl.Resources>
 <Storyboard x:Name="fadeInStoryboard">
 <DoubleAnimation From="0" To="1" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 <Storyboard x:Name="fadeOutStoryboard">
 <DoubleAnimation From="1" To="0" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 </UserControl.Resources>

 <Grid>
 <Polygon Points="0,75 75,0 100,100 0,25 150,25" Fill="Snow"
 Stroke="Black" x:Name="starPolygon"/>
 </Grid>
</UserControl>

A Polygon control uses a set of
points to draw a polygon. This

UserControl uses it to draw a star.

Add a user control called StarControl to the View folder.
This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add
methods called FadeIn() and FadeOut() to the code-behind to trigger the storyboards.

6

Add the AnimatedImage control to the View folder.
Go back to the View folder and add the AnimatedImage control. This is exactly the
same control from earlier in the chapter. Make sure you add the image files for the
animation frames to the Assets folder.

5

There are even more shapes beyond ellipses, rectangles, and polygons:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465055.aspx

You’ll need to add public FadeIn() and FadeOut()
methods to the code-behind that start these
storyboards. That’s how the stars will fade in and out.

This polygon draws the star. You
can replace it with other shapes to experiment with how they work.

VIEW

rootFrame.Navigate(typeof(View.BeesOnAStarryNight), e.Arguments);

Then modify App.xaml.cs to change the call to rootFrame.Navigate() so the app starts on your new page::

798   Chapter 16

oh my stars

 (continued)
Add the BeeStarHelper class to the View.
Here’s a useful helper class. It’s got some familiar tools, and a
couple of new ones. Put it in the View folder.

7

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Animation;
using Windows.UI.Xaml.Shapes;

static class BeeStarHelper {
 public static AnimatedImage BeeFactory(double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetCanvasLocation(UIElement control, double x, double y) {
 Canvas.SetLeft(control, x);
 Canvas.SetTop(control, y);
 }

 public static void MoveElementOnCanvas(UIElement uiElement, double toX, double toY) {
 double fromX = Canvas.GetLeft(uiElement);
 double fromY = Canvas.GetTop(uiElement);

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animationX = CreateDoubleAnimation(uiElement,
 fromX, toX, "(Canvas.Left)");
 DoubleAnimation animationY = CreateDoubleAnimation(uiElement,
 fromY, toY, "(Canvas.Top)");
 storyboard.Children.Add(animationX);
 storyboard.Children.Add(animationY);
 storyboard.Begin();
 }

 public static DoubleAnimation CreateDoubleAnimation(UIElement uiElement,
 double from, double to, string propertyToAnimate) {
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, uiElement);
 Storyboard.SetTargetProperty(animation, propertyToAnimate);
 animation.From = from;
 animation.To = to;
 animation.Duration = TimeSpan.FromSeconds(3);
 return animation;
 }

 public static void SendToBack(StarControl newStar) {
 Canvas.SetZIndex(newStar, -1000);
 }
}

“Z Index” means the order
the controls are layered on a
panel. A control with a higher

Z index is drawn on top of
one with a lower Z index.

Canvas has SetLeft() and GetLeft() methods to set and get the X
position of a control. The SetTop() and GetTop() methods set and get

the Y position. They work even after a control is added to the Canvas.

VIEW

We added a helper called
CreateDoubleAnimation()
that creates a three-
second DoubleAnimation.
This method uses it to
move a UIElement from
its current location to a
new point by animating its
Canvas.Left and Canvas.
Top properties.

you are here 4   799

architecting apps with the mvvm pattern

Add the Bee, Star, and EventArgs classes to the Model.
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and
it will fire off events so the ViewModel knows whenever there’s a change to a bee or a star.

8

using Windows.Foundation;
class Bee {
 public Point Location { get; set; }
 public Size Size { get; set; }
 public Rect Position { get { return new Rect(Location, Size); } }
 public double Width { get { return Position.Width; } }
 public double Height { get { return Position.Height; } }

 public Bee(Point location, Size size) {
 Location = location;
 Size = size;
 }
}

The Points property on
the Polygon control is a
collection of Point structs.

class BeeMovedEventArgs : EventArgs {
 public Bee BeeThatMoved { get; private set; }
 public double X { get; private set; }
 public double Y { get; private set; }

 public BeeMovedEventArgs(Bee beeThatMoved, double x, double y) {
 BeeThatMoved = beeThatMoved;
 X = x;
 Y = y;
 }
}

class StarChangedEventArgs : EventArgs {
 public Star StarThatChanged { get; private set; }
 public bool Removed { get; private set; }

 public StarChangedEventArgs(Star starThatChanged, bool removed) {
 StarThatChanged = starThatChanged;
 Removed = removed;
 }
}

The Rect struct has several
overloaded constructors, and
methods that let you extract its
width, height, size, and location
(either as a Point or individual X
and Y double coordinates).

using Windows.Foundation;
class Star {
 public Point Location {
 get; set;
 }

 public Star(Point location) {
 Location = location;
 }
}

The Point, Size, and Rect stucts
The Windows.Foundation namespace has several very useful structs. Point
uses X and Y double properties to store a set of coordinates. Size has
two double properties too, Width and Height, and also a special Empty
value. Rect stores two coordinates for the top-left and bottom-right
corner of a rectangle. It has a lot of useful methods to find its width,
height, intersection with other Rects, and more.

The model will fire events that use these EventArgs
to tell the ViewModel when changes happen.

Once you get your program working,
try adding a Boolean Rotating
property to the Star class and use it
to make some of your stars slowly spin
around.

MODE
L

800   Chapter 16

buzz buzz buzz

 (continued)

MODE
Lusing Windows.Foundation;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 public Size PlayAreaSize {
 // Add a backing field, and have the set accessor call CreateBees() and CreateStars()
 }
 private void CreateBees() {
 // If the play area is empty, return. If there are already bees, move each of them.
 // Otherwise, create between 5 and 15 randomly sized bees (40 to 150 pixels), add
 // it to the _bees collection, and fire the BeeMoved event.
 }
 private void CreateStars() {
 // If the play area is empty, return. If there are already stars,
 // set each Star's location to a new point and fire the StarChanged
 // event, otherwise call CreateAStar() between 5 and 10 times.
 }
 private void CreateAStar() {
 // Find a new non-overlapping point, add a new Star object to the
 // _stars collection, and fire the StarChanged event.
 }
 private Point FindNonOverlappingPoint(Size size) {
 // Find the upper left-hand corner of a rectangle that doesn't overlap any bees or stars
 // You'll need to try random Rects, then use LINQ queries to find any bees or stars
 // that overlap (the RectsOverlap() method will be useful).
 }
 private void MoveOneBee(Bee bee = null) {
 // If there are no bees, return. If the bee parameter is null, choose a random bee,
 // otherwise use the bee argument Then find a new non-overlapping point, update the bee's
 // location, update the _bees collection, then fire the OnBeeMoved event.
 }
 private void AddOrRemoveAStar() {
 // Flip a coin (_random.Next(2) == 0) and either create a star using CreateAStar() or
 // remove a star and fire OnStarChanged. Always create a star if there are <= 5, remove
 // one if >= 20. _stars.Keys.ToList()[_random.Next(_stars.Count)] will find a random star.
 }
 // You'll need to add the BeeMoved and StarChanged events and methods to call them.
 // They use the BeeMovedEventArgs and StarChangedEventArgs classes.
}

If the method’s tried
1,000 random locations
and hasn’t found one
that doesn’t overlap, the
play area has probably
run out of space, so just
return any point.

Add the BeeStarModel class to the Model.
We’ve filled in the private fields and a couple of useful methods. Your job is
to finish building the BeeStarModel class.

9

The ViewModel will use a timer to call
this Update() method periodically.

This method checks two Rect
structs and returns true if they
overlap each other using the
Rect.Intersect() method.

Size.Empty is a value of Size that’s reserved
for an empty size. You’ll use it to only create
bees and stars when the play area is resized.

You can use readonly to create a constant struct value.

PlayAreaSize
is a property.

You can debug your app with the simulator to make sure
it works with different screen sizes and orientations.

you are here 4   801

architecting apps with the mvvm pattern

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using Windows.Foundation;
using DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
using UIElement = Windows.UI.Xaml.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 public Size PlayAreaSize { /* get and set accessors return and set _model.PlayAreaSize */ }

 public BeeStarViewModel() {
 // Hook up the event handlers to the BeeStarModel's BeeMoved and StarChanged events,
 // and start the timer ticking every two seconds.
 }
 void timer_Tick(object sender, object e) {
 // Every time the timer ticks, find all StarControl references in the _fadedStars
 // collection and remove each of them from _sprites, then call the BeeViewModel's
 // Update() method to tell it to update itself.
 }
 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 // The _bees dictionary maps Bee objects in the Model to AnimatedImage controls
 // in the view. When a bee is moved, the BeeStarModel fires its BeeMoved event to
 // tell anyone listening which bee moved and its new location. If the _bees
 // dictionary doesn't already contain an AnimatedImage control for the bee, it needs
 // to create a new one, set its canvas location, and update both _bees and _sprites.
 // If the _bees dictionary already has it, then we just need to look up the corresponding
 // AnimatedImage control and move it on the canvas to its new location with an animation.
 }
 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 // The _stars dictionary works just like the _bees one, except that it maps Star objects
 // to their corresponding StarControl controls. The EventArgs contains references to
 // the Star object (which has a Location property) and a boolean to tell you if the star
 // was removed. If it is then we want it to fade out, so remove it from _stars, add it
 // to _fadedStars, and call its FadeOut() method (it'll be removed from _sprites the next
 // time the Update() method is called, which is why we set the timer’s tick interval to
 // be greater than the StarControl's fade out animation).
 //
 // If the star is not being removed, then check to see if _stars contains it - if so, get
 // the StarControl reference; if not, you'll need to create a new StarControl, fade it in,
 // add it to _sprites, and send it to back so the bees can fly in front of it. Then set
 // the canvas location for the StarControl.
 }
}

VIEW
MODE

L
We wanted to make sure that

DispatcherTimer and UIElement
are the only classes from the Windows.
UI.Xaml namespace that we used in
the ViewModel. The using keyword

lets you use = to declare a single
member in another namespace.

When you set the new Canvas location, the control is updated—even if it’s already on
the Canvas. This is how the stars move themselves around when the play area is resized.

Add the BeeStarViewModel class to the ViewModel.
Fill in the commented methods. You’ll need
to look closely at how the Model works, and
what the View expects. The helper methods
will also come in very handy.

10

802   Chapter 16

exercise solution

using Windows.Foundation;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 private Size _playAreaSize;
 public Size PlayAreaSize {
 get { return _playAreaSize; }
 set
 {
 _playAreaSize = value;
 CreateBees();
 CreateStars();
 }
 }

 private void CreateBees() {
 if (PlayAreaSize == Size.Empty) return;

 if (_bees.Count() > 0) {
 List<Bee> allBees = _bees.Keys.ToList();
 foreach (Bee bee in allBees)
 MoveOneBee(bee);
 } else {
 int beeCount = _random.Next(5, 16);
 for (int i = 0; i < beeCount; i++) {
 int s = _random.Next(40, 151);
 Size beeSize = new Size(s, s);
 Point newLocation = FindNonOverlappingPoint(beeSize);
 Bee newBee = new Bee(newLocation, beeSize);
 _bees[newBee] = new Point(newLocation.X, newLocation.Y);
 OnBeeMoved(newBee, newLocation.X, newLocation.Y);
 }
 }
 }

 SOLUTION
Here are the filled-in methods in the BeeStarModel class.

We gave these to you.

Whenever the PlayAreaSize property
changes, the Model updates the
_playAreaSize backing field and then calls
CreateBees() and CreateStars(). This
lets the ViewModel tell the Model to
adjust itself whenever the size changes—
which will happen if you run the program
on a tablet and change the orientation.

If there are
already bees, move
each of them.
MoveOneBee()
will find a new
nonoverlapping
location for each
bee and fire a
BeeMoved event.

If there aren’t any bees in the
model yet, this creates new
Bee objects and sets their
locations. Any time a bee is added
or changes, we need to fire a
BeeMoved event.

Here are the methods for the
StarControl code-behind:
public void FadeIn() {
 fadeInStoryboard.Begin();
}

public void FadeOut() {
 fadeOutStoryboard.Begin();
}

you are here 4   803

architecting apps with the mvvm pattern

 private void CreateStars() {
 if (PlayAreaSize == Size.Empty) return;

 if (_stars.Count > 0) {
 foreach (Star star in _stars.Keys) {
 star.Location = FindNonOverlappingPoint(StarSize);
 OnStarChanged(star, false);
 }
 } else {
 int starCount = _random.Next(5, 11);
 for (int i = 0; i < starCount; i++)
 CreateAStar();
 }
 }

 private void CreateAStar() {
 Point newLocation = FindNonOverlappingPoint(StarSize);
 Star newStar = new Star(newLocation);
 _stars[newStar] = new Point(newLocation.X, newLocation.Y);
 OnStarChanged(newStar, false);
 }

 private Point FindNonOverlappingPoint(Size size) {
 Rect newRect;
 bool noOverlap = false;
 int count = 0;
 while (!noOverlap) {
 newRect = new Rect(_random.Next((int)PlayAreaSize.Width - 150),
 _random.Next((int)PlayAreaSize.Height - 150),
 size.Width, size.Height);

 var overlappingBees =
 from bee in _bees.Keys
 where RectsOverlap(bee.Position, newRect)
 select bee;

 var overlappingStars =
 from star in _stars.Keys
 where RectsOverlap(
 new Rect(star.Location.X, star.Location.Y, StarSize.Width, StarSize.Height),
 newRect)
 select star;

 if ((overlappingBees.Count() + overlappingStars.Count() == 0) || (count++ > 1000))
 noOverlap = true;
 }
 return new Point(newRect.X, newRect.Y);
 }

 private void MoveOneBee(Bee bee = null) {
 if (_bees.Keys.Count() == 0) return;
 if (bee == null) {
 List<Bee> bees = _bees.Keys.ToList();
 bee = bees[_random.Next(bees.Count)];
 }
 bee.Location = FindNonOverlappingPoint(bee.Size);
 _bees[bee] = bee.Location;
 OnBeeMoved(bee, bee.Location.X, bee.Location.Y);
 }

If this iterated 1,000 times,
it means we’re probably out
of nonoverlapping spots in
the play area and need to
break out of an infinite loop.

This creates a random Rect and then checks if it overlaps. We gave it a 150-pixel gap on the right and 150-pixel gap on the bottom so the stars and bees don’t leave the play area.

These LINQ queries call RectsOverlap()
to find any bees or stars that overlap
the new Rect. If either return value has
a count, the new Rect overlaps something.

If there are already stars,
we just set each existing
star’s location to a new
point on the PlayArea and
fire the StarChanged event.
It’s up to the ViewModel to
handle that event and move
the corresponding control.

804   Chapter 16

exercise solution

SOLUTION

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using Windows.Foundation;
using DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
using UIElement = Windows.UI.Xaml.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees
 = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 private void AddOrRemoveAStar() {
 if (((_random.Next(2) == 0) || (_stars.Count <= 5)) && (_stars.Count < 20))
 CreateAStar();
 else {
 Star starToRemove = _stars.Keys.ToList()[_random.Next(_stars.Count)];
 _stars.Remove(starToRemove);
 OnStarChanged(starToRemove, true);
 }
 }

 public event EventHandler<BeeMovedEventArgs> BeeMoved;

 private void OnBeeMoved(Bee beeThatMoved, double x, double y)
 {
 EventHandler<BeeMovedEventArgs> beeMoved = BeeMoved;
 if (beeMoved != null)
 {
 beeMoved(this, new BeeMovedEventArgs(beeThatMoved, x, y));
 }
 }

 public event EventHandler<StarChangedEventArgs> StarChanged;

 private void OnStarChanged(Star starThatChanged, bool removed)
 {
 EventHandler<StarChangedEventArgs> starChanged = StarChanged;
 if (starChanged != null)
 {
 starChanged(this, new StarChangedEventArgs(starThatChanged, removed));
 }
 }
}

The last few members of the BeeStarModel class.

Here are the filled-in methods of the BeeStarViewModel class.

These are typical
event handlers and
methods to fire them.

Every time the Update() method is called,
we want to either add or remove a star. The
CreateAStar() method already creates stars.
If we’re removing a star, we just remove it
from _stars and fire a StarChanged event.

We gave these to you.

Flip a coin by choosing either 0 or 1 at
random, but always create a star if there
are under 5 and remove if 20 or more.

you are here 4   805

architecting apps with the mvvm pattern

 public Size PlayAreaSize {
 get { return _model.PlayAreaSize; }
 set { _model.PlayAreaSize = value; }
 }

 public BeeStarViewModel() {
 _model.BeeMoved += BeeMovedHandler;
 _model.StarChanged += StarChangedHandler;

 _timer.Interval = TimeSpan.FromSeconds(2);
 _timer.Tick += timer_Tick;
 _timer.Start();
 }

 void timer_Tick(object sender, object e) {
 foreach (StarControl starControl in _fadedStars)
 _sprites.Remove(starControl);

 _model.Update();
 }

 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 if (!_bees.ContainsKey(e.BeeThatMoved)) {
 AnimatedImage beeControl = BeeStarHelper.BeeFactory(
 e.BeeThatMoved.Width, e.BeeThatMoved.Height, TimeSpan.FromMilliseconds(20));
 BeeStarHelper.SetCanvasLocation(beeControl, e.X, e.Y);
 _bees[e.BeeThatMoved] = beeControl;
 _sprites.Add(beeControl);
 } else {
 AnimatedImage beeControl = _bees[e.BeeThatMoved];
 BeeStarHelper.MoveElementOnCanvas(beeControl, e.X, e.Y);
 }
 }

 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 if (e.Removed) {
 StarControl starControl = _stars[e.StarThatChanged];
 _stars.Remove(e.StarThatChanged);
 _fadedStars.Add(starControl);
 starControl.FadeOut();
 } else {
 StarControl newStar;
 if (_stars.ContainsKey(e.StarThatChanged))
 newStar = _stars[e.StarThatChanged];
 else {
 newStar = new StarControl();
 _stars[e.StarThatChanged] = newStar;
 newStar.FadeIn();
 BeeStarHelper.SendToBack(newStar);
 _sprites.Add(newStar);
 }
 BeeStarHelper.SetCanvasLocation(
 newStar, e.StarThatChanged.Location.X, e.StarThatChanged.Location.Y);
 }
 }
}

The ViewModel’s PlayAreaSize property
just passes through to the property on the
Model—but the Model’s PlayAreaSize set
accessor calls methods that fire BeeMoved

and StarChanged events. So when the screen
resolution changes: 1) the Canvas fires its
SizeChanged event, which 2) updates the

ViewModel’s PlayAreaSize property, which
3) updates the Model’s property, which 4) calls
methods to update bees and stars, which 5) fire
BeeMoved and StarChanged events, which 6)

trigger the ViewModel’s event handlers, which 7)
update the Sprites collection, which 8) updates
the controls on the Canvas. This is an example of
loose coupling, where there’s no single, central
object to coordinate things. This is a very stable

way to build software because each object
doesn’t need to have explicit knowledge of how
the other objects work. It just needs to know one

small job: handle an event, fire an event, call a
method, set a property, etc.

If you’ve done a good job with separation
of concerns, your designs often tend to
naturally end up being loosely coupled.

The _fadedStars collection contains
the controls that are currently fading
and will be removed the next time the
ViewModel’s Update() method is called.

If a star is being added, it needs to have its FadeIn() method called. If it’s already there, it’s just being moved because the play area size changed. Either way, we want to move it to its new location on the Canvas.

806   Chapter 16

you’re a c# pro

The
humans forgot about us!

Time to attack while they’ve
lowered their guard!

Congratulat ions! (But you’re not done yet...)
Did you finish that last exercise? Did you understand everything that was going on? If
so, then congratulations—you’ve learned a whole lot of C#, and probably in less time
than you’d expected! The world of programming awaits you.

Still, there are a few things that you should do before you move on to the last lab, if you
really want to make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.

If you did everything we asked you to do, you’ve built Save the Humans
twice, once at the beginning of the book and again before you started
Chapter 10. Even the second time around, there were parts of it that
seemed like magic. But when it comes to programming, there is no
magic. So take one last pass through the code that you built. You’ll
be surprised at how much you understand! There’s almost nothing
that seals a lesson into your brain like positive reinforcement.

When it
comes to
programming,
there is no
magic. Every
program works
because it
was built to
work, and all
code can be
understood.

...but it’s a lot easier
to understand code if
the programmer used
good design patterns
and object-oriented
programming principles.

Take a break. Even better, take a nap.

Your brain has absorbed a lot of information, and
sometimes the best thing you can do to “lock in” all
that new knowledge is to sleep on it. There’s a lot of
neuroscience research that shows that information
absorption is significantly improved after a good
night’s sleep. So give your brain a well-deserved rest!

Talk about it with your friends.

Humans are social animals, and when you
talk through things you’ve learned with your
social circle you do a better job of retaining
them. And these days, “talking” means
social networking, too! Plus, you’ve really
accomplished something here. Go ahead
and claim your bragging rights!

C# Lab   807

Name: Date:

C# Lab   807

C# Lab
Invaders

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve
gained throughout this book.

This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. If you did all of the
exercises throughout the book, you have all of the
tools that you need to do this lab.

We’ve filled in a few design details for you, and
we’ve made sure you’ve got all the pieces you
need…and nothing else.

It’s up to you to finish the job. You can get our
version of the finished Invaders game from the
Windows Store as an open source project, so its
source code is available...but you’ll have the best
C# learning experience if you build it all yourself!

(See www.headfirstlabs.com/hfcsharp for details.)

808   Head First Lab #1

Invaders

The grandfather of v ideo games
In this lab you’ll pay homage to one of the most popular, revered,
and replicated icons in video game history, a game that needs no
further introduction: it’s time to build Invaders!

As the player destroys the
invaders, the score goes up.
It’s displayed in the upper-
righthand corner.

The player starts out with
three ships. The first ship is
in play, and the other two are
kept in reserve. His spare ships
are shown underneath the score.

The multicolored
stars in the
background twinkle
on and off, but
don’t affect
gameplay at all.

The invaders return fire. If one of the shots hits
the ship, the player loses a life. Once all lives are
gone, or if the invaders reach the bottom of the
screen, the game ends and a big “GAME OVER” is
displayed in the middle of the screen.

The player moves the ship left
and right, and fires shots at
the invaders. If a shot hits an
invader, the invader is destroyed
and the player’s score goes up.

The invaders attack in waves of 11 columns
with six invaders. The first wave moves
slowly and fires a few shots at a time. The
next wave moves faster, and fires more
shots more frequently. If all invaders in a
wave are destroyed, the next wave attacks.

Invaders is a Windows
Store app using a
single Basic Page.

The invaders’ ships
are animated with
blocky, pixelated,
retro 80s-style
graphics. The
whole playing area
has a 4:3 aspect
ratio just like
an old arcade
cabinet, complete
with simulated
scan lines to make
it look authentic.

you are here 4   809

Invaders

RIGHT 

SPACE

Your mission: defend the planet
against wave af ter wave of invaders
The invaders attack in waves, and each wave is a tight formation
of 66 individual invaders. As the player destroys invaders, his score
goes up. The bottom two rows of invaders are shaped like stars and
worth 10 points. The satellites are worth 20, the saucers are worth
30, the bugs are worth 40, and those pesky alien invader spaceships
that have been invading Earth since Chapter 1 are worth 50.
The player starts with three lives. If he loses all three lives or the
invaders reach the bottom of the screen, the game’s over.

Swiping left or hitting the left
arrow key moves the ship toward
the lefthand edge of the screen.

Swiping right or using the right arrow key moves the ship to the right.

Players tend to mash the
keyboard, so the game
keeps track of which keys
are currently being held
down. Pressing right and
then spacebar would cause
the ship to first move to
the right and then fire
(if three shots aren’t
already on the screen).

The player can shoot by tapping
 the

screen or using the spacebar, b
ut

there can only be three player
 shots

on the screen at once. As soon as a

shot hits something or disappears,
another shot can be fired.

Fire!

If a shot hits
an invader, both
disappear. Otherwise,
the shot disappears
when it gets to the
top of the screen.

There are five different types of invaders, but they all behave the same way. They start at the top of the screen and move left until they reach the edge. Then they drop down and start moving right. When they reach the righthand boundary, they drop down and move left again. If the invaders reach the bottom of the screen, the game’s over.

The first wave of
invaders can fire two
shots at once—the
invaders will hold their
fire if there are more
than two shots on the
screen. The next wave
fires three, the next
fires four, and so on.

 LEFT

10 20 30 40 50

Remember, you can download
the Invaders graphics from
headfirstlabs.com/hfcsharp

810   Head First Lab #1

Invaders

The architecture of Invaders
Invaders is an MVVM app. The Model needs to keep track of
a wave of invaders (including their location, type, and score
value), the player’s ship, shots that the player and invaders fire
at each other, and stars in the background. The View uses a
Basic Page and controls for animated images and stars, as well
as a static helper class to help the ViewModel.

Here’s an overview of what you’ll need to create:

InvadersViewM
od

el
Basic Page

This app consists of a single Basic Page that
contains an ItemsControl for the play area
where the action happens, a GridView to display
the player’s ships left, a TextBlock for the
score, a SettingsFlyout to display the About
box, and a few more TextBlocks and buttons
to display when the game is paused or over.

VIEW

VIEW
MODE

L

ItemsC
on

tr
ol

Observa
bl

eC
ol

le
ct

ionBinding

The main play area
is an ItemsControl
with a Canvas for an
ItemsTemplate and its
ItemsSource bound to an
ObservableCollection of
controls.

You haven't seen flyouts before.
An important part of programming is figuring out how to use tools that you haven’t
seen before. You’ll use a button Flyout, or a window that temporarily pops up when
you press a button, and is dismissed when you click anywhere else. And you’ll use a
SettingsFlyout, or a window opens up from the side of the page the user chooses
About from the Settings charm. This is a good chance to test your developer skills!

The ViewModel object listens to events fired by the Model and uses them to update the collection of controls so the View can bind to it. It also fires PropertyChanged events to let the View know when the number of lives left has changed, the game is paused, or the game is over.

~

you are here 4   811

Invaders

Player object

 List<Shot
>

List<Point>

The Model manages the gameplay. It
keeps track of how many lives the player
has left and how many waves of invaders
have attacked. It has properties to end
and pause the game, and events to move
ships and shots and twinkle stars.

All of the invaders on the screen
are stored in a List. When an
invader is destroyed, it’s removed
from the list.

The object that represents the
ship keeps track of its position
and moves itself left and right,
making sure it doesn’t move off
the side of the screen.

The game keeps a
list of Shot objects,
including shots the
player fired at the
invaders and also
shots the invaders
fired back. Each
time a shot is added,
moved, or removed,
the InvadersModel
object fires a
ShotMoved event.

The Stars object keeps a List of Point
structs, one for each twinkling star in
the background. The InvadersModel
object fires StarChanged events to
add and remove stars so they look like
they’re twinkling.

InvadersMode
l

StarChange
dE

ve
nt

A
rg

s

~
StarChanged event

ShotMoved
Ev

en
tA

rg
s

~
ShotMoved event

ShipChange
dE

ve
nt

A
rg

s

~
ShipChanged event

 List<Invade
r>

ShipChanged
events are
fired whenever
the player or
invader ships are
added, moved,
or destroyed.

MODE
L

812   Head First Lab #1

Invaders

Build out the object model for the Model
Before you can build out the InvadersModel class, you’ll need the classes that it
uses to keep track of the gameplay. It’s going to have an object for the player, and
collections of invaders, shots, and stars. That means it’ll need classes for invaders and
shots (it’ll use a Point struct for each star, because all it needs to know is the star’s
location).

The Player and Invader classes extend an abstract class called Ship that
has properties (set in the constructor) to keep track of its location and size. It’s also got
a convenient property that uses the location and size to create a Rect, which can be
used for collision detection. You’ll need to implement these two subclasses.

Here’s the abstract Ship class for the Model folder:

using Windows.Foundation;

abstract class Ship {
 public Point Location { get; protected set; }

 public Size Size { get; private set; }

 public Rect Area {
 get { return new Rect(Location, Size); }
 }

 public Ship(Point location, Size size) {
 Location = location;
 Size = size;
 }

 public abstract void Move(Direction direction);
}

Ship
Location: Point
Size: Size
Area: Rect

abstract Move(Direction)
ctor: Point, Size

Player
static PlayerSize: Size

Move(Direction)

Invader
static InvaderSize: Size
InvaderType: InvaderType
Score: int

Move(Direction)
ctor: InvaderType, Point,
 Size

Collision detection
means discovering
when two moving
sprites have bumped
into each other.

The Player moves left and right.

The Model will call a Player object’s Move() method
to tell it to move left or right, using a Direction enum
to tell it which way it’s moving. The Player can’t move off
the end of the screen. It can use the InvadersModel’s
static PlayAreaSize property to stop moving when it
hits the side of the play area. You’ll also need a static read-
only Size for the Player’s size (25 × 15 pixels) and
const double for its speed (10 pixels per Move() call).

Invaders move left, right, and down.

The Invader and Player classes both have a
Move() method that uses a switch statement to
determine which way to move. The Invader class also
has an additional constructor that takes parameters to
set its InvaderType and Score properties. These
properties determine which graphic is displayed on
the page, and how many points get added to the score
when the ship is destroyed.

The set accessor
for Location is
protected so only
the subclasses can
set it.

you are here 4   813

Invaders

using Windows.Foundation;

class Shot {
 public const double ShotPixelsPerSecond = 95;

 public Point Location { get; private set; }
 public static Size ShotSize = new Size(2, 10);

 public Direction Direction { get; private set; }

 private DateTime _lastMoved;

 public Shot(Point location, Direction direction) {
 Location = location;
 Direction = direction;

 _lastMoved = DateTime.Now;
 }

 public void Move() {
 TimeSpan timeSinceLastMoved = DateTime.Now - _lastMoved;
 double distance = timeSinceLastMoved.Milliseconds
 * ShotPixelsPerSecond / 1000;
 if (Direction == Direction.Up) distance *= -1;
 Location = new Point(Location.X, Location.Y + distance);
 _lastMoved = DateTime.Now;
 }
}

MODE
L

using Windows.Foundation;

class ShipChangedEventArgs : EventArgs {
 public Ship ShipUpdated { get; private set; }
 public bool Killed { get; private set; }

 public ShipChangedEventArgs(Ship shipUpdated, bool killed) {
 ShipUpdated = shipUpdated;
 Killed = killed;
 }
}

using Windows.Foundation;

class StarChangedEventArgs : EventArgs {
 public Point Point { get; private set; }
 public bool Disappeared { get; private set; }

 public StarChangedEventArgs(Point point,
 bool disappeared) {
 Point = point;
 Disappeared = disappeared;
 }
}

You’ll need this Shot class.

The Model uses it to keep track of the
shots that the player fires, and the shots
the invaders fire back. Have a close look
at the Move() method: it uses a private
DateTime field to keep track of the
last time it moved. Each time Move() is
called, the shot’s Location is moved
either up or down at a velocity of 95
pixels per second.

You’ll also need these three EventArgs
classes, which the Model uses to let the
ViewModel know when stars appear and
disappear; when shots move, appear, and
disappear; and when ships move and die.

When a player or invader fires
a shot, the Model will create
a Shot object, and then fire
a ShotMoved event. The
ViewModel will handle this
event and update its Sprites
collection, which will notify the
View that it changed.

You can speed
up or slow down
the shots by
changing the
pixel speed.

using Windows.Foundation;

class ShotMovedEventArgs : EventArgs {
 public Shot Shot { get; private set; }
 public bool Disappeared { get; private set; }

 public ShotMovedEventArgs(Shot shot, bool disappeared) {
 Shot = shot;
 Disappeared = disappeared;
 }
}

enum InvaderType {
 Bug,
 Saucer,
 Satellite,
 Spaceship,
 Star,
} enum Direction {

 Left,
 Right,
 Up,
 Down,
}

This enum
determines
which type of
ship an invader
is flying.

Ships and shots
use this enum
to determine
which direction
they’re moving.

Can you figure out a way to change ShotSize so it scales up and down when
the page size changes?

814   Head First Lab #1

Invaders

Building the InvadersModel class
The InvadersModel class controls the Invaders game.
Here’s a start on what this class should look like—there’s still
lots of work for you to do.

using Windows.Foundation;

class InvadersModel {
 public readonly static Size PlayAreaSize = new Size(400, 300);
 public const int MaximumPlayerShots = 3;
 public const int InitialStarCount = 50;

 private readonly Random _random = new Random();

 public int Score { get; private set; }
 public int Wave { get; private set; }
 public int Lives { get; private set; }

 public bool GameOver { get; private set; }

 private DateTime? _playerDied = null;
 public bool PlayerDying { get { return _playerDied.HasValue; } }

 private Player _player;

 private readonly List<Invader> _invaders = new List<Invader>();
 private readonly List<Shot> _playerShots = new List<Shot>();
 private readonly List<Shot> _invaderShots = new List<Shot>();
 private readonly List<Point> _stars = new List<Point>();

 private Direction _invaderDirection = Direction.Left;
 private bool _justMovedDown = false;

 private DateTime _lastUpdated = DateTime.MinValue;

 public InvadersModel() {
 EndGame();
 }

 public void EndGame() {
 GameOver = true;
 }

 // You'll need to finish the rest of the InvadersModel class
}

When the player dies, the ViewModel makes
the player’s ship flash for 2.5 seconds. The
model uses a DateTime? to keep track of
this time and prevents the ships or shots
from moving while the player is dying.

you are here 4   815

Invaders

The InvadersModel methods
The InvadersModel class has five public methods that are used by the
ViewModel. The EndGame() method is on the facing page—here are the rest:

The StartGame() method starts the game playing.
This method sets the GameOver property to false. Then it clears any invaders from the _
invaders collection and shots from the _playerShots and _invaderShots collections (but
before it does, it fires a ShipChanged or ShotMoved event for each of them). Then it clears the
stars (firing the StarChanged event for each star) and creates new stars. Finally, it creates a new
Player object (firing a ShipChanged event), sets Lives to 2, Wave to 0, and adds the first wave.

1

The FireShot() method makes the player fire a shot.
This method checks the number of player shots on screen to make sure there aren’t too many,
then it adds a new Shot to the _playerShots collection and fires the ShotMoved event.

2

The MovePlayer() method moves the player.
If the player has already died, this does nothing; otherwise, it calls the Player object’s Move()
method and then fires the ShipChanged event to let the ViewModel know the ship moved.

3

The Twinkle() method twinkles the stars.
This method flips a coin and either adds or removes a star, firing the StarChanged event. There
are always fewer than 50% more and greater than 15% fewer than the initial number of stars.

4

The Update() method makes the game go.
The ViewModel uses a timer to call the Update() method many times a second as long as the game
isn’t over—this is what keeps advancing the gameplay. First it checks to see if the game is paused. If it
isn’t, here’s what it does (it always twinkles the stars, whether or not the game is paused):

≥≥ If there are no more invaders, it creates the next wave.

≥≥ If the player hasn’t died, it moves each invader (more about this on the next page).

≥≥ Then every shot needs to be updated (unless the player is dead). The game needs to loop
through both shot collections, calling each shot’s Move() method. If any shot went off the
edge of the play area, it’s removed from the collection and a ShotMoved event is fired.

≥≥ The invaders return fire (more about this on the next page too).

≥≥ Finally, it checks for collisions: first for any shot that overlaps an invader (and removing both
from their collections), and then to see if the player’s been shot. This is where that Rect
property on the Ship base class will come in very handy—you can use the method that checks
for overlapping Rects from Chapter 16 to detect the collisions (more on the next page).

5

MODE
L

Here’s a tip: If you try to remove an object from a collection while you’re enumerating
though it using foreach, it’ll throw an exception. But you can use the LINQ ToList()

extension method to make a copy of the collection first and loop through that instead.

816   Head First Lab #1

Invaders

The game play happens on a 400x300 batt lef ie ld
The first line in the InvadersModel class creates a public Size field called
PlayAreaSize. It’s static and read-only, which means it can’t change throughout
the life of the InvadersModel. This defines the boundaries of the play area for
all of the Model objects: the shots can use it to determine when they’ve reached the
top or the bottom of the play area, and the invader and player ships can use it to
determine when they’ve hit the sides. The objects in the View will typically move
around a Canvas that’s larger than 400×300, so part of the ViewModel’s job will
be to scale all of the coordinates up so that they’re moved to the right place.

Build a NextWave() method
A simple method to create the next wave of invaders will come in handy. It should
increment the Wave property, clear the private _invaders collection, and then
create all of the Invader objects, giving each of them a Location field with
the correct coordinates. Try spacing them out so that they’re spaced 1.4 invader
lengths apart horizontally, and 1.4 invader heights vertically.

A few other ideas for pri vate methods
Here are a few of the private method ideas you might play with, to see if these
would also help the design of your Game class:

It’s the ViewModel’s job
to translate the Model’s
coordinates on a 400x300
play area to whatever size the
Canvas happens to be on the page.

Here’s an example of a private method that will really help out your ViewModel.

≥≥ A method to see if the player’s been hit (CheckForPlayerCollisions())

≥≥ A method to see if any invaders have been hit
(CheckForInvaderCollisions())

≥≥ A method to move all the invaders (MoveInvaders())

≥≥ A method allowing invaders to return fire (ReturnFire())

Fil ling out the InvadersModel class
The problem with class diagrams is that they usually leave out any nonpublic
properties and methods. So even after you’ve got the methods from the previous
page done, you’ve still got a lot of work to do. Here are some things to think about:

It’s possible to show protected and private properties
and methods in a class diagram, but you’ll rarely see
that put into practice. Why do you think that is?

The next page may seem a bit complex when you first read it, but each LINQ query is just a couple of lines of code. Here’s a hint: don’t overcomplicate it!

The invaders move individually from side
to side. When they get to the edge
of the battlefield, they move down.
A method to move all invaders calls
each invader’s Move() method. It can
use the _lastUpdated field to speed
up the invaders by reducing the time
between marches as the number of
invaders left in the formation shrinks.

you are here 4   817

Invaders

LINQ makes col lision detect ion much easier
You’ve got collections of invaders and shots, and you need to search through those
collections to find certain invaders and shots. Any time you hear collections and search
in the same sentence, you should think LINQ. Here’s what you need to do:

Figure out if the invaders’ formation has reached the edge.
The invaders need to change direction if any one invader is within twice its horizontal move interval from
the edge of the battlefield. When the invaders are marching to the right, once they reach the righthand side
of the play area, the game needs to tell them to drop down and start marching to the left. And when the
invaders are marching to the left, the game needs to check if they’ve reached the left edge. To make this
happen, add a private MoveInvaders() method that gets called by Update().The first thing it should
do is calculate the amount of time since the last movement using the _lastUpdated field, and do nothing
if not enough time has passed, check and update the private framesSkipped field. If the invaders are
moving to the right, MoveInvaders() should use LINQ to search the _invaders collection for any
invader whose location’s X value is within range of the righthand boundary. If it finds any, then it should tell
the invaders to march downward and then set invaderDirection equal to Direction.Left; if not,
it can tell each invader to march to the right. On the other hand, if the invaders are moving to the left, then
it should do the opposite, using another LINQ query to see if the invaders are near the lefthand boundary,
marching them down and changing direction if they are. It can use the _justMovedDown field to keep
track of when the formation just switched direction and marched down.

1

Determine which invaders can return fire.
Add a private method called ReturnFire() that gets called
by Update(). First, it should return if the invaders’ shot
list already has wave + 1 shots. It should also return
if _random.Next(10) < 10 - Wave. (That makes
the invaders fire at random, and not all the time.) If it gets
past both tests, it can use LINQ to group the invaders by
their Location.X and sort them descending. Once it’s
got those groups, it can choose a group at random, and use
its Last() method to find the invader at the bottom of the
column. All right, now you’ve got the shooter—you can add
a shot to _invaderShots list just below the middle of the
invader (use the invader’s Area to find the shot’s location).

2

Only the invaders
at the bottom
of the formation
fire shots at the
player.

If any invader reaches
the bottom of the
screen just above the
player, the game’s over.

When any invader reaches the edge,
the formation turns around.

Check for invader and player collisions.
You’ll want to create a method to check for collisions. There are three collisions to check for, and the method to
find overlapping Rects from Chapter 16 will come in handy.

≥≥ Use LINQ to find any dead invaders by looping through the shots in the player’s shot list and selecting
any invader where Area contains the shot’s location. Remove the invader and the shot.

≥≥ Add a query to figure out if any invaders reached the bottom of the battlefield—if so, end the game.

≥≥ You don’t need LINQ to look for shots that collided with the player, just a loop and the player’s Area
property. (Remember, you can’t modify a collection inside a foreach loop. If you do, you’ll get
an InvalidOperationException with a message that the collection was modified. You may need
to create a temporary List of objects to remove, or use the ToList() extension method to copy it first.)

3

MODE
L

818   Head First Lab #1

Invaders

Build the Invaders page for the View
The main page for Invaders is a Basic Page that lives in the View
folder. It has a ViewModel object as a static resource, which is used
for the DataContext for all of the controls on the page.

The play area is always resized to
keep a 4:3 aspect ratio.

The main play area is a Border with rounded
corners that contains an ItemsControl with
the ItemsSource bound to the Sprites
property, and whose ItemsPanel is a Canvas
with a black background. We’ll give you code on
the next page that updates its margins to make
sure it always keeps a 4:3 aspect ratio—it will
modify the Margin property of the Border
to keep the Height 4/3 the size of the Width,
even if the screen is rotated or resized.

The score and extra lives
are separate controls.

There’s a StackPanel in the upper-
righthand corner with a TextBlock
bound to the Score property and
a GridView bound to the Lives
property. The GridView displays
ships because its DataTemplate
is an Image control, so the Lives
property in the ViewModel needs
to be a collection of objects—new
object()—to make the GridView
add or remove images.

All action is handled with binding.

The invaders, player ship, shots, stars, and even
the simulated scan lines are all controls that
are added to an ObservableCollection
of controls in the ViewModel. You’ll also
need a TextBlock with the text “Game
Over” with its Visibility bound to the
GameOver property, and another with the
text “Paused” bound to the Paused property.

you are here 4   819

Invaders

Maintain the play area’s aspect rat io
The code-behind for the main page needs to do two things. It has to handle events when the
page resizes to maintain the play area’s 4:3 aspect ratio, and it needs to handle both
keyboard and swipe input. If the player is using a tablet, rotating it will change the play area
size. So you’ll need to handle a few events in your page root’s XAML code:

VIEW

private void playArea_Loaded(object sender, RoutedEventArgs e) {
 UpdatePlayAreaSize(playArea.RenderSize);
}

private void pageRoot_SizeChanged(object sender, SizeChangedEventArgs e) {
 UpdatePlayAreaSize(new Size(e.NewSize.Width, e.NewSize.Height - 160));
}

private void UpdatePlayAreaSize(Size newPlayAreaSize) {
 double targetWidth;
 double targetHeight;
 if (newPlayAreaSize.Width > newPlayAreaSize.Height) {
 targetWidth = newPlayAreaSize.Height * 4 / 3;
 targetHeight = newPlayAreaSize.Height;
 double leftRightMargin = (newPlayAreaSize.Width - targetWidth) / 2;
 playArea.Margin = new Thickness(leftRightMargin, 0, leftRightMargin, 0);
 } else {
 targetHeight = newPlayAreaSize.Width * 3 / 4;
 targetWidth = newPlayAreaSize.Width;
 double topBottomMargin = (newPlayAreaSize.Height - targetHeight) / 2;
 playArea.Margin = new Thickness(0, topBottomMargin, 0, topBottomMargin);
 }
 playArea.Width = targetWidth;
 playArea.Height = targetHeight;
 viewModel.PlayAreaSize = new Size(targetWidth, targetHeight);
}

<Page
 x:Name="pageRoot"
 x:Class="(the namespace you used).MainPage"
 ...
 xmlns:viewmodel="using:(the namespace you used).ViewModel"

 SizeChanged="pageRoot_SizeChanged"

 ManipulationMode="TranslateX" ManipulationCompleted="pageRoot_ManipulationCompleted"
 ManipulationDelta="pageRoot_ManipulationDelta" Tapped="pageRoot_Tapped"
 >

<Border x:Name="playArea" BorderBrush="Blue" BorderThickness="2" CornerRadius="10"
 Background="Black" Margin="5" Grid.Row="1" Loaded="playArea_Loaded">
 <ItemsControl
 ...

and in the Border around the play area:

You’ll need these Manipulation and Tapped events to handle input, which we’ll get to on the next page.

Here’s the code-behind that keeps the play area’s 4:3 aspect ratio by adding
either left and right margins or top and bottom margins.

The UpdatePlayAreaSize() method calculates the new height and width, changes the controls, and then updates the ViewModel’s PlayAreaSize property.

820   Head First Lab #1

Invaders

Respond to swipe and keyboard input
Your game will need to be able to respond to the user pressing keys and swiping a touchscreen to control the player ship.
And since this is an MVVM app, there’s an important separation of concerns. It’s the page’s job to keep track of the
keypresses, swipes, and taps, and let the ViewModel know when they happen. It’s the ViewModel’s job to interpret them as
game actions and call the appropriate methods on the Model.

Keyboard event handlers are added in code-behind
Override the OnNavigatedTo() and OnNavigatedFrom() methods (like you did in Chapter 14) to add and remove
event handlers for the KeyUp and KeyDown events, calling methods on the ViewModel to interpret the keystrokes. (You’ll
need to add using Windows.UI.Core; to use the KeyEventArgs class.)

protected override void OnNavigatedTo(NavigationEventArgs e) {
 Window.Current.CoreWindow.KeyDown += KeyDownHandler;
 Window.Current.CoreWindow.KeyUp += KeyUpHandler;
 base.OnNavigatedTo(e);
}

protected override void OnNavigatedFrom(NavigationEventArgs e) {
 Window.Current.CoreWindow.KeyDown -= KeyDownHandler;
 Window.Current.CoreWindow.KeyUp -= KeyUpHandler;
 base.OnNavigatedFrom(e);
}

private void KeyDownHandler(object sender, KeyEventArgs e) {
 viewModel.KeyDown(e.VirtualKey);
}

private void KeyUpHandler(object sender, KeyEventArgs e) {
 viewModel.KeyUp(e.VirtualKey);
}

Window.Current.CoreWindow gives
you a reference to a CoreWindow
object that has events for basic UI
behaviors like keypresses. This makes
sure your keypresses are always
handled by the event handler.

private void pageRoot_ManipulationDelta(object sender, ManipulationDeltaRoutedEventArgs e) {
 if (e.Delta.Translation.X < -1)
 viewModel.LeftGestureStarted();
 else if (e.Delta.Translation.X > 1)
 viewModel.RightGestureStarted();
}

private void pageRoot_ManipulationCompleted(object sender, ManipulationCompletedRoutedEventArgs e) {
 viewModel.LeftGestureCompleted();
 viewModel.RightGestureCompleted();
}

bool firstTapOfGame = false;
private void pageRoot_Tapped(object sender, TappedRoutedEventArgs e) {
 if (!firstTapOfGame)
 viewModel.Tapped();

 firstTapOfGame = false;
}

Add page root event handlers for swipes and taps
You’ll need to handle left and right swipes to move the player ship, and taps to fire. The event handlers
were hooked up in the XAML on the previous page, so now you just need to add the event handlers.

The ManipulationDelta event constantly fires during a swipe
as the user’s finger moves, and the e.Delta.Translation tells
you how far the user moved since the last firing.

The ManipulationCompleted
event fires when the
user’s finger is lifted. The
ViewModel will decide how
to deal with these events.We’re “swallowing” the first tap of the game to

prevent the ship from firing when the player hits
the Start Game button. Make sure you reset
firstTapOfGame to false when the game starts.

you are here 4   821

Invaders

Add a control for the big stars
The starry background has three types of stars: circles, rectangles, and big stars.
The big stars are still pretty small—just 10 pixels by 10 pixels. So you’ll need to
create a user control that has a Polygon. The stars can be different colors, so
your control will need a public method to change the color of the Polygon:

An AnimatedImage control displays the ships
You can use the same AnimatedImage control that you used in Chapter 16 to display both
the invader and player ships. The player ship only has a single, nonanimated image, so you
can pass it an image list with one image (this gives you options to animate it later if you want).

When the invader ships are hit, they should fade out rather than disappearing entirely. And
anyone who’s played 80s arcade games knows that when the player ship is hit, it should
flash for 2.5 seconds before the game resumes. So you’ll need to add these methods to the
AnimatedImage control’s code-behind:

public void InvaderShot() {
 invaderShotStoryboard.Begin();
}

public void StartFlashing() {
 flashStoryboard.Begin();
}

public void StopFlashing() {
 flashStoryboard.Stop();
}

And you’ll need to add the appropriate storyboards as well. The invaderShotStoryboard
is a DoubleAnimation that fades the Opacity property from 1 to 0. flashStoryboard
is a key frame animation that toggles Visibility to make the control disappear and
reappear.

public void SetFill(SolidColorBrush solidColorBrush) {
 polygon.Fill = solidColorBrush;
}

VIEW

A stat ic InvadersHelper class helps the ViewModel
The ViewModel could use a helper class with factory methods for the invader, player ship, shot, and star controls.
The StarControlFactory() method should pick a random number and return either a rectangle, ellipse, or
big star. You can also add a private method to return a color at random (return Colors.LightBlue;) so
StarControlFactory() can return different stars with different colors.

You’ll also need a ScanLineFactory() method to create the simulated scan lines. Each scan line is a rectangle
with Fill set to new SolidColorBrush(Colors.White), Height set to 2, and Opacity set to .1.

All of the factory methods should take a double scale parameter, which we’ll talk about with the ViewModel.

822   Head First Lab #1

Invaders

Use the Sett ings charm to open a Sett ingsFlyout
In Chapter 15 you learned how to add a callback for the About command in the Settings
charm. Your job now is to figure out how to add a SettingsFlyout to your page. Here’s the
code-behind to hook it up to the Settings charm:

public InvadersPage() {
 this.InitializeComponent();

 SettingsPane.GetForCurrentView().CommandsRequested
 += InvadersPage_CommandsRequested;
}
void InvadersPage_CommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args) {
 UICommandInvokedHandler invokedHandler =
 new UICommandInvokedHandler(AboutInvokedHandler);
 SettingsCommand aboutCommand = new SettingsCommand(
 "About", "About Invaders", invokedHandler);
 args.Request.ApplicationCommands.Add(aboutCommand);
}
private void AboutInvokedHandler(IUICommand command) {
 viewModel.Paused = true;
 AboutSettingsFlyout aboutSettingsFlyout = new
AboutSettingsFlyout();
 aboutSettingsFlyout.Unloaded += aboutSettingsFlyout_Unloaded;
 aboutSettingsFlyout.Show();
}
void aboutSettingsFlyout_Unloaded(object sender, RoutedEventArgs e) {
 viewModel.Paused = false;
}

<Button Content="Learn to build this app" Background="Black"
 HorizontalAlignment="Center" FontSize="30" >
 <Button.Flyout>
 <Flyout Placement="Full">
 <StackPanel Width="400" VerticalAlignment="Center">
 <!-- XAML for your button flyout goes here -->
 </Flyout>
 </Button.Flyout>
</Button>

You should also add a button to the main page that displays a Flyout whenever it’s
clicked. You don’t need any code-behind or a Click event handler for this. All you
need is a <Button.Flyout> section that contains the XAML for the flyout window
that you want to display. Here’s some XAML to get you started:

VIEW

When the user opens
the Settings charm and
clicks “About Invaders”
this flyout pops up. The
game is paused while
the flyout is displayed.

Choose Add→New Item...
and add a Settings Flyout

called AboutSettingsFlyout to
your project. Change the Title
property to “About Invaders”

and modify the XAML to
display the flyout contents.

You can see your button’s flyout
in the designer by clicking inside
the <Button.Flyout> XAML.

We’ve been pointing you to MSDN pages throughout this
book, because they’re a great way to learn more. You can
learn more about the Flyout and SettingsFlyout controls
here: http://msdn.microsoft.com/en-us/library/windows/

apps/bg182878.aspx

you are here 4   823

Invaders

Build the ViewModel
The ViewModel has two classes in it. InvadersViewModel is the main ViewModel object, and
BooleanVisibilityConverter is the same as the one you used in Chapter 16—you can use it to
bind the “Game Over” and “Paused” TextBlock controls’ Visible properties to the GameOver and
Paused properties on the ViewModel. So the rest of this lab is all about building out the ViewModel.

Here’s the top of the InvadersViewModel class, to get you started:

VIEW
MODE

L

using View;
using Model;
using System.ComponentModel;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using Windows.Foundation;
using DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
using FrameworkElement = Windows.UI.Xaml.FrameworkElement;

class InvadersViewModel : INotifyPropertyChanged {
 private readonly ObservableCollection<FrameworkElement>
 _sprites = new ObservableCollection<FrameworkElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 public bool GameOver { get { return _model.GameOver; } }

 private readonly ObservableCollection<object> _lives =
 new ObservableCollection<object>();
 public INotifyCollectionChanged Lives { get { return _lives; } }

 public bool Paused { get; set; }
 private bool _lastPaused = true;

 public static double Scale { get; private set; }

 public int Score { get; private set; }

 public Size PlayAreaSize {
 set {
 Scale = value.Width / 405;
 _model.UpdateAllShipsAndStars();
 RecreateScanLines();
 }
 }

 private readonly InvadersModel _model = new InvadersModel();
 private readonly DispatcherTimer _timer = new DispatcherTimer();
 private FrameworkElement _playerControl = null;
 private bool _playerFlashing = false;
 private readonly Dictionary<Invader, FrameworkElement> _invaders =
 new Dictionary<Invader, FrameworkElement>();
 private readonly Dictionary<FrameworkElement, DateTime> _shotInvaders =
 new Dictionary<FrameworkElement, DateTime>();
 private readonly Dictionary<Shot, FrameworkElement> _shots =
 new Dictionary<Shot, FrameworkElement>();
 private readonly Dictionary<Point, FrameworkElement> _stars =
 new Dictionary<Point, FrameworkElement>();
 private readonly List<FrameworkElement> _scanLines =
 new List<FrameworkElement>();

The Scale property is a multiplier that, when
multiplied with any X, Y, Width, and Height
value, translates that value from the 400×300
model coordinates to the correct coordinate

Canvas control in the play area.

The PlayAreaSize field only has a set accessor, and
it’s updated by the View whenever the play area size
changes. When the PlayAreaSize property is set,
the set accessor calculates a new Scale multiplier,
then tells the model to fire events to update all of its

ships and stars. It also recreates the scan lines.

This is the same pattern you used in
Chapter 16 to manage the sprites for the
“Bees on a Starry Night” project: creating
a private, read-only ObservableCollection
field of controls, and only exposing an
INotifyCollectionChanged property to
encapsulate it from the View.

824   Head First Lab #1

Invaders

private DateTime? _leftAction = null;
private DateTime? _rightAction = null;

internal void KeyDown(Windows.System.VirtualKey virtualKey) {
 if (virtualKey == Windows.System.VirtualKey.Space)
 _model.FireShot();

 if (virtualKey == Windows.System.VirtualKey.Left)
 _leftAction = DateTime.Now;

 if (virtualKey == Windows.System.VirtualKey.Right)
 _rightAction = DateTime.Now;
}

internal void KeyUp(Windows.System.VirtualKey virtualKey) {
 if (virtualKey == Windows.System.VirtualKey.Left)
 _leftAction = null;

 if (virtualKey == Windows.System.VirtualKey.Right)
 _rightAction = null;
}

internal void LeftGestureStarted() {
 _leftAction = DateTime.Now;
}

internal void LeftGestureCompleted() {
 _leftAction = null;
}

internal void RightGestureStarted() {
 _rightAction = DateTime.Now;
}

internal void RightGestureCompleted() {
 _rightAction = null;
}

internal void Tapped() {
 _model.FireShot();
}

Handling user input

If the player hit the left or
right key, it sets the appropriate
field to null.

You already saw how the main page in the View calls methods
in the ViewModel to handle keypresses, swipes, and taps. Here
are the methods that it calls. The user needs to be able to use
the keyboard or touch screen interchangeably. To accomplish
this, both the tap and spacebar cause the ViewModel to call the
Model’s FireShot() method. Moving the player’s ship left and
right is a little more complex: both keypresses and swipes update
DateTime? fields that contain the date of the most recent keypress
or swipe, or are null if there is no current keypress or swipe.

The ViewModel uses Nullable<DateTime> fields
to keep track of the most recent left or right
action triggered by a keypress or a gesture.

This lets the ViewModel’s timer
event handler figure out if it
should move the player ship by
checking the _leftAction and
_rightAction fields.

The View calls these
methods in its event
handlers for the user swipe
and tap gestures. When the
user swipes left or right it
updates the _leftAction or
_rightAction field, and if
the user taps it fires a shot.

Did you notice how all of the methods on this
page have the internal access modifier?

That’s because we added these methods
by first adding the code from a few pages

earlier, and then using the Generate Method
Stub feature of the IDE to create the method
declarations. The internal modifier means
the method is publicly accessible from inside

this assembly, but appears as private to
other assemblies. You can learn more about

assemblies in leftover #3 in the appendix.

The View calls the KeyDown method from the page’s key event handler, passing it in the key that was pressed. If the user hit the spacebar the ViewModel tells the Model to fire a shot. If the player pressed the left or right arrow, the _leftAction or _rightAction field gets upated.

Can you figure
out how to

pause the game
when the player
hits the P key?

you are here 4   825

Invaders

Build the InvadersViewModel methods
We’ll get you started with a constructor and two useful methods.

VIEW
MODE

L

public InvadersViewModel() {
 Scale = 1;

 _model.ShipChanged += ModelShipChangedEventHandler;
 _model.ShotMoved += ModelShotMovedEventHandler;
 _model.StarChanged += ModelStarChangedEventHandler;

 _timer.Interval = TimeSpan.FromMilliseconds(100);
 _timer.Tick += TimerTickEventHandler;

 EndGame();
}

The InvadersViewModel constructor hooks up the
InvadersModel event handlers and ends the game.

private void RecreateScanLines(){
 foreach (FrameworkElement scanLine in _scanLines)
 if (_sprites.Contains(scanLine))
 _sprites.Remove(scanLine);
 _scanLines.Clear();
 for (int y = 0; y < 300; y += 2) {
 FrameworkElement scanLine = InvadersHelper.ScanLineFactory(y, 400, Scale);
 _scanLines.Add(scanLine);
 _sprites.Add(scanLine);
 }
}

public void StartGame(){
 Paused = false;
 foreach (var invader in _invaders.Values) _sprites.Remove(invader);
 foreach (var shot in _shots.Values) _sprites.Remove(shot);
 _model.StartGame();
 OnPropertyChanged("GameOver");
 _timer.Start();
}

The StartGame() method clears the invaders and
shots from the sprites collection, tells the
model to start the game, and starts the timer.

When the Scale property
is set to 1, the ViewModel
will update the View with
a 1-to-1 scale 400x300
battlefield—but the View
will quickly update the
ViewModel’s PlayAreaSize,
which updates the Scale
property.Ticking every 100 milliseconds updates the View 10 times a second. That’s not the same thing as a frame rate, because we’re using animations to move sprites around.

When the Model starts the game, it updates
its GameOver property, so the ViewModel fires
a PropertyChanged event to update the View.

The RecreateScanLines() method adds simulated scan lines.

You’ll need to build
this factory method.

The factory method uses this
argument to scale the rectangles
up to the proper size and location.

End the game so it loads
with the Game Over screen.

826   Head First Lab #1

Invaders

void TimerTickEventHandler(object sender, object e) {
 if (_lastPaused != Paused)
 {
 Use the _lastPaused field to fire a PropertyChanged event any time
 the Paused property changes.
 }
 if (!Paused)
 {
 If both the _leftAction and _rightAction fields have a value, that means
 there are either two keys being mashed or a key and a swipe at the same
 time—use the one with the later time to choose a direction to move the player.
 If not, choose the one with a value and use that to pass to _model.MovePlayer().
 }

 Tell the InvadersModel to update itself. Then check the Score property. If it
 doesn't match _model.Score, update it and fire a PropertyChanged event.

 Update the Lives so that it matches _model.Lives by either removing an
 object or adding a new object().

 foreach (FrameworkElement control in _shotInvaders.Keys.ToList())
 {
 Each key in the _shotInvaders Dictionary is an AnimatedImage control,
 and its value is the time that it died. It takes half a second for the invader
 fade-out animation to complete, so any invader who died more than
 half a second ago should be removed from both _sprites and _shotInvaders.
 }

 If the game is over, fire a PropertyChanged event and stop the timer.
}

The View’s updated when the t imer t icks
When the InvadersModel fires a ShipChanged event, the ViewModel
needs to figure out what kind of ship changed, and update its collections
appropriately so that the View accurately reflects the current state of the Model.
Here’s how the ShipChanged event handler works:

you are here 4   827

Invaders

The player ’s ship can move and die
When the InvadersModel fires a ShipChanged event, the ViewModel
needs to figure out what kind of ship changed, and update its collections
appropriately so that the View accurately reflects the current state of the
Model. Here’s how the ShipChanged event handler works:

void ModelShipChangedEventHandler(object sender, ShipChangedEventArgs e) {

 if (!e.Killed) {

 if (e.ShipUpdated is Invader) {

 Invader invader = e.ShipUpdated as Invader;

 If the _invaders collection doesn't contain this invader, use the
 InvadersControlFactory() method to create a new control and add it to the
 collection, and to the sprites. Otherwise, move the invader control to its
 correct location and resize it—and don't forget to pass in the Scale value!
 Here's a helpful method that you might want to add to InvadersHelper:
 InvadersHelper.ResizeElement(invaderControl, invader.Size.Width * Scale,

 invader.Size.Height * Scale);

 } else if (e.ShipUpdated is Player) {

 If the _playerFlashing field is true, then the player ship is currently flashing
 because it previously died; stop it from flashing. Then check if _playerControl
 is null. If it is, use PlayerControlFactory() to create a player and add it to the
 sprites; otherwise, move and resize the player ship.
 } else {

 if (e.ShipUpdated is Invader) {

 If the invader isn't null, call its InvaderShot() method (you'll need to look up
 its control in the _invaders dictionary, then cast it to an AnimatedImage).
 Then add the invader to the _shotInvaders dictionary and remove it from
 _invaders. The _shotInvaders dictionary contains the time that each invader
 was shot. The ViewModel doesn't remove the invader's AnimatedImage
 control from the sprites until it's finished fading out.
 } else if (e.ShipUpdated is Player) {

 Cast _playerControl to the AnimatedImage, start it flashing, and set the
 _playerFlashing field to true. The flashing animation can keep going until
 the ViewModel gets another ShipChanged event from the Model, because
 that means gameplay has resumed.
 }

 }

}

You’ll need to downcast e.ShipUpdated to the appropriate class, either Invader or PlayerShip.

VIEW
MODE

L

828   Head First Lab #1

Invaders

“Shots f ired!”
The InvadersViewModel’s event handlers for the ShotMoved
and StarChanged events are pretty similar. VIEW

MODE
L

±

±

±

±

±

void ModelShotMovedEventHandler(object sender, ShotMovedEventArgs e) {
 if (!e.Disappeared)
 {
 If the shot is not a key in the _shots Dictionary, use its factory method to
 create a new shot control, then add it to _shots and _sprites. If it is in the
 _shots Dictionary, then it's already on screen, so look up its control and
 use the helper method to move it using its Location property.
 } else {
 The shot disappeared, so check _shots to see if it's there. If it is, remove its
 control from _sprites, and remove the Shot object from _shots.
 }
}

void ModelStarChangedEventHandler(object sender, StarChangedEventArgs e) {
 if (e.Disappeared && _stars.ContainsKey(e.Point))
 {
 Look up the control in _stars and remove it from _sprites.
 } else {
 if (!_stars.ContainsKey(e.Point))
 {
 Use the factory method to create a new control, add it to _stars (using
 the Point from the EventArgs as the key), and add it to the sprites.
 } else {
 Stars typically won't change locations, so this else clause probably won't
 get hit—but you can use it to add shooting stars if you
 want. Look up the star's control in _stars and use a
 helper method to move it to the new location.
 }
 }
}

The
humans have built up their

defenses! Let the epic battle
for domination begin!

you are here 4   829

Invaders

And yet there’s more to do…
Think the game’s looking pretty good? You can take it to the next level with a few more additions:

Add sounds
The MediaElement XAML tag lets you add sounds to your apps. Can you figure out how
to use it to add sounds when the invaders march, the player fires shots, and ships are
destroyed? This page will help:

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465160.aspx

Add a mothership
Once in a while, a mothership worth 250 points can travel across the top of the battlefield.
If the player hits it, he gets a bonus.

Add shields
Add floating shields the player can hide behind. You can add simple shields that the enemies
and player can’t shoot through. Then, if you really want your game to shine, add breakable
shields that the player and invaders can blast holes through after a certain number of hits.

Add divebombers
Create a special type of enemy that divebombs the player. A divebombing enemy should
break formation, take off toward the player, fly down around the bottom of the screen, and
then resume its position.

Add more weapons
Start an arms race! Smart bombs, lasers, guided missiles…there are all sorts of weapons
that both the player and the invaders can use to attack each other. See if you can add three
new weapons to the game.

Add a Preferences command to the Settings charm
You can add a Preferences command to the Settings charm just like you did with the About
command to open a second pop up that lets you turn scan lines on and off, change the
number of lives, mute sounds, etc.

This is your chance to show off! Did you come up with a cool new
version of the game? Publish your Invaders code on CodePlex or
another project hosting website, then claim your bragging rights on
the Head First C# forum: www.headfirstlabs.com/books/hfcsharp/

Each shield can consist of lots of little blocks that disappear
just like invaders when they’re hit, but don’t add to the score.

this is an appendix   831

I’m still hungry
for more!

appendix i: leftovers

The top 10 things we wanted
to include in this book

The fun’s just beginning!�
We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

832   Appendix i

microsoft helps you

#1. There’s so much more to Windows Store
Looking to learn more about programming Windows Store apps? Microsoft
has some fantastic resources to help you learn. The first step is downloading
the Windows 8 Camp Training Kit, which has presentations, samples, links
to really useful resources, and most importantly, a set of hands-on labs
that teach you about everything from capturing data from a device’s camera
to adding live tiles and push notifications to your apps. You can download the
installer for the Windows 8 Camp Training Kit here:

http://www.microsoft.com/en-us/download/details.aspx?id=29854

Once you install it, you’ll get a set of web pages, media files, and presentations,
as well as documentation and source code for the hands-on labs. It’s a great next
step for continuing to get C# concepts into your brain.

you are here 4   833

leftovers

834   Appendix i

some basic stuff you want to know

#2. The Basics
Before we get started, here’s a Guy class that we’ll be using throughout this appendix. Take a look at how it’s
commented. Notice how the class, its methods, and its properties are all commented with triple-slash (///)
comments? Those are called XML comments, and the IDE will help you add them. Just type “///” right before a
class, method, property, or field declaration (and a few other places, too), and the IDE will fill in the skeleton of the
XML comment for it. Then later, when you go to use the property, method, etc., the IDE will display information
from the XML comments in its IntelliSense window.

/// <summary>
/// A guy with a name, age and a wallet full of bucks
/// </summary>
class Guy
{
 /*
 * Notice how Name and Age are properties with backing fields that are
 * marked readonly. That means those backing fields can only be set when
 * the object is initialized (in their declarations or in the constructor).
 */

 /// <summary>
 /// Read-only backing field for the Name property
 /// </summary>
 private readonly string name;

 /// <summary>
 /// The name of the guy
 /// </summary>
 public string Name { get { return name; } }

 /// <summary>
 /// Read-only backing field for the Age property
 /// </summary>
 private readonly int age;

 /// <summary>
 /// The guy's age
 /// </summary>
 public int Age { get { return age; } }

 /*
 * Cash is not readonly because it might change during the life of the Guy.
 */

 /// <summary>
 /// The number of bucks the guy has
 /// </summary>
 public int Cash { get; private set; }

The XML comment for a class consists
of a <summary> block. Notice how it
starts with <summary> and ends with
</summary>.

Marking a field readonly is a useful
tool for encapsulation, because it
means that field can never be changed
once the object is instantiated.

We wish we could give this material the same kind of
thorough treatment we were able to provide throughout
the book, but we just didn’t have enough pages to do it!
But we still want to give you a good starting point and a
place to go for more information.

You’ll learn about the readonly
keyword in Chapter 16, but we want
to make sure you know what you’re
looking at in case you flip to this
earlier in the book.

you are here 4   835

leftovers

 /// <summary>
 /// The constructor sets the name, age and cash
 /// </summary>
 /// <param name="name">The name of the guy</param>
 /// <param name="age">The guy's age</param>
 /// <param name="cash">The amount of cash the guy starts with</param>
 public Guy(string name, int age, int cash) {
 this.name = name;
 this.age = age;
 Cash = cash;
 }

 public override string ToString() {
 return String.Format("{0} is {1} years old and has {2} bucks", Name, Age, Cash);
 }

 /// <summary>
 /// Give cash from my wallet
 /// </summary>
 /// <param name="amount">The amount of cash to give</param>
 /// <returns>The amount of cash I gave, or 0 if I don't have enough cash</returns>
 public int GiveCash(int amount) {
 if (amount <= Cash && amount > 0)
 {
 Cash -= amount;
 return amount;
 }
 else
 {
 return 0;
 }
 }

 /// <summary>
 /// Receive some cash into my wallet
 /// </summary>
 /// <param name="amount">Amount to receive</param>
 /// <returns>The amount of cash received, or 0 if no cash was received</returns>
 public int ReceiveCash(int amount) {
 if (amount > 0)
 {
 Cash += amount;
 return amount;
 }
 Console.WriteLine("{0} says: {1} isn't an amount I'll take", Name, amount);
 return 0;
 }
}

When the IDE adds the skeleton for
a constructor or another method, it
adds <param> tags for each of the
parameters.

Here’s where we’re overriding
ToString(). This is covered in
Chapter 8.

836   Appendix i

static void Main(string[] args)
{
 // We'll use these Guy and Random instances throughout this example.
 Guy bob = new Guy("Bob", 43, 100);
 Guy joe = new Guy("Joe", 41, 100);
 Random random = new Random();

 /*
 * Here are two useful keywords that you can use with loops. The "continue" keyword
 * tells the loop to jump to the next iteration of a loop, and the "break" keyword
 * tells the loop to end immediately.
 *
 * The break, continue, throw, and return statements are called "jump statements"
 * because they cause your program to jump to another place in the code when they're
 * executed. (You learned about break with switch/case statements in Chapter 8, and
 * the throw statement in Chapter 10.) There's one more jump statement, goto, which
 * jumps to a label. (You'll recognize these labels as having very similar syntax
 * to what you use in a case statement.)
 *
 * You could easily write this next loop without continue and break. That's a good
 * example of how C# lets you do the same thing many different ways. That's why you
 * don't need break, continue, or any of these other keywords or operators to write
 * any of the programs in this book.
 *
 * The break statement is also used with "case", which you can see in Chapter 8.
 */

 while (true) {
 int amountToGive = random.Next(20);

 // The continue keyword jumps to the next iteration of a loop
 // Use the continue keyword to only give Joe amounts over 10 bucks
 if (amountToGive < 10)
 continue;

 // The break keyword terminates a loop early
 if (joe.ReceiveCash(bob.GiveCash(amountToGive)) == 0)
 break;

 Console.WriteLine("Bob gave Joe {0} bucks, Joe has {1} bucks, Bob has {2} bucks",
 amountToGive, joe.Cash, bob.Cash);
 }
 Console.WriteLine("Bob's left with {0} bucks", bob.Cash);

some more basic stuff

A really good way to get a handle on this is to debug through it
and use watches to see what’s happening. As you go through the
book, try experimenting with some of these concepts.

The continue statement causes the program to jump over
the rest of the iteration and back to the top of the loop.

The break
statement
causes the loop
to end, and
the program
to move to
the Console.
WriteLine()
statement.

It’s easy to get overwhelmed when learning any computer language, and C# is no exception. That’s why we
concentrated on the parts of the language that, in our experience, are most common for novice and intermediate
developers. But there’s some basic C# and .NET syntax that’s really useful, but are a lot easier to approach at your
own speed once you’re used to things. Here’s a console application that demonstrates some of it.

…more basics…

A lot of
people say
that jump
statements are
bad practice.
There are
typically other
ways that you
can achieve
the same
results. But
it’s useful to
know how they
work in case
you run across
them.

you are here 4   837

leftovers

 // The ?: conditional operator is an if/then/else collapsed into a single expression
 // [boolean test] ? [statement to execute if true] : [statement to execute if false]
 Console.WriteLine("Bob {0} more cash than Joe",
 bob.Cash > joe.Cash ? "has" : "does not have");

 // The ?? null coalescing operator checks if a value is null, and either returns
 // that value if it's not null, or the value you specify if it is
 // [value to test] ?? [value to return if it's null]
 bob = null;
 Console.WriteLine("Result of ?? is '{0}'", bob ?? joe);

 // Here's a loop that uses goto statements and labels. It's rare to see them, but
 // they can be useful with nested loops. (The break statement only breaks out of
 // the innermost loop)
 for (int i = 0; i < 10; i++)
 {
 for (int j = 0; j < 3; j++)
 {
 if (i > 3)
 goto afterLoop;
 Console.WriteLine("i = {0}, j = {1}", i, j);
 }
 }
afterLoop:

 // When you use the = operator to make an assignment, it returns a value that you
 // can turn around and use in an assignment or an if statement
 int a;
 int b = (a = 3 * 5);
 Console.WriteLine("a = {0}; b = {1};", a, b);

 // When you put the ++ operator before a variable, it increments the variable
 // first, and then executes the rest of the statement.
 a = ++b * 10;
 Console.WriteLine("a = {0}; b = {1};", a, b);

 // Putting it after the variable executes the statement first and then increments
 a = b++ * 10;
 Console.WriteLine("a = {0}; b = {1};", a, b);

 /*
 * When you use && and || to do logical tests, they "short-circuit" -- which means
 * that as soon as the test fails, they stop executing. When (A || B) is being
 * evaluated, if A is true then (A || B) will always be true no matter what B is.
 * And when (A && B) is being evaluated, then if A is false then (A && B) will always
 * be false no matter what B is. In both of those cases, B will never get executed
 * because the operator doesn't need its value in order to come up with a return value.
 */

 int x = 0;
 int y = 10;
 int z = 20;

Since bob is null, the ?? operator returns joe instead.

A label is a string of letters, numbers,
or underscores, followed by a colon.

The goto statement causes execution
to jump directly to a label.

This statement first sets a to 3 * 5, and then sets b to the result.

++b means that b is incremented
first, and a is set to b * 10.

b++ means that first a is set to b *
10, and then b is incremented.

We’ll use these values in the code on
the next page!

When you use /* and */ to add
comments, you don’t have to add
a * at the beginning of each line,
but it makes them easier to read.

838   Appendix i

even more basics

 // y / x will throw a DivideByZeroException because x is 0. But since (y < z) is true,
 // the || operator knows it will be true without ever having to execute the other
 // statement, so it short-circuits and never executes (y / x == 4)
 if ((y < z) || (y / x == 4))
 Console.WriteLine("this line printed because || short-circuited");

 // Since (y > z) is false, the && operator knows it will return false without
 // executing the other statement, so it short-circuits and doesn't throw the exception
 if ((y > z) && (y / x == 4))
 Console.WriteLine("this line will never print because && short-circuited");

 /*
 * A lot of us think of 1's and 0's when we think of programming, and manipulating
 * those 1's and 0's is what logic operators are all about.
 */

 // Use Convert.ToString() and Convert.ToInt32() to convert a number to or from a
 // string of 1's and 0's in its binary form. The second argument specifies that you're
 // converting to base 2.
 string binaryValue = Convert.ToString(217, 2);
 int intValue = Convert.ToInt32(binaryValue, 2);
 Console.WriteLine("Binary {0} is integer {1}", binaryValue, intValue);

 // The &, |, ^, and ~ operators are logical AND, OR, XOR, and bitwise complement
 int val1 = Convert.ToInt32("100000001", 2);
 int val2 = Convert.ToInt32("001010100", 2);
 int or = val1 | val2;
 int and = val1 & val2;
 int xor = val1 ^ val2;
 int not = ~val1;

 // Print the values -- and use the String.PadLeft() method to add leading 0's
 Console.WriteLine("val1: {0}", Convert.ToString(val1, 2));
 Console.WriteLine("val2: {0}", Convert.ToString(val2, 2).PadLeft(9, '0'));
 Console.WriteLine(" or: {0}", Convert.ToString(or, 2).PadLeft(9, '0'));
 Console.WriteLine(" and: {0}", Convert.ToString(and, 2).PadLeft(9, '0'));
 Console.WriteLine(" xor: {0}", Convert.ToString(xor, 2).PadLeft(9, '0'));
 Console.WriteLine(" not: {0}", Convert.ToString(not, 2).PadLeft(9, '0'));
 // Notice what the ~ operator returned: 11111111111111111111111011111110
 // It's the 32-bit complement of val1: 00000000000000000000000100000001
 // The logical operators are operating on int, which is a 32-bit integer.

This will make a lot more sense when you run the program and look
at the output. Remember, you don’t need to type in all of this
code—you can download it all from the Head First Labs website!
http://www.headfirstlabs.com/books/hfcsharp

Convert.ToString()
returns a String
object, and
we’re calling the
PadLeft() method
on that object to
pad the result out
with zeroes.

Using the logical “or” and “and” operators’ short-circuiting
properties is another way you can effectively write an if/else
statement. This is the same as saying “only execute (y / x == 4) if (y < z) is true.

The logical operators &, |, and ^ are built-in on all the
integral numeric types, all enums, and bool. The only
difference between & and && (and | and ||) on bool is
that these don’t short-circuit.

~ is logical negation on integral numeric types and
enums, which, in a way, is an analog to ! for bool.

you are here 4   839

leftovers

 // The << and >> operators shift bits left and right. And you can combine any
 // logical operator with =, so >>= or &= is just like += or *=.
 int bits = Convert.ToInt32("11", 2);
 for (int i = 0; i < 5; i++)
 {
 bits <<= 2;
 Console.WriteLine(Convert.ToString(bits, 2).PadLeft(12, '0'));
 }
 for (int i = 0; i < 5; i++)
 {
 bits >>= 2;
 Console.WriteLine(Convert.ToString(bits, 2).PadLeft(12, '0'));
 }

 // You can instantiate a new object and call a method on it without
 // using a variable to refer to it.
 Console.WriteLine(new Guy("Harry", 47, 376).ToString());

 // We've used the + operator for string concatenation throughout the book, and that
 // works just fine. However, a lot of people avoid using + in loops that will have
 // to execute many times over time, because each time + executes it creates an extra
 // object on the heap that will need to be garbage collected later. That's why .NET
 // has a class called StringBuilder, which is great for efficiently creating and
 // concatenating strings together. Its Append() method adds a string onto the end,
 // AppendFormat() appends a formatted string (using {0} and {1} just like
 // String.Format() and Console.WriteLine() do), and AppendLine() adds a string
 // with a line break at the end. To get the final concatenated string, call
 // its ToString() method.
 StringBuilder stringBuilder = new StringBuilder("Hi ");
 stringBuilder.Append("there, ");
 stringBuilder.AppendFormat("{0} year old guy named {1}. ", joe.Age, joe.Name);
 stringBuilder.AppendLine("Nice weather we're having.");
 Console.WriteLine(stringBuilder.ToString());

 Console.ReadKey();

 /*
 * This is a good start, but it's by no means complete. Luckily, Microsoft gives you
 * a reference that has a complete list of all of the C# operators, keywords, and
 * other features of the language. Take a look through it -- and if you're just getting
 * started with C#, don't worry if it seems a little difficult to understand. MSDN
 * is a great source of information, but it's meant to be a reference, not a learning
 * or teaching guide.
 *
 * C# Programmer Reference: http://msdn.microsoft.com/en-us/library/618ayhy6.aspx
 * C# Operators: http://msdn.microsoft.com/en-us/library/6a71f45d.aspx
 * C# Keywords: http://msdn.microsoft.com/en-us/library/x53a06bb.aspx
 */
}

This doesn’t have anything
to do with logic, it’s just
something useful that you
see reasonably often.

One thing to note here: in this particular example,
StringBuilder performs worse than +, because +
will pre-compute the length of the string and
figure out exactly how much memory to allocate.

You typically use StringBuilder when you
don’t know in advance the number of
concatenations you want to perform.

840   Appendix i

some assembly required

#3. Namespaces and assemblies
We made the decision to focus this book on the really practical stuff you need to know in order to build and run
applications. Throughout every chapter, you create your projects in Visual Studio and run them in the debugger. We
showed you where your compiled code ended up in an executable, and how to publish that executable so that other
people can install it on their machines. That’s enough to get you through every exercise in this book, but it’s worth
taking a step back and looking a little closer at what it is that you’re building.

When you compile your C# program, you’re creating an assembly. An assembly is a file that contains the compiled code.
There are two kinds of assemblies. Executables (occasionally called “process assemblies”) have the EXE file extension. All of
the programs you write in this book are compiled as executables. Those are the assemblies that you can execute (you know,
EXE files you can double-click and run). There are also library assemblies, which have the DLL file extension. They contain
classes that you can use in your programs, and, as you’ll see shortly, namespaces play a big role in how you use them.

You can get a handle on the basics of assemblies by first creating a class library, and then building a program that uses
it. Start by opening Visual Studio 2013 for Desktop and creating a new Class Library project called Headfirst.
Csharp.Leftover3. When the library is first created, it contains the file Class.cs. Delete that file and add a new
class called Guy.cs. Open up the new Guy.cs file:

namespace Headfirst.Csharp.Leftover3
{
 class Guy
 {
 }
}

Notice how Visual Studio made the namespace match your class library name? That’s a very standard pattern.

Go ahead and fill in the Guy class with the code from leftover #2—we’ll use it in a minute. Next, add two more
classes called HiThereWriter and LineWriter. Here’s the code for HiThereWriter:

namespace Headfirst.Csharp.Leftover3
{
 public static class HiThereWriter
 {
 public static void HiThere(string name)
 {
 MessageBox.Show("Hi there! My name is " + name);
 }
 }
}

And here’s the code for LineWriter (it’s also in the Headfirst.Csharp.Leftover3 namespace):

 internal static class LineWriter {
 public static void WriteALine(string message)
 {
 Console.WriteLine(message);
 }
 }

We named the class library
Headfirst.Csharp.Leftover3

because that’s a pretty standard
way of naming assemblies. Read

more about assembly naming here:
http://msdn.microsoft.com/en-us/

library/ms229048.aspx

You can also create class libraries in Visual
Studio for Windows 8. We asked you to create

this project in the Desktop edition because
all of the Framework assemblies are already
referenced, so the “Add Reference” window

that we show on the facing page will be empty.

you are here 4   841

leftovers

Now try to compile your program. You’ll get an error:

OK, no problem—we know how to fix this in a Desktop app. Add a line to the top of your class:

using System.Windows.Forms;

Wait, it still doesn’t compile! And something’s weird here. When you typed in that line, did you notice that when you
got as far as “using System.Win” the IntelliSense window stopped giving you suggestions? That’s because your project
hasn’t referenced the System.Windows.Forms assembly.

Let’s fix this by referencing the correct assembly. Go to the Solution Explorer and expand the “References” folder in
your project. Right-click on it and choose “Add Reference…”; a window should pop up:

On the .NET tab, start typing “System.Windows.Forms”—it should jump down to that assembly. Make sure it’s
highlighted and click OK. Now System.Windows.Forms should show up under the References folder in the
Solution Explorer—and your program compiles!

This window is showing you
the assemblies your program

can access. Some of them are
stored in the Global Assembly

Cache (GAC), but not every
assembly in the GAC shows

up in this window. The GAC is
a central, machine-wide set of
assemblies that all of the .NET

programs on the computer
can access. You can see all of
the assemblies in it by typing

%systemroot%\
Microsoft.NET\assembly

into the Search box on the
Start page (or Start/Run for
older versions of Windows).

The “Add References” window figures out which assemblies to display by checking
a registry key, not the GAC. For more info: http://support.microsoft.com/kb/306149

842   Appendix i

so that’s why we did that!

Take a close look at the declarations for LineWriter and HiThereWriter:

 public class HiThereWriter

 internal static class LineWriter

There are access modifiers on the class declarations: HiThereWriter is declared with the public access
modifier, and LineWriter is declared with the internal one. In a minute, you’ll write a console application that
references this class library. A program can only directly access another class library’s public classes—although they can
be accessed indirectly, like when one method calls another or returns an instance of an internal object that implements
a public interface.

Now go back to your Guy class and look at its declaration:

 class Guy

Since there’s no access modifier, it defaults to internal. We’ll want to expose Guy to other assemblies that reference
this one, so change the declaration to be public:

 public class Guy

Next, try running your program in the debugger. You’ll see this error:

That makes sense when you think about it, because a class library doesn’t have an entry point. It’s just a bunch of
classes that other programs can use. So let’s add an executable program that uses those classes—that way the debugger
has something to run. Visual Studio has a really useful feature that we’ll take advantage of next: it can load multiple
projects into a single solution. Right-click on the Solution in the Solution Explorer and choose Add >> New
Project… to bring up the usual Add Project window. Add a new console application called MyProgram.

Once your new program’s added, it should appear in the Solution Explorer right under the class library. Right-click on
References underneath MyProgram, choose “Add reference...” from the menu, expand , and click
on Projects. You should see your class library project listed (). Make sure it’s checked. It
should now appear in the Solution Explorer when you expand “References” under your MyProgram project.

Next, go to the top of your new project’s Program.cs file and start adding this using line:

 using Headfirst.Csharp.Leftover3;

…so what did I just do?

Notice how the IntelliSense
picks up “Csharp” and
“Leftover3” as you’re
typing?

you are here 4   843

leftovers

Throughout the book we tell you
that you compile your code. When
you do, it’s compiled to Common
Intermediate Language (IL), the
low-level language used by .NET.
It’s a human-readable assembly
language, and all .NET languages
(including C# and Visual Basic)
are compiled into it. The IL code
is compiled into native machine
language when you run your
program using the CLR’s just-in-
time compiler, so named because
it compiles the IL into native code
just in time to execute it (rather than
pre-compiling it before it’s run).

That means your EXEs and
DLLs contain IL, and not native
assembly code, which is important
because it means many languages
can compile to IL that the CLR
can run—including Visual Basic
.NET, F#, J#, managed C++/CLI,
JScript .NET, Windows PowerShell,
IronPython, Iron Ruby, and more.
This is really useful: since VB.NET
code compiles to IL, you can build
an assembly in C# and use it in a
VB.NET program (or vice versa).

If you have a Macintosh or Linux
box, try installing Mono. It’s an
open source implementation of
IL that runs EXE files that you’ve
built on the PC (typically by typing

“mono MyProgram.exe”—but this
only works on some .NET assemblies).
We’re not going to talk any more
about that, though, because this
book is focused on Microsoft
technology. But we do have to
admit that it is pretty cool to see
the Go Fish game or Hide and Seek
running natively on Mac or Linux!

Now we can write a new program. Start by typing Guy. Watch what pops up:

 static void Main(string[] args)
 {

The IntelliSense window lists the entire namespace for Guy, so you can see that you’re
actually using the class that you defined in the other assembly. Finish the program:

 static void Main(string[] args {
 Guy guy = new Guy("Joe", 43, 125);
 HiThereWriter.HiThere(guy.Name);
 }
Now run your program. Oh, wait—you get the same error message as before, because
you can’t run a class library! No problem. Right-click on your new MyProgram
project in the Solution Explorer and choose . Your
solution can have many different projects, and this is how you tell it which one to start
when you run it in the debugger. Now run your program again—this time it runs!

Building a “Hello World” program from the command line
There's a tradition in programming called Hello World: a program that just prints one
line of text (“Hello World”). This is typically the first program you’ll write in a new
language, because if you can do that it proves that your tools work well enough to run
more complex programs. The Developer Command Prompt is a shortcut installed
with Visual Studio 2013 (typically in the C:\Program Files (x86)\Microsoft Visual Studio
12.0\Common7\Tools\Shortcuts folder) that puts the C# compiler csc.exe and other tools
in your path. Run the Developer Command Prompt, then try using Notepad to create
HelloWorld.cs, using csc.exe to build an executable, and then running that executable:

We’re just scratching the surface of assemblies. There’s a lot more (including versioning and signing them for
security). You can read more about assemblies here: http://msdn.microsoft.com/en-us/library/k3677y81.aspx

844   Appendix i

#4. Use BackgroundWorker to make your WinForms responsive
Throughout the book, we’ve shown you a few ways that you can make your programs do more than one thing at a time. In
Chapter 2, you learned about how to use the Application.DoEvents() method to let your form respond to button
clicks while still in a loop. But that’s not a good solution (for a bunch of reasons we didn’t get into), so we showed you a
much better solution in Chapter 4: using a timer to trigger an event at a regular interval. Later on, you learned how ot use
async, await, and Task. An alternative to asynchronous methods is threading, but it can be very tricky and can lead to
some very nasty bugs if you’re not careful. Luckily, .NET gives you a really useful component called BackgroundWorker
that makes it easier to let your program use threads safely.

Here’s a simple project to help you understand how BackgroundWorker works. Start by building this form. You’ll
need to drag a CheckBox onto it (name it useBackgroundWorkerCheckbox), two buttons (named goButton
and cancelButton) and a ProgressBar (named progressBar1). Then drag a BackgroundWorker onto
the form. It’ll show up in the gray box on the bottom of the designer. Keep its name backgroundWorker1, and set its
WorkerReportsProgress and WorkerSupportsCancellation properties to true.

Here’s the BackgroundWorker
component. Notice how it
only has a few properties
that you can set.

Select the BackgroundWorker and go to the Events page in the Properties window (by clicking on the lightning-
bolt icon). It’s got three events: DoWork, ProgressChanged, and RunWorkerCompleted. Double-click on
each of them to add an event handler for each event.

The code for the form is on the next two pages.

you are here 4   845

leftovers

/// <summary>
/// Waste CPU cycles causing the program to slow down by doing calculations for 100ms
/// </summary>
private void WasteCPUCycles() {
 DateTime startTime = DateTime.Now;
 double value = Math.E;
 while (DateTime.Now < startTime.AddMilliseconds(100)) {
 value /= Math.PI;
 value *= Math.Sqrt(2);
 }
}
/// <summary>
/// Clicking the Go button starts wasting CPU cycles for 10 seconds
/// </summary>
private void goButton_Click(object sender, EventArgs e) {
 goButton.Enabled = false;
 if (!useBackgroundWorkerCheckbox.Checked) {
 // If we're not using the background worker, just start wasting CPU cycles
 for (int i = 1; i <= 100; i++) {
 WasteCPUCycles();
 progressBar1.Value = i;
 }
 goButton.Enabled = true;
 } else {
 cancelButton.Enabled = true;

 // If we are using the background worker, use its RunWorkerAsync()
 // to tell it to start its work
 backgroundWorker1.RunWorkerAsync(new Guy("Bob", 37, 146));
 }
}
/// <summary>
/// The BackgroundWorker object runs its DoWork event handler in the background
/// </summary>
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e) {
 // The e.Argument property returns the argument that was passed to RunWorkerAsync()
 Console.WriteLine("Background worker argument: " + (e.Argument ?? "null"));

 // Start wasting CPU cycles
 for (int i = 1; i <= 100; i++) {
 WasteCPUCycles();
 // Use the BackgroundWorker.ReportProgress method to report the % complete
 backgroundWorker1.ReportProgress(i);

 // If the BackgroundWorker.CancellationPending property is true, cancel
 if (backgroundWorker1.CancellationPending) {
 Console.WriteLine("Cancelled");
 break;
 }
 }
}

Here’s the code for the form.

The WasteCPUCycles() does a
whole bunch of mathematical
calculations to tie up the
CPU for 100 milliseconds,
and then it returns.

When the user clicks on the Go! button, the
event handler checks to see if the “Use
BackgroundWorker” checkbox is checked. If it
isn’t, the form wastes CPU cycles for 10 seconds.
If it is, the form calls the BackgroundWorker’s
RunWorkerAsync() method to tell it to start doing
its work in the background.

If the
form’s
using the
background
worker, it
enables
the Cancel
button.

When the BackgroundWorker’s RunWorkerAsync() method is
called, it starts running its DoWork event handler method in the
background. Notice how it’s still calling the same WasteCPUCycles()
method to waste CPU cycles. It’s also calling the ReportProgress()
method to report a percent complete (a number from 0 to 100).

When you tell a BackgroundWorker to start work, you can give it an argument.
In this case, we’re passing it a Guy object (see leftover #2 for its definition).

Here’s a good example of how to use the ?? null coalescing operator we talked about in leftover #2. If e.Argument is null, this returns “null”, otherwise it returns e.Argument.

The CancellationPending method
checks if the BackgroundWorker’s
CancelAsync() method was called.

846   Appendix i

type safe

/// <summary>
/// BackgroundWorker fires its ProgressChanged event when the worker thread reports progress
/// </summary>
private void backgroundWorker1_ProgressChanged(object sender, ProgressChangedEventArgs e) {
 progressBar1.Value = e.ProgressPercentage;
}

/// <summary>
/// BackgroundWorker fires its RunWorkerCompleted event when its work is done (or cancelled)
/// </summary>
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
 goButton.Enabled = true;
 cancelButton.Enabled = false;
}

/// <summary>
/// When the user clicks Cancel, call BackgroundWorker.CancelAsync() to send it a cancel message
/// </summary>
private void cancelButton_Click(object sender, EventArgs e) {
 backgroundWorker1.CancelAsync();
}

When the DoWork event handler calls the ProgressChanged() method,
it causes the BackgroundWorker to raise its ProgressChanged event.
and set e.ProgressPercentage to the percent passed to it.

The BackgroundWorker only fires its ProgressChanged and RunWorkerCompleted events if
its WorkerReportsProgress and WorkerSupportsCancellation properties are true.

When the work is complete, the RunWorkerCompleted event handler
re-enables the Go! button and disables the Cancel button.

If the user clicks Cancel, it calls the
BackgroundWorker’s CancelAsync()
method to give it the message to cancel.

Once you’ve got your form working, run the program. It’s easy to see how BackgroundWorker makes your program
much more responsive:

≥≥ Make sure the “Use BackgroundWorker” checkbox isn’t checked, then click the Go! button. You’ll see the
progress bar start to fill up. Try to drag the form around—you can’t. The form’s all locked up. If you’re lucky,
it might jump a bit as it eventually responds to your mouse drag.

≥≥ When it’s done, check the “Use BackgroundWorker” checkbox and click the Go! button again. This time, the
form is perfectly responsive. You can move it around and even close it, and there’s no delay. When it finishes, it
uses the RunWorkerCompleted method to re-enable the buttons.

≥≥ While the program is running (using BackgroundWorker), click the Cancel button. It will update its
CancellationPending property, which will tell the program to cancel and exit the loop.

Are you wondering why you need to use the ReportProgress() method rather than setting the ProgressBar’s
Value property directly? Try it out. Add the following line to the DoWork event handler:

 progressBar1.Value = 10;

Then run your program again. As soon as it hits that line, it throws an InvalidOperationException with this
message: “Cross-thread operation not valid: Control ‘progressBar1’ accessed from a thread other than the thread it was
created on.” The reason it throws that exception is that BackgroundWorker starts a separate thread and executes the
DoWork method on it. So there are two threads: the GUI thread that’s running the form and the background thread. One
of the .NET threading rules is that only the GUI thread can update form controls; otherwise, that exception is thrown.

This is just one of the many threading pitfalls that can trap a new developer—that’s
why we didn’t talk about threading anywhere in this book. If you’re looking to get
started with threads, we highly recommend Joe Albahari’s excellent e-book about
threading in C# and .NET: http://www.albahari.com/threading

you are here 4   847

leftovers

#5. The Type class and GetType()
One of the most powerful aspects of the C# programming language is its rich type system. But until you’ve got
some experience building programs, it’s difficult to appreciate it—in fact, it can be a little baffling at first. But we
want to give you at least a taste of how types work in C# and .NET. Here’s a console application that gives you an
introduction to some of the tools you have at your disposal to work with types.

class Program {
 class NestedClass {
 public class DoubleNestedClass {
 // Nested class contents ...
 }
 }

 static void Main(string[] args) {
 Type guyType = typeof(Guy);
 Console.WriteLine("{0} extends {1}",
 guyType.FullName,
 guyType.BaseType.FullName);
 // output: TypeExamples.Guy extends System.Object

 Type nestedClassType = typeof(NestedClass.DoubleNestedClass);
 Console.WriteLine(nestedClassType.FullName);
 // output: TypeExamples.Program+NestedClass+DoubleNestedClass

 List<Guy> guyList = new List<Guy>();
 Console.WriteLine(guyList.GetType().Name);
 // output: List`1

 Dictionary<string, Guy> guyDictionary = new Dictionary<string, Guy>();
 Console.WriteLine(guyDictionary.GetType().Name);
 // output: Dictionary`2

 Type t = typeof(Program);
 Console.WriteLine(t.FullName);
 // output: TypeExamples.Program

 Type intType = typeof(int);
 Type int32Type = typeof(Int32);
 Console.WriteLine("{0} - {1}", intType.FullName, int32Type.FullName);
 // System.Int32 - System.Int32

 Console.WriteLine("{0} {1}", float.MinValue, float.MaxValue);
 // output:-3.402823E+38 3.402823E+38

 Console.WriteLine("{0} {1}", int.MinValue, int.MaxValue);
 // output:-2147483648 2147483647

 Console.WriteLine("{0} {1}", DateTime.MinValue, DateTime.MaxValue);
 // output: 1/1/0001 12:00:00 AM 12/31/9999 11:59:59 PM

 Console.WriteLine(12345.GetType().FullName);
 // output: System.Int32

 Console.ReadKey();
 }
}

float is an alias for
System.Single and int
is an alias for System.
Int32. They’re both
structs (which you
learned all about in
Chapter 14).

There’s so much more to learn about types! Read more about them
here: http://msdn.microsoft.com/en-us/library/ms173104.aspx

We only mentioned it briefly, but
here’s a reminder that you can nest
classes inside of each other. Program
contains NestedClass, which contains
DoubleNestedClass.

Here’s
the entry
point…

This is the
System.Type
class. The
GetType()
method returns
a Type object.

The FullName property we
used in the first part of
this program is a member of
System.Type.

Numeric value types and DateTime have
MinValue and MaxValue properties that
return the lowest and highest valid value

Literals have types, too! And you can use
GetType() to get those types.

You can use the typeof keyword to turn a
type (like Guy, int, or DateTime) into a Type
object. Then you can find out its full name
and base type (and if it didn’t inherit from
anything, its base type is System.Object).

When you get the type of a
generic, its name is the type
name followed by a backward
quote and the number of its
generic parameters.

848   Appendix i

all things being equal

#6. Equalit y, IEquatable, and Equals()
Throughout the book, when you’ve wanted to compare values in two variables, you’d use the == operator. But you
already know that all things being equal, some values are more “equal” than others. The == operator works just fine for
value types (like ints, doubles, DateTimes, or other structs), but when you use it on reference types you just end
up comparing whether two reference variables are pointing to the same object (or if they’re both null). That’s fine for
what it is, but it turns out that C# and .NET provide a rich set of tools for dealing with value equality in objects.

To start out, every object has a method Equals(), which by default returns true only if you pass it a reference to itself.
And there’s a static method, Object.ReferenceEquals(), which takes two parameters and returns true if they both
point to the same object (or if they’re both null). Here’s an example, which you can try yourself in a console application:

 Guy joe1 = new Guy("Joe", 37, 100);
 Guy joe2 = joe1;
 Console.WriteLine(Object.ReferenceEquals(joe1, joe2)); // True
 Console.WriteLine(joe1.Equals(joe2)); // True
 Console.WriteLine(Object.ReferenceEquals(null, null)); // True

 joe2 = new Guy("Joe", 37, 100);
 Console.WriteLine(Object.ReferenceEquals(joe1, joe2)); // False
 Console.WriteLine(joe1.Equals(joe2)); // False

But that’s just the beginning. There’s an interface built into .NET called IEquatable<T> that you can use to add
code to your objects so they can tell if they’re equal to other objects. An object that implements IEquatable<T>
knows how to compare its value to the value of an object of type T. It has one method, Equals(), and you implement
it by writing code to compare the current object’s value to that of another object. There’s an MSDN page that has
more information about it (http://msdn.microsoft.com/en-us/library/ms131190.aspx). Here’s an important excerpt:

“If you implement Equals, you should also override the base class implementations of Object.Equals(Object) and GetHashCode
so that their behavior is consistent with that of the IEquatable<T>.Equals method. If you do override Object.Equals(Object),
your overridden implementation is also called in calls to the static Equals(System.Object, System.Object) method on your class.
This ensures that all invocations of the Equals method return consistent results, which the example illustrates.”

Here’s a class called EquatableGuy, which extends Guy and implements IEquatable<Guy>:

/// <summary>
/// A guy that knows how to compare itself with other guys
/// </summary>
class EquatableGuy : Guy, IEquatable<Guy> {

 public EquatableGuy(string name, int age, int cash)
 : base(name, age, cash) { }

 /// <summary>
 /// Compare this object against another EquatableGuy
 /// </summary>
 /// <param name="other">The EquatableGuy object to compare with</param>
 /// <returns>True if the objects have the same values, false otherwise</returns>
 public bool Equals(Guy other) {
 if (ReferenceEquals(null, other)) return false;
 if (ReferenceEquals(this, other)) return true;
 return Equals(other.Name, Name) && other.Age == Age && other.Cash == Cash;
 }

Again, we’re using the same Guy class from leftover #2.

The Equals() method compares the
actual values in the other Guy object’s
fields, checking his Name, Age, and
Cash to see if they’re the same and
only returning true if they are.

If you don’t
do this, the
compiler will
give you a
warning.

you are here 4   849

leftovers

 /// <summary>
 /// Override the Equals method and have it call Equals(Guy)
 /// </summary>
 /// <param name="obj">The object to compare to</param>
 /// <returns>True if the value of the other object is equal to this one</returns>
 public override bool Equals(object obj) {
 if (!(obj is Guy)) return false;
 return Equals((Guy)obj);
 }

 /// <summary>
 /// Part of the contract for overriding Equals is that you need to override
 /// GetHashCode() as well. It should compare the values and return true
 /// if the values are equal.
 /// </summary>
 /// <returns></returns>
 public override int GetHashCode() {
 const int prime = 397;
 int result = Age;
 result = (result * prime) ^ (Name != null ? Name.GetHashCode() : 0);
 result = (result * prime) ^ Cash;
 return result;
 }
}

And here’s what it looks like when you use Equals() to compare two EquatableGuy objects:

 joe1 = new EquatableGuy("Joe", 37, 100);
 joe2 = new EquatableGuy("Joe", 37, 100);
 Console.WriteLine(Object.ReferenceEquals(joe1, joe2)); // False
 Console.WriteLine(joe1.Equals(joe2)); // True

 joe1.GiveCash(50);
 Console.WriteLine(joe1.Equals(joe2)); // False
 joe2.GiveCash(50);
 Console.WriteLine(joe1.Equals(joe2)); // True

And now that Equals() and GetHashCode() are implemented to check the values of the fields and properties, the
method List.Contains() now works. Here’s a List<Guy> that contains several Guy objects, including a new
EquatableGuy object with the same values as the one referenced by joe1.

 List<Guy> guys = new List<Guy>() {
 new Guy("Bob", 42, 125),
 new EquatableGuy(joe1.Name, joe1.Age, joe1.Cash),
 new Guy("Ed", 39, 95)
 };

 Console.WriteLine(guys.Contains(joe1)); // True

 Console.WriteLine(joe1 == joe2); // False

We’re also overriding the Equals()
method that we inherited from
Object, as well as GetHashCode
(because of the contract mentioned
in that MSDN article).

Since our other Equals() method already
compares guys, we’ll just call it.

This is a pretty standard pattern
for GetHashCode(). Note the use
of the bitwise XOR (^) operator, a
prime number, and the conditional
operator (?:).

List.Contains() will go through its
contents and call each object’s
Equals() method to compare it with
the reference you pass to it.

Even though joe1 and joe2 point to objects
with the same values, == and != still compare
the references, not the values themselves.

Guy.Equals() will only
return true if the
actual values of the
objects are the same.

Isn’t there something we can do about that?
Flip the page and find out!

850   Appendix i

some classes are more equal than others

If you try to compare two EquatableGuy references with the == or != operators, they’ll just check if both references are
pointing to the same object or if they’re both null. But what if you want to make them actually compare the values of the
objects? It turns out that you can actually overload an operator—redefining it to do something specific when it operates
on references of a certain type. You can see an example of how it works in the EquatableGuyWithOverload class,
which extends EquatableGuy and adds overloading of the == and != operators:

 /// <summary>
 /// A guy that knows how to compare itself with other guys
 /// </summary>
 class EquatableGuyWithOverload : EquatableGuy
 {
 public EquatableGuyWithOverload(string name, int age, int cash)
 : base(name, age, cash) { }

 public static bool operator ==(EquatableGuyWithOverload left,
 EquatableGuyWithOverload right)
 {
 if (Object.ReferenceEquals(left, null)) return false;
 else return left.Equals(right);
 }

 public static bool operator !=(EquatableGuyWithOverload left,
 EquatableGuyWithOverload right)
 {
 return !(left == right);
 }

 public override bool Equals(object obj) {
 return base.Equals(obj);
 }

 public override int GetHashCode() {
 return base.GetHashCode();
 }
 }

Here’s some code that uses EquatableGuyWithOverload objects:

 joe1 = new EquatableGuyWithOverload(joe1.Name, joe1.Age, joe1.Cash);
 joe2 = new EquatableGuyWithOverload(joe1.Name, joe1.Age, joe1.Cash);
 Console.WriteLine(joe1 == joe2); // False
 Console.WriteLine(joe1 != joe2); // True

 Console.WriteLine((EquatableGuyWithOverload)joe1 ==
 (EquatableGuyWithOverload)joe2); // True
 Console.WriteLine((EquatableGuyWithOverload)joe1 !=
 (EquatableGuyWithOverload)joe2); // False
 joe2.ReceiveCash(25);
 Console.WriteLine((EquatableGuyWithOverload)joe1 ==
 (EquatableGuyWithOverload)joe2); // False
 Console.WriteLine((EquatableGuyWithOverload)joe1 !=
 (EquatableGuyWithOverload)joe2); // True

If we don’t override Equals() and
GetHashCode(), the IDE will give this warning:
‘EquatableGuyWithOverload’ defines operator ==
or operator != but does not override Object.
GetHashCode().

Since EquatableGuyWithOverload acts
just like EquatableGuy and Guy, we
can just call the base methods.

Wait, what happened?
It’s calling Guy’s == and
!= operators. Cast to
EquatableGuyWithOverload to
call the correct == and !=

If we used == to check for null instead of Object.ReferenceEquals(), we’d get a StackOverflowException. Can you figure out why?
Since we’ve
already defined
==, we can
just invert it
for !=.

you are here 4   851

leftovers

#7. Using yie ld return to create enumerable objects
In Chapter 8 we learned about the IEnumerable interface and how it’s used by the foreach loop. C# and .NET
give you some useful tools for building your own collections and enumerable types, starting with the IEnumerable
interface. Let’s say you want to create your own enumerator that returns values from this Sport enum in order:

 enum Sport
 {
 Football, Baseball,
 Basketball, Hockey,
 Boxing, Rugby, Fencing,
 }

You could manually implement IEnumerable yourself, building the Current property and MoveNext() method:

 class SportCollection : IEnumerable<Sport> {
 public IEnumerator<Sport> GetEnumerator() {
 return new ManualSportEnumerator();
 }
 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
 class ManualSportEnumerator : IEnumerator<Sport> {
 int current = -1;

 public Sport Current { get { return (Sport)current; } }

 public void Dispose() { return; } // Nothing to dispose

 object System.Collections.IEnumerator.Current { get { return Current; } }

 public bool MoveNext() {
 int maxEnumValue = Enum.GetValues(typeof(Sport)).Length;
 if ((int)current >= maxEnumValue)
 return false;
 current++;
 return true;
 }

 public void Reset() { current = 0; }
 }
 }

Here’s a foreach loop that loops through SportCollection. It returns the sports in order (Football, Baseball,
Basketball, Hockey, Boxing, Rugby, Fencing):

 Console.WriteLine("SportCollection contents:");
 SportCollection sportCollection = new SportCollection();
 foreach (Sport sport in sportCollection)
 Console.WriteLine(sport.ToString());

That’s a lot of work to build an enumerator—it has to manage its own state, and keep track of which sport it returned.
Luckily, C# gives you a really useful tool to help you easily build enumerators. It’s called yield return, and you’ll
learn about it when you flip the page.

The MoveNext() method increments current and uses it to return the next sport in the enum.

The enumerator implements
IEnumerator<Sport>. The foreach
loop uses its Current property
and MoveNext() method.

IEnumerable just contains one method, GetEnumerator(), but we also need to build the class for the enumerator it returns.

Just a reminder of something from Chapter 14: all collections are enumerable, but not everything
that’s enumerable is technically a collection unless it implements the ICollection<T> interface. We
didn’t show you how to build collections from the ground up, but understanding enumerators is
definitely enough to get you started down that road.

852   Appendix i

enumerate this!

The yield return statement is a kind of all-in-one automatic enumerator creator. This SportCollection class
does exactly the same thing as the one on the previous page, but its enumerator is only three lines long.:

 class SportCollection : IEnumerable<Sport> {

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 public IEnumerator<Sport> GetEnumerator() {
 int maxEnumValue = Enum.GetValues(typeof(Sport)).Length - 1;
 for (int i = 0; i <= maxEnumValue; i++) {
 yield return (Sport)i;
 }
 }
 }

That looks a little odd, but if you actually debug through it you can see what’s going on. When the compiler sees a method
with a yield return statement that returns an IEnumerator or IEnumerator<T>, it automatically adds the
MoveNext() method and Current property. When it executes, the first yield return that it encounters causes
it to return the first value to the foreach loop. When the foreach loop continues (by calling the MoveNext() method),
it resumes execution with the statement immediately after the last yield return that it executed. Its MoveNext()
method returns false when the enumerator is positioned after the last element in the collection. This may be a little hard
to follow on paper, but it’s much easier to follow if you load it into the debugger and step through it using Step Into (F11).
To make it a little easier, here’s a really simple enumerator called NameEnumerator() that iterates through four names:

 static IEnumerable<string> NameEnumerator() {
 yield return "Bob"; // The method exits after this statement ...
 yield return "Harry"; // ... and resumes here the next time through
 yield return "Joe";
 yield return "Frank";
 }

And here’s a foreach loop that iterates through it. Use Step Into (F11) to see exactly what’s going on:

 IEnumerable<string> names = NameEnumerator(); // Put a breakpoint here
 foreach (string name in names)
 Console.WriteLine(name);

There’s another thing that you typically see in a collection: an indexer. When you use brackets [] to retrieve an object
from a list, array, or dictionary (like myList[3] or myDictionary["Steve"]), you’re using an indexer. An indexer
is actually just a method. It looks a lot like a property, except it’s got a single named parameter.

The IDE has an especially useful code snippet. Type indexer followed by two tabs, and the IDE will add the skeleton of
an indexer for you automatically.

Here’s an indexer for the SportCollection class:

 public Sport this[int index] {
 get { return (Sport)index; }
 }

Passing that indexer 3 will return the enum value Hockey.

Like we said earlier, this is just the start for a
SportCollection class. You’d still want to implement
the ICollection<Sport> interface.

you are here 4   853

leftovers

Here’s an IEnumerable<Guy> that keeps track of a bunch of guys, with an indexer that lets you get or set guys’ ages.

 class GuyCollection : IEnumerable<Guy> {
 private static readonly Dictionary<string, int> namesAndAges = new Dictionary<string, int>()
 {
 {"Joe", 41}, {"Bob", 43}, {"Ed", 39}, {"Larry", 44}, {"Fred", 45}
 };

 public IEnumerator<Guy> GetEnumerator() {
 Random random = new Random();
 int pileOfCash = 125 * namesAndAges.Count;

 int count = 0;
 foreach (string name in namesAndAges.Keys) {
 int cashForGuy = (++count < namesAndAges.Count) ? random.Next(125) : pileOfCash;
 pileOfCash -= cashForGuy;
 yield return new Guy(name, namesAndAges[name], cashForGuy);
 }
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }

 /// <summary>
 /// Gets or sets the age of a given guy
 /// </summary>
 /// <param name="name">Name of the guy</param>
 /// <returns>Age of the guy</returns>
 public int this[string name] {
 get {
 if (namesAndAges.ContainsKey(name))
 return namesAndAges[name];
 throw new KeyNotFoundException("Name " + name + " was not found");
 }
 set {
 if (namesAndAges.ContainsKey(name))
 namesAndAges[name] = value;
 else
 namesAndAges.Add(name, value);
 }

 }
 }

And here’s some code that uses the indexers to update one guy’s age and add two more guys, and then loop through them:

 Console.WriteLine("Adding two guys and modifying one guy");
 guyCollection["Bob"] = guyCollection["Joe"] + 3;
 guyCollection["Bill"] = 57;
 guyCollection["Harry"] = 31;
 foreach (Guy guy in guyCollection)
 Console.WriteLine(guy.ToString());

The enumerator uses this private Dictionary
to keep track of the guys it’ll create, but
it doesn’t actually create the Guy objects
themselves until its enumerator is used.

It creates Guy objects with random amounts of cash. We’re just doing this to show
that the enumerator can create objects on the fly during a foreach loop.

When an invalid index is passed to
an indexer, it typically throws an
IndexOutOfRangeException.

This indexer has a set accessor
that either updates a guy’s age or
adds a new guy to the Dictionary.

854   Appendix i

#8. Refactoring
Refactoring means changing the way your code is structured without changing its behavior. Whenever you write a
complex method, you should take a few minutes to step back and figure out how you can change it so that you make it
easier to understand. Luckily, the IDE has some very useful refactoring tools built in. There are all sorts of refactorings
you can do—here are some we use often.

Extract a method
When we were writing the control-based renderer for the GDI+ PDF, we originally included this foreach loop:

 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl)) {
 fieldForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(40, 40);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 } else if (hiveForm.Controls.Contains(beeControl)) {
 hiveForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(20, 20);
 fieldForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }
 beeControl.Location = bee.Location;
 }

One of our tech reviewers, Joe Albahari, pointed out that this was a little hard to read. He suggested that we
extract those two four-line blocks into methods. So we selected the first block, right-clicked on it, and
selected “Refactor >> Extract Method…”. This window popped up:

Then we did the same thing for the other four-line block, extracting it into a method that we named
MoveBeeFromHiveToField(). Here’s how that foreach loop ended up—it’s a lot easier to read:

 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl))
 MoveBeeFromFieldToHive(beeControl);
 } else if (hiveForm.Controls.Contains(beeControl))
 MoveBeeFromHiveToField(beeControl, bee);
 beeControl.Location = bee.Location;
 }

These four
lines move a
BeeControl from
the Field form
to the Hive form. And these four

lines move a
BeeControl from
the Hive form to
the Field form.

The IDE examined
the code that we
selected and figured
out that it uses a
BeeControl variable
called beeControl,
so it added it as a
parameter to the
method.

We typed in a name
for the new method.
We decided to call it
MoveBeeFromFieldToHive()
because that pretty much
describes what the code
does.

refactoring is a great programming habit
The code examples on this page are from the
downloadable GDI+ PDF that’s on our website:

http://www.headfirstlabs.com/hfcsharp

You did some refactoring back
in Chapter 5 when you changed
the structure of the Farmer
class (by adding a constructor)
without changing its behavior.

you are here 4   855

leftovers
Rename a variable
Back in Chapter 3, we explained how choosing intuitive names for your classes, methods, fields, and variables
makes your code a lot easier to understand. The IDE can really help you out when it comes to naming things in
your code. Just right-click on any class, variable, field, property, namespace, constant—pretty much anything that
you can name—and choose “Refactor >> Rename”. You can also just use F2, which comes in handy because
once you start renaming things, you find yourself doing it all the time.

We selected “beeControl” in the code from the simulator and renamed it. Here’s what popped up:

Consolidate a condit ional expression
Here’s a neat way to use the “Extract Method” feature. Open up any program, add a button, and add
this code to its event handler:

 private void button1_Click(object sender, EventArgs e) {
 int value = 5;
 string text = "Hi there";
 if (value == 36 || text.Contains("there"))
 MessageBox.Show("Pow!");
 }

Select everything inside the if statement: value == 36 || text.Contains("there"). Then
right-click on it and select “Refactor >> Extract Method…”. Here’s what pops up:

This window lets you
choose a new name
for the item. If we
renamed this, say, to

“Bobbo”, then the IDE
would go through the
code and change every
single occurrence of it
to “Bobbo”.

The IDE does a really
thorough job of renaming.
If you rename a class, it’ll
change every statement
that instantiates it or uses
it. You can click on any
occurrence of the name,
anywhere in the code, and
the IDE will make the
change everywhere in your
program.

Every conditional
expression evaluates to
a bool, so the IDE will
create a method that
returns a bool and
replace the conditional
test with a call to that
method.

The expression uses two
variables called value and
text, so the IDE added
parameters to the method
using those names.

Not only will this make
the code easier to read,
but now you’ve got a
new method that you
can reuse elsewhere!

It’s smart enough
to figure out that
it should create
a static method,
since it doesn’t use
any fields.

856   Appendix i

we’re sure there’s a superhero metaphor in here somewhere

#9. Anonymous types, anonymous methods, and lambda expressions
C# lets you create types and methods without using explicitly named declarations. A type or method that’s declared
without a name is called anonymous. These are very powerful tools—for example, LINQ wouldn’t be possible
without them. But it’s a lot easier to master anonymous types, anonymous methods, and lambda expressions once you
have a firm grasp on the language. So we only briefly covered anonymous types, and anonymous methods or lambda
expressions didn’t make the cut at all. Here’s a quick introduction, so you can get started learning about them.

class Program {
 delegate void MyIntAndString(int i, string s);
 delegate int CombineTwoInts(int x, int y);

 static void Main(string[] args) {
 /*
 * In Chapter 14, you saw how the var keyword let the IDE determine the
 * type of an object at compile time.
 *
 * You can also create objects with anonymous types using var and new.
 *
 * You can learn more about anonymous types here:
 * http://msdn.microsoft.com/en-us/library/bb397696.aspx
 */

 // Create an anonymous type that looks a lot like a guy:
 var anonymousGuy = new { Name = "Bob", Age = 43, Cash = 137 };

 // When you type this in, the IDE’s IntelliSense automatically picks up
 // the members -- Name, Age and Cash show up in the IntelliSense window.
 Console.WriteLine("{0} is {1} years old and has {2} bucks",
 anonymousGuy.Name, anonymousGuy.Age, anonymousGuy.Cash);
 // Output: Bob is 43 years old and has 137 bucks

 // An instance of an anonymous type has a sensible ToString() method.
 Console.WriteLine(anonymousGuy.ToString());
 // Output: { Name = Bob, Age = 43, Cash = 137 }

 /*
 * In Chapter 15, you learned about how you can use a delegate to reference
 * a method. In all of the examples of delegates that you've seen so far,
 * you assigned an existing method to a delegate.
 *
 * Anonymous methods are methods that you declare in a statement -- you
 * declare them using curly brackets { }, just like with anonymous types.
 *
 * You can learn more about anonymous methods here:
 * http://msdn.microsoft.com/en-us/library/0yw3tz5k.aspx
 */

you are here 4   857

leftovers
 // Here’s an anonymous method that writes an int and a string to the console.
 // Its declaration matches our MyIntAndString delegate (defined above), so
 // we can assign it to a variable of type MyIntAndString.
 MyIntAndString printThem = delegate(int i, string s)
 { Console.WriteLine("{0} - {1}", i, s); };
 printThem(123, "four five six");
 // Output: 123 - four five six

 // Here’s another anonymous method with the same signature (int, string).
 // This one checks if the string contains the int.
 MyIntAndString contains = delegate(int i, string s)
 { Console.WriteLine(s.Contains(i.ToString())); };
 contains(123, "four five six");
 // Output: False

 contains(123, "four 123 five six");
 // Output: True

 // You can dynamically invoke a method using Delegate.DynamicInvoke(),
 // passing the parameters to the method as an array of objects.
 Delegate d = contains;
 d.DynamicInvoke(new object[] { 123, "four 123 five six" });
 // Output: True

 /*
 * A lambda expression is a special kind of anonymous method that uses
 * the => operator. It's called the lambda operator, but when you're
 * talking about lambda expressions you usually say "goes to" when
 * you read it. Here's a simple lambda expression:
 *
 * (a, b) => { return a + b; }
 *
 * You could read that as "a and b goes to a plus b" -- it's an anonymous
 * method for adding two values. You can think of lambda expressions as
 * anonymous methods that take parameters and can return values.
 *
 * You can learn more about lambda expressions here:
 * http://msdn.microsoft.com/en-us/library/bb397687.aspx
 */

 // Here’s that lambda expression for adding two numbers. Its signature
 // matches our CombineTwoInts delegate, so we can assign it to a delegate
 // variable of type CombineTwoInts. Notice how CombineTwoInts’s return
 // type is int -- that means the lambda expression needs to return an int.
 CombineTwoInts adder = (a, b) => { return a + b; };
 Console.WriteLine(adder(3, 5));
 // Output: 8

 // Here's another lambda expression -- this one multiplies two numbers.
 CombineTwoInts multiplier = (int a, int b) => { return a * b; };
 Console.WriteLine(multiplier(3, 5));
 // Output: 15

 // You can do some seriously powerful stuff when you combine lambda
 // expressions with LINQ. Here’s a really simple example:
 var greaterThan3 = new List<int> { 1, 2, 3, 4, 5, 6 }.Where(x => x > 3);
 foreach (int i in greaterThan3) Console.Write("{0} ", i);
 // Output: 4 5 6

 Console.ReadKey();
 }
}

858   Appendix i

there’s so much more LINQ

#10. LINQ to XML

private static XDocument GetStarbuzzData() {
 XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Starbuzz Customer Loyalty Data"),
 new XElement("starbuzzData",
 new XAttribute("storeName", "Park Slope"),
 new XAttribute("location", "Brooklyn, NY"),
 new XElement("person",
 new XElement("personalInfo",
 new XElement("name", "Janet Venutian"),
 new XElement("zip", 11215)),
 new XElement("favoriteDrink", "Choco Macchiato"),
 new XElement("moneySpent", 255),
 new XElement("visits", 50)),
 new XElement("person",
 new XElement("personalInfo",
 new XElement("name", "Liz Nelson"),
 new XElement("zip", 11238)),
 new XElement("favoriteDrink", "Double Cappuccino"),
 new XElement("moneySpent", 150),
 new XElement("visits", 35)),
 new XElement("person",
 new XElement("personalInfo",
 new XElement("name", "Matt Franks"),
 new XElement("zip", 11217)),
 new XElement("favoriteDrink", "Zesty Lemon Chai"),
 new XElement("moneySpent", 75),
 new XElement("visits", 15)),
 new XElement("person",
 new XElement("personalInfo",
 new XElement("name", "Joe Ng"),
 new XElement("zip", 11217)),
 new XElement("favoriteDrink", "Banana Split in a Cup"),
 new XElement("moneySpent", 60),
 new XElement("visits", 10)),
 new XElement("person",
 new XElement("personalInfo",
 new XElement("name", "Sarah Kalter"),
 new XElement("zip", 11215)),
 new XElement("favoriteDrink", "Boring Coffee"),
 new XElement("moneySpent", 110),
 new XElement("visits", 15))));
 return doc;
}

You’ve seen XML throughout the book as a format for files that represents complex data as text. The .NET
Framework gives you some really powerful tools for creating, loading, and saving XML files. And once you’ve got
your hands on XML data, you can use LINQ to query it. Add “using System.Xml.Linq;” to the top of a file
and enter this method that generates an XML document with some Starbuzz Coffee customer loyalty data.

You can use an XDocument to create
an XML file, and that includes XML
files you can read and write using
DataContractSerializer.

An XMLDocument object
represents an XML document.
It’s part of the System.Xml.Linq
namespace.

Use XElement objects to create
elements under the XML tree.

Microsoft has a lot of great documentation about LINQ
and LINQ to XML online. You can read more about LINQ to
XML and classes in the System.Xml.Linq namespace here:

http://msdn.microsoft.com/en-us/library/bb387098.aspx

you are here 4   859

leftovers

Save and load XML f iles
You can write an XDocument object to the console or save it to a file, and you can load an XML file into it:
 XDocument doc = GetStarbuzzData();
 Console.WriteLine(doc.ToString());
 doc.Save("starbuzzData.xml");
 XDocument anotherDoc = XDocument.Load("starbuzzData.xml");

Query your data
Here’s a simple LINQ query that queries the Starbuzz data using its XDocument:

var data = from item in doc.Descendants("person")
 select new { drink = item.Element("favoriteDrink").Value,
 moneySpent = item.Element("moneySpent").Value,
 zipCode = item.Element("personalInfo").Element("zip").Value };
foreach (var p in data)
 Console.WriteLine(p.ToString());

And you can do more complex queries too:

 var zipcodeGroups = from item in doc.Descendants("person")
 group item.Element("favoriteDrink").Value
 by item.Element("personalInfo").Element("zip").Value
 into zipcodeGroup
 select zipcodeGroup;
 foreach (var group in zipcodeGroups)
 Console.WriteLine("{0} favorite drinks in {1}",
 group.Distinct().Count(), group.Key);

Read data from an RSS feed
You can do some pretty powerful things with LINQ to XML. Here’s a simple query to read articles from our blog:

 XDocument ourBlog = XDocument.Load("http://www.stellman-greene.com/feed");
 Console.WriteLine(ourBlog.Element("rss").Element("channel").Element("title").Value);
 var posts = from post in ourBlog.Descendants("item")
 select new { Title = post.Element("title").Value,
 Date = post.Element("pubDate").Value};
 foreach (var post in posts)
 Console.WriteLine(post.ToString());

The XDocument.Load() method has
several overloaded constructors. This
one pulls XML data from a URL.

The XDocument object’s Load() and Save() methods read and write XML files. And its ToString() method renders everything inside it as one big XML document.

The Descendants() method
returns a reference to an
object that you can plug
right into LINQ.

You already know that LINQ lets you call
methods and use them as part of the query, and
that works really well with the Element() method.

Element() returns an
XElement object, and
you can use its properties
to check specific values
in your XML document.

We used the URL of our blog, Building Better Software.
http://www.stellman-greene.com/

Create a new console application, make sure
you’ve got “using System.Xml.Linq;” at the
top, type this query into the Main() method,
and check out what it prints to the console.

860   Appendix i

but wait there’s more

Did you know that C# and the .NET Framework can…
≥≥ Give you much more power over your data with advanced LINQ queries?

≥≥ Access websites and other network resources using built-in classes?

≥≥ Let you add advanced encryption and security to your programs?

≥≥ Create complex multithreaded applications?

≥≥ Let you deploy your classes so that other people can use them?

≥≥ Use regular expressions to do advanced text searching?

≥≥ And a whole lot more! You’ll be amazed at how powerful C# can be.

I had no
idea! Where can
I learn more?

There’s a great book that explains it all!

It’s called C# 5.0 in a Nutshell by Joseph Albahari and
Ben Albahari, and it’s a thorough guide to everything
that C# has to offer. You’ll learn about advanced C#
language features, you’ll see all of the essential .NET
Framework classes and tools, and you’ll learn more
about what’s really going on under the hood of C#.

Check it out at: http://www.oreilly.com/.

Joseph Albahari
helped us out a
whole lot by giving
the first edition of
this book a really
thorough tech review.
Thanks so much for
all your help, Joe!

this is an appendix   1

Good news! I just
approved your request

to upgrade your desktop
to Windows 2003.

WPF Learner’s Guide
to Head First C#

Not running Windows 8? Not a problem.
We wrote many chapters in the third edition of Head First C# using the latest technology

available from Microsoft, which requires Windows 8 and Visual Studio 2013. But what

if you’re using this book at work, and you can’t install the latest version? That’s where

Windows Presentation Foundation (or WPF) comes in. It’s an older technology, so it

works with Visual Studio 2010 and 2008 running on Windows editions as mature as 2003.

But it’s also a core C# technology, so even if you’re running Windows 8 it’s a good idea

to get some experience with WPF. In this appendix, we’ll guide you through building

most of the Windows Store projects in the book using WPF.

Suzie got her office desktop upgraded in JUST
sixteen months. A new company record!

There are many projects in Head First C# where you build Windows Store apps that require Windows 8. In this appendix, you'll use WPF to build them as desktop apps instead.
appendix ii: Windows Presentation Foundation

2   Appendix ii

Why you should learn WPF
Windows Presentation Foundation, or WPF, is a technology
that’s used to build user interfaces for programs written in .NET.
WPF programs typically run on the Windows desktop and display
their user interfaces in windows. WPF is one of the most popular
technologies for developing Windows software, and familiarity
with WPF is considered by many employers to be a required skill
for professional C# and .NET developers.

WPF programs use XAML (Extensible Application Markup
Language) to lay out their UIs. This is great news for Head First
C# readers who have been reading about Windows Store apps.
Most of the Windows Store projects in the book can be built for
WPF with few or no modifications to the XAML code.

same programs new technology

Every C# developer should work with WPF.

Almost every programming language can be used in lots of different
environments and operating systems, and C# is no exception. If
your goal is to improve as a C# developer, you should go out of
your way to work with as many different technologies as possible.
And WPF in particular is especially important for C# developers,
because there are many programs that use WPF in companies,
and this will continue for a long time. If your goal is to use C# in a
professional environment, WPF is technology you’ll want to list on
your resumé.

Learning WPF is also great for a hobby programmer who’s using
Windows 8 and can build all of the code in Head First C#. One of
the most effective learning tools you have as a developer is seeing
the same problem solved in different ways. This appendix
will guide you through building many of the projects in Head First
C# using WPF. Seeing those projects built in WPF and Windows 8
will give you valuable perspective, and that’s one of the things that
helps turn good programmers into great developers.

I’m running Windows 8

and Visual Studio 2013, so I

don’t care about WPF... right?

Some things, like
app bars and
page navigation,
are specific to
Windows Store
apps. In this
appendix, we
show you WPF
alternatives
wherever possible.

You can download the code for all of the projects in this appendix. Go to the Head First
Labs website for more information: http://www.headfirstlabs.com/hfcsharp

you are here 4   3

windows presentation foundation

Creating a new WPF application in Visual Studio works just like creating other kinds of
desktop applications. If you’re using Visual Studio Express 2013, make sure you’re using
Visual Studio 2013 Express for Desktop (the edition for Windows 8 will not create WPF
projects). You can also create programs using Visual Studio 2013 Professional, Premium,
or Ultimate. When you create a new project, Visual Studio displays a “New Project” dialog.
Make sure you select Visual C#, and then choose :

Build WPF projects in Visual Studio

WPF can also be used to build XAML browser applications that run inside Internet
Explorer and other browsers. We won’t be covering it in this appendix, but you can
learn more about it here: http://msdn.microsoft.com/en-us/library/aa970060.aspx

Microsoft has yet another technology that also uses XAML. It’s called Silverlight,
and you can read about it here: http://www.microsoft.com/silverlight/

You can also create C# WPF applications using all editions of Visual Studio 2010, Visual C#
2010 Express, and Visual Studio 2008. Note that if you use the Express editions of Visual Studio
2010 or 2008, the project files are initially created in a temporary folder and are not saved to the
location specified in the New Project dialog until you use Save or Save All to save your files.

Did you find an error in this appendix? Please submit it using the Errata page for Head
First C# (3rd edition) so we can fix it as quickly as possible!

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

http://www.oreilly.com/catalog/errata.csp?isbn=0636920027812

4   Appendix ii

let’s get started

How to use this appendix
This appendix contains complete replacements for pages in Head First C# (3rd edition). We’ve divided
this appendix up into individual guides for each chapter, starting with an overview page that has
specific instructions for how to work through that chapter: what pages to replace in the chapter, what
to read in it, and any specific instructions to help you get the best learning experience.

If you’re using an old version of Visual Studio, you’ll be able to do these
projects... but things will be a little harder for you.

The team at Microsoft did a really good job of improving the user interface of Visual Studio 2013,
especially when it comes to editing XAML. One important feature of Head First C# is its use of the
Visual Studio IDE as a tool for teaching, learning, and exploration. This is why we strongly recommend
that you use the latest version of Visual Studio if possible.

However, we do understand that some readers cannot install Visual Studio 2013. (For example, a lot of
our readers are using a computer provided by an employer, and do not have administrative privileges
to install new software.) We still want you to be able to use our book, even if you’re stuck using an old
version of Visual Studio! We’ll do our best to give you as much guidance as we can. But we also need to
strike a balance here, because we’re being careful not to compromise the learning for the majority of our
readers who are using the latest version of Visual Studio.

If you’re using Visual Studio 2010 or earlier, and you find yourself stuck because the IDE’s user interface
doesn’t look right or menu options aren’t where you expect them to be, we recommend that you
enter the XAML and C# code by hand—or even better, copy it and paste it into Visual Studio.
Once the XAML is correct, it’s often easier to track down the feature in the IDE that generated it.

We’ve made all of the source code in the book available for download, and
we encourage you to copy and paste it into your programs anytime you get
stuck. Go to the book’s website(http://www.headfirstlabs.com/hfcsharp) for

more details and links to the source code.

You can download the source code directly from http://hfcsharp.codeplex.
com/ — but for the replacement chapters in this appendix, make sure that you
sure you download the code from the WPF folder. If you try to use the Windows

Store code in a WPF project, you'll get frustrating errors.

One more thing. This appendix has replacements for pages that you’ll find
in the printed or PDF version this book, and you can find those pages using

their page numbers. However, if you’re using a Kindle or another eBook
reader, you might not be able to use the page numbers. Instead, just use the
section heading to look up the section to replace. For example, this appendix
has replacements for pages 72 and 73 section called Build an app from the

ground up, which you can find in your eBook reader’s Table of Contents
underneath Chapter 2. (Exercises like the one on page 83 and the solution on
page 85 might not show up in your reader’s Table of Contents, but you’ll get
to the exercises as you go through each chapter.) This will be much easier
for you if you download the PDF of this appendix from the book’s website.

you are here 4   5

windows presentation foundation

Chapter 1
You can build the entire

Save the Humans game in WPF

using these replacements for

pages 12-47.

Build a game, and get a feel for the IDE.

The first project in the book walks you through building a
complete—and fun!—video game. The goal of the project
is to help you get used to creating user interfaces and
writing C# code using the Visual Studio IDE.

We recommend that you read through page 11 in the main
part of the book, and then flip to the next page in this
appendix. We designed pages 12–47 in this appendix so
that they can be 100% replacements for the corresponding
pages in the book. Once you’ve finished building the WPF
version of Save the Humans, you can go on to Chapter 2 in
the book.

The screenshots in this chapter are from Visual Studio 2013 for
Windows Desktop, the latest version of Visual Studio available at this
time. If you’re using Visual Studio 2010, some of the menu options
and windows in the IDE will be different. We’ll give you guidance to
help you find the right menu options.

We worked really hard to keep the page flipping to a minimum, because by reducing
distractions we make it easier for you to learn important C# concepts. After you read
the first 11 pages of Chapter 1, you won't have to flip back to the main part of the
book at all for the rest of the chapter. Then there are just five pages that you need
in this appendix for Chapter 2. After that, the book concentrates on building desktop
applications, which you can build with any version of Windows. You won't need this
appendix again until you get to Chapter 10.

12   Appendix ii

fill in the blanks

Start with a blank applicat ion
Every great app starts with a new project. Choose New Project from the
File menu. Make sure you have Visual C#→Windows selected and choose
WPF Application as the project type. Type “Save the Humans” as the
project name.

If your code filenames don’t end in “.cs”
you may have accidentally created a
JavaScript, Visual Basic, or Visual C++
program. You can fix this by closing the
solution and starting over. If you want
to keep the project name “Save the
Humans,” then you’ll need to delete the
previous project folder.

 Your starting point is the Designer window. Double-click on MainWindow.xaml in the Solution
Explorer to bring it up (if it's not already displayed). Find the zoom drop-down in the lower-left
corner of the designer and choose “Fit all” to zoom it out.

1

Use these three buttons to turn on the
grid lines, turn on snapping (which
automatically lines up your controls to
each other), and turn on snapping to grid
lines (which aligns them with the grid).

The designer shows you a
preview of the window that
you’re working on. It looks
like a blank window with a
default white background.

You won’t see these buttons in
older versions of Visual Studio,
only in 2013 (and 2012).

you are here 4   13

windows presentation foundation

 The bottom half of the Designer window shows you the XAML code. It turns out
your “blank” window isn’t blank at all—it contains a XAML grid. The grid works
a lot like a table in an HTML page or Word document. We’ll use it to lay out our
windows in a way that lets them grow or shrink to different screen sizes and shapes.

You can see the XAML code for
the blank window that the IDE
generated for you. Keep your eyes
on it—we’ll add some columns and
rows in a minute.

This part of the project has steps numbered 1 to 3 .

Flip the page to keep going!

These are the opening and closing tags for a grid that
contains controls. When you add rows, columns, and controls
to the grid, the code for them will go between these opening
and closing tags.

StartGame()

AddEnemy()

Ellip
se

XAML Main Window
and Containers WPF UI Controls C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

This project closely follows chapter 1.
We want to give you a solid learning foundation, so we’ve designed this project so that it can
replace pages 12-48 of Head First C#. Other projects in this appendix will give you all the
information that you need to adapt the material in the book. So even when we don’t give you one-
to-one page replacements, we’ll make sure you get all the information you need to do the projects.

AnimateEnemy()

EndTheGame()

14   Appendix ii

Q:But it looks like I already have many rows and
columns in the grid. What are those gray lines?

A: The gray lines are just Visual Studio giving you a
grid of guidelines to help you lay your controls out evenly
in the window. You can turn them on and off with the
button. None of the lines you see in the designer show up
when you run the app outside of Visual Studio. But when
you clicked and created a new row, you actually altered
the XAML, which will change the way the app behaves
when it’s compiled and executed.

Q: Wait a minute. I wanted to learn about C#. Why
am I spending all this time learning about XAML?

A: Because WPF apps built in C# almost always start
with a user interface that’s designed in XAML. That’s also
why Visual Studio has such a good XAML editor—to give
you the tools you need to build stunning user interfaces.
Throughout the book, you’ll learn how to build other types
of programs with C#: Windows Store apps, which use
XAML, and desktop applications and console applications,
which don’t. Seeing all of these different technologies will
give you a deeper understanding of programming with C#.

not so blank after all

 Your app will be a grid with two rows and three columns, with one big
cell in the middle that will contain the play area. Start defining rows by
hovering over the border of the window until a line and triangle appear:

2

...then click to
create a bottom
row in the grid.

Hover over the
border of the
window until an
orange triangle and
line appear...

After the row is added,
the line will change to
blue and you’ll see the
heights of both rows
in the border. The
height of each row will
be a number followed
by a star. Don’t worry
about the numbers for
now.

WPF apps often
need to adapt to
different window
sizes displayed
at different
screen resolutions.

Laying out the window using a
grid’s columns and rows allows
your program to automatically
adjust to the window size.

Over the next few pages
you’ll explore a lot of
different features in

the Visual Studio IDE,
because we’ll be using
the IDE as a powerful
tool for learning and

teaching. You’ll use the
IDE throughout the book

to explore C#. That’s a
really effective way to
get it into your brain!

You might need to
click inside the
window in order to
see the triangles
for adding rows
and columns.

you are here 4   15

windows presentation foundation

 Do the same thing along the top border of the window—except this time create two columns, a small
one on the left-hand side and another small one on the right-hand side. Don’t worry about the row
heights or column widths—they’ll vary depending on where you click. We’ll fix them in a minute.

3

When you’re done, look in the XAML window and go back to the same grid from the previous page.
Now the column widths and row heights match the numbers on the top and side of your window.

Here’s the width of the left column
you created in step 3—the width
matches the width that you saw in
the designer. That’s because the IDE
generated this XAML code for you.

Don’t worry if your
row heights or column
widths are different;
you’ll fix them on the
next page.

Your grid rows and columns are now added!
XAML grids are container controls, which means they hold other
controls. Grids consist of rows and columns that define cells, and each
cell can hold other XAML controls that show buttons, text, and shapes.
A grid is a great way to lay out a window, because you can set its rows
and columns to resize themselves based on the size of the screen.

The humans are
preparing. We don’t like

the looks of this.

16   Appendix ii

let’s size up the competition

 Set the width of the LEFT column.
Hover over the number above the leftmost column until a
drop-down menu appears. Choose Pixel to change the star
to a lock, and then click on the number to change it to 140.
Your column’s number should now look like this:

1

Set up the grid for your window
Your program needs to be able to work on different sized windows, and
using a grid is a great way to do that. You can set the rows and columns
of a grid to a specific pixel height. But you can also use the Star setting,
which keeps them the same size proportionally—to one another and
also to the window—no matter how big the window or resolution of the
display.

 Repeat for the right column and
the bottom row.
Make the right column 160 pixels and the bottom
row 150 by choosing Pixel and typing 160 or 150
into the box.

2

		� It’s OK if you’re not
a pro at app
design...yet.

We’ll talk a lot more
about what goes into designing a good
app later on. For now, we’ll walk you
through building this game. By the end of
the book, you’ll understand exactly what
all of these things do!

Set your columns or rows to
Pixel to give them a fixed
width or height. The Star
setting lets a row or column
grow or shrink proportionally
to the rest of the grid. Use
this setting in the designer
to alter the Width or Height
property in the XAML. If
you remove the Width or
Height property, it’s the same
as setting the property to 1*.

If you don’t see the numbers like
120* and 19* along the border
of your window, click outside the
window in the designer.

When you switch the column to pixels,
the number changes from a proportional
width to the actual pixel width.

you are here 4   17

windows presentation foundation

 Make the center column the default size.
Make sure that the center column width is set to . If it
isn’t, click on the number above the center column and enter
1. Don’t use the drop-down (leave it star) so it looks like the
picture below. Then make sure to look back at the other
columns to make sure the IDE didn’t resize them. If it did, just
change them back to the widths you set in steps 1 and 2.

3

 Look at your XAML code!
Click on the grid to make sure it’s selected, then look in the XAML window to see the code that you built.

4

You used the column and row
drop-downs to set the Width
and Height properties.

This is how a column is defined for a XAML grid. You added three columns and two rows, so there are three ColumnDefinition tags and two RowDefinition tags.

In a minute, you’ll be adding controls
to your grid, which will show up here,
after the row and column definitions.

The <Grid> line at the top
means everything that comes
after it is part of the grid.

When you enter 1* into the box,
the IDE sets the column to its
default width. It might adjust
the other columns. If it does, just
reset them back to 160 pixels.

You used the designer to set th
e height

of the bottom row to 150 pixels.

XAML and C# are
case sensitive! Make
sure your uppercase
and lowercase letters
match example code.

If you
accidentally
changed the
center column’s
width to Pixels,
you can change it
back to 1*.

If you’re using Visual Studio 2010, the IDE looks different. When you hover
over a column size, you’ll see this box to select pixel or star:

It’s possible to edit the column sizes in the designer using the older
versions of the IDE, but it’s not nearly as easy to do. We recommend that
if you’re using an older version of the IDE, you create the columns and
rows, and then edit the XAML row and column definitions by hand.

18   Appendix ii

take control of your program

Add controls to your grid
Ever notice how programs are full of buttons, text, pictures, progress bars, sliders,
drop-downs, and menus? Those are called controls, and it’s time to add some of
them to your app—inside the cells defined by your grid’s rows and columns.

Drag a into the lower-right cell of the grid. Your XAML will look something like this.
See if you can figure out how it determines which row and column the controls are placed in.

2

Expand the Common WPF Controls section of the toolbox
and drag a into the bottom-left cell of the grid.

Then look at the bottom of the Designer window and have a
look at the XAML tag that the IDE generated for you. You’ll
see something like this—your margin numbers will be different
depending on where in the cell you dragged it, and the
properties might be in a different order.

1

The XAML for the button starts
here, with the opening tag.

These are properties. Each
property has a name, followed by
an equals sign, followed by its value.

If you don’t see
the toolbox, try
clicking on the
word “Toolbox”
that shows up
in the upper-left
corner of the
IDE. If it’s not
there, select
Toolbox from
the View menu
to make it
appear.We added line breaks to make the XAML easier to

read. You can add line breaks, too. Give it a try!

Click on Pointer in the toolbox, then click on the TextBlock and move it around and watch the IDE update the Margin property in the XAML.

If you don’t see the toolbox in the IDE, you can open it using the View menu. Use the pushpin to keep it from collapsing.

When you pin
the Toolbox,
you can use this
tab to open it

you are here 4   19

windows presentation foundation

When you drag a
control out of the
toolbox and onto
your window, the
IDE automatically
generates XAML
to put it where you
dragged it.

Next, expand the All WPF Controls section of the toolbox. Drag a
into the bottom-center cell, a into the bottom-right cell (make sure
it’s below the TextBlock you already put in that cell), and a into the top
center cell. Your window should now have controls on it (don’t worry if they’re placed
differently than the picture below; we’ll fix that in a minute):

3

You’ve got the Canvas control currently selected, since you just added it. (If not, use
the pointer to select it again.) Look in the XAML window:

...

It’s showing you the XAML tag for the Canvas control. It starts with <Canvas and
ends with />, and between them it has properties like Grid.Column="1" (to put
the Canvas in the center column) and Height="100" (to set its height in pixels).
Try clicking in both the grid and the XAML window to select different controls.

4

Here’s the TextBlock
control you added in
step 2. You dragged
a ContentControl
into the same cell.

You just added
this ProgressBar.

When you add the Canvas
control, it looks like an
empty box. We’ll fix
that shortly.

Here’s the ContentControl.
What do you think it does?

Try clicking this button.
It brings up the Document
Outline window. Can you
figure out how to use it?
You’ll learn more about it
in a few pages.

Here’s the
button you
added in step 1.

20   Appendix ii

your app’s property value is going up

Use propert ies to change how the controls look
The Visual Studio IDE gives you fine control over your controls. The Properties window
in the IDE lets you change the look and even the behavior of the controls on your window.

 Use the Properties window to modify the button.
Make sure the button is selected in the IDE, and then look at
the Properties window in the lower-right corner of the IDE.
Use it to change the name of the control to startButton
and center the control in the cell. Once you’ve got the button
looking right, right-click on it and choose View Source to
jump straight to the <Button> tag in the XAML window.

2

 Change the text of the button.
Right-click on the button control that you dragged onto the grid and choose Edit Text
from the menu. Change the text to: Start! and see what you did to the button’s XAML:

...

1

When you edit the text in the button, the IDE
updates the Content property in the XAML.

Use the Name box to change the
name of the control to startButton.

When you used “Edit Text” on the right-click menu to change
the button’s text, the IDE updated the Content property.

Use the and buttons to
set the HorizontalAlignment and

VerticalAlignment properties to “Center”
and center the button in the cell.

These little squares tell you if the property has been set. A filled square means it’s been set; an empty square means it’s been left with a default value.

When you dragged the button onto the window, the IDE
used the Margin property to place it in an exact position
in the cell. Click on the square and choose Reset from

the menu to reset the margins to 0.

Go back to the
XAML window in
the IDE and have a
look at the XAML
that you updated!

You might
need to
expand the
Common
and Layout
sections.

When you’re editing text, use the Escape key to finish. This works for other things in the IDE, too.

The properties may be in a different order. That’s OK!

Older versions of the
IDE use the word
“Center” instead of
icons like this.

Use the buttons to set the
Width and Height to Auto.

you are here 4   21

windows presentation foundation

 Change the size and title of the window.
Select any of the controls. Then hit Escape, and keep hitting Escape until the outer
<Window> tag is displayed in the XAML editor:

Click in the XAML editor. The <Window> tag has properties for Height
and Width. Look for their corresponding values in the Properties window in the IDE:

Set the width to 1000 and height to 700, and the window immediately resizes
itself to the new size. You can use the “Fit all” option in the Zoom drop-down to show
the whole window in the designer. Notice how the center column and top row resized
themselves to fit the new window, while the other rows and columns kept their pixel
sizes. Then expand the Common section in the Properties window and set the Title
property to Save the Humans. You’ll see the window title get updated.

3

 Use a StackPanel to group the TextBlock and ContentControl.
Make sure that the TextBlock is near the top of the cell, and the ContentControl is near
the bottom. Click and drag to select both the TextBlock and ContentControl,
and then right-click. Choose from the pop-up menu, then choose

. This adds a new control to your form: a StackPanel control. You can
select the StackPanel by clicking between the two controls.

The StackPanel is a lot like the Grid and Canvas: its job is to hold other controls
(it’s called a “container”), so it’s not visible on the form. But since you dragged the
TextBlock to the top of the cell and the ContentControl to the bottom, the IDE created
the StackPanel so it fills up most of the cell. Click in the middle of the StackPanel to
select it, then right-click and choose and to quickly reset its
properties, which will set its vertical and horizontal alignment to Stretch. Right-click on
the TextBox and ContentControl to reset their properties as well. While you have the
ContentControl selected, set its vertical and horizontal alignments to Center.

5

You are here!

StartGame()

AddEnemy()

Ellip
se

XAML Main Window
and Containers WPF UI

Controls
C# Code

Main w
in

do
w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

 Update the TextBlock to change its text and its font size.
Use the Edit Text right-mouse menu option to change the TextBlock so it says
Avoid These (hit Escape to finish editing the text). Then expand the Text section
of the Properties window and change the font size to 18 px. This may cause the
text to wrap and expand to two lines. If it does, drag the TextBlock to make it wider.

4

Your TextBlock and
ContentControl are
in the lower-right cell
of the grid.

Right-click and
reset the layout
of the StackPanel,
TextBlock, and
ContentControl.

A box appears around
the StackPanel if you
hover over it.

You can use Edit→Undo (or Ctrl-Z) to undo
the last change. Do it several times to undo

the last few changes. If you selected the
wrong thing, you can choose Select None

from the Edit menu to deselect. You can also
hit Escape to deselect the control. If it’s

living inside a container like a StackPanel or
Grid, hitting Escape will select the container,

so you may need to hit it a few times.

AnimateEnemy()

EndTheGame()

22   Appendix ii

you want your game to work, right?

Controls make the game work
Controls aren’t just for decorative touches like titles and
captions. They’re central to the way your game works.
Let’s add the controls that players will interact with when
they play your game. Here’s what you’ll build next:

 Update the ProgressBar.
Right-click on the ProgressBar in the bottom-center cell of the grid, choose the Layout
menu option, and then choose Reset All to reset all the properties to their default values.
Use the Height box in the Layout section of the Properties window to set the Height to 20.
The IDE stripped all of the properties from the XAML, and then added the new Height:

1

 Turn the Canvas control into the gameplay area.
Remember that Canvas control that you dragged into the center square? It’s hard
to see it right now because a Canvas control is invisible when you first drag it out of

the toolbox, but there’s an easy way to find it. Click the very small button above
the XAML window to bring up the Document Outline. Click on to
select the Canvas control.

Make sure the Canvas control is selected, then use the Name box in the
Properties window to set the name to playArea.

2

After you’ve named the Canvas control, you can close the
Document Outline window. Then use the and buttons
in the Properties window to set its vertical and horizontal
alignments to Stretch, reset the margins, and click both
buttons to set the Width and Height to Auto. Then set its
Column to 0, and its ColumnSpan (next to Column) to 3.

Finally, open the Brush section of the Properties window and
use the button to give it a gradient. Choose the starting
and ending colors for the gradient by clicking each of the tabs at
the bottom of the color editor and then clicking a color.

Click on the left-hand
tab, then on the
starting color for the
gradient. Then click on
the right-hand tab and
choose the ending color.

Once you change the name, it’ll show up as playArea instead of [Canvas] in the Document Outline window.

You can also open the Document Outline by
clicking the tab on the side of the IDE.

You can also get to the Document Outline by choosing the View→Other Windows menu.

...and you’ll work on the
bottom row. You’ll make the ProgressBar

as wide as its column...
...and you’ll use a
template to make your
enemy look like this.

You’ll create a play area with a
gradient background...

The user interface for editing colors in earlier versions of Visual
Studio is not as advanced, but you should still be able to set the
colors so they look correct. The Document Outline window is also
a little more primitive, but it still works. However, there is not an
easy way to visually create a template in Visual Studio 2010.
The easiest way to do this in the old version of the IDE is to copy
the entire <Window.Resources> section (up through the closing
</Window.Resources> tag) from the downloadable source code
and paste it into your XAML just above the opening <Grid> tag.
Make sure you download the code from the WPF folder! Then
you can select the ContentControl and use the Properties window to
set the Template property to EnemyTemplate. Your enemies will already
look like evil aliens, so make sure you still read pages 44 and 45.

you are here 4   23

windows presentation foundation

You’re almost done laying out the form! Flip the page for the last steps...

 Use the Document Outline to modify the StackPanel, TextBlock, and Grid controls.
Go back to the Document Outline (if you see at the top of the Document
Outline window, just click to get back to the Window outline). Select the StackPanel control, make sure its
vertical and horizontal alignments are set to center, and clear the margins. Then do the same for the TextBlock,
and use the Properties window to set the Foreground property to white using the color selector.

Finally, select the Grid, then open the Brush section of properties and click to give it a black Background.

5

 Create the enemy template.
Your game will have a lot of enemies bouncing around the screen, and you’re going to want them all to look the
same. Luckily, XAML gives us templates, which are an easy way to make a bunch of controls look alike.

Next, right-click on the ContentControl in the Document Outline window. Choose Edit Template, then choose
Create Empty... from the menu. Name it EnemyTemplate. The IDE will add the template to the XAML.

Your newly created template is currently selected in the IDE. Collapse the Document Outline window so it doesn’t
overlap the Toolbox. Your template is still invisible, but you’ll change that in the next step. If you accidentally click out of
the control template, you can always get back to it by opening the Document Outline, right-clicking on the Content Control,
and choosing Edit Template→Edit Current.

3

You’re “flying blind” for this
next bit—the designer won’t
display anything for the
template until you add a control
and set its height and width so
it shows up. Don’t worry; you
can always undo and try again if
something goes wrong.

You can also use the
Document Outline
window to select
the grid if it gets
deselected.

 Edit the enemy template.
Add a red circle to the template:

≥≥ Double-click on in the Toolbox to add an ellipse.

≥≥ Set the ellipse’s Height and Width properties to 100,
which will cause the ellipse to be displayed in the cell.

≥≥ Reset the Margin, HorizontalAlignment, and
VerticalAlignment properties by clicking their squares
and choosing Reset.

≥≥ Go to the Brush section of the Properties window and click
on to select a solid-color brush.

≥≥ Color your ellipse red by clicking in the color selector and
dragging to the upper-right corner.

The XAML for your ContentControl now looks like this:

4

Click in this color
selector and drag
to the upper-right
corner.

Scroll around your window’s XAML window and see if you can find where
EnemyTemplate is defined. It should be right below the AppName resource.

Make sure you don’t click anywhere else in the designer until
you see the ellipse. That will keep the template selected.

Click here and use the color selector
to make the TextBlock white.

24   Appendix ii

check out the window you built

 Add the human to the Canvas.

You’ve got two options for adding the human. The first option is to follow the next three paragraphs. The second, quicker option is
to just type the four lines of XAML into the IDE. It’s your choice!

Select the Canvas control, and then open the All XAML Controls section of the toolbox and double-click on
Ellipse to add an Ellipse control to the Canvas. Select the Canvas control again and double-click on Rectangle.
The Rectangle will be added right on top of the Ellipse, so drag the Rectangle below it.

Hold down the Shift key and click on the Ellipse so both controls are selected. Right-click on the Ellipse, choose
Group Into, and then StackPanel. Select the Ellipse, use the solid brush property to change its color to white,
and set its Width and Height properties to 10. Then select the Rectangle, make it white as well, and change
its Width to 10 and its Height to 25.

Use the Document Outline window to select the Stack Panel (make sure you see at the top of the
Properties window). Reset its margins, then click both buttons to set the Width and Height to Auto.
Then use the Name box at the top of the window to set its name to human. Here’s the XAML you generated:

You might also see a Stroke property on the Ellipse and Rectangle set to "Black". (If you don't see one, try
adding it. What happens?)

Go back to the Document Outline window to see how your new controls appear:

If human isn't indented underneath playArea, click and drag human onto it.

6

 Add the Game Over text.
When your player’s game is over, the game will need to display a Game
Over message. You’ll do it by adding a TextBlock, setting its font, and
giving it a name:

≥≥ Select the Canvas, and then drag a TextBlock out of the toolbox
and onto it.

≥≥ Use the Name box in the Properties window to change its name to
gameOverText.

≥≥ Use the Text section of the Properties window to change the font to
Arial, change the size to 100 px, and make it Bold and Italic.

≥≥ Click on the TextBlock and drag it to the middle of the Canvas.

≥≥ Edit the text so it says Game Over.

7

If you choose to type this into the XAML
window of the IDE, make sure you do it directly
above the </Canvas> tag. That’s how you indicate
that the human is contained in the Canvas.

When you drag
a control around
a Canvas, its
Left and Top
properties are
changed to set
its position. If
you change the
Left and Top
properties, you
move the control.

You gave the Canvas control the
name playArea in step 2, so it shows
up in the Document Outline window.
Try hovering over the controls in it.

If you used
the designer
to create
your human,
make sure
its source
matches this
XAML.

you are here 4   25

windows presentation foundation

 Add the target portal that the player will drag the human onto.
There’s one last control to add to the Canvas: the target portal that your player will drag the human
into. (It doesn’t matter where in the Canvas you drag it.)

Select the Canvas control, and then drag a Rectangle control onto it. Use the button in the Brushes
section of the Properties window to give it a gradient. Set its Height and Width properties to 50.

Turn your rectangle into a diamond by rotating it 45 degrees. Open the Transform section of the
Properties window to rotate the Rectangle 45 degrees by clicking and setting the angle to 45.

Finally, use the Name box in the Properties window to give it the name target.

 Take a minute and double-check a few things.
Open the Document Outline window and make sure that the human StackPanel,
gameOverText TextBlock, and target Rectangle are indented underneath the
playArea Canvas control, which is indented under the second [Grid]. Select the
playArea Canvas control and make sure its Height and Width are set to Auto.
These are all things that could cause bugs in your game that will be difficult to
track down. Your Document Outline window should look like this:

Congratulations—you’ve finished building the window for your app!

8

9

We collapsed human to
make it obvious that
it’s indented underneath
playArea, along with
gameOverText and
target. It’s okay if
the controls are in a
different order (you
can even drag them up
an down!), as long as the
indenting is correct—
that’s how you know
which controls are inside
other container controls.

26   Appendix ii

you took control

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
to change text displayed
inside your control

What it does
Where to find it
in the Properties

window in the IDE

At the top

Here’s a hint: you can use the Search box in the
Properties window to find properties—but some of

these properties aren’t on every type of control.

Solution on page 35

Content

Height

Rotation

Fill

x:Name

you are here 4   27

windows presentation foundation

You’ve set the stage for the game
Your window is now all set for coding. You set up the grid that
will serve as the basis of your window, and you added controls
that will make up the elements of the game.

Visual Studio gave you useful tools for laying out
your window, but all it really did was help you
create XAML code. You’re the one in charge!

The first step you did was to create the project and set up the grid.

Then you added controls to your window. The next step is to write code that uses them.

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Window
and Containers WPF UI

Controls

C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

28   Appendix ii

keep your stub for re-entry

What you’l l do next
Now comes the fun part: adding the code that makes your game
work. You’ll do it in three stages: first you’ll animate your enemies,
then you’ll let your player interact with the game, and finally
you’ll add polish to make the game look better.

...then you’ll add the gameplay...

...and finally, you’ll
make it look good.

First you’ll animate the enemies...

The first thing you’ll do
is add C# code that
causes enemies to shoot
out across the play
area every time you
click the Start button.

To make the game
work, you’ll need the
progress bar to count
down, the human to
move, and the game
to end when the
enemy gets him or
time runs out.

You used a template
to make the enemies
look like red circles.
Now you’ll update
the template to make
them look like evil
alien heads.

A lot of programmers build their code in small
increments, making sure one piece works before
moving on to the next one. That’s how you’ll build
the rest of this program. You’ll start by creating

a method called AddEnemy() that adds an
animated enemy to the Canvas control. First you’ll

hook it up to the Start button so you can fill your
window up with bouncing enemies. That will lay
the groundwork to build out the rest of the game.

you are here 4   29

windows presentation foundation

Add a method that does something
It’s time to start writing some C# code, and the first thing you’ll do is
add a method—and the IDE can give you a great starting point by
generating code.

When you’re editing a window in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to your
project. Make sure you’ve got the window designer showing in the
IDE, and then double-click on the Start button. The IDE will add code
to your project that gets run anytime a user clicks on the button. You
should see some code pop up that looks like this:

Q: What’s a method?

A: A method is just a named block of code.
We’ll talk a lot more about methods in Chapter 2.

Q: And the IDE generated it for me?

A: Yes...for now. A method is one of the basic
building blocks of programs—you’ll write a lot of
them, and you’ll get used to writing them by hand.

When you double-clicked the button control, the
IDE created this method. It will run when a user
clicks the “Start!” button in the running application.

Use the IDE to create your own method
Click between the { } brackets and type this, including the parentheses and semicolon:

Notice the red squiggly line underneath the text you just typed? That’s the IDE telling you that something’s
wrong. If you click on the squiggly line, a blue box appears, which is the IDE’s way of telling you that it
might be able to help you fix the error.

Hover over the blue box and click the icon that pops up. You’ll see a box asking you to generate a
method stub. What do you think will happen if you click it? Go ahead and click it to find out!

The red squiggly line is the IDE telling you
there’s a problem, and the blue box is the
IDE telling you that it might have a solution.

The IDE also added
this to the XAML. See
if you can find it. You’ll
learn more about what
this is in Chapter 2.

30   Appendix ii

intelligent and sensible

Fil l in the code for your method
It’s time to make your program do something, and
you’ve got a good starting point. The IDE generated a
method stub for you: the starting point for a method that
you can fill in with code.

Select this and delete it. You’ll learn
about exceptions in Chapter 12.

Delete the contents of the method stub that the IDE
generated for you.

1

Start adding code. Type the word “Content” into the method body. The IDE will pop up a window
called an IntelliSense Window with suggestions. Choose ContentControl from the list.

2

Finish adding the first line of code. You’ll get another IntelliSense window after you type new.3

	 C# code must be
added exactly as
you see it here.

It’s really easy to throw
off your code. When

you’re adding C# code to your
program, the capitalization has to
be exactly right, and make sure you
get all of the parentheses, commas,
and semicolons. If you miss one,
your program won’t work!

This line creates a new ContentControl object. You’ll learn about objects and the new keyword in Chapter 3, and reference variables like enemy in Chapter 4.

you are here 4   31

windows presentation foundation

Before you fill in the AddEnemy() method, you’ll need to add a line of code near the top of the file.
Find the line that says public partial class MainWindow : Window and add this line
after the bracket ({):

4

This is called a field. You’ll learn more about how it works in Chapter 4.

Flip the page to see your program run!

Finish adding the method. You’ll see some squiggly red underlines. The ones
under AnimateEnemy() will go away when you generate its method stub.

5 Do you see a squiggly underline
under playArea? Go back to the
XAML editor and make sure
you set the name of the Canvas
control to playArea.

This line adds your
new enemy control
to a collection called
Children. You’ll learn
about collections in
Chapter 8.

If you need to switch between the XAML and C#
code, use the tabs at the top of the window.

Use the blue box and the button to generate a method stub for AnimateEnemy(), just like
you did for AddEnemy(). This time it added four parameters called enemy, p1, p2, and p3. Edit
the top line of the method to change the last three parameters. Change the property p1 to from, the
property p2 to to, and the property p3 to propertyToAnimate. Then change any int types to
double.

6

You’ll learn
about methods and parameters in Chapter 2.

Flip the page to see your program run!
The IDE may generate the method stub
with “int” types. Change them to “double”.
You’ll learn about types in Chapter 4.

32   Appendix ii

ok, that’s pretty cool

Finish the method and run your program
Your program is almost ready to run! All you need to do is finish your
AnimateEnemy() method. Don’t panic if things don’t quite work
yet. You may have missed a comma or some parentheses—when you’re
programming, you need to be really careful about those things!

 Add a using statement to the top of the file.
Scroll all the way to the top of the file. The IDE generated several
lines that start with using. Add one more to the bottom of the list:

1

You’ll need this line to make the next bit of code work. You can use the IntelliSense window to get it right—and don’t forget the semicolon at the end.

You’ll learn about
object initializers
like this in
Chapter 4.

And you’ll learn
about animation
in Chapter 16.

 Add code that creates an enemy bouncing animation.
You generated the method stub for the AnimateEnemy() method on the
previous page. Now you’ll add its code. It makes an enemy start bouncing across
the screen.

2

		 Still seeing red?
The IDE helps you
track down
problems.

If you still have some of those red
squiggly lines, don’t worry! You
probably just need to track down a typo
or two. If you’re still seeing squiggly red
underlines, it just means you didn’t type
in some of the code correctly. We’ve
tested this chapter with a lot of different
people, and we didn’t leave anything
out. All the code you need to get your
program working is in these pages.

 Look over your code.
You shouldn’t see any errors, and your Error List window should be
empty. If not, double-click on the error in the Error List. The IDE will
jump your cursor to the right place to help you track down the problem.

3

If you can’t see the Error List window, choose Error List from the View menu to show it. You’ll learn more about using the error window and debugging your code in Chapter 2.

Statements
like these let
you use code
from .NET
libraries that
come with
C#. You’ll
learn more
about them in
Chapter 2.

This using statement lets you use animation code from the .NET Framework in your program to move the enemies on your screen.

This code makes the enemy you created move across playArea. If you change 4 and 6, you can make the enemies move slower or faster.

you are here 4   33

windows presentation foundation

 Start your program.
Find the button at the top of the IDE. This starts your program running.

4

 Now your program is running!
When you start your program, the main window will be displayed. Click the “Start!”
button a few times. Each time you click it, a circle is launched across your canvas.

5

This button starts your program.

 Stop your program.
Press Alt-Tab to switch back to the IDE. The button in the toolbar has been replaced with to
break, stop, and restart your program. Click the square to stop the program running.

6

You built something cool! And it didn’t take

long, just like we promised. But there’s more

to do to get it right.

Here’s a hint: if you move too many windows
around your IDE, you can always reset by choosing

Reset Window Layout from the Window menu.

If the enemies aren’t bouncing,
or if they leave the play area,
double-check the code. You may
be missing parentheses or keywords.

34   Appendix ii

what you’ve done, where you’re going

Here’s what you’ve done so far
Congratulations! You’ve built a program that actually does
something. It’s not quite a playable game, but it’s definitely a start.
Let’s look back and see what you built.

Visual Studio can generate code for you, but you
need to know what you want to build BEFORE
you start building it. It won’t do that for you!

We’ve gotten a good start by building the user interface...

…but we still need the
rest of the C# code
to make the game
actually work.

This step is where we actually write C# code that makes the gameplay run.

StartGame()

AddEnemy()

AnimateEnemy()

EndTheGame()Ellip
se

XAML Main Window
and Containers WPF UI

Controls

C# Code

Main w

in
do

w

Grid

Canvas

Rectangl
e

Sta
ck

P
an

e
l

Rectangl
e

ProgressB
ar

Target ti
m

er

Enemy tim
er

Tick event handler

Tick event handler

Click event handler

Start b
utto

n

methods

You are here!

you are here 4   35

windows presentation foundation

Now that you’ve built a user interface, you should have a sense of what some of the controls do, and you’ve used
a lot of different properties to customize them. See if you can work out which property does what, and where in
the Properties window in the IDE you find it.

Content

Height

Rotation

Fill

x:Name

XAML property

Determines how tall the
control should be

Sets the angle that the
control is turned

You use this in your C#
code to manipulate a
specific control

The color of the control

Use this when you want
text or graphics in your
control

What it does
Where to find it
in the Properties

window in the IDE

At the top

solution

Remember how you set the Name of the
Canvas control to “playArea”? That set its
“x:Name” property in the XAML, which will
come in handy in a minute when you write C#
code to work with the Canvas.

Here’s the solution for the “Who Does What” exercise on page 28.
We’ll give you the answers to the pencil-and-paper puzzles and

exercises, but they won’t always be on the next page.

36   Appendix ii

tick tick tick

Add t imers to manage the gameplay
Let’s build on that great start by adding working gameplay elements. This game adds
more and more enemies, and the progress bar slowly fills up while the player drags the
human to the target. You’ll use timers to manage both of those things.

 Add another line to the top of your C# code.
You’ll need to add one more using line right below the one you added a few pages ago:

Then go up to the top of the file where you added that Random line. Add three more lines:

1

The MainWindow.Xaml.cs file
you’ve been editing contains
the code for a class called
MainWindow. You’ll learn
about classes in Chapter 3.

Add these three lines below the
one you added before. These
are fields, and you’ll learn about
them in Chapter 4.

 Add a method for one of your timers.
Find this code that the IDE generated:

Put your cursor right after the semicolon, hit Enter two times, and type
enemyTimer. (including the period). As soon as you type the dot, an
IntelliSense window will pop up. Choose Tick from the IntelliSense window
and type the following text. As soon as you enter += the IDE pops up a box:

Press the Tab key. The IDE will pop up another box:

Press Tab one more time. Here’s the code the IDE generated for you:

2

The IDE generated
a method for you
called an event
handler. You’ll learn
about event handlers
in Chapter 15.

TickTick
Tick

Timers “tick”
every time
interval by
calling methods
over and over
again. You’ll use
one timer to add
enemies every
few seconds, and
the other to end
the game when
time expires.

This using statement lets you use DispatcherTimers.

you are here 4   37

windows presentation foundation

 Add the EndTheGame() method.
Go to the new targetTimer_Tick() method, delete the line that the IDE generated, and add
the following code. Type EndTheGame() and generate a method stub for it, just like before:

Notice how progressBar has an error? That’s OK. We did this on purpose (and we’re not even
sorry about it!) to show you what it looks like when you try to use a control that doesn’t have a
name, or has a typo in the name. Go back to the XAML code (it’s in the other tab in the IDE), find
the ProgressBar control that you added to the bottom row, and change its name to progressBar.

Next, go back to the code window and generate a method stub for EndTheGame(), just like you
did a few pages ago for AddEnemy(). Here’s the code for the new method:

4

 Finish the MainWindow() method.
You’ll add another Tick event handler for the other timer, and you’ll
add two more lines of code. Here’s what your finished MainWindow()
method and the two methods the IDE generated for you should look like:

3

It’s normal to add parentheses
() when writing about a
method.

If you closed the Designer tab that had the XAML code, double-click on MainWindow.xaml in the Solution Explorer window to bring it up.

If gameOverText comes up as an error, it means you didn’t set the name of the “Game Over” TextBlock. Go back and do it now.

Right now your Start button
adds bouncing enemies to the
play area. What do you think
you’ll need to do to make it
start the game instead?

This method ends the
game by stopping the

timers, making the
Start button visible
again, and adding

the GAME OVER text
to the play area.

The IDE generated these lines as placeholders when you pressed Tab to add the Tick event handlers. You’ll replace them with code that gets run every time the timers tick.

Try changing these
numbers once your
game is finished. How
does that change the
gameplay?

Did the IDE
keep trying
to capitalize
the P in
progressBar?
That’s because
there was no
lowercase-P
progressBar,
and the
closest match
it could
find was the
type of the
control.

38   Appendix ii

so close i can taste it

Make the Start button work
Remember how you made the Start button fire circles into the Canvas? Now
you’ll fix it so it actually starts the game.

 Make the Start button start the game.
Find the code you added earlier to make the Start button add an
enemy. Change it so it looks like this:

1

 Add the StartGame() method.
Generate a method stub for the StartGame() method. Here’s the
code to fill into the stub method that the IDE added:

2

 Make the enemy timer add the enemy.
Find the enemyTimer_Tick() method that the IDE added for
you and replace its contents with this:

3

Did you forget to set the names of
the target Rectangle or the human
StackPanel? You can look a few pages
back to make sure you set the right
names for all the controls.

When you change this line, you make the Start button start the game instead of just adding an enemy to the playArea Canvas.

Ready Bake
Code

We’re giving you a lot of code to
type in.

By the end of the book, you’ll know
what all this code does—in fact, you’ll
be able to write code just like it on
your own.

For now, your job is to make sure
you enter each line accurately and to
follow the instructions exactly. This
will get you used to entering code and
will help give you a feel for the ins
and outs of the IDE.

If you get stuck, you can download
working versions of MainWindow.xaml
and MainWindow.Xaml.cs or copy
and paste XAML or C# code for each
individual method:
http://www.headfirstlabs.com/hfcsharp.

One more thing... if you download
code for this project (or anything
else in this appendix), make sure you
get it from the WPF folder! If you
try to use Windows Store code with
your WPF project, it won't work.

Once you’re used to working with code, you’ll be good at spotting those missing parentheses, semicolons, etc.

Are you seeing errors in the Error List window that don’t make sense?
One misplaced comma or semicolon can cause two, three, four, or
more errors to show up. Don’t waste your time trying to track down
every typo! Just go to the Head First Labs web page—we made it
really easy for you to copy and paste all the code in this program.

There’s also a link to the Head First C# forum, which you can check
for tips to get this game working!

http://www.headfirstlabs.com/hfcsharp/

You’ll learn about
IsHitTestVisible in
Chapter 15.

you are here 4   39

windows presentation foundation

What do you think you’ll need to do to get the rest
of your game working?

Alert! Our
spies have reported
that the humans are
building up their

defenses!When you press the “Start!” button,
it disappears, clears the enemies, and
starts the progress bar filling up.

When the progress bar at the bottom fills up, the game ends and the Game Over text is displayed.

The play area slowly starts to fill up
with bouncing enemies.

Flip the page to find out!

Run the program to see your progress
Your game is coming along. Run it again to see how it’s shaping up.

The target timer should fill up slowly, and the enemies should appear every two seconds. If the timing is off, make sure you added all the lines to the MainWindow() method.

40   Appendix ii

in any event...

Go to the XAML designer and use the Document Outline window to select human
(remember, it’s the StackPanel that contains a Circle and a Rectangle). Then go to the
Properties window and press the button to switch it to show event handlers. Find
the MouseDown row and double-click in the empty box.

Now go back and check out what the IDE added to your XAML for the StackPanel:

It also generated a method stub for you. Right-click on human_MouseDown in the
XAML and choose “Navigate to Event Handler” to jump straight to the C# code:

1

Fill in the C# code:2

Add code to make your controls
interact with the player
You’ve got a human that the player needs to drag to the target, and a
target that has to sense when the human’s been dragged to it. It’s time
to add code to make those things work. You’ll learn more

about the event
handlers in the
Properties window
in Chapter 4.

Double-click in this box.

If you go back to the designer and
click on the StackPanel again, you’ll
see that the IDE filled in the name
of the new event handler method.
You’ll be adding more event handler
methods the same way.

You can use these
buttons to switch
between showing
properties and
event handlers
in the Properties
window.

Make sure you switch back
to the IDE and stop the
app before you make more
changes to the code.

you are here 4   41

windows presentation foundation

Use the Document Outline window to select the Rectangle named target,
and then use the event handlers view of the Properties window to add a
MouseEnter event handler. Here’s the code for the method:

3

Make sure you add the right event handler! You added a MouseDown event handler to the human, but now you’re adding a MouseEnter event handler to the target.

Now you’ll add two more event handlers, this time to the playArea Canvas control. You’ll need to
find the [Grid] in the Document Outline, select it, and set its name to grid. Then you can add
these methods to handle the MouseMove and MouseLeave event handlers for the Canvas:

4

You’ll need to switch your Properties window back
to show properties instead of event handlers.

That’s a lot of parentheses!
Be really careful and get
them right.

These two vertical
bars are a logical
operator. You’ll
learn about them
in Chapter 2.

Make sure you put the right code
in the correct event handler!
Don’t accidentally swap them.

You can make the
game more or

less sensitive by
changing these
3s to a lower or
higher number.

When the Properties
window is in the mode
where it displays event

handlers, double-
clicking on an empty

event handler box
causes the IDE to add

a method stub for it.

42   Appendix ii

you can’t save them all

Dragging humans onto enemies ends the game
When the player drags the human into an enemy, the game should end. Let’s add the code to do that.
Go to your AddEnemy() method and add one more line of code to the end. Use the IntelliSense
window to fill in enemy.PointerEntered from the list:

Choose MouseEnter from the list. (If you choose the wrong one, don’t worry—just backspace over it
to delete everything past the dot. Then enter the dot again to bring up the IntelliSense window.)

Next, add an event handler, just like you did before. Type += and then press Tab:

Then press Tab again to generate the stub for your event handler:

Now you can go to the new method that the IDE generated for you and fill in the code:

Here’s the last line of your
AddEnemy() method. Put your
cursor at the end of the line
and hit Enter to add the
new line of code.

Start typing this line of
code. As soon as you enter
the dot, an IntelliSense
window will pop up. Keep
typing “Enter” to jump
down to the right entry
in the list.

You’ll learn all about
how event handlers like
this work in Chapter 15.

you are here 4   43

windows presentation foundation

Your game is now playable
Run your game—it’s almost done! When you click the Start button, your play
area is cleared of any enemies, and only the human and target remain. You
have to get the human to the target before the progress bar fills up. Simple at
first, but it gets harder as the screen fills with dangerous alien enemies!

Drag the human to safety!

...but drag too fast, and you’ll lose your human!

Get him to the target before time’s up...

The aliens spend their
time patrolling for moving humans, so the game ends only if you drag a human onto an enemy. Once you
release the human, he’s
temporarily safe from aliens.

Look through the code and find where you set the IsHitTestVisible property on the human. When it’s on, the human intercepts the PointerEntered event because the human’s StackPanel control is sitting between the enemy and the pointer.

44   Appendix ii

 Drag one more Ellipse control out of the toolbox on top of the existing ellipse. Change its fill to
Black, set its width to 25, and set its height to 35. Set the alignment and margins like this:

and add a skew like this:

4

bells whistles aliens

Make your enemies look like aliens
Red circles aren’t exactly menacing. Luckily, you used a template.
All you need to do is update it.

Now your enemies
look a lot more like
human-eating aliens.

 Go to the Document Outline, right-click on the ContentControl,
choose Edit Template, and then Edit Current to edit the template.
You’ll see the template in the XAML window. Edit the XAML
code for the ellipse to set the width to 75 and the fill to Gray.
Then add to add a black outline. Here’s what
it should look like (you can delete any additional properties that
may have inadvertently been added while you worked on it):

1

 Drag another Ellipse control out of the toolbox on top of the existing ellipse. Change its Fill to
black, set its width to 25, and its height to 35. Set the alignment and margins like this:

2

 Use the button in the Transforms section of the Properties window to add a Skew transform:3

	 Seeing events
instead of
properties?

You can toggle the
Properties window

between displaying properties or
events for the selected
control by clicking the
wrench or lightning bolt icons.

You can also “eyeball” it (excuse the pun) by using
the mouse or arrow keys to drag the ellipse into
place. Try using Copy and Paste in the Edit menu to
copy the ellipse and paste another one on top of it.

you are here 4   45

windows presentation foundation

Here’s the final XAML for the updated enemy ControlTemplate
you created:

There’s just One more thing you need to do...

Play your game!

And don’t forget to step back and really
appreciate what you built. Good job!

See if you can get creative and change the way the human, target, play area, and enemies look.

46   Appendix ii

Chapter 2

Start diving into code with WPF projects.

The second chapter gets you started writing C# code, and most
of the chapter is focused around building Windows Store apps.

We recommend that you do the following:

≥≥ Read Chapter 2 in the main part of the book through
page 68.

≥≥ We provide a replacement for page 69 in this appendix.
After that, you can read pages 70, 71, and 72 in the book.

≥≥ Then there are replacements for pages 73 and 74, where
you build a program from scratch. You can follow the
rest of the project in the book.

≥≥ The book will work just fine for you through page 82.

≥≥ There’s an exercise on page 83, and its solution is on page
85. We provide replacements for those pages in this PDF.

Once you finish that exercise, the chapter no longer requires any
Windows Store apps or Windows 8. You’ll be able to continue
on in the book through Chapter 9, and you can do the first and
second labs.

The first few projects
in Chapter 2 use XAML and

Windows Store apps. We’ve got
replacements for them.

you are here 4   69

windows presentation foundation

Debug this!

Flip back to page 70 in the book and keep going!

When you set a breakpoint on a line of code, the line turns red and a red dot appears in the margin of the code editor.

When you debug your code by running it inside the IDE, as soon as your program hits a breakpoint it’ll pause and let you inspect and change the values of all the variables.

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

Use the debugger to see your variables change

Create a new WPF APPLICATION project.
Drag a TextBlock onto your page and give it the name output. Then add a button and double-click it
to add a method called Button_Click(). The IDE will automatically open that method in the code
editor. Enter all the code on the previous page into the method.

1

Insert a breakpoint on the first line of code.
Right-click on the first line of code (int number = 15;) and choose Insert Breakpoint from the
Breakpoint menu. (You can also click on it and choose Debug→Toggle Breakpoint or press F9.)

2

Creating a new
WPF Application

project will tell the
IDE to create a

new project with a
blank window. You

might want to name
it something like

UseTheDebugger
(to match the header
of this page). You’ll
be building a whole

lot of programs
throughout the book,

and you may want
to go back to them

later.

Comments (which
either start with two
or more slashes or are
surrounded by /* and
*/ marks) show up
in the IDE as green
text. You don’t have
to worry about what
you type in between
those marks, because
comments are always
ignored by the compiler.

72   Appendix ii

this page intentionally left blank

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

you are here 4   73

windows presentation foundation

Build an app from the ground up
The real work of any program is in its statements. You’ve already seen how statements fit into a
window. Now let’s really dig into a program so you can understand every line of code. Start by
creating a new Visual C# WPF Application project. Open the main window and use the
IDE to modify it by adding three rows and two columns to the grid, and then adding four button
controls and a TextBlock to the cells. Build this window

You don’t see anything here, but there’s actually a
TextBlock control. It doesn’t have any text, so it’s
invisible. It’s centered and in the bottom row, with
ColumnSpan set to 2 so it spans both columns.

The window has a grid with three rows
and two columns. Each row definition
has its height set to 1*, which gives

it a <RowDefinition/> without any
properties. The column heights work the

same way.

The window has four button
controls, one in each row. Use the
Content property to set their text
to Show a message, If/else, Another

conditional test, and A loop.

Each button is centered in the cell. Use the
Grid.Row and Grid.Column properties to set
the row and column (they default to 0).

The bottom cell has a TextBlock control
named myLabel. Use its Style property

to set the style to BodyTextStyle.

Use the x:Name property to name the buttons
button1, button2, button3, and button4.
Once they’re named, double-click on each of

them to add an event handler method.

When you see these sneakers, it
means that it’s time for you to
come up with code on your own.

If you need to use the Edit Style right-mouse menu to
set this but you’re having trouble selecting the control,
you can right-click on the TextBlock control in the
Document Outline and choose Edit Style from there.

Make sure you choose a sensible name for this project,
because you’ll refer back to it later in the book.

74   Appendix ii

Here’s our solution to the exercise. Does
your solution look similar? Are the line
breaks different, or the properties in a
different order? If so, that’s OK!

Here are the row and
column definitions: three
rows and two columns.

This button is in the second column and
second row, so these properties are set to 1.

When you double-clicked on each
button, the IDE generated a
method with the name of the
button followed by _Click.

Why do you think the left column and top row are given the
number 0, not 1? Why is it OK to leave out the Grid.Row
and Grid.Column properties for the top-left cell?

Here’s the
<Window> and
<Grid> tags that
the IDE generated
for you when you
created the WPF
application.

A lot of programmers don’t use the
IDE to create their XAML—they build
it by hand. If we asked you to type in
the XAML by hand instead of using
the IDE, would you be able to do it?

Try removing the HorizontalAlignment
or VerticalAlignment property from
one of the buttons. It expands to
fill the entire cell horizontally or
vertically if the alignment isn’t set.

windows presentation foundation

you are here 4   83

Time to get some practice using if/else statements. Can you build this program?

Build this window.
It’s got a grid with two rows
and two columns, it’s 150
pixels tall and 450 pixels wide,
and it’s got the window title
Fun with if/else statements.

Add a TextBlock.
It’s almost identical to the one you
added to the bottom of the window
in the last project. This time, name
it labelToChange and set its
Grid.Row property to "1".

Add a button and a checkbox.
You can find the checkbox control in the toolbox,
just below the button control. Set the Button’s name
to changeText and the checkbox’s name to
enableCheckbox. Use the Edit Text right-click
menu option to set the text for both controls (hit
Escape to finish editing the text). Right-click on each
control and choose Reset Layout→All, then make
sure both of them have their VerticalAlignment and
HorizontalAlignment set to Center.

Set the TextBlock to this message if the user clicks the button but the box IS
NOT checked.
Here’s the conditional test to see if the checkbox is checked:

 enableCheckbox.IsChecked == true

If that test is NOT true, then your program should execute two statements:

 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;

If the user clicks the button and the box IS checked, change the TextBlock so it
either shows on the left-hand side or on the right-hand side.

If the label’s Text property is currently equal to "Right" then the program should change the text to
"Left" and set its HorizontalAlignment property to HorizontalAlignment.Left. Otherwise, set
its text to "Right"and its HorizontalAlignment property to HorizontalAlignment.Right. This
should cause the program to flip the label back and forth when the user presses the button—but only if the
checkbox is checked.

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend naming
this one “PracticeUsingIfElse”. It helps to put
programs from a chapter in the same folder.

Hint: you’ll put this
code in the else block.

If you create two rows and set one row’s height to 1* in the IDE, it seems to disappear because it’s collapsed to a tiny size. Just set the other row to 1* and it’ll show up again.

85   Appendix ii

Time to get some practice using if/else statements. Can you build this program?

Here’s the XAML code for the grid:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 IsChecked="true" Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

</Grid>

And here’s the C# code for the button’s event handler method:
private void changeText_Click(object sender, RoutedEventArgs e)
{
 if (enableCheckbox.IsChecked == true)
 {
 if (labelToChange.Text == "Right")
 {
 labelToChange.Text = "Left";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Left;
 }
 else
 {
 labelToChange.Text = "Right";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }
 else
 {
 labelToChange.Text = "Text changing is disabled";
 labelToChange.HorizontalAlignment = HorizontalAlignment.Center;
 }
}

We added line breaks as usual to make it easier to read on the window.

If you double-clicked the button in the designer before you set its name, it may have created a Click event handler method called Button_Click_1() instead of changeText_Click().

You won't use XAML for the next part of the book.
The rest of Chapter 2 doesn't require Windows 8 and can be done
with Visual Studio 2010, or using a Windows operating system as
early as Windows 2003. You won’t need to replace any pages in the
book until you get to Chapter 10. That’s because the next part of
the book uses Windows Forms Application (or WinForms) projects.
These C# projects use an older technology for building desktop
apps. You’ll use WinForms as a teaching and learning tool, just like
you’ve been using the IDE to learn and explore C# and XAML.

Did you say that I won't need either
Windows 8 or WPF until Chapter 10?

Why aren't you using more current
technology?

Sometimes older technologies make great learning tools.

If you want to build a desktop app, WPF is a superior tool for doing it. But
if you want to learn C#, a simpler technology can make it easier to make
concepts stick. And there’s another important reason for using WinForms.
When you see the same thing done in more than one way, you learn a lot from
seeing what they have in common, and also what’s different between them—
like on page 88, when you rebuild the WPF you just built using WinForms.
We’ll get back to XAML in Chapter 10, and by that time you’ll have laid down
a solid foundation that will make it much easier for those WPF concepts to stick.

	 Some chapters use C# features introduced in .NET 4.0 that
are not supported by Visual Studio 2008.

If you’re using Visual Studio 2008, you may run into a few problems once
you reach the end of Chapter 3. That’s because the latest version of the

.NET Framework available in 2008 was 3.5. And that’s a problem, because the book
uses features of C# that were only introduced in .NET 4.0. In Chapter 3 we’ll teach you
about object initializers, and in Chapter 8 you’ll learn about collection initializers
and covariance—and if you’re using Visual Studio 2008, the code for those examples
won’t compile because in 2008 those things hadn’t been added to C# yet! If you
absolutely can’t install a newer version of Visual Studio, you’ll still be able to do almost
all the exercises, but you won’t be able to use these features of C#.

Have a look at page 87,
which explains why switching
to WinForms is a good tool
for getting C# concepts
into your brain.

This applies to WPF, too! Building
these WinForms projects will
help get core C# concepts into
your brain faster, and that's the
quickest route to learning WPF.

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

windows presentation foundation

Chapter 10

In this chapter, you'll

dive into WPF development

by redesigning some familiar

programs as WPF apps.

You can port your WinForms apps to WPF.

If you’ve completed chapters 3–9 and finished all the exercises
and labs so far, then you’ve written a lot of code. In
this chapter, you’ll revisit some of that code and use it as a
springboard for learning WPF.

Here’s how we recommend that you work through Chapter 10:

≥≥ We recommend that you follow the chapter in the main
part of the book through page 497. This includes doing
everything on page 489, the “Sharpen your Pencil”
exercises, and the “Do this!” exploration project on
page 497.

≥≥ This appendix has replacement pages for pages
498–505, so use those instead.

≥≥ Page 506 applies only to Windows Store projects,
so you can read it but it won’t help you with WPF.

≥≥ After that, use pages 509–511 from this appendix.

≥≥ Finally, read pages 514 and 515 in the book. Once
you’ve read them, you can replace the rest of the
chapter (pages 516–533) with pages in this appendix.

498   Appendix ii

2 Now have another look at the XAML that defines the page:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Button x:Name="changeText" Content="Change the label if checked"
 HorizontalAlignment="Center" Click="changeText_Click"/>

 <CheckBox x:Name="enableCheckbox" Content="Enable label changing"
 HorizontalAlignment="Center" IsChecked="true"
 Grid.Column="1"/>

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>
</Grid>

let’s explore xaml

WPF applicat ions use XAML to create UI objects
When you use XAML to build the user interface for a WPF application, you’re building out an
object graph. And just like with WinForms, you can explore it with IDE’s Watch window. Open
the “fun with if-else statements” program from Chapter 2. Then open MainWindow.
xaml.cs, place a breakpoint in the constructor on the call to InitializeComponent(), and
use the IDE to explore the app’s UI objects.

The XAML
that defines
the controls
on a page
is turned
into a Page
object with
fields and
properties
that contain
references to
UI controls.

labelToChange is an instance of TextBlock

Do this!

1 Start debugging, then press F10 to step over the method. Open a Watch window using the Debug
menu. Start by choosing Debug→Windows→Watch→Watch 1, and add a watch for this:

you are here 4   499

windows presentation foundation

3 Add some of the labelToChange properties to the Watch window:

The app automatically sets the properties based on your XAML:

 <TextBlock x:Name="labelToChange" Grid.Row="1" TextWrapping="Wrap"
 Text="Press the button to set my text"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 Grid.ColumnSpan="2"/>

But try putting labelToChange.Grid or labelToChange.ColumnSpan into the Watch window.
The control is a Windows.UI.Controls.TextBlock object, and that object doesn’t have those
properties. Can you guess what’s going on with those XAML properties?

4 Stop your program, open MainWindow.xaml.cs, and find the class declaration for MainWindow. Take a look
at the declaration—it’s a subclass of Window. Hover over Window so the IDE shows you its full class name:

Now start your program again and press F10 to step over the call to InitializeComponent(). Go back to
the Watch window and expand this >> base >> base to traverse back up the inheritance hierarchy.

Take a little time and explore the objects that your XAML generated. We’ll dig into some of these objects later
on in the book. For now, just poke around and get a sense of how many objects are behind your app.

Expand these to see the
superclasses. Expand Content and explore its [System.Windows.Controls.Grid] node.

Hover over Window
to see its class.

500   Appendix ii

old becomes new

Redesign the Go Fish! form as a WPF applicat ion
The Go Fish! game that you built in Chapter 8 would make a great WPF application. Open Visual Studio
and create a new WPF Application project (just like you did for Save the Humans). Over the next few
pages, you’ll redesign it in XAML, with a main window that adjusts its content as it’s resized. Instead of using
Windows Forms controls on a form, you’ll use WPF XAML controls.

This becomes a
<ScrollViewer/>

This becomes a
<ScrollViewer/>

This becomes a
<TextBox/>

This becomes a
<Button/>

This becomes a
<Button/>

This becomes a
<ListBox/>

We’ll use a horizontal StackPanel
to group the TextBox and
Button controls so they can go
into the same cell in the grid.

This is another control in the toolbox.
It displays a string of text, adding
vertical and/or horizontal scrollbars
if the text grows larger than the
window control.

Do this!

you are here 4   501

windows presentation foundation

<TextBox/> <Button/>

<ListBox/>

<ScrollViewer/>

<ScrollViewer/> <Button/>

The controls will be contained in a grid, with rows and columns that expand or contract based on
the size of the window. This will allow the game to shrink or grow if the user resizes the window:

Here’s how those controls will look on the app’s main window:

Most of the
code to manage
the gameplay will
remain the same,
but the UI code
will change.

The game will
be playable no
matter what
the window
dimensions are.

502   Appendix ii

now that’s a page

<Window x:Class="GoFish.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Go Fish!" Height="500" Width="525" Background="Gray">

 <Grid Margin="10" >

 <TextBlock Text="Your Name" />

 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="12" Width="150" />

 <Button x:Name="startButton" Margin="5,0"
 Content="Start the game!"/>
 </StackPanel>

If the window is made very tall, this ScrollViewer
should grow to fill up the extra vertical space. It
should display scrollbars if the text gets too big.

This ListBox
should also grow to
fill up the extra
vertical space if
the window is made
taller.This ScrollViewer needs to be tall

enough to show various books that have
been discovered, and it should also
display scrollbars if needed.

2

Page layout starts with controls
WPF apps and WinForms have one thing in common: they both rely on controls to lay out your page. The Go Fish!
page has two buttons, a ListBox to show the hand, a TextBox for the user to enter the name, and four TextBlock labels.
It also has two ScrollViewer controls with a white background to display the game progress and books.

The XAML for the main window starts with an opening <Window> tag. The title property sets the title of the
window to “Go Fish!” Setting the Height and Width property changes the window size—and you’ll see the size change
in the designer as soon as you change those properties. Use the Background property to give it a gray background.

Here’s the updated <Window> opening tag. We named our project GoFish—if you use a different name, the first
line will have that name in its x:Class property.

1

3

4

5

6

1

2

We’ll use a StackPanel to put the TextBox for the player’s name and the Start button in one cell:

The window title
and starting width
and height are set
using properties in
the <Window> tag.

This Margin property sets the
left and right margins for the
button to 5, and the top and
bottom margins to 0. We could
also have set it to 5,0,0,0 to
set just the left margin and
left the right margin zero.

you are here 4   503

windows presentation foundation

We’ll finish this grid on the next page

 <TextBlock Text="Game progress" Grid.Row="2"
 Margin="0,10,0,0"/>

 <ScrollViewer Grid.Row="3" FontSize="12"
 Background="White" Foreground="Black" />

 <TextBlock Text="Books"
 Margin="0,10,0,0" Grid.Row="4"/>

 <ScrollViewer FontSize="12" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2" />

 <TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />

 <ListBox x:Name="cards" Background="White" FontSize="12"
 Height="Auto" Margin="0,0,0,10"
 Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"/>

 <Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"/>

4

5

6

Each label on the page (“Your name,” “Game progress,” etc.) is a TextBlock. Use the Margin
property to add a 10-pixel margin above the label:

A ScrollViewer control displays the game progress, with scrollbars
that appear if the text is too big for the window:

Here’s another TextBlock and ScrollViewer to display the books. The default vertical and
horizontal alignment for the ScrollViewer is Stretch, and that’s going to be really useful.
We’ll set up the rows and columns so the ScrollViewer controls expand to fit any screen size.

We used a small 40-pixel column to add space, so the ListBox and Button controls need to
go in the third column. The ListBox spans rows 2–6, so we gave it Grid.Row="1" and
Grid.RowSpan="5"—this will also let the ListBox grow to fill the page.

Remember, rows and
columns start at zero, so a
control in the third column
has Grid.Column=“2”.

The “Ask for a card” button has its horizontal and vertical alignment set to Stretch so
that it fills up the cell. The 20-pixel margin at the bottom of the ListBox adds a small gap.

3

504   Appendix ii

it grows, it shrinks—it’s all good

<TextBlock/> <TextBlock
Grid.Column= "2"/>

<StackPanel Grid.Row="1">
 <TextBlock/>
 <Button/>
</StackPanel>

<ListBox
Grid.Column="2"
Grid.RowSpan="5"/>

<TextBlock Grid.Row="2"/>

<ScrollViewer
 Grid.Row="3"/>

<TextBlock Grid.Row="4"/>

<ScrollViewer Grid.Row="5" Grid.RowSpan="2">

<Button
Grid.Row="6"
Grid.Column="2" />

<ColumnDefinition Width="5*"/> <ColumnDefinition Width="2*"/>

<ColumnDefinition Width="40"/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"/>

<RowDefinition/>

<RowDefinition
Height="Auto"/>

<RowDefinition
Height="Auto"

MinHeight="150"/>

<RowDefinition
Height="Auto"/>

XAML row and column numbering start at 0, so this button’s row is 6 and its column is 2 (to skip the
middle column). Its vertical and horizontal alignment are set to Stretch so the button takes up the entire
cell. The row has a height of Auto, so its height is based on the contents (the button plus its margin).

This ListBox spans
five rows, including the
fourth row—which will
grow to fill any free
space. This makes the
ListBox expand to fill
up the entire right-
hand side of the page.

This row is set to the default height of 1*,
and the ScrollViewer in it is set to the default
vertical and horizontal alignment of “Stretch”
so it grows or shrinks to fill up the page.

This ScrollViewer has a row span of “2” to span
these two rows. We gave the sixth row (which is
row number 5 in XAML because numbering starts
at 0) a minimum height of 150 to make sure the
ScrollViewer doesn’t get any smaller than that.

Rows and columns can resize to match the page size
Grids are very effective tools for laying out windows because they help you design pages that can be displayed on
many different devices. Heights or widths that end in * adjust automatically to different screen geometries. The
Go Fish! window has three columns. The first and third have widths of 5* and 2*, so they will grow or shrink
proportionally and always keep a 5:2 ratio. The second column has a fixed width of 40 pixels to keep them
separated. Here’s how the rows and columns for the window are laid out (including the controls that live inside them):

Row=“1” means the second row,
because row numbers start at 0.

<RowDefinition
Height="Auto"/>

you are here 4   505

windows presentation foundation

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 </Grid>

</Window>

The first column will always
be 2.5 times as wide as

the third (a 5:2 ratio), with
a 40-pixel column to add

space between them. The
ScrollViewer and ListBox
controls that display data
have HorizontalAlignment
set to “Stretch” to fill up

the columns.

Here’s how the row and column definitions make the window layout work:

Here’s the closing tag for the grid,
followed by the closing tab for the
window. You’ll bring this all together at
the end of the chapter when you finish
porting the Go Fish! game to a WPF app.

The fourth row has the default height of 1*
to make it grow or shrink to fill up any space

that isn’t taken up by the other rows. The
ListBox and first ScrollViewer span this row,

so they will grow and shrink, too.

Almost all the row heights are set to
Auto. There’s only one row that will
grow or shrink, and any control that

spans this row will also grow or shrink.

You can add the row and column
definitions above or below the controls in
the grid. We added them below this time.

508   Appendix ii

those programs look familiar

Use a Border control to draw a border around ScrollViewers.

If you look in the Properties window or look at the IntelliSense window, you’ll see that the ScrollViewer control has
BorderBrush and BorderThickness properties. This is a little misleading, because these properties don’t actually
do anything. ScrollViewer is a subclass of ContentControl, and it inherits those properties from ContentControl but
doesn’t actually do anything with them.

Luckily, there’s an easy way to draw a border around a ScrollViewer, or any other control, by using a Border control.
Here’s XAML code that you can use in the Breakfast for Lumberjacks window:

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify
each page by updating or replacing the grid and adding controls. You don’t need
to get them working. Just create the XAML so they match the screenshots.

The Border control can contain one other control. If you want to put more than one control inside it, use a StackPanel, Grid, Canvas, or other container.

Use the BorderThickness and
BorderBrush properties to set the
thickness and color of the border. You
can also add a background, round the
corners, and make other visual changes.

you are here 4   509

windows presentation foundation

you are here 4   509

This button is right-
aligned with FontSize
set to 18 and 20 pixel
top and right margin.

<StackPanel Margin=“5”>
<TextBlock/>

<StackPanel Orientation=“Horizontal”>

<StackPanel>
 <TextBlock/>
 <ComboBox>
 <ComboBoxItem/>
 <ComboBoxItem/>
 ... 4 more ...
 </ComboBox>
</StackPanel>

<StackPanel>
 <TextBlock/>
 <TextBox/>
</StackPanel>

<Button/>

<Button/>
<TextBlock/>
<ScrollViewer/>
</StackPanel>

This is a <ComboBox>, and its items are <ComboBoxItem/> tags with the Content property set to the item name.

Set the ComboBox control’s
SelectedIndex property to 0
so it displays the first item.

Use StackPanels to design this window. Its height is set to 300, its width is 525, and its ResizeMode property is set
to NoResize. It uses two <Border> controls, one to draw a border around the top StackPanel and one to draw a
border around the ScrollViewer.

Use the Content property to add text to this
ScrollViewer.  will add line breaks. Give it
a 2-pixel white border using BorderThickness
and BorderBrush, and a height of 250.

Use a Grid to design this form. It has seven rows with height
set to Auto so they expand to fit their contents, and one with the
default height (which is the same as 1*) so that row expands with
the grid. Use StackPanels to put multiple controls in the same
row. Each TextBlock has a 5-pixel margin below it, and the bottom
two TextBlocks each have a 10-pixel margin above them. Use the
<Window> properties

This is a ListBox. It uses <ListBoxItem/>
tags the same way the ComboBox
uses <ComboBoxItem/> tags. Set its
VerticalAlignment to Stretch so when its
row grows and shrinks, the ListBox does too.

<Grid Grid.Row=“1” Margin=“5”>

<TextBlock/>

<TextBox/>

<TextBlock/>

<ListBox VerticalAlignment=“Stretch”>
 <ListBoxitem/>
 <ListBoxitem/>
 ... 4 more ...
</ListBox>

<TextBlock>

<StackPanel Orientation=“Horizontal”>
 <TextBox/>
 <ComboBox> ... 4 items ... </ComboBox>
 <Button/>
</StackPanel>

<ScrollViewer/>

<StackPanel Orientation=“Horizontal”>
 <Button/>
 <Button/>
</StackPanel>

Get your pages to look just like these screenshots by adding
dummy data to the controls that would normally be filled in using
the methods and properties in your classes.

Set this row to the default
height 1* and make all the
other row heights “Auto” so
this row grows and shrinks
when the window is resized.

Use these <Window> properties to set the initial
and minimum size for the window, then resize the
window to make sure they work: Height=“400"
MinHeight=“350" Width=“525" MinWidth=“300"

Set the window's
ResizeMode to
“CanResizeWithGrip" to
display this sizing grip.

510   Appendix ii

A

<Window x:Class="BeehiveManagementSystem.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Beehive Management System"
 Height="300" Width="525"
 ResizeMode="NoResize">

 <StackPanel Margin="5">
 <TextBlock Text="Worker Bee Assignments" Margin="0,0,0,5" />
 <Border BorderThickness="1" BorderBrush="Black">
 <StackPanel Orientation="Horizontal" Margin="5">
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Job"/>
 <ComboBox SelectedIndex="0" >
 <ComboBoxItem Content="Baby bee tutoring"/>
 <ComboBoxItem Content="Egg care"/>
 <ComboBoxItem Content="Hive maintenance"/>
 <ComboBoxItem Content="Honey manufacturing"/>
 <ComboBoxItem Content="Nectar collector"/>
 <ComboBoxItem Content="Sting patrol"/>
 </ComboBox>
 </StackPanel>
 <StackPanel>
 <TextBlock Text="Shifts" />
 <TextBox/>
 </StackPanel>
 <Button Content="Assign this job to a bee"
 VerticalAlignment="Bottom" Margin="10,0,0,0" />
 </StackPanel>
 </Border>

 <Button Content="Work the next shift" Margin="0,20,20,0"
 FontSize="18"
 HorizontalAlignment="Right" />

 <TextBlock Text="Shift report" Margin="0,10,0,5"/>
 <Border BorderBrush="Black" BorderThickness="1" Height="100">
 <ScrollViewer
 Content="
Report for shift #20
Worker #1 will be done with 'Nectar collector' after this shift
Worker #2 finished the job
Worker #2 is not working
Worker #3 is doing 'Sting patrol' for 3 more shifts
Worker #4 is doing 'Baby bee tutoring' for 6 more shifts
 "/>
 </Border>
 </StackPanel>
</Window>

Here’s the dummy data we used
to populate the shift report.
The Content property ignores
line breaks—we added them to
make the solution easier to read.

This Border control
draws a border around
the ScrollViewer.

Here’s the margin we gave you. Specifying
just one number (5) sets the top, left,
bottom, and right margins to the same value.

Does your XAML code look
different from ours? There
are many ways to display

very similar (or even
identical) pages in XAML.

And don’t forget that XAML
is very flexible about tag
order. You can put many

of these tags in a different
order and still create the

same object graph for
your window.

Use XAML to redesign each of these Windows desktop forms as WPF
applications. Create a new WPF Application project for each of them, and modify
each page by updating or replacing the grid and adding controls. You don’t need
to get them working. Just create the XAML so they match the screenshots.

you are here 4   511

windows presentation foundation
A <Window x:Class="BreakfastForLumberjacks.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Breakfast for Lumberjacks"
 Width="525" Height="400"
 MinWidth="300" MinHeight="350"
 ResizeMode="CanResizeWithGrip" >

 <Grid Grid.Row="1" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <TextBlock Text="Lumberjack name" Margin="0,0,0,5" />
 <TextBox Grid.Row="1"/>

 <TextBlock Grid.Row="2" Text="Breakfast line" Margin="0,10,0,5" />
 <ListBox Grid.Row="3" VerticalAlignment="Stretch">
 <ListBoxItem Content="1. Ed"/>
 <ListBoxItem Content="2. Billy"/>
 <ListBoxItem Content="3. Jones"/>
 <ListBoxItem Content="4. Fred"/>
 <ListBoxItem Content="5. Johansen"/>
 <ListBoxItem Content="6. Bobby, Jr."/>
 </ListBox>

 <TextBlock Grid.Row="4" Text="Feed a lumberjack" Margin="0,10,0,5" />
 <StackPanel Grid.Row="5" Orientation="Horizontal">
 <TextBox Text="2" Margin="0,0,10,0" Width="30"/>
 <ComboBox SelectedIndex="0" Margin="0,0,10,0">
 <ComboBoxItem Content="Crispy"/>
 <ComboBoxItem Content="Soggy"/>
 <ComboBoxItem Content="Browned"/>
 <ComboBoxItem Content="Banana"/>
 </ComboBox>
 <Button Content="Add flapjacks" />
 </StackPanel>

 <Border BorderThickness="1" BorderBrush="Gray" Grid.Row="6" Margin="0,5,0,0">
 <ScrollViewer Content="Ed has 7 flapjacks"
 BorderThickness="2" BorderBrush="White"
 MinHeight="50"/>
 </Border>

 <StackPanel Grid.Row="7" Orientation="Horizontal" Margin="0,10,0,0">
 <Button Content="Add Lumberjack" Margin="0,0,10,0" />
 <Button Content="Next Lumberjack" />
 </StackPanel>

 </Grid>
</Window>

Just to be 100% clear, we asked you to add these dummy items as part of the exercise, to make the form look like it’s being used. You’re about to learn how to bind controls like this ListBox to properties in your classes.

More dummy content...

You can set the ResizeMode
property to NoResize to prevent all
resizing, CanMinimize to allow only
minimizing, CanResize to allow all
resizing, or CanResizeWithGrip to
display a sizing grip in the lower
right-hand corner of the window.

Here are the Window properties that set
the initial window size to 525x400, and
set a minimum size of 300x350.

516   Appendix ii

MenuMaker
NumberOfItems
Menu
GeneratedDate

UpdateMenu()

sloppy joe meets windows store

Use data binding to build Sloppy Joe a bet ter menu
Remember Sloppy Joe from Chapter 4? Well, he’s heard that you're becoming an XAML pro,
and he wants a WPF app for his sandwich menu. Let’s build him one.

<StackPanel Grid.Row="1" Margin="120,0">

<StackPanel Orientation="Horizontal">

<StackPanel>
 <TextBlock/>
 <TextBox Text="{Binding NumberOfItems,
 Mode=TwoWay"/>
</StackPanel>

 <Button/>
 </StackPanel>

 <ListView ItemsSource="{Binding Menu}"/>
 <TextBlock>
 <Run/>
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>

</StackPanel>

Here’s the window we’re going to build.

It uses one-way data binding to populate a ListView and a Run inside a TextBlock, and it uses
two-way data binding for a TextBox, using one of its <Run> tags to do the actual binding.

We’ll need an object with
properties to bind to.

The Window object will have an
instance of the MenuMaker class,
which has three public properties:
an int called NumberOfItems,
an ObservableCollection
of menu items called Menu,
and a DateTime called
GeneratedDate.

TextBox obje
ct

ListView obje
ct

TextBlock ob
je

ct

you are here 4   517

windows presentation foundation

MenuItem
Meat
Condiment
Bread

override ToString()

Window ob
je

ct
MenuMaker o

bj
ec

t

ObservableCo
lle

ct
io

n

MenuItem ob
je

ct

MenuItem ob
je

ct

MenuItem ob
je

ct MenuItem ob
je

ct

MenuItem ob
je

ct

StackPanel o
bj

ec
tStackPanel o
bj

ec
t

StackPanel o
bj

ec
t

TextBlock ob
je

ct

TextBox obje
ct

Button objec
tListView obje

ct

TextBlock ob
je

ct

Here’s a coding challenge. Based on what you’ve read so far, how much of the new and
improved Sloppy Joe app can you build before you flip the page and see the code for it?

The Window object creates
an instance of MenuMaker and
uses it for the data context.

The constructor for the Page object
will set the StackPanel’s DataContext
property to an instance of MenuMaker.
The binding will all be done in XAML.

MenuItems are simple data
objects, overriding the
ToString() method to set
the text in the ListView.

The TextBox uses two-way
binding to set the number of
menu items.

That means the TextBox doesn’t need
an x:Name property. Since it’s bound
to the NumberOfItems property in
the MenuMaker object, we don’t need
to write any C# code that refers to it.

Menu

GeneratedDate

NumberOfItems

The button tells the MenuMaker to update.

The button calls the MenuMaker’s UpdateMenu()
method, which updates its menu by clearing the
ObservableCollection and then adding new MenuItems
to it. The ListView will automatically update anytime the
ObservableCollection changes.

The two-way binding
for the TextBox
means that it gets
initially populated
with the value in
the NumberOfItems
property, and
then updates that
property whenever
the user edits the
value in the TextBox.

The ListView
and TextBlock
objects are
also bound to
properties in
the MenuMaker
object.

518  

sloppy joe 2: the legend of curly fries

using System.Collections.ObjectModel;

class MenuMaker {
 private Random random = new Random();
 private List<String> meats = new List<String>()
 { "Roast beef", "Salami", "Turkey", "Ham", "Pastrami" };
 private List<String> condiments = new List<String>() { "yellow mustard",
 "brown mustard", "honey mustard", "mayo", "relish", "french dressing" };
 private List<String> breads = new List<String>() { "rye", "white", "wheat",
 "pumpernickel", "italian bread", "a roll" };
 public ObservableCollection<MenuItem> Menu { get; private set; }
 public DateTime GeneratedDate { get; set; }
 public int NumberOfItems { get; set; }
 public MenuMaker() {
 Menu = new ObservableCollection<MenuItem>();
 NumberOfItems = 10;
 UpdateMenu();
 }
 private MenuItem CreateMenuItem() {
 string randomMeat = meats[random.Next(meats.Count)];
 string randomCondiment = condiments[random.Next(condiments.Count)];
 string randomBread = breads[random.Next(breads.Count)];
 return new MenuItem(randomMeat, randomCondiment, randomBread);
 }
 public void UpdateMenu() {
 Menu.Clear();
 for (int i = 0; i < NumberOfItems; i++) {
 Menu.Add(CreateMenuItem());
 }
 GeneratedDate = DateTime.Now;
 }
}

 Add the new and improved MenuMaker class.
You’ve come a long way since Chapter 4. Let’s build a well-encapsulated class that lets you set the number of
items with a property. You’ll create an ObservableCollection of MenuItem in its constructor, which is
updated every time the UpdateMenu() is called. That method will also update a DateTime property called
GeneratedDate with a timestamp for the current menu. Add this MenuMaker class to your project:

2

Use DateTime to work with dates
You’ve already seen the DateTime type that lets you store a date. You can also use it to create and modify dates and times. It has a static property called Now that returns the current time. It also has methods like AddSeconds() for adding and converting seconds, milliseconds, days, etc., and properties like Hour and DayOfWeek to break down the date. How timely!

Take a closer look at how this
works. It never actually creates
a new MenuItem collection. It
updates the current one by
clearing it and adding new items.

What happens if the
NumberOfItems is set
to a negative number?

The new CreateMenuItem() method
returns MenuItem objects, not just
strings. That will make it easier to change
the way items are displayed if we want.

You’ll need this using line because
ObservableCollection<T> is in this namespace.

You’ll use data
binding to display
data from these
properties on
your page. You’ll
also use two-way
binding to update
NumberOfItems.

 Create the project.
Create a new WPF Application project. You’ll keep the default window
size. Set the window title to Welcome to Sloppy Joe’s.

1

Just right-click
on the project
name in the
Solution Explorer
and add a new
class, just like
you did with
other projects.

Do this!

you are here 4   519

windows presentation foundation

class MenuItem {
 public string Meat { get; set; }
 public string Condiment { get; set; }
 public string Bread { get; set; }

 public MenuItem(string meat, string condiment, string bread) {
 Meat = meat;
 Condiment = condiment;
 Bread = bread;
 }

 public override string ToString() {
 return Meat + " with " + Condiment + " on " + Bread;
 }
}

 Add the MenuItem class.
You’ve already seen how you can build more flexible programs if you use classes instead of
strings to store data. Here’s a simple class to hold a menu item—add it to your project, too:

3

The three strings that
make up the item are
passed into the constructor
and held in read-only
automatic properties.

Override the
ToString() method so the MenuItem knows how to display itself.

 Build the XAML page.
Here’s the screenshot. Can you build it using StackPanels? The TextBox
has a width of 100. The bottom TextBlock has the style BodyTextStyle,
and it has two <Run> tags (the second one just holds the date).

4 Don’t add dummy data
this time. We’ll let data
binding do that for us.

Can you build this page on your own just from the screenshot before you see the XAML?

This is a ListView control. It’s a lot like
the ListBox control—in fact, it inherits
from the same base class as ListBox, so it
has the same item selection functionality.
But the ListView gives you much more
flexibility to customize the way your items
are displayed by letting you specify a data
template for each item. You'll learn more
about that later in the chapter.

520   Appendix ii

<StackPanel Margin="5" x:Name="pageLayoutStackPanel">
 <StackPanel Orientation="Horizontal" Margin="0,0,0,10">
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Number of items" Margin="0,0,0,5" />
 <TextBox Width="100" HorizontalAlignment="Left"
 Text="{Binding NumberOfItems, Mode=TwoWay}" />
 </StackPanel>
 <Button x:Name="newMenu" VerticalAlignment="Bottom"
 Click="newMenu_Click" Content="Make a new menu"/>
 </StackPanel>
 <ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0" />
 <TextBlock>
 <Run Text="This menu was generated on " />
 <Run Text="{Binding GeneratedDate}"/>
 </TextBlock>
</StackPanel>

bound and determined

 Add object names and data binding to the XAML.
Here’s the XAML that gets added to MainWindow.xaml. We used a StackPanel to lay it out, so you
can replace the opening <Grid> and closing </Grid> tags with the XAML below. We named the
button newMenu. Since we used data binding of the ListView, TextBlock, and TextBox, we didn’t need
to give them names. (Here’s a shortcut. We didn’t even really need to name the button; we did it just to get the IDE to
automatically add an event handler named newMenu_Click when we double-clicked it in the IDE. Try it out!)

5

 Add the code-behind for the page to MainWindow.xaml.cs.
The page constructor creates the menu collection and the MenuMaker instance and sets the
data contexts for the controls that use data binding. It also needs a MenuMaker field called
menuMaker.

MenuMaker menuMaker = new MenuMaker();

public MainWindow() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
}

You just need to set the data context for the outer StackPanel. It will pass that data context
on to all the controls contained inside it.

Finally, double-click on the button to generate a method stub for its Click event handler.
Here’s the code for it—it just updates the menu:

private void newMenu_Click(object sender, RoutedEventArgs e) {
 menuMaker.UpdateMenu();
}

6

We need two-
way data binding
to both get and
set the number
of items with
the TextBox.

This is where <Run> tags
come in handy. You can have
a single TextBlock but bind
only part of its text.

Your main window’s class in
MainWindow.xaml.cs gets a
MenuMaker field, which is used as
the data context for the StackPanel
that contains all the bound controls.

Here’s that
ListView control.
Try swapping it
out for ListBox
to see how it
changes your
window.

There’s an easy way to rename an event handler so that it updates XAML
and C# code at the same time. Flip to leftover #8 in Appendix I to learn

more about the refactoring tools in the IDE.

you are here 4   521

windows presentation foundation

Now run your program! Try changing the TextBox to different values. Set it to 3, and
it generates a menu with three items:

Now you can play with binding to see just how flexible it is. Try entering “xyz” or
no data at all into the TextBox. Nothing happens! When you enter data into the
TextBox, you’re giving it a string. The TextBox is pretty smart about what it does
with that string. It knows that its binding path is NumberOfItems, so it looks in its
data context to see if there are any properties with that name, and then does its best
to convert the string to whatever that property’s type is.

TextBox obje
ct

My Text
property’s bound to
NumberOfItems. And, look,

my data context has a
NumberOfItems property! Can I
stick this string “3” into that
property? Looks like I can!

TextBox obje
ct

Hmm, my
data context says
NumberOfItems is an int,

and I don’t know how to
convert the string “xyz” to

an int. Guess I won’t do
anything at all.

Keep your eye on the
generated date. It’s not
updating, even though the menu
updates. Hmm, maybe there’s
still something we need to do.

522

put your data in context

Use stat ic resources to declare your objects in XAML
When you build a page with XAML, you’re creating an object graph with objects like StackPanel, Grid, TextBlock,
and Button. And you’ve seen that there’s no magic or mystery to any of that—when you add a <TextBox> tag to
your XAML, then your page object will have a TextBox field with a reference to an instance of TextBox. And if you
give it a name using the x:Name property, your code-behind C# code can use that name to access the TextBox.

You can do exactly the same thing to create instances of almost any class and store them as fields in your page by
adding a static resource to your XAML. And data binding works particularly well with static resources, especially
when you combine it with the visual designer in the IDE. Let’s go back to your program for Sloppy Joe and move the
MenuMaker to a static resource.

Delete the MenuMaker field from the code-behind.
You’re going to be setting up the MenuMaker class and the data context in the
XAML, so delete these lines from your C# code:

MenuMaker menuMaker = new MenuMaker();

public MainWindow() {
 this.InitializeComponent();

 pageLayoutStackPanel.DataContext = menuMaker;
}

1

Add your project's namespace to the XAML.
Look at the top of the XAML code for your window, and you’ll see that the opening tag has a
set of xmlns properties. Each of these properties defines a namespace:

Start adding a new xmlns property:

Here's what you'll end up with:

2

Since we named our app SloppyJoeChapter10,
the IDE created this namespace for us. Find
the namespace that corresponds to your app,
because that’s where your MenuMaker lives.

xmlns:local="using:SloppyJoeChapter10"
This is an XML namespace property. It consists of
“xmlns:” followed by an
identifier, in this case “local”.

When the namespace value starts with
“using:” it refers to one of the namespaces in
the project. It can also start with “http://”
to refer to a standard XAML namespace.

You’ll use this identifier to create
objects in your project’s namespace.

When you use
XAML to add a

static resource to
a Window, you can
access it using its

FindResource()
method.

you are here 4   523

windows presentation foundation

Hmm, something’s not quite right. It updates the menu items when the button is clicked, but the date doesn't change. What’s going on?

Add the static resource to your XAML and set the data context.
Add a <Window.Resources> tag to the top of the XAML (just under the opening tag), and add a closing
</Window.Resources> tag for it. Then type <local: between them to pop up an IntelliSense window:

The window shows all the classes in the namespace that you can use. Choose MenuMaker. Then give it the
resource key menuMaker using the x:Key XAML property:

 <local:MenuMaker x:Key="menuMaker"/>

Now your page has a static MenuMaker resource with the key menuMaker.

3

Set the data context for your StackPanel and all of its children.
Then go to the outermost StackPanel and set its DataContext property:

 <StackPanel Margin="5"
 DataContext="{StaticResource ResourceKey=menuMaker}">

Finally, modify the button’s Click event handler to find the static resource and method to update the menu:

 private void newMenu_Click(object sender, RoutedEventArgs e) {
 MenuMaker menuMaker = FindResource("menuMaker") as MenuMaker;
 menuMaker.UpdateMenu();
 }

Your program will still work, just like before. But did you notice what happened in the IDE when you added the
data context to the XAML? As soon as you added it, the IDE created an instance of MenuMaker and used its
properties to populate all the controls that were bound to it. You got a menu generated immediately, right there
in the designer—before you even ran your program. Neat!

4

The menu shows up in the
designer immediately, even
before you run your program.

You can add static resources only if their classes
have parameterless constructors. This makes sense!
If the constructor has a parameter, how would the

XAML page know what arguments to pass to it?

524   Appendix ii

change your list’s look and feel

Use a data template to display objects
When you show items in a list, you’re showing contents of ListViewItem (which you use for ListViews),
ListBoxItem, or ComboBoxItem controls, which get bound to objects in an ObservableCollection.
Each ListViewItem in the Sloppy Joe menu generator is bound to a MenuItem object in its Menu collection.
The ListViewItem objects call the MenuMaker objects’ ToString() methods by default, but you can use
a data template that uses data binding to display data from the bound object’s properties.

<ListView ItemsSource="{Binding Menu}" Margin="0,0,20,0">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

Modify the <ListView> tag to add a basic data template. It
uses the basic {Binding} to call the item’s ToString().

Leave the ListView tag
intact, but replace /> with >
and add a closing </ListView>
tag at the bottom. Then add
the ListView.ItemTemplate tag
to contain the data template.

Adding a {Binding} without a path
just calls the ToString() method of
the bound object.

This is a really
basic data
template, and it
looks just like the
default one used
to display the
ListViewItems.

Change your data template to add some color to your menu.

Go crazy! The data template can contain any controls you want.

<DataTemplate>
 <TextBlock>
 <Run Text="{Binding Meat}" Foreground="Blue"/><Run Text=" on "/>
 <Run Text="{Binding Bread}" FontWeight="Light"/><Run Text=" with "/>
 <Run Text="{Binding Condiment}" Foreground="Red" FontWeight="ExtraBold"/>
 </TextBlock>
</DataTemplate>

You can bind individual Run tags. You can change
each tag’s color, font, and other properties, too.Replace the

<DataTemplate>,
but leave the
rest of the
ListView intact.

<DataTemplate>
 <StackPanel Orientation="Horizontal">
 <StackPanel>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 <TextBlock Text="{Binding Bread}"/>
 </StackPanel>
 <Ellipse Fill="DarkSlateBlue" Height="Auto" Width="10" Margin="10,0"/>
 <Button Content="{Binding Condiment}" FontFamily="Segoe Script"/>
 </StackPanel>
</DataTemplate>

The DataTemplate object’s
Content property can hold
only one object, so if you
want multiple controls in your
data template, you’ll need a
container like StackPanel.

you are here 4   525

windows presentation foundation

Q:So I can use a StackPanel or a Grid to lay out my page.
I can use XAML static resources, or I can use fields in code-
behind. I can set properties on controls, or I can use data
binding. Why are there so many ways to do the same things?

A: Because C# and XAML are extremely flexible tools for building
apps. That flexibility makes it possible to design very detailed pages
that work on many different devices and displays. This gives you
a very large toolbox that you can use to get your pages just right.
So don’t look at it as a confusing set of choices; look at it as many
different options that you can choose from.

Q:I’m still not clear on how static resources work. What
happens when I add a tag inside <Window.Resources>?

A:When you add that tag, it updates the Window object and adds
static resources. In this case, it created an instance of MenuMaker
and added it to the Window object’s resources. The Window object
contains a dictionary called Resources, and if you use the debugger
to explore the Window object after you add the tag you can find that it
contains an instance of MenuMaker. When you declared the resource,
you used x:Key to assign the resource a key. That allowed you to
use that key to look up your MenuMaker object in the window's
static resources with the FindResource() method.

Q: I used x:Key to set my MenuMaker resource’s key.
But earlier in the chapter, I used x:Name to give names to
my controls. What’s the difference? Why did I have to use
FindResources() to look up the MenuMaker object—couldn't I
give it a name instead?

A: When you add a control to a WPF window, it actually adds a
field to the Window object that’s created by the XAML. When you
use the x:Name property, you give it a name that you can use
in your code. If you don’t give it a name, the control object is still
created as part of the Window object’s graph. However, if you give it
a name, then the XAML object is given a field with that name with
a reference to that control. You can see this in your code by putting a
breakpoint in the button’s event handler and adding newMenu to
the Watch window. You’ll see that it refers to a System.Windows.Controls.
Button object whose Content property is set to “Make a new menu.”

Resources are treated differently: they’re added to a dictionary
in the Window object. The FindResource() method uses the key
specified in the x:Key markup. Set the same breakpoint and try
adding this.Resources["menuMaker"] to the Watch
window. This time, you’ll see a reference to your MenuMaker object,
because you’re looking it up in the Resources dictionary.

Q: Does my binding path have to be a string property?

A: No, you can bind a property of any type. If it can be converted
between the source and property types, then the binding will work.
If not, the data will be ignored. And remember, not all properties
on your controls are text, either. Let’s say you’ve got a bool in your
data context called EnableMyObject. You can bind it to any
Boolean property, like IsEnabled. This will enable or disable the
control based on the value of the EnableMyObject property:

IsEnabled="{Binding EnableMyObject}"

Of course, if you bind it to a text property it’ll just print True or
False (which, if you think about it, makes perfect sense).

Q: Why did the IDE display the data in my form when I added
the static resource and set the data context in XAML, but not
when I did it in C#?

A: Because the IDE understands your XAML, which has all the
information that it needs to create the objects to render your page. As
soon as you added the MenuMaker resource to your XAML code,
the IDE created an instance of MenuMaker. But it couldn’t do that
from the new statement in its constructor, because there could be
many other statements in the constructor, and they would need to be
run. The IDE runs the code-behind C# code only when the program
is executed. But if you add a static resource to the page, the IDE will
create it, just like it creates instances of TextBlock, StackPanel, and
the other controls on your page. It sets the controls’ properties to
show them in the designer, so when you set up the data context and
binding paths, those got set as well, and your menu items showed up
in the IDE’s designer.

The static resources in your
page are instantiated when the
page is first loaded and can be
used at any time by the objects
in the application.

The name “static resource” is a little misleading.
Static resources are definitely created for each
instance; they’re not static fields!

526   Appendix ii

ch-ch-ch changes

INot ifyPropertyChanged le ts bound objects send updates
When the MenuMaker class updates its menu, the ListView that’s bound to it gets updated. But the
MenuMaker updates the GeneratedDate property at the same time. Why doesn’t the TextBlock that’s
bound to it get updated, too? The reason is that every time an ObservableCollection changes, it fires
off an event to tell any bound control that its data has changed. This is just like how a Button control
raises a Click event when it’s clicked, or a Timer raises a Tick event when its interval elapses. Whenever
you add, remove, or delete items from an ObservableCollection, it raises an event.

You can make your data objects notify their target properties and bound controls that data has changed, too.
All you need to do is implement the INotifyPropertyChanged interface, which contains a single
event called PropertyChanged. Just fire off that event whenever a property changes, and watch your
bound controls update themselves automatically.

~
PropertyChanged event

Data object

Source prope
rt

y Target prope
rt

y

Control objec
t

Binding

DATA CONTEXT

The data object fires off
a PropertyChanged event
to notify any control
that it’s bound to that a
property has changed.

	 Collections work almost the same way as data objects.

The ObservableCollection<T> object doesn’t actually implement
INotifyPropertyChanged. Instead, it implements a closely related
interface called INotifyCollectionChanged that fires off a

CollectionChanged event instead of a PropertyChanged event. The control
knows to look for this event because ObservableCollection implements the
INotifyCollectionChanged interface. Setting a ListView’s DataContext to an
INotifyCollectionChanged object will cause it to respond to these events.

The control receives the event and
refreshes its target property by reading
the data from the source property that
it’s bound to.

you are here 4   527

windows presentation foundation

Modify MenuMaker to not ify you when
the GeneratedDate property changes
INotifyPropertyChanged is in the System.ComponentModel
namespace, so start by adding this using statement to the top of the
MenuMaker class file:

using System.ComponentModel;

Update the MenuMaker class to implement INotifyPropertyChanged,
and then use the IDE to automatically implement the interface:

This will be a little different from what you saw in chapters 7 and 8. It won’t add
any methods or properties. Instead, it will add an event:

public event PropertyChangedEventHandler PropertyChanged;

Next, add this OnPropertyChanged() method, which you’ll use to raise the PropertyChanged event.

private void OnPropertyChanged(string propertyName) {

 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;

 if (propertyChangedEvent != null) {

 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));

 }

}

Now all you need to do to notify a bound control that a property is changed is to call OnPropertyChanged()
with the name of the property that’s changing. We want the TextBlock that’s bound to GeneratedDate to refresh
its data every time the menu is updated, so all we need to do is add one line to the end of UpdateMenu():

public void UpdateMenu() {

 Menu.Clear();

 for (int i = 0; i < NumberOfItems; i++) {

 Menu.Add(CreateMenuItem());

 }

 GeneratedDate = DateTime.Now;

 OnPropertyChanged("GeneratedDate");

}

Now the date should change when you generate a menu.

		 This is the first
time you’re
raising events.

 You’ve been
writing event handler methods since
Chapter 1, but this is the first time
you’re firing an event. You’ll learn
all about how this works and what’s
going on in Chapter 15. For now, all
you need to know is that an interface
can include an event, and that your
OnPropertyChanged() method
is following a standard C# pattern for
raising events to other objects.

This is a standard
.NET pattern for
raising events.

	 Don’t forget to implement
INotifyPropertyChanged.

Data binding works only when the
controls implement that interface.

If you leave : INotifyPropertyChanged
out of the class declaration, your bound
controls won’t get updated—even if the data
object fires PropertyChanged events.

528   Appendix ii

go fish goes xaml

Finish porting the Go Fish! game to a WPF application. You’ll need to modify the XAML from earlier in
this chapter to add data binding, copy all the classes and enums from the Go Fish! game in Chapter 8
(or download them from our website), and update the Player and Game classes.

Add the existing class files and change their namespace to match your app.
Add these files to your project from the Chapter 8 Go Fish! code: Values.cs, Suits.cs, Card.cs, Deck.cs,
CardComparer_bySuit.cs, CardComparer_byValue.cs, Game.cs, and Player.cs. You can use the Add Existing
Item option in the Solution Explorer, but you’ll need to change the namespace in each of them to
match your new projects (just like you did with multipart projects earlier in the book).

Try building your project. You should get errors in Game.cs and Player.cs that look like this:

1

Remove all references to WinForms classes and objects; add using lines to Game.
You’re not in the WinForms world anymore, so delete using System.Windows.Forms; from
the top of Game.cs and Player.cs. You’ll also need to remove all mentions of TextBox. You’ll need to
modify the Game class to use INotifyPropertyChanged and ObservableCollection<T>,
so add these using lines to the top of Game.cs:

using System.ComponentModel;
using System.Collections.ObjectModel;

2

Add an instance of Game as a static resource and set up the data context.
Modify your XAML to add an instance of Game as a static resource and use it as the data context for
the grid that contains the Go Fish! page you built earlier in the chapter. Here’s the XAML for the static
resource: <local:Game x:Key="game"/> — and you’re going to need a new constructor because
you can include only resources that have parameterless constructors:

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

3

Add public properties to the Game class for data binding.
Here are the properties you’ll be binding to properties of the controls in the page:

 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

4

Make sure you add the
<Window.Resources>

section to the top of your
XAML, and you’ll also need

to add the xmlns:local
tag, exactly like you did on

pages 522 and 523.

you are here 4   529

windows presentation foundation

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public void AddProgress(string progress)
 {
 GameProgress = progress +
 Environment.NewLine +
 GameProgress;
 OnPropertyChanged("GameProgress");
 }

IsEnabled="{Binding GameInProgress}" IsEnabled="{Binding GameNotStarted}"

Use binding to enable or disable the TextBox, ListBox, and Buttons.
You want the “Your Name” TextBox and the “Start the game!” Button to be enabled only when
the game is not started, and you want the “Your hand” ListBox and “Ask for a card” Button
to be enabled only when the game is in progress. You’ll add code to the Game class to set the
GameInProgress property. Have a look at the GameNotStarted property. Figure out how
it works, and then add the following property bindings to the TextBox, ListBox, and two Buttons:

5

IsEnabled="{Binding GameNotStarted}"IsEnabled="{Binding GameInProgress}"

You’ll need
two of each
of these.

Modify the Player class so it tells the Game to display the game’s progress.
The WinForms version of the Player class takes a TextBox as a parameter for its constructor.
Change that to take a reference to the Game class and store it in a private field. (Look at the
StartGame() method below to see how this new constructor is used when adding players.)
Find the lines that use the TextBox reference and replace them with calls to the Game object’s
AddProgress() method.

6

Modify the Game class.
Change the PlayOneRound() method so that it’s void instead of returning a Boolean, and have it use
the AddProgress() method instead of the TextBox to display progress. If a player won, display that
progress, reset the game, and return. Otherwise, refresh the Hand collection and describe the hands.

You’ll also need to add/update these four methods and figure out what they do and how they work.

7

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

You’ll also need to implement the
INotifyPropertyChanged
interface and add the same
OnPropertyChanged() method
that you used in the MenuMaker class.
The updated methods use it, and your
modified PullOutBooks() method
will also use it.

530   Appendix ii

exercise solution

class Player {
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private Game game;
 public Player(String name, Random random, Game game) {
 this.name = name;
 this.random = random;
 this.game = game;
 this.cards = new Deck(new Card[] { });
 game.AddProgress(name + " has just joined the game");
 }
 public Deck DoYouHaveAny(Values value)
 {
 Deck cardsIHave = cards.PullOutValues(value);
 game.AddProgress(Name + " has " + cardsIHave.Count + " " + Card.Plural(value));
 return cardsIHave;
 }

 public void AskForACard(List<Player> players, int myIndex, Deck stock, Values value) {
 game.AddProgress(Name + " asks if anyone has a " + value);
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 game.AddProgress(Name + " must draw from the stock.");
 cards.Add(stock.Deal());
 }
 }
 // ... the rest of the Player class is the same ...

A

Game game;

public MainWindow() {
 InitializeComponent();
 game = this.FindResource("game") as Game;
}
private void startButton_Click(object sender, RoutedEventArgs e) {
 game.StartGame();
}
 private void askForACard_Click(object sender, RoutedEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}
 private void cards_MouseDoubleClick(object sender, MouseButtonEventArgs e) {
 if (cards.SelectedIndex >= 0)
 game.PlayOneRound(cards.SelectedIndex);
}

These are the changes needed for the Player class:

Here’s all the code-behind that you had to write.

you are here 4   531

windows presentation foundation

<Grid Margin="10" DataContext="{StaticResource ResourceKey=game}">

 <TextBlock Text="Your Name" />
 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBox x:Name="playerName" FontSize="12" Width="150"
 Text="{Binding PlayerName, Mode=TwoWay}"
 IsEnabled="{Binding GameNotStarted}" />
 <Button x:Name="startButton" Margin="5,0" IsEnabled="{Binding GameNotStarted}"
 Content="Start the game!" Click="startButton_Click"/>
 </StackPanel>
 <TextBlock Text="Game progress" Grid.Row="2" Margin="0,10,0,0"/>
 <ScrollViewer Grid.Row="3" FontSize="12" Background="White" Foreground="Black"
 Content="{Binding GameProgress}" />
 <TextBlock Text="Books" Margin="0,10,0,0" Grid.Row="4"/>
 <ScrollViewer FontSize="12" Background="White" Foreground="Black"
 Grid.Row="5" Grid.RowSpan="2"
 Content="{Binding Books}" />
 <TextBlock Text="Your hand" Grid.Row="0" Grid.Column="2" />
 <ListBox x:Name="cards" Background="White" FontSize="12"
 Height="Auto" Margin="0,0,0,10"
 Grid.Row="1" Grid.RowSpan="5" Grid.Column="2"
 ItemsSource="{Binding Hand}" IsEnabled="{Binding GameInProgress}"
 MouseDoubleClick="cards_MouseDoubleClick" />
 <Button x:Name="askForACard" Content="Ask for a card"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Row="6" Grid.Column="2"
 Click="askForACard_Click" IsEnabled="{Binding GameInProgress}" />
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*"/>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" MinHeight="150" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 </Grid>

A These are the changes needed for the XAML:

The data context for the grid is the
Game class, since all of the binding is
to properties on that class.

Here’s the Click event handler
for the Start button.

The Game Progress and
Books ScrollViewers
bind to the Progress
and Books properties.

The IsEnabled property enables
or disables the control. It’s a
Boolean property, so you can
bind it to a Boolean property
to turn the control on or off
based on that property.

The TextBox
has a two-
way binding to
PlayerName.

532   Appendix ii

exercise solution

A

class Game : INotifyPropertyChanged {
 private List<Player> players;
 private Dictionary<Values, Player> books;
 private Deck stock;
 public bool GameInProgress { get; private set; }
 public bool GameNotStarted { get { return !GameInProgress; } }
 public string PlayerName { get; set; }
 public ObservableCollection<string> Hand { get; private set; }
 public string Books { get { return DescribeBooks(); } }
 public string GameProgress { get; private set; }

 public Game() {
 PlayerName = "Ed";
 Hand = new ObservableCollection<string>();
 ResetGame();
 }

 public void AddProgress(string progress) {
 GameProgress = progress + Environment.NewLine + GameProgress;
 OnPropertyChanged("GameProgress");
 }

 public void ClearProgress() {
 GameProgress = String.Empty;
 OnPropertyChanged("GameProgress");
 }

 public void StartGame() {
 ClearProgress();
 GameInProgress = true;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 Random random = new Random();
 players = new List<Player>();
 players.Add(new Player(PlayerName, random, this));
 players.Add(new Player("Bob", random, this));
 players.Add(new Player("Joe", random, this));
 Deal();
 players[0].SortHand();
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 OnPropertyChanged("Books");
 }

using System.ComponentModel;
using System.Collections.ObjectModel;

Here’s the
StartGame() method
we gave you. It clears
the progress, creates
the players, deals
the cards, and then
updates the progress
and books.

You need these lines for
INotifyPropertyChanged
and ObservableCollection.

These properties are
used by the XAML
data binding.

Here’s the new Game constructor.
We create only one collection and
just clear it when the game is
reset. If we created a new object,
the form would lose its reference
to it, and the updates would stop.These methods

make the game
progress data
binding work.
New lines are
added to the
top so the
old activity
scrolls off the
bottom of the
ScrollViewer.

Here’s everything that changed in the Game class, including the code we gave you with the instructions.

Every program you’ve written in
the book so far can be adapted

or rewritten as a WPF application
using XAML. But there are so many

ways to write them, and that’s
especially true when you’re using
XAML! That’s why we gave you so
much of the code for this exercise.

you are here 4   533

windows presentation foundation

A

 public void PlayOneRound(int selectedPlayerCard) {
 Values cardToAskFor = players[0].Peek(selectedPlayerCard).Value;
 for (int i = 0; i < players.Count; i++) {
 if (i == 0)
 players[0].AskForACard(players, 0, stock, cardToAskFor);
 else
 players[i].AskForACard(players, i, stock);
 if (PullOutBooks(players[i])) {
 AddProgress(players[i].Name + " drew a new hand");
 int card = 1;
 while (card <= 5 && stock.Count > 0) {
 players[i].TakeCard(stock.Deal());
 card++;
 }
 }
 OnPropertyChanged("Books");
 players[0].SortHand();
 if (stock.Count == 0) {
 AddProgress("The stock is out of cards. Game over!");
 AddProgress("The winner is... " + GetWinnerName());
 ResetGame();
 return;
 }
 }
 Hand.Clear();
 foreach (String cardName in GetPlayerCardNames())
 Hand.Add(cardName);
 if (!GameInProgress)
 AddProgress(DescribePlayerHands());
 }

 public void ResetGame() {
 GameInProgress = false;
 OnPropertyChanged("GameInProgress");
 OnPropertyChanged("GameNotStarted");
 books = new Dictionary<Values, Player>();
 stock = new Deck();
 Hand.Clear();
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName) {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null) {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 // ... the rest of the Game class is the same ...

This used to return a Boolean value so the form could update its progress. Now it
just needs to call AddProgress, and data binding will take care of the updating for us.

This is the standard
PropertyChanged event
pattern from earlier in
the chapter.

Here are the modifications to
the PlayOneRound() method that
update the progress when the
game is over, or update the hand
and the books if it’s not.

This is the ResetGame() method
from the instructions. It clears
the books, stock, and hand.

The books changed, and the form needs to know about the change so it can refresh its ScrollViewer.

534   Appendix ii

	 Are you getting a strange XAML error about a class not existing in
the namespace? Make sure that ALL your C# code compiles and that
every control's event handler method is declared in the code-behind.

Sometimes you’ll get an error like this when you declare a static resource, even
though you definitely have a class called MyDataClass in the namespace MyWpfApplication:

This is often caused by either an error in the code-behind or a missing event handler for a XAML
control. This can be a little misleading, because the IDE is telling you that there’s an error on the
tag that declares the static resource, when the error is actually somewhere else in the code.

You can reproduce this yourself: create a new WPF project called MyWpfApplication, add a data
class called MyDataClass, add it as a static resource to your page’s <Window.Resources>, and
add a button to your page. Then add Click="Button_Click" to the XAML to add an event
handler for the button, but don’t add the Button_Click() method. When you try to rebuild your
code, you should see the error above. You can make it go away by adding the Button_Click()
method to the code-behind.

Sometimes the error message
becomes a little clearer if you right-click on the project in the Solution
Explorer, click “Unload Project” to
unload it, and then right-click it
again and choose “Reload Project” to load it again. This may cause the
IDE to show you a different error
message that might be more helpful.

you are here 4   535

windows presentation foundation

Chapter 11
Even though a lot of

this chapter works only
with Windows Store apps, you

can still get the core
learning with WPF.

Windows Store was built for asynchronous programming,
but WPF can still use it... but not all the tools are there.

Read through pages 536 and 537 in the main part of the book—see how Brian
is shocked (shocked!) to find that his familiar file classes from Chapter 9 aren’t
there? Well, WPF apps don’t have that problem. That’s a good thing, because it
means you can keep using the file classes and serialization that you’re used to. But
it also means that your WPF apps can’t take advantage of the new asynchronous
file and dialog classes that come with the .NET Framework for Windows Store.

In this appendix, we’ll give you two replacement projects to show you how to
use the async and await keywords and data contract serialization with WPF
apps. Here’s how we recommend that you work through Chapter 11:

≥≥ Pages 538 and 539 have replacements in this appendix. Use the
replacements in place of the book pages.

≥≥ Pages 540–545 are specific to Windows Store apps. Skip them.

≥≥ Read pages 546 and 547 to learn about data contract serialization.

≥≥ Skip pages 548, 549, and 550; they apply only to Windows Store apps.

≥≥ Read page 551 in the book. Then follow the “Do this!” project on the
replacement pages 552–556 in this appendix.

≥≥ The rest of the chapter has you build a Windows Store replacement for
Brian’s excuse manager. The goal of this project is to learn about the
file tools in the Windows.Storage namespace for Windows Store apps.
We don’t have a WPF alternative for this project, because those classes
are specific to Windows Store apps.

538   Appendix ii

don’t keep me waiting

C# programs can use await to be more responsive
What happens when you call MessageBox.Show() from a WinForms program? Everything
stops, and your program freezes until the dialog disappears. That’s literally the most unresponsive
that a program can be! Windows Store apps should always be responsive, even when they’re waiting
for feedback from a user. But some things—like waiting for a dialog, or reading or writing all the
bytes in a file—take a long time. When a method sits there and makes the rest of the program wait
for it to complete, programmers call that blocking, and it’s one of the biggest causes of program
unresponsiveness.

Windows Store apps use the await operator and the async modifier to keep from becoming
unresponsive during operations that block. You can see how it works by looking at an example of how
a WPF could call a define task that blocks, but can be called asynchronously:

private async Task LongTaskAsync()
{
 await Task.Delay(5000);
}

Declare the method using the
async modifier to indicate that
it can be called asynchronously.

The await operator causes the method that’s running this code to stop and wait until the ShowAsync() method
completes—and that method will block until the user chooses one of the commands. In the meantime, the rest of the
program will keep responding to other events. As soon as the LongTaskAsync() method returns, the method
that called it will pick up where it left off (although it may wait until after any other events that started up in the meantime
have finished).

If your method uses the await operator, then it must be declared with the async modifier:

 private async void countButton_Click(object sender, RoutedEventArgs e) {
 // ... some code ...
 await LongTaskAsync();
 // ... some more code:
 }

When a method is declared with async, you have some options with how you call it. If you call the method as usual, then
as soon as it hits the await statement it returns, which keeps the blocking call from freezing your app.

The Task class is in the
System.Threading.Tasks
namespace. Its Delay()

method blocks for a specified
number of milliseconds. That
method is really similar to the
Thread.Sleep() method that
you used in Chapter 2, but
it’s defined with the async
modifier so it can be called
asynchronously with await.

Notice how this is a Click event
handler. Since it uses await, it
also needs to be declared with
the async modifier.

you are here 4   539

windows presentation foundation

You can see exactly how this works by creating a new WPF application with the following main window XAML:
<Window x:Class="WpfAndAsync.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WPF and async" Height="150" Width="200" ResizeMode="CanResizeWithGrip">
 <Grid>
 <StackPanel>
 <CheckBox x:Name="useAwaitAsync" IsChecked="True" Content="Use await/async" Margin="5"/>
 <Button x:Name="countButton" Content="Start counting"
 HorizontalAlignment="Left" Click="countButton_Click" Margin="5"/>
 <TextBlock x:Name="progress" HorizontalAlignment="Left" Margin="5" />
 </StackPanel>
 </Grid>
</Window>

Here’s the code-behind:
using System.Threading;
using System.Windows.Threading;

public partial class MainWindow : Window {
 DispatcherTimer timer = new DispatcherTimer();

 public MainWindow() {
 InitializeComponent();

 timer.Tick += timer_Tick;
 timer.Interval = TimeSpan.FromSeconds(.1);
 }

 int i = 0;
 void timer_Tick(object sender, EventArgs e) {
 progress.Text = (i++).ToString();
 }

 private async void countButton_Click(object sender, RoutedEventArgs e) {
 countButton.IsEnabled = false;
 timer.Start();
 if (useAwaitAsync.IsChecked == true)
 await LongTaskAsync();
 else
 LongTask();
 countButton.IsEnabled = true;
 }

 private void LongTask() {
 Thread.Sleep(5000);
 timer.Stop();
 }

 private async Task LongTaskAsync() {
 await Task.Delay(5000);
 timer.Stop();
 }
}

Make sure the box is checked, and then click the button. You’ll see the numbers increase, and the form is responsive: the button
disables itself, and you can move and resize the form. Then uncheck the box and click the button—now the form freezes.

Do this!

The button’s event handler uses the CheckBox’s
IsChecked property. If the box is checked, the event
handler calls await LongTaskAsync(), which is

asynchronous. The method is called with await, so the
event handler method pauses and lets the rest of the
program continue to run. Try adding other buttons to

the window that change properties or print output to the
console. You’ll be able to use them while the timer ticks.

If the CheckBox is not checked, IsChecked is false and
the button’s event handler calls LongTask(), which

blocks. This causes the event handler method to block,
which makes the entire program become unresponsive,
and if you add other buttons they won’t respond either.

We named our project WpfAndAsync. If you
named your project something else, you’ll need

to change this line to match its namespace:
x:Class="WpfAndAsync.MainWindow"

552   Appendix ii

those guys get around

Stream some Guy objects to a f i le
Here’s a project to help you experiment with data contract serialization. Create a new WPF application.
Then add both classes with the data contracts from page 551 in the book (you’ll need using System.
Runtime.Serialization in each of them). And add the familiar Suits and Values enums, too (for
the Card class). Here’s the window you’ll build next:

Do this!

Before you start coding, you’ll need to right-click on References in the Solution
Explorer and choose Add Reference from the menu. Click on Framework, scroll
down to System.Runtime.Serialization, check it, and click OK:

This will allow your WPF application to use the System.Runtime.Serialization namespace.

You can also add an empty GuyManager class to get rid of the IDE error on the
<local:GuyManager> tag when you add the XAML in step 2. You’ll fill in the
GuyManager in step 3 when you flip the page.

1

you are here 4   553

windows presentation foundation

<Window x:Class="GuySerializer.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:GuySerializer"
 Title="Guy Serializer" Height="275" Width="525" ResizeMode="NoResize">

 <Window.Resources>
 <local:GuyManager x:Key="guyManager"/>
 </Window.Resources>

 <Grid DataContext="{StaticResource guyManager}" Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="4*"/>
 <RowDefinition Height="3*"/>
 </Grid.RowDefinitions>

 <StackPanel>
 <Button x:Name="WriteJoe" Content="Write Joe"
 HorizontalAlignment="Left" Click="WriteJoe_Click"/>
 <TextBlock Text="{Binding Joe}" Margin="0,0,10,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Column="1">
 <Button x:Name="WriteBob" Content="Write Bob"
 HorizontalAlignment="Left" Click="WriteBob_Click"/>
 <TextBlock Text="{Binding Bob}" Margin="0,0,0,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Column="2" Margin="10,0,0,0">
 <Button x:Name="WriteEd" Content="Write Ed"
 HorizontalAlignment="Left" Click="WriteEd_Click"/>
 <TextBlock Text="{Binding Ed}" Margin="0,0,0,20" TextWrapping="Wrap"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.ColumnSpan="2" Margin="0,0,20,0">
 <TextBlock>Last filename written</TextBlock>
 <TextBox Text="{Binding GuyFile, Mode=TwoWay}"
 TextWrapping="Wrap" Height="60" Margin="0,0,0,20"/>
 </StackPanel>

 <StackPanel Grid.Row="1" Grid.Column="2" Margin="10,0,0,0">
 <Button x:Name="ReadNewGuy" Content="Read a new Guy"
 HorizontalAlignment="Left" Click="ReadNewGuy_Click" />
 <StackPanel>
 <TextBlock Text="New guy:"/>
 <TextBlock TextWrapping="Wrap" Text="{Binding NewGuy}"/>
 </StackPanel>
 </StackPanel>
 </Grid>
</Window>

Here’s the XAML for the page. 2

The page has
three columns
and two rows.

Each column in
the top row has
a StackPanel
with a TextBlock
and a Button.

ThisTextBlock is bound to the
Ed property in GuyManager.

The first cell in the bottom
row spans two columns. It
has several controls bound to
properties. Why do you think we
used a TextBox for the path?

The grid's data context is the
GuyManager static resource.

We’re not done yet—flip the page!

We named this project GuySerializer. If your project has a different namespace, make sure you change these lines to match it.

554   Appendix ii

think about separation of concerns

using System.ComponentModel;
using System.IO;
using System.Runtime.Serialization;

class GuyManager : INotifyPropertyChanged
{
 private Guy joe = new Guy("Joe", 37, 176.22M);
 public Guy Joe
 {
 get { return joe; }
 }

 private Guy bob = new Guy("Bob", 45, 4.68M);
 public Guy Bob
 {
 get { return bob; }
 }

 private Guy ed = new Guy("Ed", 43, 37.51M);
 public Guy Ed
 {
 get { return ed; }
 }

 public Guy NewGuy { get; set; }

 public string GuyFile { get; set; }

 public void ReadGuy()
 {
 if (String.IsNullOrEmpty(GuyFile))
 return;

 using (Stream inputStream = File.OpenRead(GuyFile))
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 NewGuy = serializer.ReadObject(inputStream) as Guy;
 }
 OnPropertyChanged("NewGuy");
 }

Add the GuyManager class.3

There are three read-only
Guy properties with private
backing fields. The XAML has a
TextBlock bound to each of them.

A fourth TextBlock is bound to
this Guy property, which is set
by the ReadGuy() method.

The ReadGuy() method uses familiar
System.IO methods to open a stream
and read from it. But instead of
using a BinaryFormatter, it uses a
DataContractSerializer to serialize
data from an XML file.

This program uses TextBoxes that
are bound to read-only properties

that have only get accessors. If
you try to bind to a property that
has a public get accessor with a

private set accessor, you’ll get an
error. Luckily, a backing field will

work just fine.

you are here 4   555

windows presentation foundation

 public void WriteGuy(Guy guyToWrite)
 {
 GuyFile = Path.GetFullPath(guyToWrite.Name + ".xml");

 if (File.Exists(GuyFile))
 File.Delete(GuyFile);
 using (Stream outputStream = File.OpenWrite(GuyFile))
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(Guy));
 serializer.WriteObject(outputStream, guyToWrite);
 }

 OnPropertyChanged("GuyFile");
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler propertyChangedEvent = PropertyChanged;
 if (propertyChangedEvent != null)
 {
 propertyChangedEvent(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

public partial class MainWindow : Window
{
 GuyManager guyManager;

 public MainWindow() {
 InitializeComponent();

 guyManager = FindResource("guyManager") as GuyManager;
 }

 private void WriteJoe_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Joe);
 }
 private void WriteBob_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Bob);
 }
 private void WriteEd_Click(object sender, RoutedEventArgs e) {
 guyManager.WriteGuy(guyManager.Ed);
 }
 private void ReadNewGuy_Click(object sender, RoutedEventArgs e) {
 guyManager.ReadGuy();
 }
}

Here’s the code-behind for MainWindow.xaml.cs:4

This uses the GetFullPath() method in the Path class (in System.IO) to get the full path of the filename to write.

If the file
exists, it's
deleted, then
recreated using
a file stream.
It's serialized
using the data
contract
serializer.

Here's the same code you
used earlier to implement
INotifyPropertyChanged and
fire off PropertyChanged events.

556   Appendix ii

serializing guys

Q: Sometimes I make a change in my XAML or my code, and
the IDE’s designer gives me a message that I need to rebuild.
What’s going on?

A: The XAML designer in the IDE is really clever. It’s able to show
you an updated page in real time as you make changes to your XAML
code. You already know that when the XAML uses static resources,
that adds object references to the Page class. Well, those objects
need to get instantiated in order for them to be displayed in the
designer. If you make a change to the class that’s being used for a
static resource, the designer doesn’t get updated until you rebuild
that class. That makes sense—the IDE rebuilds your project only
when you ask it to, and until you do that it doesn’t actually have
the compiled code in memory that it needs to instantiate the static
resources.

You can use the IDE to see exactly how this works. Open your Guy
Serializer and edit the Guy.ToString() method to add some
extra words to the return value. Then go back to the main page designer.
It’s still showing the old output. Now choose Rebuild from the Build
menu. The designer will update itself as soon as the code finishes
rebuilding. Try making another change, but don’t rebuild yet. Instead,
add another TextBlock that’s bound to a Guy object. The IDE will use
the old version of the object until you rebuild.

Q: I’m confused about namespaces. How is the namespace in
the program different from the one in an XML file?

A: Let’s take a step back and understand why namespaces are
necessary. C#, XML files, the Windows filesystem, and web pages all
use different (but often related) naming systems to give each class,
XML document, file, or web page its own unique name. So why is
this important? Well, let’s say back in Chapter 9, you created a class
called KnownFolders to help Brian keep track of excuse folders.
Uh-oh! Now you find out that the .NET Framework for Windows Store
already has a KnownFolders class. No worries. The .NET
KnownFolders class is in the Windows.Storage namespace,
so it can exist happily alongside your class with the same name, and
that’s called disambiguation.

Data contracts also need to disambiguate. You’ve seen several
different versions of a Guy class throughout this book. What if you
wanted to have two different contracts to serialize different versions
of Guy? You can put them in different namespaces to disambiguate
them. And it makes sense that these namespaces would be separate
from the ones for your classes, because you can’t really confuse
classes and contracts.

Take your Guy Serializer for a test dri ve
Use the Guy Serializer to experiment with data contract serialization:

≥≥ Write each Guy object to the files—they’ll be written to the bin\Debug folder in your projects folder. Click the
ReadGuy button to read the guy that was just written. It uses the path in the TextBox to read the file, so try
updating that path to read a different guy. Try reading a file that doesn’t exist. What happens?

≥≥ Open up the Simple Text Editor you built earlier in the chapter. You added XML files as options for the open
and save file pickers, so you can use it to edit Guy files. Open one of the Guy files, change it, save it, and read
it back into your Guy Serializer. What happens if you add invalid XML? What if you change the card suit or
value so it doesn’t match a valid enum value?

≥≥ Try adding or removing the DataMember names ([DataMember(Name="...")]). What does that do
to the XML? What happens when you update the contract and then try to load a previously saved XML file?
Can you fix the XML file to make it work?

≥≥ Try changing the namespace of the Card data contract. What happens to the XML?

One more thing. Your WPF applications can use the
same OpenFileDialog and SaveFileDialog classes that
you used in your WinForms projects. Here’s an MSDN

page that has more information and code samples:

http://msdn.microsoft.com/en-us/library/aa969773.aspx

windows presentation foundation

Remember Brian's excuse

manager from chapter 9? well, it's

got a few bugs, and you'll fix them in

this chapter.

Exception handling works the same in WPF
as it does in WinForms and Windows Store.

If you flip through the replacement pages for Chapter 12,
you’ll notice that there’s no XAML. That’s because the
material on exception handling that we cover in Head First
C# is basically the same whether you’re working on a WPF
application, a WinForms program, a Windows Store app, or
even a console application.

Here’s how you should use this appendix for Chapter 12:

≥≥ Read through page 575 in the book, including the
“Sharpen your Pencil” exercise.

≥≥ Use the appendix replacement pages for 576 and 577.

≥≥ Read pages 578 and 579 in the book.

≥≥ Follow pages 580–590 in this appendix, and skip 591
in the main part of the book.

≥≥ Finish the rest of the chapter in the book.

≥≥ Then do all of Chapter 13 in the book, too!

Chapter 12

Once you’re done with this chapter, you can go straight
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

576   Appendix ii

Brian’s code did something unexpected
When Brian wrote his Excuse Manager, he never expected the
user to try to pull a random excuse out of an empty directory.

The problem happened when Brian pointed his Excuse Manager program at an
empty folder on his laptop and clicked the Random Excuse button. Let’s take a
look at it and see if we can figure out what went wrong. Here’s the unhandled
exception window that popped up when he ran the program in the IDE:

1

OK, that’s a good starting point. It’s telling us that there’s some value that
doesn’t fall inside some range. Clicking the Break button drops the IDE back
into the debugger, with the execution halted on a specific line of code:

2

public Excuse(Random random, string folder)
{
 string[] fileNames = Directory.GetFiles(folder, "*.excuse");
 OpenFile(fileNames[random.Next(fileNames.Length)]);
}

Let’s use the Watch window to track down the problem. Add a watch for fileNames.Length. Looks
like that returns 0. Try adding a watch for random.Next(fileNames.Length). That returns 0, too. So
add a watch for fileNames[random.Next(fileNames.Length)]. This time the Value column in the
Watch window has the same error message that you saw in step 1: “Out of bounds array index.”

3

nobody expects the …

You can call methods and use indexers in the Watch window. When one of those
things throws an exception, you’ll see that exception in the Watch window, too.

Do this!

This appendix depends on the Excuse
Manager WinForms app that you built in

Chapter 9. If your code doesn’t match the
code in the appendix, you can download
it from http://headfirstlabs.com/hfcsharp.

http://headfirstlabs.com/hfcsharp

you are here 4   577

windows presentation foundation

That’s right. Exceptions are a really useful tool
that you can use to find places where your code
acts in ways you don’t expect.

A lot of programmers get frustrated the first time they see an
exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code is reacting to a situation
that you didn’t anticipate. And that’s good for you: it lets you know
about a new scenario that your program has to handle, and it gives
you an opportunity to do something about it.

So what happened? It turns out that Directory.GetFiles() returns an empty array when you point
it at an empty folder. So fileNames.Length is zero, and passing 0 to Random.Next() will always
return 0 as well. Try to get the 0th element of an empty array and your program will throw a System.
IndexOutOfRangeException, with the message “Index was outside the bounds of the array.”

Now that we know what the problem is, we can fix it. All we need to do is check to see if the selected folder
has excuses in it before we try to load a random excuse from it:

4

private void randomExcuse_Click(object sender, EventArgs e)
{
 if (Directory.GetFiles(selectedFolder).Length == 0)
 MessageBox.Show("There are no excuse files in the selected folder.");
 else if (CheckChanged())
 {
 currentExcuse = new Excuse(random, selectedFolder);
 UpdateForm(false);
 }
}

By checking for excuse
files in the folder before
we create the Excuse
object, we can prevent
the exception from being
thrown—and display a
helpful dialog, too.

Oh, I get it. Exceptions aren’t always
bad. Sometimes they identify bugs, but a

lot of the time they’re just telling me that
something happened that was different

from what I expected.

What do you think about that solution?
Does it make the most sense to put it in the
form, or would it be better to find a way to

encapsulate it inside the Excuse class?

580   Appendix ii

Use the IDE’s debugger to ferret out exact ly
what went wrong in the Excuse Manager
Let’s use the debugger to take a closer look at the problem that we ran
into in the Excuse Manager. You’ve probably been using the debugger a
lot over the last few chapters, but we’ll go through it step by step anyway
to make sure we don’t leave out any details.

Add a breakpoint to the Random button’s event handler.
You’ve got a starting point—the exception happens when the Random Excuse button is clicked
after an empty folder is selected. So open up the button’s event handler and use Debug→Toggle
Breakpoint (F9) to add a breakpoint to the first line of the method. Start debugging, choose an
empty folder, and then click the Random button to make your program break at the breakpoint:

1

Debug this

you don’t know where that watch has been

Step into the Excuse constructor.
We want to reproduce the problem, but we already added code to get past it. No
problem. Right-click on the line currentExcuse = new Excuse(random,
selectedFolder); and choose Set Next Statement (Ctrl+Shift+F10). Then
use Step Into (F11) to step into the constructor:

2

You used the
debugger to
skip past the
workaround
that you added
to avoid the
exception, so
now the Excuse
constructor is
about to throw
the exception
again.

you are here 4   581

windows presentation foundation

Step through the program until it throws the exception.

You’ve already seen how handy the Watch window is. Now we’ll use it to reproduce the exception.
Choose Step Over (F10) twice to get your program to throw the exception. Then use the IDE to select
fileNames.Length, right-click on it, and choose to add a watch. Then do it again
for random.Next(fileNames.Length) and fileNames[random.Next(fileNames.Length)]:

The Watch window has another very useful feature. It lets you change the value of variables and fields
that it’s displaying, and it even lets you execute methods and create new objects. When you do, it
displays its reevaluate icon that you can click to tell it to execute that method again.

3

Add a watch for the Exception object.
Debugging is a little like performing a forensic crime scene investigation on your program. You don’t necessarily
know what you’re looking for until you find it, so you need to use your debugger “CSI kit” to follow
clues and track down the culprit. One important tool is adding $exception to the Watch window,
because it shows you the contents of the Exception object that’s been thrown:

4

When you get an exception, you can go back and reproduce it in the
debugger and use the Exception object to help you fix your code.

582   Appendix ii

Q: How do I know where to put a breakpoint?

A: That’s a really good question, and there’s no one right
answer. When your code throws an exception, it’s always a
good idea to start with the statement that threw it. But usually,
the problem actually happened earlier in the program, and the
exception is just fallout from it. For example, the statement
that throws a divide-by-zero error could be dividing values that
were generated 10 statements earlier but just haven’t been
used yet. So there’s no one good answer to where you should
put a breakpoint, because every situation is different. But as
long as you’ve got a good idea of how your code works, you
should be able to figure out a good starting point.

Q: Can I run any method in the Watch window?

A: Yes. Any statement that’s valid in your program will work
inside the Watch window, even things that make absolutely
no sense to run inside a Watch window. Here’s an example.
Bring up a program, start it running, break it, and then add
this to the Watch window: System.Threading.
Thread.Sleep(2000). That method causes your
program to delay for two seconds.There’s no reason you’d
ever do that in real life, but it’s interesting to see what happens:
the IDE will block and you’ll get a wait cursor for two seconds
while the method evaluates. Then, since Sleep() has
no return value, the Watch window will display the value
Expression has been evaluated and has
no value to let you know that it didn’t return anything. But
it did evaluate it. Not only that, but it displays IntelliSense
pop-ups to help you type code into the window. That’s useful
because it shows the available properties and methods for
objects currently in memory.

Q: Wait, so isn’t it possible for me to run something
in the Watch window that’ll change the way my program
runs?

A: Yes! Not permanently, but it can definitely affect your
program’s output. But even better, just hovering over fields
inside the debugger can cause your program to change its
behavior, because hovering over a property executes its get
accessor. If you have a property that has a get accessor
that executes a method, then hovering over that property will
cause that method to execute. And if that method sets a value
in your program, then that value will stay set if you run the
program again. And that can cause some pretty unpredictable
results inside the debugger. Programmers have a name for
results that seem to be unpredictable and random: they’re
called heisenbugs (which is a joke that makes sense to
physicists and cats trapped in boxes).

When you run your
program inside the IDE,
an unhandled exception
will cause it to break
as if it had run into a
breakpoint.

make a break for it

you are here 4   583

windows presentation foundation

Uh-oh—the code’s st i l l got problems…
Brian was happily using his Excuse Manager when he accidentally
chose a folder full of files that weren’t created by the Excuse Manager.
Let’s see what happens when he tries to load one of them....

You can re-create Brian’s problem. Take a random file that isn’t a serialized
excuse and give it the .excuse file extension.

1

Pop open the Excuse Manager in the IDE and open up the file you created. It throws
an exception! Look at the message, then click the Break button to start investigating.

2

Open up the Locals window and expand $exception (you can also enter it into
the Watch window). Take a close look at its members to see if you can figure out
what went wrong.

3

No, not again!

Do you see why the program threw the exception?

Does it make sense for the program to crash if
it encounters an invalid Excuse XML file?

Can you think of anything you can do about this?

584   Appendix ii

Wait a second. Of course the
program’s gonna crash. I gave it a bad

file. Users screw up all the time. You can’t
expect me to do anything about that...

right?

Actually, there is something you can do about it.

Yes, it’s true that users screw up all the time. That’s a fact of life.
But that doesn’t mean you can’t do anything about it. There’s
a name for programs that deal with bad data, malformed input,
and other unexpected situations gracefully: they’re called robust
programs. And C# gives you some really powerful exception
handling tools to help you make your programs more robust.
Because while you can’t control what your users do, you can make
sure that your program doesn’t crash when they do it.

ro-bust, adj.
sturdy in construction; able
to withstand or overcome
adverse conditions. After the
Tacoma Narrows Bridge disaster,
the civil engineering team looked
for a more robust design for the
bridge that would replace it.

	 Serializers will throw an exception
if there’s anything at all wrong with
a serialized file.

It’s easy to get the Excuse Manager to
throw a SerializationException—

just feed it any file that’s not a serialized Excuse
object. When you try to deserialize an object from a file,
DataContractSerializer expects the file to contain a
serialized object that matches the contract of the class that
it’s trying to read. If the file contains anything else, almost
anything at all, then the ReadObject() method will throw
a SerializationException.

users are unpredictable

The BinaryFormatter class will
also throw a SeralizationException
if you give it a file that doesn’t
contain exactly the right serialized
object. It’s even more finicky than
DataContractSerializer!

you are here 4   585

windows presentation foundation

private void OpenFile(string excusePath) {
 try
 {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath))
 {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 catch (SerializationException)
 {
 MessageBox.Show("Unable to read " + excusePath);
 LastUsed = DateTime.Now;
 }
}

Handle except ions with try and catch
In C#, you can basically say, “Try this code, and if an exception occurs,
catch it with this other bit of code.” The part of the code you’re trying is the
try block, and the part where you deal with exceptions is called the catch
block. In the catch block, you can do things like print a friendly error
message instead of letting your program come to a screeching halt:

This is the simplest kind of exception
handling: stop the program, write out the
exception message, and keep running.

The catch keyword means that the block immediately following it contains an exception handler.

If throwing an exception makes your code
automatically jump to the catch block, what
happens to the objects and data you were
working with before the exception happened?

Put the code that might throw an exception inside the try block. If no exception happens, it’ll get run exactly as usual, and the statements in the catch block will be ignored. But if a statement in the try block throws an exception, the rest of the try block won’t get executed.

This is the
try block. You
start exception
handling with
try. In this
case, we’ll put
the existing
code in it.

When an exception is thrown, the program immediately jumps to the catch statement and starts executing the catch block.

You’ll recognize the code
here because we surrounded
the entire method with
this try block.

What happens if you leave out this last
line of code? Can you figure out why
we included it in the catch block?

You’ll also need to add these lines to the top of Excuse.cs:

using System.Runtime.Serialization;

using System.Windows.Forms;

586   Appendix ii

1 Let’s say your user is
using your code and
gives it some input
that it didn’t expect.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know that
the method you’re
calling is risky.

What happens when a method you want to call is r isky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

user
a class

you wrote

a user gives input
to your method

 public void
 Process(Input i) {
 if (i.IsBad()) {
 Explode();
 }
 }

user

your class, now with
exception handling

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

a class
you wrote

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

user

now your program’s more robust!

some input

˙∆å˚ß∂ıÏÔ˚œ∑ˆ
øƒ¥∂∫√˚Ω∆¬˙√˚
ÔÒÎ˙˚∆¬åß¥∂ÒÅ
∆˚åƒ˙ß∂∆˙å∆˚ß
ƒå∂ß˙˚ƒ∆˚å∂ß∂
´˙®£√•√∂¨∂¬∆ƒ
ƒ˜å∂√˚ç¥ƒ´∂ˆ´
∂å˚∆ƒ´∫®˚´¨√∂

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Users are unpredictable. They feed all sorts of weird data into your
program and click on things in ways you never expected. And
that’s just fine, because you can handle unexpected input with good
exception handling.

“Runtime” just means “while your program is running.” Some people refer to exceptions as “runtime errors.”

a class
you wrote

My Process()
method will blow
up if it gets bad

input data!

I wonder
what happens
if I click

here…

Wow, this program’s really stable!

risky business

If you can come up with a way to do a
less risky thing that avoids throwing the
exception, that’s the best possible outcome!
But some risks just can’t be avoided, and
that’s when you want to do this.

you are here 4   587

windows presentation foundation

Q: So when do I use try and catch?

A: Anytime you’re writing risky code, or
code that could throw an exception. The trick
is figuring out which code is risky, and which
code is safer.

You’ve already seen that code that uses
input provided by a user can be risky. Users
give you incorrect files, words instead of
numbers, and names instead of dates, and
they pretty much click everywhere you could
possibly imagine. A good program will take
all that input and work in a calm, predictable
way. It might not give the users a result they
can use, but it will let them know that it found
the problem and hopefully suggest a solution.

Q: How can a program suggest a
solution to a problem it doesn’t even
know about in advance?

A: That’s what the catch block is for. A
catch block is executed only when code
in the try block throws an exception. It’s
your chance to make sure the user knows
that something went wrong, and to let the
user know that it’s a situation that might be
corrected.

If the Excuse Manager simply crashes when
there’s bad input, that’s not particularly
useful. But if it tries to read the input and
displays garbage in the form, that’s also not

useful—in fact, some people might say
that it’s worse. But if you have the program
display an error message telling the user that
it couldn’t read the file, then the user has an
idea of what went wrong, and information
that he can use to fix the problem.

Q: So the debugger should really only
be used to troubleshoot exceptions then?

A: No. As you’ve already seen many
times throughout the book, the debugger’s
a really useful tool that you can use
to examine any code you’ve written.
Sometimes it’s useful to step through your
code and check the values of certain fields
and variables—like when you’ve got a really
complex method and you want to make sure
it’s working properly.

But as you may have guessed from the
name “debugger,” its most common use is
to track down and remove bugs. Sometimes
those bugs are exceptions that get thrown.
But a lot of the time, you’ll be using the
debugger to try to find other kinds of
problems, like code that gives a result that
you don’t expect.

Q: I’m not sure I totally got what you
did with the Watch window.

A: When you’re debugging a program,
you usually want to pay attention to how
a few variables and fields change. That’s
where the Watch window comes in. If you

add watches for a few variables, the Watch
window updates their values every time you
step into, out of, or over code. That lets you
monitor exactly what happens to them after
every statement, which can be really useful
when you’re trying to track down a problem.

The Watch window also lets you type in any
statement you want, and even call methods,
and the IDE will evaluate it and display the
results. If the statement updates any of the
fields and variables in your program, then it
does that, too. That lets you change values
while your program is running, which can
be another really useful tool for reproducing
exceptions and other bugs.

The catch block
is executed only
when code in the
try block throws
an exception. It
gives you a chance
to make sure
your user has the
information to fix
the problem.

Any changes you make in the Watch window just affect the data in memory, and last only as long as the program is running. Restart your program, and values that you changed will be undone.

588   Appendix ii

An important part of exception handling is that when a statement in
your try block throws an exception, the rest of the code in the block
gets short-circuited. The program’s execution immediately jumps to
the first line in the catch block. But don’t take our word for it... Debug this

Add the try/catch from a few pages ago to your Excuse Manager app’s
ReadExcuseAsync() method. Then place a breakpoint on the opening
bracket { in the try block.

1

go with the flow

Use the debugger to fol low the try/catch f low

Step over the
statements until
your yellow “next
statement” bar
shows that the next
statement to get
executed will read
the Excuse object
from the stream.

Put the breakpoint on
the opening bracket of
the try block.

Start debugging your app and open up a file that’s not a valid excuse file (but still
has the .excuse extension). When the debugger breaks on your breakpoint, click the Step
Over button (or F10) five times to get to the statement that calls ReadObject() to
deserialize the Excuse object. Here’s what your debugger screen should look like:

2

you are here 4   589

windows presentation foundation

Step over the next statement. As soon as the debugger executes the Deserialize()
statement, the exception is thrown and the program short-circuits right past the rest
of the method and jumps straight to the catch block.

3

	 Keep risky code out of the constructor!

You’ve noticed by now that a constructor doesn’t have a return
value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an object—
which is a problem for exception handling inside the constructor.

When an exception is thrown inside the constructor, then the statement that
tried to instantiate the class won’t end up with an instance of the object.

Here’s a career
tip: a lot of C#
programming job
interviews include
a question about
how you deal with
exceptions in a
constructor.

Start the program again by pressing the Continue button (or F5). It’ll begin
running the program again, starting with whatever’s highlighted by the yellow

“next statement” block—in this case, the catch block. It will just display the
dialog and then act as if nothing happened. The ugly crash has now been handled.

4

The debugger will
highlight the catch
statement with
its yellow “next
statement” block,
but it shows the
rest of the block
in gray to show you
that it’s about to
execute the whole
thing.

590   Appendix ii

If you have code that should
ALWAYS run, use a f inally block
When your program throws an exception, a couple of things can happen. If the exception isn’t handled, your
program will stop processing and crash. If the exception is handled, your code jumps to the catch block. But
what about the rest of the code in your try block? What if you were closing a stream, or cleaning up important
resources? That code needs to run, even if an exception occurs, or you’re going to make a mess of your
program’s state. That’s where the finally block comes in really handy. It comes after the try and catch
blocks. The finally block always runs, whether or not an exception was thrown.

clean up after yourself

private void OpenFile(string excusePath) {
 try {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath))
 {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 catch (SerializationException) {
 MessageBox.Show("Unable to read " + excusePath);
 LastUsed = DateTime.Now;
 }
 finally
 {
 // Any code here will get executed no matter what
 }
}

If there is no
exception thrown
during the try
block, the code
in the finally
block will execute
after the try
block completes.
If there's an
exception handled
by a catch block,
then it will
short-circuit as
usual, and then
run the finally
block after the
catch block.

Always catch specific exceptions like SerializationException. You typically follow a catch statement
with a specific kind of exception telling it what to catch. It’s valid C# code to just have catch (Exception) and you
can even leave the exception type out and just use catch. When you do that, it catches all exceptions, no matter
what type of exception is thrown. But it’s a really bad practice to have a catch-all exception handler like that.
Your code should always catch as specific an exception as possible.

windows presentation foundationReminder: Once you finish Chapter 12, you can go straight
through Chapter 13 in the book. It doesn’t depend on
Windows 8 or Windows Store apps at all.

Chapter 14
In Chapter 14, you'll see a

bunch of LINQ queries. In the book

you'll combine them into a single

Windows Store app. We'll show you how

to build a WPF Application instead.

LINQ works with any kind of C# program.

When you read Chapter 14 in the main part of the book, you’ll see
that it’s structured differently from other chapters. It has a series
of increasingly complex LINQ queries, and small console apps to
demonstrate each of them. Throughout the chapter, you’ll also see
exercises to build a Windows Store app that combines all the queries
into a single user interface. Over the next few pages of this appendix,
we’ll show you how to build a WPF application that executes those
same queries. Here’s how we recommend you use this appendix with
Chapter 14:

≥≥ Read through page 657 in the book.

≥≥ Even though pages in the chapter through 665 are about
building a Windows Store app, read them—especially the parts
about anonymous types. It will help to get a sense of how the
Comic, ComicQuery, and ComicQueryManager classes work.

≥≥ Pages 666 and 667 describe more LINQ queries. You can skim
pages 668 and 669, because those are more Windows Store-
related pages.

≥≥ Read pages 670–680, but don’t do the exercise on page 679.

≥≥ You can skip the rest of the chapter, because it’s related to
Windows Store apps. Instead, follow the replacement pages
680–683.

680   Appendix ii

Create a new WPF application and Add existing classes and
images from the Comic app.
Before you start this project, you’ll need to download source code to the JimmysComics app from
Chapter 14. See the Head First Labs website (http://headfirstlabs.com/hfcsharp) for a link to the source code.

Once you’ve got the source code, you’ll build a new WPF application called JimmysComics. Then right-click
on the project name in the Solution Explorer and choose “Add Existing Item” to add the following items
from the Windows Store app we built in the book (you can download the source from the book’s website):

•	 Purchase.cs

•	 Comic.cs

•	 ComicQuery.cs

•	 ComicQueryManager.cs

•	 PriceRange.cs.

•	 The following files are in the Assets folder: bluegray_250x250.jpg, bluegray_250x250.jpg, captain_
amazing_250x250.jpg, captain_amazing_zoom_250x250.jpg — add them to the root level of your
WPF application so they’re alongside your XAML and C# files.

Your Solution Explorer should look like this:

1

Build a WPF comic query applicat ion
When you read through Chapter 14 in the book, you saw that we built a Windows Store app to
execute the LINQ queries throughout the chapter. Since we followed the principle of separation
of concerns, the classes for managing data and issuing queries were separated from the code that
created the user interface. That let us reuse the same data and query management classes
to build another app using the Visual Studio Split App template. Now we’ll be able to take advantage
of the same separation of concerns and build a WPF application using the same data and query
classes.

If you give your project a different name, make
sure you change the namespace for the C# files you
added to match your project's namespace.

Do this!

You’ll also need to select each image file in the Solution
Explorer and use the Properties window to set “Build
Action” to Content and “Copy to Output Directory” to
Copy always. Here’s what it looks like—make sure you
do this for each of the .jpg files that you added:

you are here 4   681

windows presentation foundation

Add code-behind for the main window.
Here’s all the code-behind you’ll need for MainWindow.xaml.cs.

3

public partial class MainWindow : Window
{
 ComicQueryManager comicQueryManager;

 public MainWindow()
 {
 InitializeComponent();

 comicQueryManager = FindResource("comicQueryManager") as ComicQueryManager;
 comicQueryManager.UpdateQueryResults(comicQueryManager.AvailableQueries[0]);
 }

 private void ListView_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 if (e.AddedItems.Count >= 1 && e.AddedItems[0] is ComicQuery)
 {
 comicQueryManager.CurrentQueryResults.Clear();
 comicQueryManager.UpdateQueryResults(e.AddedItems[0] as ComicQuery);
 }
 }
}

private static BitmapImage CreateImageFromAssets(string imageFilename)
{
 try
 {
 Uri uri = new Uri(imageFilename, UriKind.RelativeOrAbsolute);
 return new BitmapImage(uri);
 }
 catch (System.IO.IOException)
 {
 return new BitmapImage();
 }
}

using System.Collections.ObjectModel;
using System.Windows.Media.Imaging;

Make two modifications to ComicQueryManager.cs.
There are two small changes you’ll need to make to ComicQueryManager.cs. WPF applications cannot
use the Windows.UI namespace because it’s only part of the .NET Framework for Windows Store.
You’ll need to change the using statements at the top to replace “Windows.UI” with “System.Windows”:

2

And WPF applications load images slightly differently from Windows Store apps, so you’ll need to
change the CreateImageFromAssets() method in ComicQueryManager. Here’s the new method:

You copied the .jpg files into your project's top-level folder. This
new CreateImageFromAssets()
method will load those files.

The ListView control fires its SelectionChanged
event whenever the user selects or deselects
items. The items that were selected can be
found in the e.AddedItems collection.

682   Appendix ii

<Window x:Class="JimmysComics.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:JimmysComics"
 Title="Jimmy's Comics" Height="350" Width="525">

 <Window.Resources>
 <local:ComicQueryManager x:Key="comicQueryManager"/>
 </Window.Resources>

 <Grid DataContext="{StaticResource ResourceKey=comicQueryManager}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="3*"/>
 </Grid.ColumnDefinitions>
 <ListView SelectionMode="Single" ItemsSource="{Binding AvailableQueries}"
 SelectionChanged="ListView_SelectionChanged">
 <ListView.ItemTemplate>
 <DataTemplate>
 <Grid Height="55" Margin="6">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Border Width="55" Height="55">
 <Image Source="{Binding Image}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel Grid.Column="1" VerticalAlignment="Top" Margin="10,0,0,0">
 <TextBlock Text="{Binding Title}" TextWrapping="NoWrap"/>
 <TextBlock Text="{Binding Subtitle}" TextWrapping="NoWrap"/>
 <TextBlock Text="{Binding Description}" TextWrapping="NoWrap"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

 <ListView Grid.Column="1" SelectionMode="Single"
 ItemsSource="{Binding CurrentQueryResults}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Image Source="{Binding Image}" Margin="0,0,20,0"
 Stretch="UniformToFill" Width="25" Height="25"
 VerticalAlignment="Top" HorizontalAlignment="Right"/>
 <StackPanel>
 <TextBlock Text="{Binding Title}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

 </Grid>
</Window>

Add the XAML for the main window.
Here’s the XAML for the main window. Remember, if you used a different project name, make sure
you change JimmysComics to match your project’s namespace.

4

The ListView on
the right has an
item template
that displays
information about
each query.

The ListView on the
right has an item
template that shows
individual items in
the query results.

This ListView's
SelectionMode is
set to Single so
only one query
can be selected
at a time.

you are here 4   683

windows presentation foundation

Queries that return comic books have additional
information: price, synopsis, even a cover image.
Can you figure out how to get the comic queries
to display all the information about each comic?
You'll need to add the comic book cover images
to the project. You'll find some helpful XAML
code in the chapter on pages 689 and 690.

When you run the app, the queries appear on the left, and the results of the selected query appear on the
right.

684   Appendix ii

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

you are here 4   685

windows presentation foundation

Chapter 15

Events are useful for any app, but especially
important for understanding XAML.

Events can be simple and straightforward, because you’ve been using
them throughout the book. But there’s a lot more depth to them than
you might expect. This chapter helps you understand events in more
detail.

Here’s what we recommend for this chapter:

≥≥ Read the chapter in the book through page 711.

≥≥ Use the replacement pages in this appendix for the exercise on
pages 712–713 and its solution on pages 714–715.

≥≥ Read pages 716–719 in the book.

≥≥ Pages 720–723 are specific to Windows Store apps, but we
recommend that you read them anyway. They give you
some insight not just into Windows Store apps, but also into
some basic features of Windows 8.

≥≥ We provide replacement pages for pages 724-729 in this
appendix.

≥≥ Read the rest of the chapter in the book. The only pages you
should skip are the top of page 740, and pages 742–743.

There are only a few pages in
this chapter that are specific to
Windows Store apps. You should

read them anyway!

712   Appendix ii

2 It’s time to put what you’ve learned so far into practice. Your job is to complete the Ball and
Pitcher classes, add a Fan class, and make sure they all work together with a very basic
version of your baseball simulator.

Complete the Pitcher class.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase()
methods. Both should create a string saying that the catcher has either caught the ball or run
to first base and add that string to a public ObservableCollection<string> called
PitcherSays.

1

class Pitcher {
 public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }

 void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs){
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
}

Write a Fan class.
Create another class called Fan. Fan should also subscribe to the BallInPlay event in its
constructor. The fan’s event handler should see if the distance is greater than 400 feet and the
trajectory is greater than 30 (a home run), and grab for a glove to try to catch the ball if it is. If
not, the fan should scream and yell. Everything that the fan screams and yells should be added
to an ObservableCollection<string> called FanSays.

2

You’ll need to implement these two
methods to add a string to the
PitcherSays ObservableCollection.

Pitcher object

Fan object

?Look at the output on the
facing page to see exactly
what it should print.

put it all together

you are here 4   713

windows presentation foundation

Build a very simple simulator.
If you didn’t do it already, create a new WPF Application and add the following
BaseballSimulator class. Then add it as a static resource to the page.

3

Build the main window.
Can you come up with the XAML
just from looking at the screenshot to
the right? The two TextBox controls
are bound to the Trajectory
and Distance properties of the
BaseballSimulator static
resource, and the pitcher and fan
chatter are ListView controls bound to
the two ObservableCollections.

See if you can make your simulator
generate the above fan and pitcher
chatter with three successive balls put
into play. Write down the values you
used to get the result below:

4

Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

using System.Collections.ObjectModel;

class BaseballSimulator {
 private Ball ball = new Ball();
 private Pitcher pitcher;
 private Fan fan;
 public ObservableCollection<string> FanSays { get { return fan.FanSays; } }
 public ObservableCollection<string> PitcherSays { get { return pitcher.PitcherSays; } }
 public int Trajectory { get; set; }
 public int Distance { get; set; }
 public BaseballSimulator() {
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }
 public void PlayBall() {
 BallEventArgs ballEventArgs = new BallEventArgs(Trajectory, Distance);
 ball.OnBallInPlay(ballEventArgs);
 }
}

Don’t forget the
Click event handler
for the button.

2

714   Appendix ii

Here are the Ball and BallEventArgs from earlier, and the new Fan class that needed to be added:

class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 EventHandler ballInPlay = BallInPlay;
 if (ballInPlay != null)
 ballInPlay(this, e);
 }
}

class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int trajectory, int distance)
 {
 this.Trajectory = trajectory;
 this.Distance = distance;
 }
}

using System.Collections.ObjectModel;
class Fan {
 public ObservableCollection<string> FanSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Fan(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if (ballEventArgs.Distance > 400 && ballEventArgs.Trajectory > 30)
 FanSays.Add("Pitch #" + pitchNumber
 + ": Home run! I'm going for the ball!");
 else
 FanSays.Add("Pitch #" + pitchNumber + ": Woo-hoo! Yeah!");
 }
 }
}

Here’s the code-behind for the page:

public partial class MainWindow : Window {
 BaseballSimulator baseballSimulator;

 public MainWindow() {
 InitializeComponent();

 baseballSimulator = FindResource("baseballSimulator") as BaseballSimulator;
 }

 private void Button_Click(object sender, RoutedEventArgs e) {
 baseballSimulator.PlayBall();
 }
}

Read-only
automatic
properties
work really
well in event
arguments
because
the event
handlers read
only the data
passed to
them.

The OnBallInPlay() method just raises the BallInPlay event—but it has to check to make sure it’s not null; otherwise, it’ll throw an exception.

The Fan object’s constructor
chains its event handler
onto the BallInPlay event.

The fan’s BallInPlay
event handler looks
for any ball that’s
high and long.

you are here 4   715

windows presentation foundation

75
105

Here’s the XAML for the page. It also needs: <local:BaseballSimulator x:Key="baseballSimulator"/>

<Window.Resources>
 <local:BaseballSimulator x:Key="baseballSimulator"/>
</Window.Resources>

<Grid Margin="5" DataContext="{StaticResource ResourceKey=baseballSimulator}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Margin="0,0,10,0">
 <TextBlock Text="Trajectory" Margin="0,0,0,5"/>
 <TextBox Text="{Binding Trajectory, Mode=TwoWay}" Margin="0,0,0,5"/>
 <TextBlock Text="Distance" Margin="0,0,0,5"/>
 <TextBox Text="{Binding Distance, Mode=TwoWay}" Margin="0,0,0,5"/>
 <Button Content="Play ball!" Click="Button_Click"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <TextBlock Text="Pitcher says" Margin="0,0,0,5"/>
 <ListView ItemsSource="{Binding PitcherSays}" Height="125"/>
 <TextBlock Text="Fan says" Margin="0,0,0,5"/>
 <ListView ItemsSource="{Binding FanSays}" Height="125"/>
 </StackPanel>
</Grid>

And here’s the Pitcher class (it needs using System.Collections.ObjectModel; at the top):
class Pitcher {
 public ObservableCollection<string> PitcherSays = new ObservableCollection<string>();
 private int pitchNumber = 0;
 public Pitcher(Ball ball) {
 ball.BallInPlay += ball_BallInPlay;
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 pitchNumber++;
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
 private void CatchBall() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I caught the ball");
 }
 private void CoverFirstBase() {
 PitcherSays.Add("Pitch #" + pitchNumber + ": I covered first base");
 }
}

48
80

Here are the values we used to get the output. Yours might be a little different.Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

40
435

Make sure you also add
the xmlns:local property
to the <Window> tag.

We gave you the pitcher’s
BallInPlay event handler.
It looks for any low balls.

724   Appendix ii

bubble bubble, toil and trouble

XAML controls use routed events
Flip to page 722 in the main part of the book and have a closer look at the IntelliSense window that pops
up when you type override into the IDE. Yes, it’s for a Windows Store app, but the same exact principle
applies to WPF. Two of the names of the event argument types are a little different from the others. The
DoubleTapped event’s second argument has the type DoubleTappedRoutedEventArgs, and the
GotFocus event’s is a RoutedEventArgs. The reason is that the DoubleTapped and GotFocus
events are routed events. These are like normal events, except for one difference: when a control object
responds to a routed event, first it fires off the event handler method as usual. Then it does something else:
if the event hasn’t been handled, it sends the routed event up to its container. The container fires the
event, and then if it isn’t handled, it sends the routed event up to its container. The event keeps bubbling
up until it’s either handled or it hits the root, or the container at the very top. Here’s a typical routed event
handler method signature.

private void EventHandler(object sender, RoutedEventArgs e)

The RoutedEventArgs object has a property called Handled that the event handler can use to indicate
that it’s handled the event. Setting this property to true stops the event from bubbling up.

In both routed and standard events, the sender parameter always contains a reference to the object that
called the event handler. So if an event is bubbled up from a control to a container like a Grid, then when
the Grid calls its event handler, sender will be a reference to the Grid control. But what if you want
to find out which control fired the original event? No problem. The RoutedEventArgs object has a
property called OriginalSource that contains a reference to the control that initially fired the event. If
OriginalSource and sender point to the same object, then the control that called the event handler is
the same control that originated the event and started it bubbling up.

IsHitTestVisible determines if an e lement is “v isible”
to the pointer or mouse
Typically, any element on the page can be “hit” by the pointer or mouse—as
long as it meets certain criteria. It needs to be visible (which you can change
with the Visibility property), it has to have a Background or Fill
property that’s not null (but can be Transparent), it must be enabled (with
the IsEnabled property), and it has to have a height and width greater
than zero. If all of these things are true, then the IsHitTestVisible
property will return True, and that will cause it to respond to pointer or
mouse events.

This property is especially useful if you want to make your events “invisible”
to the mouse. If you set IsHitTestVisible to False, then any pointer
taps or mouse clicks will pass right through the control. If there’s another
control below it, that control will get the event instead.

The structure of
controls that contain
other controls that in
turn contain yet more
controls is called
an object tree, and
routed events bubble
up the tree from
child to parent until
they hit the root
element at the top.

You can see a list of input events that are routed events here:
http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/Hh758286.aspx

you are here 4   725

windows presentation foundation

<Grid Margin="5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel x:Name="panel" MouseDown="StackPanel_MouseDown">
 <Border BorderThickness="10" BorderBrush="Blue" Width="155" x:Name="border"
 Margin="20" MouseDown="Border_MouseDown">
 <Grid x:Name="grid" MouseDown="Grid_MouseDown">
 <Ellipse Fill="Red" Width="100" Height="100"
 MouseDown="Ellipse_MouseDown"/>
 <Rectangle Fill="Gray" Width="50" Height="50"
 MouseDown="Rectangle_MouseDown" x:Name="grayRectangle"/>
 </Grid>
 </Border>
 <ListBox BorderThickness="1" Width="250" Height="140" x:Name="output" Margin="0,0,20,0"/>
 </StackPanel>
 <StackPanel Grid.Column="1">
 <CheckBox Content="Border sets handled" x:Name="borderSetsHandled"/>
 <CheckBox Content="Grid sets handled" x:Name="gridSetsHandled" />
 <CheckBox Content="Ellipse sets handled" x:Name="ellipseSetsHandled"/>
 <CheckBox Content="Rectangle sets handled" x:Name="rectangleSetsHandled"/>
 <Button Content="Update Rectangle IsHitTestVisible"
 Click="UpdateHitTestButton" Margin="0,20,20,0"/>
 <CheckBox IsChecked="True" Content="New IsHitTestVisible value"
 x:Name="newHitTestVisibleValue" />
 </StackPanel>
</Grid>

Create an app to explore routed events
Here’s a WPF application that you can use to experiment with routed events. It’s got a
StackPanel that contains a Border, which contains a Grid, and inside that grid are an Ellipse
and a Rectangle. Have a look at the screenshot. See how the Rectangle is on top of the Ellipse?
If you put two controls into the same cell, they’ll stack on top of each other. But both of those
controls have the same parent: the Grid, whose parent
is the Border, and the Border’s parent is the StackPanel.
Routed events from the Rectangle or Ellipse bubble up
through the parents to the root of the object tree.

You’ve already seen the CheckBox control,
which you can use to toggle a value on and
off. The Content property sets the label for
the control. The IsChecked property is a
Nullable<bool> because in addition to on and
off, it can also have a third indeterminate state

Routed events
bubble up the
object tree.

IsChecked defaults to False. This CheckBox
has it set to True because controls always
have IsHitTestVisible set to true by default.

Flip the page to finish the app

726   Appendix ii

climbing the object tree

public partial class MainWindow : Window {
 ObservableCollection<string> outputItems = new ObservableCollection<string>();

 public MainWindow() {
 this.InitializeComponent();

 output.ItemsSource = outputItems;
 }

private void Ellipse_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The ellipse was pressed");
 if (ellipseSetsHandled.IsChecked == true) e.Handled = true;
}

private void Rectangle_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The rectangle was pressed");
 if (rectangleSetsHandled.IsChecked == true) e.Handled = true;
}

private void Grid_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The grid was pressed");
 if (gridSetsHandled.IsChecked == true) e.Handled = true;
}

private void Border_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The border was pressed");
 if (borderSetsHandled.IsChecked == true) e.Handled = true;
}

private void StackPanel_MouseDown(object sender, MouseButtonEventArgs e) {
 if (sender == e.OriginalSource) outputItems.Clear();
 outputItems.Add("The panel was pressed");
}

private void UpdateHitTestButton(object sender, RoutedEventArgs e) {
 grayRectangle.IsHitTestVisible = (bool)newHitTestVisibleValue.IsChecked;
}

You’ll need this ObservableCollection to display output in the ListBox.
Make a field called outputItems and set the ListBox.ItemsSource property in the page constructor. And don’t
forget to add the using System.Collections.ObjectModel; statement for ObservableCollection<T>.

Here’s the code-behind. Each control’s MouseDown event handler clears the output if it’s the original source, and
then it adds a string to the output. If its “handled” toggle switch is on, it uses e.Handled to handle the event.

The Click event handler for the button uses the IsOn
property of the toggle switch to turn IsHitTestVisible
on or off for the Rectangle control.

you are here 4   727

windows presentation foundation

ToggleSwit

ch

StackP
an

el
 o

bj
ec

t

Border
 ob

je
ct

Ellipse
ob

je
ct

Grid ob
je

ct

Rectan
gle

 o
bj

ec
t

W

indow obje
ct

This is the Grid that you added to the
XAML, which holds the other controls.

Here’s the StackPanel that contains the
Border, Grid, Ellipse, and Rectangle.

This Grid can receive routed
MouseDown events, but
it won’t raise them. Its
IsHitTestVisible property
defaults to False because it doesn’t
have a Background or Fill
property. If you update the XAML
to add a Background property,
its IsHitTestVisible property
will default to true—even if you
set that property to Transparent.
That will cause it to respond to
pointer presses.

Grid ob
je

ct

Button ob
je

ct

ToggleSwit

ch
 o

bj
ec

ts

StackP
an

el
 o

bj
ec

t

Here’s the object graph for your main window.
The Mainwindow class is at the root of the object tree. When you create
the new WPF application, the MainWindow.xaml and MainWindow.xaml.cs files
create an object that extends the Window class.

Flip the page to use your new app to explore routed events

728   Appendix ii

the bubbles go straight to your head

Turn IsHitTestVisible off, press the “Update”
button, and then click or tap the rectangle.

 You should see this output.

Wait a minute! You pressed the Rectangle, but the Ellipse control’s
MouseDown event handler fired. What’s going on?

When you pressed the button, its Click event handler updated
the Rectangle control’s IsHitTestVisible property to false,
which made it “invisible” to pointer presses, clicks, and other pointer
events. So when you tapped the Rectangle, your tap passed right
through it to the topmost control underneath it on the page that has

IsHitTestVisible set to true and has a Background property that’s set to a color or Transparent. In
this case, it finds the Ellipse control and fires its MouseDown event.

Run the app and click or tap the gray
Rectangle.

You should see the output in the screenshot to the right.

You can see exactly what’s going on by putting a breakpoint on the first line of
Rectangle_MouseDown(), the Rectangle control’s MouseDown event handler:

Click the gray rectangle again—this time the breakpoint should fire. Use Step
Over (F10) to step through the code line by line. First you’ll see the if block
execute to clear the outputItems ObservableCollection that’s bound to
the ListBox. This happens because sender and e.OriginalSource reference the same Rectangle control,
which is true only inside the event handler method for the control that originated the event (in this case, the control
that you clicked or tapped), so sender == e.OriginalSource is true.

When you get to the end of the method, keep stepping through the program. The event will bubble up
through the object tree, first running the Rectangle’s event handler, then the Grid’s event handler, then the
Border’s, then the Panel’s, and finally it runs an event handler method that’s part of LayoutAwarePage—this
is outside of your code and not part of the routed event, so it will always run. Since none of those controls are the
original source for the event, none of their senders will be the same as e.OriginalSource, so none of them
clear the output.

you are here 4   729

windows presentation foundation

Use the app to experiment with routed events.
Here are a few things to try:

≥≥ Click on the gray Rectangle and the red Ellipse and watch the output
to see how the events bubble up.

≥≥ Turn on each of the toggle switches, starting at the top, to cause the
event handlers to set e.Handled to true. Watch the events stop
bubbling when they’re handled.

≥≥ Set breakpoints and debug through all of the event handler methods.

≥≥ Try setting a breakpoint in the Ellipse’s event handler method, and
then turn the gray Rectangle’s IsHitTestVisible property on
and off by toggling the bottom switch and pressing the button. Step
through the code for the Rectangle when IsHitTestVisible is
set to false.

≥≥ Stop the program and add a Background property to the Grid to
make it visible to pointer hits.

Check the “Grid sets
handled” box and
click or tap the gray
Rectangle.

You should see this output.

So why did only two lines get
added to the output ListBox?
Step through the code again
to see what’s going on. This time,
gridSetsHandled.IsOn
was true because you toggled the
gridSetsHandled to On, so
the last line in the Grid’s event
handler set e.IsHandled to
true. As soon as a routed event
handler method does that, the event
stops bubbling up. As soon as the
Grid’s event handler completes, the
app sees that the event has been handled, so it doesn’t call the Border or Panel’s event handler method,
and instead skips to the event handler method in LayoutAwarePage that’s outside of the code you
added.

A routed event
first fires the
event handler for
the control that
originated the event,
and then bubbles up
through the control
hierarchy until it
hits the top—or an
event handler sets
e.Handled to true.

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

this page intentionally left blank

windows presentation foundation

Chapter 16

When you build your apps using

the Model-View-ViewModel pattern,

your code is easier to build today... and to

manage tomorrow.

Great developers follow design patterns.

In this chapter, you’ll learn about Model-View-ViewModel (MVVM),
a design pattern for building effective WPF apps. Along the way,
you’ll learn what a design pattern is, and you’ll learn how to use
XAML controls to create great animations.

Here’s how we recommend that you work through Chapter 16:

≥≥ Read through page 749.

≥≥ Follow our replacement pages for 750–757.

≥≥ Read pages 758–764.

≥≥ Start the Stopwatch project on page 762 in the book, and
continue it using a combination of book pages and appendix
replacement pages 765, 768, 770–773, and 781–787.

≥≥ Read page 788 in the book.

≥≥ The rest of Chapter 16 is replaced with pages 789–807 in this
appendix.

≥≥ There’s information on page 806 about how to do Lab #3.

750   Appendix ii

apply the pattern

Use the MVVM pattern to start building
the basketball roster app
Create a new WPF application and make sure it’s called BasketballRoster
(because we’ll be using the namespace BasketballRoster in the code, and this
will make sure your code matches what’s on the next few pages). Do this

Create the Model, View, and ViewModel folders in the project.
Right-click on the project in the Solution Explorer and choose New Folder from the Add menu:

Add a Model folder. Then do it two more times to add
the View and ViewModel folders, so your project looks
like this:

1

These folders will hold
the classes, controls, and
windows for your app.

When you use the Solution
Explorer to add a new
folder to your project,

the IDE creates a new
namespace based on the
folder name. This causes
the Add→Class... menu
option to create classes

with that namespace. So if
you add a class to the Model

folder, the IDE will add
BasketballRoster.Model

to the namespace line at
the top of the class file.

you are here 4   751

windows presentation foundation

Player
Name: string
Number: int
Starter: bool

Roster
TeamName: string
Players: IEnumerable<string>

namespace BasketballRoster.Model {
 class Player {
 public string Name { get; private set; }
 public int Number { get; private set; }
 public bool Starter { get; private set; }

 public Player(string name, int number, bool starter) {
 Name = name;
 Number = number;
 Starter = starter;
 }
 }
}

namespace BasketballRoster.Model {
 class Roster {
 public string TeamName { get; private set; }

 private readonly List<Player> _players = new List<Player>();
 public IEnumerable<Player> Players {
 get { return new List<Player>(_players); }
 }

 public Roster(string teamName, IEnumerable<Player> players) {
 TeamName = teamName;
 _players.AddRange(players);
 }
 }
}

Start building the model by adding the Player class.
Right-click on the Model folder and add a class called Player. When you add
a class into a folder, the IDE updates the namespace to add the folder name to the
end. Here’s the Player class:

2

Finish the model by adding the Roster class
Next, add the Roster class to the Model folder. Here’s the code for it.

3

Your Model folder should now look like this:

When you add a class file into
a folder, the IDE adds the
folder name to the namespace.

We’ll add the view on the next page

These classes are small because they’re only
concerned with keeping track of which players are
in each roster. None of the classes in the Model are

concerned with displaying the data, just managing it.

MODE
L

We added an underscore to the beginning
of the name of the _players field. Adding
an underscore to the beginning of private

fields is a very common naming convention.
We’re going to use it throughout this

chapter so you can get used to seeing it.

The _ tells you
that this field
is private.

Different classes concerned
with different things?
This sounds familiar...

752   Appendix ii

take control of your controls

Add a new main window to the View folder.
Right-click on the View folder and add a new Window called LeagueWindow.xaml.

Your project’s View folder should now have a XAML window in it called
LeagueWindow.xaml. This is just like the MainWindow.xaml window that you’ve
been working with throughout the book. It’s still a Window object with a graph that’s
defined with XAML. The only difference is that it’s called LeagueWindow instead of
MainWindow.

4

Delete the main window and replace it with your new window.
Delete the MainWindow.xaml file from the project by right-clicking on it and choosing Delete. Now try
building and running your project—you’ll get an exception when the program starts:

Well, that makes sense, since you deleted MainWindow.xaml. When a WPF application starts up, it shows
the window specified in the StartupUri property in the <Application> tag App.xaml:

Open App.xaml and edit StartupUri so your program pops up the window you just added:
<Application x:Class="BasketballRoster.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 StartupUri="View/LeagueWindow.xaml">

Once you make that change, rebuild and rerun your program. Now it should start and show your newly
added window.

5

VIEW

you are here 4   753

windows presentation foundation

User controls le t you create your own controls
Take a look at the basketball roster program that you’re building. Each team gets an
identical set of controls: a TextBlock, another TextBlock, a ListView, another TextBlock,
and another ListView, all wrapped up by a StackPanel inside a Border. Do we really need
to add two identical sets of controls to the page? What if we want to add a third and fourth
team—that’s going to mean a whole lot of duplication. And that’s where user controls
come in. A user control is a class that you can use to create your own controls. You use
XAML and code-behind to build a user control, just like you do when you build a page.
Let’s get started and add a user control to your BasketballRoster project.

Before you flip the page, see if you can figure out what
XAML should go into the new RosterControl by looking
at the Windows Store app screenshot on page 746.

≥≥ It will have a <StackPanel> to stack up the controls that live
inside a blue <Border>. Can you figure out which property gives
a Border control rounded corners?

≥≥ It has two ListView controls that display data for players, so it also
needs a <UserControl.Resources> section that contains a
DataTemplate. We called it PlayerItemTemplate.

≥≥ Bind the ListView items to properties called Starters and
Bench, and the top TextBlock to a property called TeamName.

≥≥ The Border control lives inside a <Grid> with a single row that
has Height="Auto" to keep it from expanding past the bottom
of the ListView controls to fill up the entire page.

“Teach a man to fish...”

We’re nearing the end of the book,
so we want to challenge you with
problems that are similar to ones

you’ll face in the real world. A good
programmer takes a lot of educated
guesses, so we’re giving you barely

enough information about how
a UserControl works. You don’t
even have binding set up, so you

won’t see data in the designer! How
much of the XAML can you build

before you flip the page to see the
code for RosterControl?

UserControl
is a base class
that gives
you a way to
encapsulate
controls that
are related
to each other,
and lets you
build logic
that defines
the behavior
of the control.

 Add a new user control to your View folder.

Right-click on the View folder and add a new item. Choose from
the dialog and call it RosterControl.xaml.

1

 Look at the code-behind for the new user control.

Open up RosterControl.xaml.cs. Your new control extends the UserControl base
class. Any code-behind that defines the user control’s behavior goes here.

2

 Look at the XAML for the new user control.

The IDE added a user control with an empty <Grid>. Your XAML will go here.

3

754   Appendix ii

model view viewmodel

<UserControl x:Class="BasketballRoster.View.RosterControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="450" d:DesignWidth="300">

 <UserControl.Resources>
 <DataTemplate x:Key="PlayerItemTemplate">
 <TextBlock>
 <Run Text="{Binding Name, Mode=OneWay}"/>
 <Run Text=" #"/>
 <Run Text="{Binding Number, Mode=OneWay}"/>
 </TextBlock>
 </DataTemplate>
 </UserControl.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Border BorderThickness="2" BorderBrush="Blue" CornerRadius="6" Background="Black">
 <StackPanel Margin="20">
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="20px"
 FontWeight="Bold" Text="{Binding TeamName}" />
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="16px"
 Text="Starting Players" Margin="0,5,0,0"/>
 <ListView Background="Black" Foreground="White" Margin="0,5,0,0"
 ItemTemplate="{StaticResource PlayerItemTemplate}"
 ItemsSource="{Binding Starters}" />
 <TextBlock Foreground="White" FontFamily="Segoe" FontSize="16px"
 Text="Bench Players" Margin="0,5,0,0"/>
 <ListView Background="Black" Foreground="White" ItemsSource="{Binding Bench}"
 ItemTemplate="{StaticResource PlayerItemTemplate}" Margin="0,5,0,0"/>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

You already know that controls change
size based on their Height and Width
properties. You can change these
numbers to alter how the control
is displayed in the IDE’s Designer
window when you’re modifying it.

You can use the CornerRadius property
to give a Border rounded corners.

Both ListView
controls use the
same template
defined as a
static resource.

 Finish the RosterControl XAML.

Here’s the code for the RosterControl user control that you added to the View folder. Did you
notice how we gave you properties for binding, but no data context? That should make sense. The two
controls on the page show different data, so the page will set different data contexts for each of them.

4

We put the data template for the ListView items in its
own static resource. Then, instead of having a <ListView.

ItemTemplate> section we used the static resource
using the ItemTemplate property in the ListView tag:

ItemTemplate="{StaticResource PlayerItemTemplate}"

you are here 4   755

windows presentation foundation

RosterViewModel
TeamName: string

Starters: ObservableCollection
 <PlayerViewModel>

Bench: ObservableCollection
 <PlayerViewModel>

constructor:
 RosterViewModel(Model.Roster)

private UpdateRosters()

LeagueViewModel
JimmysTeam: RosterViewModel
BriansTeam: RosterViewModel

private GetBomberPlayers(): Model.Roster
private GetAmazinPlayers(): Model.Roster

PlayerViewModel
Name: string
Number: int

VIEW
MODE

L

Build the ViewModel for the BasketballRoster app by looking at the data in the
Model and the bindings in the View, and figuring out what “plumbing” the app
needs to connect them together.

<Window.Resources>
 <viewmodel:LeagueViewModel x:Key="LeagueViewModel"/>
</Window.Resources>

<StackPanel Orientation="Horizontal" Margin="5"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 DataContext="{StaticResource ResourceKey=LeagueViewModel}" >
 <view:RosterControl Width="200" DataContext="{Binding JimmysTeam}" Margin="0,0,20,0" />
 <view:RosterControl Width="200" DataContext="{Binding BriansTeam}" />
</StackPanel>

xmlns:view="clr-namespace:BasketballRoster.View"
xmlns:viewmodel="clr-namespace:BasketballRoster.ViewModel"

Add the Roster controls to LeagueWindow.xaml.
First add these xmlns properties to the page so it recognizes the new namespaces:

1

Then add an instance of LeagueViewModel as a static resource:

Now you can add a StackPanel with two RosterControls to the page:

If the IDE gives you an error message in the XAML designer that LeagueViewModel
does not exist in the ViewModel namespace, but you’re 100% certain you added

it correctly, try right-clicking on the BasketballRoster project and choosing Unload
Project, and then right-click again and choose Reload Project to reload it. But make

sure you don’t have any errors in any of the C# code files.

Create the ViewModel classes.
Create these three classes in the ViewModel folder.

2

Make the ViewModel classes work.
≥≥ The PlayerViewModel class is a simple data object with two properties.

≥≥ The LeagueViewModel class has two private methods to create dummy data for the page. It
creates Model.Roster objects for each team that get passed to the RosterViewModel constructor.

≥≥ The RosterViewModel class has a constructor that takes a Model.Roster object. It sets the
TeamName property, and then it calls its private UpdateRosters() method, which uses LINQ
queries to extract the starting and bench players and update the Starters and Bench properties.
Add using Model; to the top of the classes so you can use objects in the Model namespace.

3

Make sure you created the classes and pages
in the right folders; otherwise, the namespaces
won’t match the code in the solution.

See page
748 for a
hint about
the LINQ
query...

756   Appendix ii

exercise solution

v

namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;

 class LeagueViewModel {
 public RosterViewModel BriansTeam { get; set; }
 public RosterViewModel JimmysTeam { get; set; }

 public LeagueViewModel() {
 Roster briansRoster = new Roster("The Bombers", GetBomberPlayers());
 BriansTeam = new RosterViewModel(briansRoster);

 Roster jimmysRoster = new Roster("The Amazins", GetAmazinPlayers());
 JimmysTeam = new RosterViewModel(jimmysRoster);
 }

 private IEnumerable<Player> GetBomberPlayers() {
 List<Player> bomberPlayers = new List<Player>() {
 new Player("Brian", 31, true),
 new Player("Lloyd", 23, true),
 new Player("Kathleen",6, true),
 new Player("Mike", 0, true),
 new Player("Joe", 42, true),
 new Player("Herb",32, false),
 new Player("Fingers",8, false),
 };
 return bomberPlayers;
 }

 private IEnumerable<Player> GetAmazinPlayers() {
 List<Player> amazinPlayers = new List<Player>() {
 new Player("Jimmy",42, true),
 new Player("Henry",11, true),
 new Player("Bob",4, true),
 new Player("Lucinda", 18, true),
 new Player("Kim", 16, true),
 new Player("Bertha", 23, false),
 new Player("Ed",21, false),
 };
 return amazinPlayers;
 }
 }
}

namespace BasketballRoster.ViewModel {
 class PlayerViewModel {
 public string Name { get; set; }
 public int Number { get; set; }

 public PlayerViewModel(string name, int number) {
 Name = name;
 Number = number;
 }
 }
}

The ViewModel for the BasketballRoster app has three classes: LeagueViewModel,
PlayerViewModel, and RosterViewModel. They all live in the ViewModel folder.

This private method
generates dummy
data for the
Bombers by creating
a new List of
Player objects.

You use classes from
the View to store
your data, which
is why this method
returns Player
objects and not
PlayerViewModel
objects.

LeagueViewModel exposes
RosterViewModel objects
that a RosterControl can
use as its data context.
It creates the Roster
model object for the
RosterViewModel to use.

Here’s the PlayerViewModel. It’s just a simple data object with properties for the data template to bind to.

Dummy data typically goes in
the ViewModel because the

state of an MVVM application
is managed using instances

of the Model classes that
are encapsulated inside the

ViewModel objects.

If you left out the using Model; line
then you’d have to use Model.Roster

instead of Roster everywhere.

you are here 4   757

windows presentation foundation

v namespace BasketballRoster.ViewModel {
 using Model;
 using System.Collections.ObjectModel;
 using System.ComponentModel;

 class RosterViewModel {
 public ObservableCollection<PlayerViewModel> Starters { get; set; }
 public ObservableCollection<PlayerViewModel> Bench { get; set; }

 private Roster _roster;

 private string _teamName;
 public string TeamName {
 get { return _teamName; }
 set {
 _teamName = value;
 }
 }

 public RosterViewModel(Roster roster) {
 _roster = roster;

 Starters = new ObservableCollection<PlayerViewModel>();
 Bench = new ObservableCollection<PlayerViewModel>();

 TeamName = _roster.TeamName;

 UpdateRosters();
 }

 private void UpdateRosters() {
 var startingPlayers =
 from player in _roster.Players
 where player.Starter
 select player;

 foreach (Player player in startingPlayers)
 Starters.Add(new PlayerViewModel(player.Name, player.Number));

 var benchPlayers =
 from player in _roster.Players
 where player.Starter == false
 select player;

 foreach (Player player in benchPlayers)
 Bench.Add(new PlayerViewModel(player.Name, player.Number));
 }
 }
}

This LINQ query
finds all the starting
players and adds
them to the Starters
ObservableCollection
property.

Here’s a similar LINQ
query to find the
bench players.

Whenever the TeamName property
changes, the RosterViewModel fires off
a PropertyChanged event so any object
bound to it will get updated.

This is where the app stores its state—in Roster objects
encapsulated inside the ViewModel. The rest of the class translates
the Model data into properties that the View can bind to.

In a typical MVVM app, only classes in the ViewModel
implement INotifyPropertyChanged because those

are the only objects that XAML controls are bound to.

In a typical MVVM app, only classes in the ViewModel implement INotifyPropertyChanged.
That's because the ViewModel contains the only objects that XAML controls are bound to. In this

project, however, we didn’t need to implement INotifyPropertyChanged because the bound properties
are updated in the constructor. If you wanted to modify the project to let Brian and Jimmy change their

team names, you'd need to fire a PropertyChanged event in the TeamName set accessor.

There is one change you’ll need to make to get the ViewModel
code on pages 766 and 767 in the book to work. On page 766

you’re given three using statements, including this one:

using Windows.UI.Xaml;

You’ll need to replace it with this using statement:

using System.Windows.Threading;

The Windows.UI.Xaml namespace is part of the .NET
Framework for Windows Store, so you don’t use it for WPF

applications. But you need System.Windows.Threading
because your ViewModel has a DispatcherTimer.

Other than that change, the code is identical. This is a good
example of decoupled layers in the Model-View-ViewModel
pattern: since you used identical C# code (except for that
one using statement) for the ViewModel and Model, you

could reuse those classes to port the stopwatch app to WPF.

you are here 4   765

windows presentation foundation

<UserControl x:Class="Stopwatch.View.BasicStopwatch"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Key="viewModel"/>
 </UserControl.Resources>

 <Grid DataContext="{StaticResource ResourceKey=viewModel}">
 <StackPanel>
 <TextBlock>
 <Run>Elapsed time: </Run>
 <Run Text="{Binding Hours, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding Minutes, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding Seconds, Mode=OneWay}"/>
 </TextBlock>
 <TextBlock>
 <Run>Lap time: </Run>
 <Run Text="{Binding LapHours, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding LapMinutes, Mode=OneWay}"/>
 <Run>:</Run>
 <Run Text="{Binding LapSeconds, Mode=OneWay}"/>
 </TextBlock>
 <StackPanel Orientation="Horizontal">
 <Button Click="StartButton_Click" Margin="0,0,5,0">Start</Button>
 <Button Click="StopButton_Click" Margin="0,0,5,0">Stop</Button>
 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>
 <Button Click="LapButton_Click">Lap</Button>
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

VIEW

Build the v iew for a simple stopwatch
Here’s the XAML for a simple stopwatch control. Add a WPF user control to the View
folder called BasicStopwatch.xaml and add this code. The control has TextBlock controls
to display the elapsed and lap times, and buttons to start, stop, reset, and take the lap time.

The code for the ViewModel is on pages 766 and 767 in the book. How much of the
ViewModel code can you build just from the View and Model code before you flip the page?
Add a BasicStopwatch control to the main window and see how far you can get.

You’ll need this xmlns
property to add the
namespace. We called
our project Stopwatch,
so the ViewModel
namespace is
Stopwatch.ViewModel.

This user control stores an
instance of the ViewModel as a

static resource and uses it as its
data context. It doesn’t need its
container to set a data context.
It keeps track of its own state.

This TextBlock is bound
to properties in the
ViewModel that return
the elapsed time.

This TextBlock
is bound to
properties that
expose the lap time.

The ViewModel
must be firing off PropertyChanged events to keep these values up to date.

You’ll need to add Click event
handlers to the control and a
StopwatchViewModel class
to the ViewModel namespace

for this to compile.

Here’s a hint: use a DispatcherTimer to constantly
check the Model and update the properties.

But be really careful and don’t assume the IDE is necessarily wrong. Sometimes an error in the
XAML for one page (like a broken xmlns property) can cause all the designers to break.

The ViewModel
has read-only
properties for

Hours, Minutes,
Seconds, etc.
WPF requires

one-way binding
for read-only

properties.

768   Appendix ii

tick tick tick

Finish the stopwatch app
There are just a few more loose ends to tie together. Your BasicStopwatch
user control doesn’t have event handlers, so you need to add them. And
then you just need to add the control to your main window.

<Window x:Class="Stopwatch.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="150" Width="250"
 xmlns:view="clr-namespace:Stopwatch.View">
 <Grid>
 <view:BasicStopwatch Margin="5"/>
 </Grid>
</Window>

Here’s all the XAML for MainWindow.xaml:2

Your app should now run. Click the Start, Stop, Reset, and
Lap buttons to see your stopwatch work.

ViewModel.StopwatchViewModel viewModel;

public BasicStopwatch() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;
}

private void StartButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Start();
}

private void StopButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Stop();
}

private void ResetButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Reset();
}

private void LapButton_Click(object sender, RoutedEventArgs e) {
 viewModel.Lap();
}

First, go back to BasicStopwatch.xaml.cs and add these event handlers to the code-behind:1

The buttons in
the view just call
methods in the
ViewModel. This
is a pretty typical
pattern for the
View.

All the behavior is
in the user control,
so there’s no
code-behind for
the main window.

windows presentation foundation

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

770  

useful tools for viewmodels

Converters automatically convert values for binding
Anyone with a digital clock knows that it typically shows the minutes with a leading zero. Our
stopwatch should also show the minutes with two digits. And it should show the seconds with two
digits, and round to the nearest hundredth of a second. We could modify the ViewModel to expose
string values that are formatted properly, but that would mean that we’d need to keep adding
more and more properties each time we wanted to reformat the same data. That’s where value
converters come in very handy. A value converter is an object that the XAML binding uses to
modify data before it’s passed to the control. You can build a value converter by implementing the
IValueConverter interface (which is in the System.Windows.Data namespace). Add a value
converter to your stopwatch now.

using System.Windows.Data;

class TimeNumberFormatConverter : IValueConverter {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture) {
 if (value is decimal)
 return ((decimal)value).ToString("00.00");
 else if (value is int) {
 if (parameter == null)
 return ((int)value).ToString("d1");
 else
 return ((int)value).ToString(parameter.ToString());
 }
 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Add the TimeNumberFormatConverter class to the ViewModel folder.
Add using System.Windows.Data; to the top of the class, and then have it
implement the IValueConverter interface. Use the IDE to automatically implement
the interface. This will add two method stubs for the Convert() and ConvertBack()
methods.

1

Implement the Convert() method in the value converter.
The Convert() method takes several parameters—we’ll use two of them. The value parameter is
the raw value that’s passed into the binding, and parameter lets you specify a parameter in XAML.

2

This converter
knows how to
convert decimal
and int values. For
int values, you can
optionally pass in
a parameter.

The ConvertBack() method is used for two-way
binding. We’re not using that in this project, so you
can leave the method stub as is.

VIEW
MODE

L

Converters
are useful
tools for
building your
ViewModel.

Is it a good idea to leave this NotImplementedException in your code? For
this project, this is code that is never supposed to be run. If it does get run,

is it better to fail silently, so the user never sees it? Or is it better to throw an
exception so that you can track down the problem? Which of those gives you

a more robust app? There’s not necessarily one right answer.

you are here 4   771

windows presentation foundation

<TextBlock>

 <Run>Elapsed time: </Run>

 <Run Text="{Binding Hours, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding Minutes, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding Seconds, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<TextBlock>

 <Run>Lap time: </Run>

 <Run Text="{Binding LapHours, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

 <Run>:</Run>

 <Run Text="{Binding LapMinutes, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}, ConverterParameter=d2}"/>

 <Run>:</Run>

 <Run Text="{Binding LapSeconds, Mode=OneWay,

 Converter={StaticResource timeNumberFormatConverter}}"/>

</TextBlock>

<UserControl.Resources>

 <viewmodel:StopwatchViewModel x:Key="viewModel"/>

 <viewmodel:TimeNumberFormatConverter x:Key="timeNumberFormatConverter"/>

</UserControl.Resources>

Add the converter to your stopwatch control as a static resource.
It should go right below the ViewModel object:

3

Update the XAML code to use the value converter.
Modify the {Binding} markup by adding the Converter= to it in each of the <Run> tags.

4

Use the ConverterParameter
syntax to pass a parameter
into the converter.

If there’s no parameter specified, don’t forget the extra closing bracket }}.

Now the stopwatch runs the values through
the converter before passing them into the
TextBlock controls, and the numbers are
formatted correctly on the page.

VIEW

The designer may make you rebuild the solution
after you add this line. In rare cases, you might
even need to unload and reload the project.

772   Appendix ii

converting different types

int _lastHours;
int _lastMinutes;
decimal _lastSeconds;
bool _lastRunning;
void TimerTick(object sender, object e) {
 if (_lastRunning != Running) {
 _lastRunning = Running;
 OnPropertyChanged("Running");
 }
 if (_lastHours != Hours) {
 _lastHours = Hours;
 OnPropertyChanged("Hours");
 }
 if (_lastMinutes != Minutes) {
 _lastMinutes = Minutes;
 OnPropertyChanged("Minutes");
 }
 if (_lastSeconds != Seconds) {
 _lastSeconds = Seconds;
 OnPropertyChanged("Seconds");
 }
}

Converters can work with many different types
TextBlock and TextBox controls work with text, so binding strings or numbers to the Text property makes
sense. But there are many other properties, and you can bind to those as well. If your ViewModel has a
Boolean property, it can be bound to any true/false property. You can even bind properties that use
enums—the IsVisible property uses the Visibility enum, which means you can also write value
converters for it. Let’s add Boolean and Visibility binding and conversion to the stopwatch.

Modify the ViewModel’s Tick event handler.
Modify the DispatcherTimer’s Tick event handler to raise a PropertyChanged event if
the value of the Running property has changed:

1

We added the
Running check to
the timer. Would
it make more
sense to have the
Model fire an
event instead?

VIEW
MODE

L

Here are two converters that will come in handy.

Sometimes you want to bind Boolean properties like IsEnabled so that a control
is enabled if the bound property is false. We’ll add a new converter called

BooleanNotConverter, which uses the ! operator to invert a Boolean target property.

IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

You’ll often want to have controls show or hide themselves based on a Boolean property in
the data context. You can only bind the Visibility property of a control to a target property
that’s of the type Visibility (meaning it returns values like Visibility.Collapsed).

We’ll add a converter called BooleanVisibilityConverter that will let us bind a control’s
Visibility property to a Boolean target property to make it visible or invisible.

Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"

you are here 4   773

windows presentation foundation

using System.Windows.Data;

class BooleanNotConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == false)
 return true;
 else
 return false;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

using System.Windows;
using System.Windows.Data;

class BooleanVisibilityConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if ((value is bool) && ((bool)value) == true)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Add a converter that inverts Boolean values.
Here’s a value converter that converts true to false and vice versa. You can use it with
Boolean properties on your controls like IsEnabled.

2

<StackPanel Orientation="Horizontal">
 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"
 Click="StartButton_Click" Margin="0,0,5,0">Start</Button>
 <Button IsEnabled="{Binding Running}" Click="StopButton_Click"
 Margin="0,0,5,0">Stop</Button>
 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>
 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>
</StackPanel>
<TextBlock Text="Stopwatch is running"
 Visibility="{Binding Running, Converter={StaticResource visibilityConverter}}"/>

Add a converter that converts Booleans to Visibility enums.
You’ve already seen how you can make a control visible or invisible by setting its Visibility
property to Visible or Collapsed. These values come from an enum in the System.Windows
namespace called Visibility. Here’s a converter that converts Boolean values to Visibility values:

3

Modify your basic stopwatch control to use the converters.
Modify BasicStopwatch.xaml to add instances of these converters as static resources:

4

<viewmodel:BooleanVisibilityConverter x:Key="visibilityConverter"/>
<viewmodel:BooleanNotConverter x:Key="notConverter"/>

Now you can bind the controls’ IsEnabled and Visibility properties to the ViewModel’s Running
property:

This enables the
Start button only
if the stopwatch
is not running.

This causes a TextBlock to become
visible when the stopwatch is running.

VIEW
MODE

L

VIEW

We left this page blank so that you can
read this appendix in two-page mode, so the
exercise and its solution appear on different
two-page spreads. If you’re viewing this as
a PDF in two-page mode, you may want to
turn on the cover page so the even pages are
on the right and the odd pages are on the
left.

you are here 4   781

windows presentation foundation

 d:DesignHeight="300"
 d:DesignWidth="400"
 xmlns:viewmodel="clr-namespace:Stopwatch.ViewModel">

Build an analog stopwatch using the same ViewModel
The MVVM pattern decouples the View from the ViewModel, and the ViewModel from the Model.
This is really useful if you need to make changes to one of the layers. Because of that decoupling,
you can be very confident that the changes you make will not cause the “shotgun surgery” effect and
ripple into the other layers. So did we do a good job decoupling the stopwatch program’s View from its
ViewModel? There’s one way to be sure: let’s build an entirely new View without changing the existing
classes in the ViewModel. The only change you’ll need in the C# code is a new converter in the
ViewModel that converts minutes and seconds into angles.

using System.Windows.Data;
class AngleConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 double parsedValue;
 if ((value != null)
 && double.TryParse(value.ToString(), out parsedValue)
 && (parameter != null))
 switch (parameter.ToString()) {
 case "Hours":
 return parsedValue * 30;
 case "Minutes":
 case "Seconds":
 return parsedValue * 6;
 }
 return 0;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

An hour value ranges from 0 to
11, so to convert to an angle it’s
multiplied by 30.

Minutes and seconds range from
0 to 60, so the angle conversion
means multiplying by 6.

 <UserControl.Resources>
 <viewmodel:StopwatchViewModel x:Key="viewModel"/>
 <viewmodel:BooleanNotConverter x:Key="notConverter"/>
 <viewmodel:AngleConverter x:Key="angleConverter"/>
 </UserControl.Resources>

And add the ViewModel, two converters, and a style to the user control’s static resources.

VIEW
MODE

L

VIEW

Add a converter to convert time to angles.
Add the AngleConverter class to the ViewModel folder. You’ll use it for the hands on the face.

1

Add the new UserControl.
Add a new WPF user control called AnalogStopwatch to the View folder and add the
ViewModel namespace to the <UserControl> tag. Also, change the design width and height:

2

Remember how you used
the data classes you
built for Jimmy’s Comics
in Chapter 14 and
reused them to create
a Split App without
making any changes?
This is the same idea.

Do this!

782   Appendix ii

transform your controls

<Grid x:Name="baseGrid" DataContext="{StaticResource ResourceKey=viewModel}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400"/>
 </Grid.ColumnDefinitions>
 <Ellipse Width="300" Height="300" Stroke="Black" StrokeThickness="2">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFB03F3F"/>
 <GradientStop Color="#FFE4CECE" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="150" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="4" Height="100" Fill="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding Minutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="1" Height="150" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-60"/>
 <RotateTransform Angle="{Binding LapSeconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Rectangle RenderTransformOrigin="0.5,0.5" Width="2" Height="100" Fill="Yellow">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform Y="-50"/>
 <RotateTransform Angle="{Binding LapMinutes,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Minutes}"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 <Ellipse Width="10" Height="10" Fill="Black"/>
</Grid>

This draws an extra circle in the middle to cover up where the hands overlap. Since it’s at the bottom of the Grid, it’s drawn last and ends up on top.

This is the face of the stopwatch.
It has a black outline and a
grayish gradient background.

Setting
the column
width keeps
it from
expanding to
fill whatever
container
it’s in.

Here’s the second
hand. It’s a long,
thin rectangle
with a translate
and rotate
transform.

VIEW
Add the face and hands to the Grid.
Modify the <Grid> tag to add the stopwatch face, using four rectangles for hands.

3

Here’s the
minute
hand.

There are
two yellow
hands for
the lap
time.

Every control can have one
RenderTransform section.

The TransformGroup tag lets
you apply multiple transforms
to the same control.

you are here 4   783

windows presentation foundation

<TranslateTransform Y="-60"/>

<RotateTransform Angle="{Binding Seconds,
 Converter={StaticResource ResourceKey=angleConverter},
 ConverterParameter=Seconds}"/>

The stopwatch face is filled
with a gradient brush, just

like the background you
used in Save the Humans.

Every control can have one
RenderTransform element

that changes how it’s
displayed. This can include
rotating, moving to an offset,
skewing, scaling its size up

or down, and more.

You used transforms in Save
the Humans to change the

shape of the ellipses in the
enemy to make it look like

an alien.

Each hand is transformed twice. It starts out
centered in the face, so the first transform
shifts it up so that it’s in position to rotate.

The second transform rotates the hand to
the correct angle. The Angle property of the
rotation is bound to seconds or minutes in the
ViewModel, and uses the angle converter to
convert it to an angle.

Your stopwatch will start
ticking as soon as you add the
second hand, because it creates
an instance of the ViewModel
as a static resource to render
the control in the designer.
The designer may stop it
updating, but you can restart
it by switching away from the
designer window and back again.

784   Appendix ii

adding resources

Add the buttons to the stopwatch.
Since the ViewModel is the same, the buttons should work the same. Add the
same buttons to AnalogStopwatch.xaml that you used for the basic stopwatch:

4

<StackPanel Orientation="Horizontal" VerticalAlignment="Bottom">

 <Button IsEnabled="{Binding Running, Converter={StaticResource notConverter}}"

 Click="StartButton_Click" Margin="0,0,5,0">Start</Button>

 <Button IsEnabled="{Binding Running}"

 Click="StopButton_Click" Margin="0,0,5,0">Stop</Button>

 <Button Click="ResetButton_Click" Margin="0,0,5,0">Reset</Button>

 <Button IsEnabled="{Binding Running}" Click="LapButton_Click">Lap</Button>

</StackPanel>

ViewModel.StopwatchViewModel viewModel;

public AnalogStopwatch() {

 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;

}

private void StartButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Start();

}

private void StopButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Stop();

}

private void ResetButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Reset();

}

private void LapButton_Click(object sender, RoutedEventArgs e) {

 viewModel.Lap();

}

Here’s the code-behind for AnalogStopwatch.xaml.cs:

you are here 4   785

windows presentation foundation

Update the main window to show both stopwatches.
Now you just need to modify your MainWindow.xaml to add an AnalogStopwatch control:

5

<Window x:Class="Stopwatch.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Two Stopwatches" Height="450" Width="400" ResizeMode="NoResize"

 xmlns:view="clr-namespace:Stopwatch.View">

 <Grid>

 <StackPanel>

 <view:BasicStopwatch Margin="5"/>

 <view:AnalogStopwatch Margin="5"/>

 </StackPanel>

 </Grid>

</Window>

Run your app. Now you have two
stopwatch controls on the page.

Each stopwatch keeps
its own time, because
each one has its own
separate instance of
the ViewModel as a
static resource.

Try changing the ViewModel to
make the _stopwatchModel field

static. What does this change
about how the stopwatch app
behaves? Can you figure out

why that happens?

786   Appendix ii

in the end, it’s all just code

public sealed partial class AnalogStopwatch : UserControl {

 public AnalogStopwatch() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.StopwatchViewModel;
 AddMarkings();
 }

 private void AddMarkings() {
 for (int i = 0; i < 360; i += 3) {
 Rectangle rectangle = new Rectangle();
 rectangle.Width = (i % 30 == 0) ? 3 : 1;
 rectangle.Height = 15;
 rectangle.Fill = new SolidColorBrush(Colors.Black);
 rectangle.RenderTransformOrigin = new Point(0.5, 0.5);

 TransformGroup transforms = new TransformGroup();
 transforms.Children.Add(new TranslateTransform() { Y = -140 });
 transforms.Children.Add(new RotateTransform() { Angle = i });
 rectangle.RenderTransform = transforms;
 baseGrid.Children.Add(rectangle);
 }
 }
 // ... the button event handlers stay the same

UI controls can be instant iated with C# code, too
You already know that your XAML code instantiates classes in the Windows.UI namespace,
and you even used the Watch window in the IDE back in Chapter 10 to explore them. But
what if you want to create controls from inside your code? Well, controls are just objects, so you
can create them and work with them just like you would with any other object. Go ahead and
modify the code-behind to add markings to the face of your analog stopwatch.

Modify the constructor
to call a method that
adds the markings.

This creates
instances of the
same Rectangle
object that you
created with the
<Rectangle> tag.

This statement uses the
% modulo operator to

make the marks for the
hours thicker than the

ones for the minutes. i %
30 returns 0 only if i is

divisible by 30.

Flip back to the XAML for the
hour and minute hands. This code
sets up exactly the same transform,
except instead of binding the Angle
property it sets it to a value.

Controls like Grid, StackPanel, and
Canvas have a Children collection

with references to all the other controls
contained inside them. You can add

controls to the grid with its Add() method
and remove all controls by calling its

Clear() method. You add transforms to a
TransformGroup the same way.

You used a Binding object to set up data
binding in C# code back in Chapter 11.
Can you figure out how to remove the
XAML to create the Rectangle controls for
the hour and minute hands and replace it
with C# code to do the same thing?

you are here 4   787

windows presentation foundation

Thanks for giving
us everything we need
for our game! Now we
can compete for the

prestigious objectville
trophy.

Now that you added the
markings to the stopwatch, the
ref will make all the right calls.

Which team will dominate
the conference and win
the Objectville Trophy?
Nobody’s sure. All we know
is that Joe, Bob, and Ed
will be betting on it!

For the next few projects, you’ll need to download the bee images from the Head
First Labs website (http://www.headfirstlabs.com/hfcsharp). Make sure that you
add the images to your project so they’re in the top-level folder, just like you did

with the Jimmy’s Comics app. You’ll also need to select each image file in the
Solution Explorer and use the Properties window to set the “Build Action” to

Content and “Copy to Output Directory” to Copy always. Here’s what it looks
like when you did it for the Jimmy’s Comics app:

Make sure you do this for Bee animation 1.png, Bee animation 2.png,
Bee animation 3.png, and Bee animation 4.png.

you are here 4   789

windows presentation foundation

Create a user control to animate a picture
Let’s encapsulate all the frame-by-frame animation code. Add a WPF user control called
AnimatedImage to your View folder. It has very little XAML—all the intelligence is in the
code-behind. Here’s everything inside the <UserControl> tag in the XAML:

using System.Windows.Media.Animation;
using System.Windows.Media.Imaging;

public partial class AnimatedImage : UserControl {
 public AnimatedImage() {
 InitializeComponent();
 }

 public AnimatedImage(IEnumerable<string> imageNames, TimeSpan interval)
 : this() {
 StartAnimation(imageNames, interval);
 }

 public void StartAnimation(IEnumerable<string> imageNames, TimeSpan interval) {
 Storyboard storyboard = new Storyboard();
 ObjectAnimationUsingKeyFrames animation = new ObjectAnimationUsingKeyFrames();
 Storyboard.SetTarget(animation, image);
 Storyboard.SetTargetProperty(animation, new PropertyPath(Image.SourceProperty));

 TimeSpan currentInterval = TimeSpan.FromMilliseconds(0);
 foreach (string imageName in imageNames) {
 ObjectKeyFrame keyFrame = new DiscreteObjectKeyFrame();
 keyFrame.Value = CreateImageFromAssets(imageName);
 keyFrame.KeyTime = currentInterval;
 animation.KeyFrames.Add(keyFrame);
 currentInterval = currentInterval.Add(interval);
 }

 storyboard.RepeatBehavior = RepeatBehavior.Forever;
 storyboard.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }
 private static BitmapImage CreateImageFromAssets(string imageFilename) {
 try {
 Uri uri = new Uri(imageFilename, UriKind.RelativeOrAbsolute);
 return new BitmapImage(uri);
 } catch (System.IO.IOException) {
 return new BitmapImage();
 }
 }
}

<Grid>
 <Image x:Name="image" Stretch="Fill"/>
</Grid>

The work is done in the code-behind. Notice its overloaded constructor that calls the StartAnimation() method,
which creates storyboard and key frame animation objects to animate the Source property of the Image
control.

BitmapImage is in the
Media.Imaging namespace.
Storyboard and the other
animation classes are
in the Media.Animation
namespace.

Every control must have a parameterless constructor if
you want to create an instance of the control using XAML.

You can still add overloaded constructors, but that’s
useful only if you’re writing code to create the control.

The static SetTarget()
and SetTargetProperty()

methods from the
Storyboard class set the

target object being animated
("image"), and the property

that will change (Source)
using the PropertyPath() class.

Once the Storyboard object is set up and animations
have been added to its Children collection, call its

Begin() method to start the animation.

This is the same
method you used
in Chapter 14.

790   Appendix ii

bees gotta fly

Make your bees f ly around a page
Let’s take your AnimatedImage control out for a test flight.

<Window x:Class="AnimatedBee.View.FlyingBees"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:view="clr-namespace:AnimatedBee.View"

 Title="Flying Bees" Height="600" Width="600">

 <Grid>

 <Canvas Background="SkyBlue">

 <view:AnimatedImage Canvas.Left="55" Canvas.Top="40"

 x:Name="firstBee" Width="50" Height="50"/>

 <view:AnimatedImage Canvas.Left="80" Canvas.Top="260"

 x:Name="secondBee" Width="200" Height="200"/>

 <view:AnimatedImage Canvas.Left="230" Canvas.Top="100"

 x:Name="thirdBee" Width="300" Height="125"/>

 </Canvas>

 </Grid>

</Window>

Replace the main window with a window in the View folder.
Add a Window to your View folder called FlyingBees.xaml. Delete MainWindow.xaml from the project.
Then modify the StartupUri property in the <Application> tag App.xaml:

 StartupUri="View\FlyingBees.xaml"

1

The bees will fly around a Canvas control.
Here’s the code for the window (you’ll need to change the AnimatedBee namespace if you used a different
project name). It uses a Canvas control in FlyingBees.xaml. A Canvas control is a container, so it can
contain other controls like a Grid or StackPanel. The difference is that a Canvas lets you set the coordinates of
the controls using the Canvas.Left and Canvas.Top properties. You used a Canvas back in Chapter 1 to
create the play area for Save the Humans. Here’s the XAML for the FlyingBees.xaml window:

2

The AnimatedImage control is invisible until
its CreateFrameImages() method is called,
so the controls in the Canvas will show up
only as outlines. You can select them using

the Document Outline. Try dragging the
controls around the canvas to see the Canvas.
Left and Canvas.Top properties change.

Do this!

you are here 4   791

windows presentation foundation

public FlyingBees() {
 this.InitializeComponent();

 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 firstBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(50));
 secondBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(10));
 thirdBee.StartAnimation(imageNames, TimeSpan.FromMilliseconds(100));

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, firstBee);
 Storyboard.SetTargetProperty(animation, new PropertyPath(Canvas.LeftProperty));
 animation.From = 50;
 animation.To = 450;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
}

using System.Windows.Media.Animation;

Add the code-behind for the page.
You’ll need this using statement for the namespace that contains Storyboard and DoubleAnimation:

3

Now you can modify the constructor in FlyingBees.xaml.cs to start up the bee animation. Let’s also
create a DoubleAnimation to animate the Canvas.Left property. Compare the code for creating a
storyboard and animation to the XAML code with <DoubleAnimation> earlier in the chapter.

Run your program. Now you can see three bees flapping
their wings. You gave them different intervals, so they flap at
different rates because their timers are waiting for different
timespans before changing frames. The top bee has its Canvas.
Left property animated from 50 to 450 and back, which causes
it to move around the page. Take a close look at the properties
that are set on the DoubleAnimation object and compare them
with the XAML properties you used earlier in the chapter.

The CreateFrameImages() method
takes a sequence of asset names
and a TimeSpan to set the rate
that the frames are updated.

Instead of using
a <Storyboard>
tag and a
<DoubleAnimation>
tag like earlier in
the chapter, you
can create the
Storyboard and
DoubleAnimation
objects and set
their properties
in code.

Something’s not right about this project. Can you spot it?

The Storyboard is garbage-
collected after the animation

completes. You can see this for
yourself by using to

watch it and clicking to refresh
it after the animation ends.

792   Appendix ii

remember, mvvm is a pattern

That won't work. Data binding doesn’t work with
container controls’ Children property—and for
good reason.

Data binding is built to work with attached properties, which are
the properties that show up in the XAML code. The Canvas object
does have a public Children property, but if you try to set it using
XAML (Children="{Binding ...}") your code won’t compile.

However, you already know how to bind a collection of objects to a
XAML control, because you did that with ListView and GridView
controls using the ItemsSource property. We can take advantage
of that data binding to add child controls to a Canvas.

This is easy. Just add an
ObservableCollection of controls, and bind

the Children property of the Canvas to it. Why
are you making such a big deal about it?

VIEW
MODE

L

VIEW

MODE
L

???

Something’s not right: there’s nothing in your
Model or ViewModel folder, and you’re creating
dummy data in the View. That’s not MVVM!
If we wanted to add more bees, we’d have to create more controls
in the View and then initialize them individually. What if we want
different sizes or kinds of bees? Or other things to be animated? If
we had a Model that was optimized for data, it would be a lot easier.
How can we make this project follow the MVVM pattern?

you are here 4   793

windows presentation foundation

Use ItemsPanelTemplate to bind controls to a Canvas
When you used the ItemsSource property to bind items to a ListView, GridView, or ListBox, it didn’t
matter which one you were binding to, because the ItemsSource property always worked the same way.
If you were going to build three classes that had exactly the same behavior, you would put that behavior
in a base class and have the three classes extend it, right? Well, the Microsoft team did exactly the same
thing when they built the selector controls. The ListView, GridView, and ListBox all extend a class called
Selector, which is a subclass of the ItemsControl class that displays a collection of items.

<ItemsControl

 DataContext="{StaticResource viewModel}"

 ItemsSource="{Binding Path=Sprites}" >

 <ItemsControl.ItemsPanel>

 <ItemsPanelTemplate>

 <Canvas Background="SkyBlue" />

 </ItemsPanelTemplate>

 </ItemsControl.ItemsPanel>

</ItemsControl>

xmlns:viewmodel="clr-namespace:AnimatedBee.ViewModel"

<viewmodel:BeeViewModel x:Key="viewModel"/>

Next, add an empty class called BeeViewModel to your ViewModel folder,
and then add an instance of that class as a static resource to FlyingBees.xaml:

2

We’re going to use its ItemsPanel property to set up a template for
the panel that controls the layout of the items. Start by adding the
ViewModel namespace to FlyingBees.xaml:

1

Edit FlyingBees.xaml.cs and delete all the additional code that you added to the
FlyingBees() constructor in the FlyingBees control. Make sure that you
don’t delete the InitializeComponent() method!

Here’s the XAML for the ItemsControl. Open FlyingBees.xaml, delete the
<Canvas> tag you added, and replace it with this ItemsControl:

43

Use the ItemsPanel
property to set up an

ItemsPanelTemplate. This
contains a single Panel

control, and both Grid and
Canvas extend the Panel
class. Any items bound to
ItemsSource will be added

to the Panel’s Children.

You can set up the
panel however you
want. We’ll use a

Canvas with a sky-
blue background.

Use the static
ViewModel resource as
the data context, and
bind the ItemsSource
to a property called
Sprites.

When the ItemsControl is created, it creates
a Panel to hold all of its items and uses the

ItemsPanelTemplate as the control template.

If you used a
different project
name, change
AnimatedBee to the
correct namespace.

794   Appendix ii

bee factory

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;

static class BeeHelper {
 public static AnimatedImage BeeFactory(
 double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetBeeLocation(AnimatedImage bee, double x, double y) {
 Canvas.SetLeft(bee, x);
 Canvas.SetTop(bee, y);
 }

 public static void MakeBeeMove(AnimatedImage bee,
 double fromX, double toX, double y) {
 Canvas.SetTop(bee, y);
 Storyboard storyboard = new Storyboard();
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, bee);
 Storyboard.SetTargetProperty(animation,
 new PropertyPath(Canvas.LeftProperty));
 animation.From = fromX;
 animation.To = toX;
 animation.Duration = TimeSpan.FromSeconds(3);
 animation.RepeatBehavior = RepeatBehavior.Forever;
 animation.AutoReverse = true;
 storyboard.Children.Add(animation);
 storyboard.Begin();
 }
}

Create a new class in the View folder
called BeeHelper. Make sure it’s a static class,
because it’ll have only static methods to help your
ViewModel manage its bees.

4

This is the same code
that was in the page’s
constructor. Now it’s in
a static helper method.

The factory method pattern
MVVM is just one of many design patterns. One
of the most common—and most useful—patterns is
the factory method pattern, where you have a
“factory” method that creates objects. The factory
method is usually static, and the name often ends
with “Factory” so it’s obvious what’s going on.

This factory
method creates
bee controls. It
makes sense to
keep this in the
View, because it’s
all UI-related
code. When you take a small block of code that’s reused a lot and put

it in its own (often static) method, it’s sometimes called a helper
method. Putting helper methods in a static class with a name that

ends with “Helper” makes your code easier to read.

you are here 4   795

windows presentation foundation

using View;
using System.Collections.ObjectModel;
using System.Collections.Specialized;

class BeeViewModel {
 private readonly ObservableCollection<System.Windows.UIElement>
 _sprites = new ObservableCollection<System.Windows.UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 public BeeViewModel() {
 AnimatedImage firstBee =
 BeeHelper.BeeFactory(50, 50,
 TimeSpan.FromMilliseconds(50));
 _sprites.Add(firstBee);

 AnimatedImage secondBee =
 BeeHelper.BeeFactory(200, 200, TimeSpan.FromMilliseconds(10));
 _sprites.Add(secondBee);

 AnimatedImage thirdBee =
 BeeHelper.BeeFactory(300, 125, TimeSpan.FromMilliseconds(100));
 _sprites.Add(thirdBee);

 BeeHelper.MakeBeeMove(firstBee, 50, 450, 40);
 BeeHelper.SetBeeLocation(secondBee, 80, 260);
 BeeHelper.SetBeeLocation(thirdBee, 230, 100);
 }
} The readonly keyword

An important reason that we use encapsulation is to prevent one class from accidentally overwriting another class’s data. But what’s preventing a class from overwriting its own data? The readonly keyword can help with that. Any field that you mark readonly can be modified only in its declaration or in the constructor.

We’re taking two steps to encapsulate
the Sprites property. The backing
field is marked readonly so it can’t
be overwritten later, and we expose
it as an INotifyCollectionChanged
property so other classes can only
observe it but not modify it.

When the AnimatedImage control is added to
the _sprites ObservableCollection that’s bound
to the ItemsControl’s ItemsSource property,
the control is added to the item panel, which
is created based on the ItemsPanelTemplate.

A sprite is
the term for

any 2D image
or animation

that gets
incorporated
into a larger

game or
animation.

Run your app. It should look exactly the
same as before, but now the behavior is
split across the layers, with UI-specific
code in the View and code that deals
with bees and moving in the ViewModel.

6

Here’s the code for the empty BeeViewModel class that you
added to the ViewModel folder. By moving the UI-specific code
to the View, we can keep the code in the ViewModel simple
and specific to managing bee-related logic.

5

All XAML controls inherit from the UIElement base class in the System.Windows namespace. We
explicitly used the namespace (System.Windows.UIElement) in the body of the class instead of

adding a using statement to limit the amount of UI-related code we added to the ViewModel.

We used UIElement because it’s the most abstract class that all the sprites extend. For some
projects, a subclass like FrameworkElement may be more appropriate, because that’s where many

properties are defined, including Width, Height, Opacity, HorizontalAlignment, etc.

You’re changing properties
and adding animations on the
controls after they were added
to the ObservableCollection.
Why does that work?

This will come
in handy in
the last lab.

796   Appendix ii

This is the last exercise in the book. Your job is to build a program that animates bees and stars.
There’s a lot of code to write, but you’re up to the task...and once you have this working, you’ll
have all the tools you need to build a complete video game. (Can you guess what’s in Lab #3?)

Here’s the app you’ll create.

Bees with flapping wings fly around a dark blue canvas, while behind them, stars fade in and out. You’ll
build a View that contains the bees, stars, and page to display them; a Model that keeps track of where they
are and fires off events when bees move or stars change; and a ViewModel to connect the two together.

1

The bees fly around the sky to random
locations. If the canvas size changes, the
bees fly to new positions on the canvas.

Stars fade in and out.

If the canvas play area size changes, the stars instantly move and bees slowly fly to their new locations.
You can test this by running this program and dragging the window to resize it. The stars move quickly!

<Canvas Background="Blue" SizeChanged="SizeChangedHandler" />

Add the ViewModel as a static resource and change the page name:

Visual Studio comes with a fantastic tool to help you experiment with shapes!
Fire up Blend for Visual Studio 2013 and use the pen, pencil, and toolbox to

create XAML shapes that you can copy and paste into your C# projects.

Create a new window in the View folder.
Delete MainWindow.xaml. Then add a window in the View folder called BeesOnAStarryNight.
xaml. Add the namespace to the top-level tag in the BeesOnAStarryNight.xaml (it should match your
project’s name, StarryNight):

3

 StartupUri="View\BeesOnAStarryNight.xaml"

Create a new WPF Application project.
Create a new project called StarryNight. Next, add the Model, View, and ViewModel folders. Once
that’s done, you’ll need to add an empty class called BeeStarViewModel to the ViewModel folder.

2

The
SizeChanged
event is fired

when a control
changes
size, with
EventArgs

properties for
the new size.

Then modify the <Application> tag in App.xaml so the application starts with the new window:

<Window.Resources>
 <viewmodel:BeeStarViewModel x:Key="viewModel"/>
</Window.Resources>

The XAML for the page is exactly the same as FlyingBees.xaml in the last project, except
the Canvas control’s background is Blue and it has a SizeChanged event handler:

xmlns:viewmodel="clr-namespace:StarryNight.ViewModel"

you are here 4   797

windows presentation foundation

Add code-behind for the page and the app.
Add the SizeChanged event handler to BeesOnAStarryNight.xaml.cs in the View folder:

4

ViewModel.BeeStarViewModel viewModel;

public BeesOnAStarryNight() {
 InitializeComponent();

 viewModel = FindResource("viewModel") as ViewModel.BeeStarViewModel;
}

private void SizeChangedHandler(object sender, SizeChangedEventArgs e) {
 viewModel.PlayAreaSize = new Size(e.NewSize.Width, e.NewSize.Height);
}

The code in step 4 won’t compile until you add the PlayAreaSize property to the ViewModel in step 9. You can use the IDE to generate a property stub for it for now.

<UserControl
 // The usual XAML code that the IDE generates is fine,
 // no extra namespaces are needed for this User Control.
 >

 <UserControl.Resources>
 <Storyboard x:Key="fadeInStoryboard">
 <DoubleAnimation From="0" To="1" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 <Storyboard x:Key="fadeOutStoryboard">
 <DoubleAnimation From="1" To="0" Storyboard.TargetName="starPolygon"
 Storyboard.TargetProperty="Opacity" Duration="0:0:1.5" />
 </Storyboard>
 </UserControl.Resources>

 <Grid>
 <Polygon Points="0,75 75,0 100,100 0,25 150,25" Fill="Snow"
 Stroke="Black" x:Name="starPolygon"/>
 </Grid>
</UserControl>

A Polygon control uses a set of
points to draw a polygon. This

UserControl uses it to draw a star.

Add a user control called StarControl to the View folder.
This control draws a star. It also has two storyboards, one to fade in and one to fade out. Add
methods called FadeIn() and FadeOut() to the code-behind to trigger the storyboards.

6

Add the AnimatedImage control to the View folder.
Go back to the View folder and add the AnimatedImage control. This is exactly the same control from
earlier in the chapter. Make sure you add the image files for the animation frames to the project
and update each file’s Build Action to Content and its Copy to Output Directory to Copy always.

5

There are even more shapes beyond ellipses, rectangles, and polygons:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465055.aspx

You’ll need to add public FadeIn() and FadeOut()
methods to the code-behind that starts these
storyboards. That’s how the stars will fade in and out.

This polygon draws the star. You
can replace it with other shapes to experiment with how they work.

VIEW

798   Appendix ii

oh my stars

 (continued)
Add the BeeStarHelper class to the View.
Here’s a useful helper class. It’s got some familiar tools and a
couple of new ones. Put it in the View folder.

7

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

static class BeeStarHelper {
 public static AnimatedImage BeeFactory(double width, double height, TimeSpan flapInterval) {
 List<string> imageNames = new List<string>();
 imageNames.Add("Bee animation 1.png");
 imageNames.Add("Bee animation 2.png");
 imageNames.Add("Bee animation 3.png");
 imageNames.Add("Bee animation 4.png");

 AnimatedImage bee = new AnimatedImage(imageNames, flapInterval);
 bee.Width = width;
 bee.Height = height;
 return bee;
 }

 public static void SetCanvasLocation(UIElement control, double x, double y) {
 Canvas.SetLeft(control, x);
 Canvas.SetTop(control, y);
 }

 public static void MoveElementOnCanvas(UIElement uiElement, double toX, double toY) {
 double fromX = Canvas.GetLeft(uiElement);
 double fromY = Canvas.GetTop(uiElement);

 Storyboard storyboard = new Storyboard();
 DoubleAnimation animationX = CreateDoubleAnimation(uiElement,
 fromX, toX, new PropertyPath(Canvas.LeftProperty));
 DoubleAnimation animationY = CreateDoubleAnimation(uiElement,
 fromY, toY, new PropertyPath(Canvas.TopProperty));
 storyboard.Children.Add(animationX);
 storyboard.Children.Add(animationY);
 storyboard.Begin();
 }

 public static DoubleAnimation CreateDoubleAnimation(UIElement uiElement,
 double from, double to, PropertyPath propertyToAnimate) {
 DoubleAnimation animation = new DoubleAnimation();
 Storyboard.SetTarget(animation, uiElement);
 Storyboard.SetTargetProperty(animation, propertyToAnimate);
 animation.From = from;
 animation.To = to;
 animation.Duration = TimeSpan.FromSeconds(3);
 return animation;
 }

 public static void SendToBack(StarControl newStar)
 {
 Canvas.SetZIndex(newStar, -1000);
 }
}

“Z Index” means the order
the controls are layered on a
panel. A control with a higher

Z index is drawn on top of
one with a lower Z index.

Canvas has SetLeft() and GetLeft() methods to set and get the X
position of a control. The SetTop() and GetTop() methods set and get

the Y position. They work even after a control is added to the Canvas.

VIEW

We added a helper called
CreateDoubleAnimation()
that creates a three-second
DoubleAnimation. This
method uses it to move a
UIElement from its current
location to a new point by
animating its Canvas.Left
and Canvas.Top properties.

you are here 4   799

windows presentation foundation

Add the Bee, Star, and EventArgs classes to the Model.
Your model needs to keep track of the bees’ positions and sizes, and the stars’ positions, and
it will fire off events so the ViewModel knows whenever there’s a change to a bee or a star.

8

using System.Windows;
class Bee {
 public Point Location { get; set; }
 public Size Size { get; set; }
 public Rect Position { get { return new Rect(Location, Size); } }
 public double Width { get { return Position.Width; } }
 public double Height { get { return Position.Height; } }

 public Bee(Point location, Size size) {
 Location = location;
 Size = size;
 }
}

The Points property on
the Polygon control is a
collection of Point structs.

using System.Windows;
class BeeMovedEventArgs : EventArgs {
 public Bee BeeThatMoved { get; private set; }
 public double X { get; private set; }
 public double Y { get; private set; }

 public BeeMovedEventArgs(Bee beeThatMoved, double x, double y) {
 BeeThatMoved = beeThatMoved;
 X = x;
 Y = y;
 }
}

using System.Windows;
class StarChangedEventArgs : EventArgs {
 public Star StarThatChanged { get; private set; }
 public bool Removed { get; private set; }

 public StarChangedEventArgs(Star starThatChanged, bool removed) {
 StarThatChanged = starThatChanged;
 Removed = removed;
 }
}

The Rect struct has several
overloaded constructors, and
methods that let you extract its
width, height, size, and location
(either as a Point or individual X
and Y double coordinates).

using System.Windows;
class Star {
 public Point Location {
 get; set;
 }

 public Star(Point location) {
 Location = location;
 }
}

The Point, Size, and Rect structs
The System.Windows namespace has several very useful structs. Point uses

X and Y double properties to store a set of coordinates. Size has two
double properties too, Width and Height, and also a special Empty value.
Rect stores two coordinates for the top-left and bottom-right corner
of a rectangle. It has a lot of useful methods to find its width, height,
intersection with other Rects, and more.

The model will fire events that use these EventArgs
to tell the ViewModel when changes happen.

Once you get your program working,
try adding a Boolean Rotating
property to the Star class and use it
to make some of your stars slowly spin
around.

MODE
L

800   Appendix ii

buzz buzz buzz

 (continued)

MODE
Lusing System.Windows;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 public Size PlayAreaSize {
 // Add a backing field, and have the set accessor call CreateBees() and CreateStars()
 }
 private void CreateBees() {
 // If the play area is empty, return. If there are already bees, move each of them.
 // Otherwise, create between 5 and 15 randomly sized bees (40 to 150 pixels), add
 // it to the _bees collection, and fire the BeeMoved event.
 }
 private void CreateStars() {
 // If the play area is empty, return. If there are already stars,
 // set each star's location to a new point and fire the StarChanged
 // event, otherwise call CreateAStar() between 5 and 10 times.
 }
 private void CreateAStar() {
 // Find a new non-overlapping point, add a new Star object to the
 // _stars collection, and fire the StarChanged event.
 }
 private Point FindNonOverlappingPoint(Size size) {
 // Find the upper-left corner of a rectangle that doesn't overlap any bees or stars.
 // You'll need to try random Rects, then use LINQ queries to find any bees or stars
 // that overlap (the RectsOverlap() method will be useful).
 }
 private void MoveOneBee(Bee bee = null) {
 // If there are no bees, return. If the bee parameter is null, choose a random bee,
 // otherwise use the bee argument. Then find a new non-overlapping point, update the bee's
 // location, update the _bees collection, and then fire the OnBeeMoved event.
 }
 private void AddOrRemoveAStar() {
 // Flip a coin (_random.Next(2) == 0) and either create a star using CreateAStar() or
 // remove a star and fire OnStarChanged. Always create a star if there are <= 5, remove
 // one if >= 20. _stars.Keys.ToList()[_random.Next(_stars.Count)] will find a random star.
 }
 // You'll need to add the BeeMoved and StarChanged events and methods to call them.
 // They use the BeeMovedEventArgs and StarChangedEventArgs classes.
}

If the method’s tried
1,000 random locations
and hasn’t found one
that doesn’t overlap, the
play area has probably
run out of space, so just
return any point.

Add the BeeStarModel class to the Model.
We’ve filled in the private fields and a couple of useful methods. Your job is
to finish building the BeeStarModel class.

9

The ViewModel will use a timer to call
this Update() method periodically.

This method checks two Rect
structs and returns true if they
overlap each other using the
Rect.Intersect() method.

Size.Empty is a value of Size that’s reserved
for an empty size. You’ll use it only to create
bees and stars when the play area is resized.

You can use readonly to create a constant struct value.

PlayAreaSize
is a property.

You can debug your app with the simulator to make sure
it works with different screen sizes and orientations.

you are here 4   801

windows presentation foundation

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Windows;
using DispatcherTimer = Windows.UI.Xaml.DispatcherTimer;
using UIElement = Windows.UI.Xaml.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 public Size PlayAreaSize { /* get and set accessors return and set _model.PlayAreaSize */ }

 public BeeStarViewModel() {
 // Hook up the event handlers to the BeeStarModel's BeeMoved and StarChanged events,
 // and start the timer ticking every two seconds.
 }
 void timer_Tick(object sender, object e) {
 // Every time the timer ticks, find all StarControl references in the _fadedStars
 // collection and remove each of them from _sprites, then call the BeeViewModel's
 // Update() method to tell it to update itself.
 }
 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 // The _bees dictionary maps Bee objects in the Model to AnimatedImage controls
 // in the view. When a bee is moved, the BeeViewModel fires its BeeMoved event to
 // tell anyone listening which bee moved and its new location. If the _bees
 // dictionary doesn't already contain an AnimatedImage control for the bee, it needs
 // to create a new one, set its canvas location, and update both _bees and _sprites.
 // If the _bees dictionary already has it, then we just need to look up the corresponding
 // AnimatedImage control and move it on the canvas to its new location with an animation.
 }
 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 // The _stars dictionary works just like the _bees one, except that it maps Star objects
 // to their corresponding StarControl controls. The EventArgs contains references to
 // the Star object (which has a Location property) and a Boolean to tell you if the star
 // was removed. If it is then we want it to fade out, so remove it from _stars, add it
 // to _fadedStars, and call its FadeOut() method (it'll be removed from _sprites the next
 // time the Update() method is called, which is why we set the timer’s tick interval to
 // be greater than the StarControl's fade out animation).
 //
 // If the star is not being removed, then check to see if _stars contains it - if so, get
 // the StarControl reference; if not, you'll need to create a new StarControl, fade it in,
 // add it to _sprites, and send it to back so the bees can fly in front of it. Then set
 // the canvas location for the StarControl.
 }
}

VIEW
MODE

L
We wanted to make sure that

DispatcherTimer and UIElement
are the only classes from the Windows.
UI.Xaml namespace that we used in
the ViewModel. The using keyword

lets you use = to declare a single
member in another namespace.

When you set the new Canvas location, the control is updated—even if it’s already on
the Canvas. This is how the stars move themselves around when the play area is resized.

Add the BeeStarViewModel class to the ViewModel.
Fill in the commented methods. You’ll need
to look closely at how the Model works and
what the View expects. The helper methods
will also come in very handy.

10

802   Appendix ii

exercise solution

using System.Windows;

class BeeStarModel {
 public static readonly Size StarSize = new Size(150, 100);

 private readonly Dictionary<Bee, Point> _bees = new Dictionary<Bee, Point>();
 private readonly Dictionary<Star, Point> _stars = new Dictionary<Star, Point>();
 private Random _random = new Random();

 public BeeStarModel() {
 _playAreaSize = Size.Empty;
 }

 public void Update() {
 MoveOneBee();
 AddOrRemoveAStar();
 }

 private static bool RectsOverlap(Rect r1, Rect r2) {
 r1.Intersect(r2);
 if (r1.Width > 0 || r1.Height > 0)
 return true;
 return false;
 }

 private Size _playAreaSize;
 public Size PlayAreaSize {
 get { return _playAreaSize; }
 set
 {
 _playAreaSize = value;
 CreateBees();
 CreateStars();
 }
 }

 private void CreateBees() {
 if (PlayAreaSize == Size.Empty) return;

 if (_bees.Count() > 0) {
 List<Bee> allBees = _bees.Keys.ToList();
 foreach (Bee bee in allBees)
 MoveOneBee(bee);
 } else {
 int beeCount = _random.Next(5, 10);
 for (int i = 0; i < beeCount; i++) {
 int s = _random.Next(50, 100);
 Size beeSize = new Size(s, s);
 Point newLocation = FindNonOverlappingPoint(beeSize);
 Bee newBee = new Bee(newLocation, beeSize);
 _bees[newBee] = new Point(newLocation.X, newLocation.Y);
 OnBeeMoved(newBee, newLocation.X, newLocation.Y);
 }
 }
 }

 SOLUTION
Here are the filled-in methods in the BeeStarModel class.

We gave these to you.

Whenever the PlayAreaSize property
changes, the Model updates the
_playAreaSize backing field and then calls
CreateBees() and CreateStars(). This
lets the ViewModel tell the Model to
adjust itself whenever the size changes—
which will happen if you run the program
on a tablet and change the orientation.

If there are
already bees, move
each of them.
MoveOneBee()
will find a new
nonoverlapping
location for each
bee and fire a
BeeMoved event.

If there aren’t any bees in the
model yet, this creates new
Bee objects and sets their
locations. Any time a bee is added
or changes, we need to fire a
BeeMoved event.

you are here 4   803

windows presentation foundation

 private void CreateStars() {
 if (PlayAreaSize == Size.Empty) return;

 if (_stars.Count > 0) {
 foreach (Star star in _stars.Keys) {
 star.Location = FindNonOverlappingPoint(StarSize);
 OnStarChanged(star, false);
 }
 } else {
 int starCount = _random.Next(5, 10);
 for (int i = 0; i < starCount; i++)
 CreateAStar();
 }
 }

 private void CreateAStar() {
 Point newLocation = FindNonOverlappingPoint(StarSize);
 Star newStar = new Star(newLocation);
 _stars[newStar] = new Point(newLocation.X, newLocation.Y);
 OnStarChanged(newStar, false);
 }

 private Point FindNonOverlappingPoint(Size size) {
 Rect newRect = new Rect();
 bool noOverlap = false;
 int count = 0;
 while (!noOverlap) {
 newRect = new Rect(_random.Next((int)PlayAreaSize.Width - 150),
 _random.Next((int)PlayAreaSize.Height - 150),
 size.Width, size.Height);

 var overlappingBees =
 from bee in _bees.Keys
 where RectsOverlap(bee.Position, newRect)
 select bee;

 var overlappingStars =
 from star in _stars.Keys
 where RectsOverlap(
 new Rect(star.Location.X, star.Location.Y, StarSize.Width, StarSize.Height),
 newRect)
 select star;

 if ((overlappingBees.Count() + overlappingStars.Count() == 0) || (count++ > 1000))
 noOverlap = true;
 }
 return new Point(newRect.X, newRect.Y);
 }

 private void MoveOneBee(Bee bee = null) {
 if (_bees.Keys.Count() == 0) return;
 if (bee == null) {
 int beeCount = _stars.Count;
 List<Bee> bees = _bees.Keys.ToList();
 bee = bees[_random.Next(bees.Count)];
 }
 bee.Location = FindNonOverlappingPoint(bee.Size);
 _bees[bee] = bee.Location;
 OnBeeMoved(bee, bee.Location.X, bee.Location.Y);
 }

If this iterated 1,000 times,
it means we’re probably out
of nonoverlapping spots in
the play area and need to
break out of an infinite loop.

This creates a random Rect and then checks if it overlaps. We gave it a 250-pixel gap on the right and a 150-pixel gap on the bottom so the stars and bees don’t leave the play area.

These LINQ queries call RectsOverlap()
to find any bees or stars that overlap
the new Rect. If either return value has
a count, the new Rect overlaps something.

If there are already stars,
we just set each existing
star’s location to a new
point on the PlayArea and
fire the StarChanged event.
It’s up to the ViewModel to
handle that event and move
the corresponding control.

804   Appendix ii

exercise solution

SOLUTION

using View;
using Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Windows;
using DispatcherTimer = System.Windows.Threading.DispatcherTimer;
using UIElement = System.Windows.UIElement;

class BeeStarViewModel {
 private readonly ObservableCollection<UIElement>
 _sprites = new ObservableCollection<UIElement>();
 public INotifyCollectionChanged Sprites { get { return _sprites; } }

 private readonly Dictionary<Star, StarControl> _stars = new Dictionary<Star, StarControl>();
 private readonly List<StarControl> _fadedStars = new List<StarControl>();

 private BeeStarModel _model = new BeeStarModel();

 private readonly Dictionary<Bee, AnimatedImage> _bees
 = new Dictionary<Bee, AnimatedImage>();

 private DispatcherTimer _timer = new DispatcherTimer();

 private void AddOrRemoveAStar() {
 if (((_random.Next(2) == 0) || (_stars.Count <= 5)) && (_stars.Count < 20))
 CreateAStar();
 else {
 Star starToRemove = _stars.Keys.ToList()[_random.Next(_stars.Count)];
 _stars.Remove(starToRemove);
 OnStarChanged(starToRemove, true);
 }
 }

 public event EventHandler<BeeMovedEventArgs> BeeMoved;

 private void OnBeeMoved(Bee beeThatMoved, double x, double y)
 {
 EventHandler<BeeMovedEventArgs> beeMoved = BeeMoved;
 if (beeMoved != null)
 {
 beeMoved(this, new BeeMovedEventArgs(beeThatMoved, x, y));
 }
 }

 public event EventHandler<StarChangedEventArgs> StarChanged;

 private void OnStarChanged(Star starThatChanged, bool removed)
 {
 EventHandler<StarChangedEventArgs> starChanged = StarChanged;
 if (starChanged != null)
 {
 starChanged(this, new StarChangedEventArgs(starThatChanged, removed));
 }
 }
}

The last few members of the BeeStarModel class.

Here are the filled-in methods of the BeeStarViewModel class.

These are typical
event handlers and
methods to fire them.

Every time the Update() method is called,
we want to either add or remove a star. The
CreateAStar() method already creates stars.
If we’re removing a star, we just remove it
from _stars and fire a StarChanged event.

We gave these to you.

Flip a coin by choosing either 0 or 1 at
random, but always create a star if there
are under 5 and remove if 20 or more.

you are here 4   805

windows presentation foundation

 public Size PlayAreaSize {
 get { return _model.PlayAreaSize; }
 set { _model.PlayAreaSize = value; }
 }

 public BeeStarViewModel() {
 _model.BeeMoved += BeeMovedHandler;
 _model.StarChanged += StarChangedHandler;

 _timer.Interval = TimeSpan.FromSeconds(2);
 _timer.Tick += timer_Tick;
 _timer.Start();
 }

 void timer_Tick(object sender, object e) {
 foreach (StarControl starControl in _fadedStars)
 _sprites.Remove(starControl);

 _model.Update();
 }

 void BeeMovedHandler(object sender, BeeMovedEventArgs e) {
 if (!_bees.ContainsKey(e.BeeThatMoved)) {
 AnimatedImage beeControl = BeeStarHelper.BeeFactory(
 e.BeeThatMoved.Width, e.BeeThatMoved.Height, TimeSpan.FromMilliseconds(20));
 BeeStarHelper.SetCanvasLocation(beeControl, e.X, e.Y);
 _bees[e.BeeThatMoved] = beeControl;
 _sprites.Add(beeControl);
 } else {
 AnimatedImage beeControl = _bees[e.BeeThatMoved];
 BeeStarHelper.MoveElementOnCanvas(beeControl, e.X, e.Y);
 }
 }

 void StarChangedHandler(object sender, StarChangedEventArgs e) {
 if (e.Removed) {
 StarControl starControl = _stars[e.StarThatChanged];
 _stars.Remove(e.StarThatChanged);
 _fadedStars.Add(starControl);
 starControl.FadeOut();
 } else {
 StarControl newStar;
 if (_stars.ContainsKey(e.StarThatChanged))
 newStar = _stars[e.StarThatChanged];
 else {
 newStar = new StarControl();
 _stars[e.StarThatChanged] = newStar;
 newStar.FadeIn();
 BeeStarHelper.SendToBack(newStar);
 _sprites.Add(newStar);
 }
 BeeStarHelper.SetCanvasLocation(
 newStar, e.StarThatChanged.Location.X, e.StarThatChanged.Location.Y);
 }
 }
}

The _fadedStars collection contains
the controls that are currently fading
and will be removed the next time the
ViewModel’s Update() method is called.

If a star is being added, it needs to have its FadeIn() method called. If it’s already there, it’s just being moved because the play area size changed. Either way, we want to move it to its new location on the Canvas.

806   Appendix ii

Here are the methods for the StarControl code-behind:
using System.Windows.Media.Animation;

public partial class StarControl : UserControl {
 public StarControl()
 {
 InitializeComponent();
 }

 public void FadeIn() {
 Storyboard fadeInStoryboard = FindResource("fadeInStoryboard") as Storyboard;
 fadeInStoryboard.Begin();
 }

 public void FadeOut() {
 Storyboard fadeOutStoryboard = FindResource("fadeOutStoryboard") as Storyboard;
 fadeOutStoryboard.Begin();
 }
}

SOLUTION

The ViewModel’s PlayAreaSize property just passes through to
the property on the Model—but the Model’s PlayAreaSize set
accessor calls methods that fire BeeMoved and StarChanged
events. So when the screen resolution changes: 1) the Canvas
fires its SizeChanged event, which 2) updates the ViewModel’s
PlayAreaSize property, which 3) updates the Model’s property,

which 4) calls methods to update bees and stars, which 5)
fire BeeMoved and StarChanged events, which 6) trigger the
ViewModel’s event handlers, which 7) update the Sprites

collection, which 8) update the controls on the Canvas. This is an
example of loose coupling, where there’s no single, central object

to coordinate things. This is a very stable way to build software
because each object doesn’t need to have explicit knowledge of
how the other objects work. It just needs to know one small job:
handle an event, fire an event, call a method, set a property, etc.

If you’ve done a good job with separation
of concerns, your designs often tend to
naturally end up being loosely coupled.

You've got all the tools to do Lab #3 and build Invaders!

We saved the best for last. In the last lab in the book, you’ll build your
own version of Space Invaders, the grandfather of video games.
And while the lab is aimed at Windows Store apps, if you
finished the Bees on a Starry Night project—and you understood
it all—then you have the knowledge and know-how to build a
WPF version of the Invaders game. Almost everything in the
lab applies to WPF. The only thing that’s different is how the
user controls the ship. Windows Store apps have advanced
gesture events that process touch and mouse input, but WPF
windows don’t support those events. You’ll need to use the
WPF Window object’s KeyUp and KeyDown events. Luckily,
you’ve already got a good example. Flip back to the Key Game
in Chapter 4—your Invaders game can handle keystrokes in
exactly the same way.

you are here 4   807

windows presentation foundation

The
humans forgot about us!

Time to attack while they’ve
lowered their guard!

Congratulat ions! (But you’re not done yet...)
Did you finish that last exercise? Did you understand everything that was going on? If
so, then congratulations—you’ve learned a whole lot of C#, and probably in less time
than you’d expected! The world of programming awaits you.

Still, there are a few things that you should do before you move on to the last lab, if you
really want to make sure all the information you put in your brain stays there.

Take one last look through Save the Humans.

If you did everything we asked you to do, you’ve built Save the
Humans twice, once at the beginning of the book and again before
you started Chapter 10. Even the second time around, there were
parts of it that seemed like magic. But when it comes to programming,
there is no magic. So take one last pass through the code you built.
You’ll be surprised at how much you understand! There’s almost
nothing that seals a lesson into your brain like positive reinforcement.

When it
comes to
programming,
there is no
magic. Every
program works
because it
was built to
work, and all
code can be
understood.

...but it’s a lot easier
to understand code if
the programmer used
good design patterns
and object-oriented
programming principles.

Take a break. Even better, take a nap.

Your brain has absorbed a lot of information, and
sometimes the best thing you can do to “lock in” all
that new knowledge is to sleep on it. There’s a lot of
neuroscience research that shows that information
absorption is significantly improved after a good
night’s sleep. So give your brain a well-deserved
rest!

Talk about it with your friends.

Humans are social animals, and when you
talk through things you’ve learned with your
social circle you do a better job of retaining
them. And these days, “talking” means
social networking, too! Plus, you’ve really
accomplished something here. Go ahead
and claim your bragging rights!

this is the index   1027

Index

Symbols
& (ampersand)

& (logical AND) operator 838
&& operator 76, 99, 837

* (asterisk)
*= (multiplication and assignment) operator 68, 117,

151, 154
multiplication operator, converting types 147

@ (at sign), preceding filenames 413, 425

~ (bitwise complement) operator 838

: (colon)
implementing an interface 298
using to inherit from base class 256

?: (conditional) operator 766, 837, 849

{ } (curly brackets) 129
code for classes or methods in 75
grouping sttements into code blocks 61, 62
leaving out for code blocks 241
matching up using the IDE 71
using to pass variables to string in StreamWriter 414

. (dot) operator 68

\\ (double backslash), escaping backslash in strings 425

= (equals sign)
assignment operator 67, 72, 837
combining with logical operators 839
== (equality) operator 76, 848–850
= versus == operator 72, 81

! (exclamation mark)
!= (inequality) operator 76, 180
NOT operator 68, 149, 284

> (greater than) operator 76

<< (left shift) operator 839

< (less than) operator 76

- (minus sign)
- - (decrement) operator 68
-= (subtraction and assignment) operator 151, 154
subtraction operator 68, 147

\n (line feed character) 75, 106, 143, 397, 413, 425

?? (null coalescing) operator 837

=> operator
in lambda expressions 857

| (pipe symbol)
logical OR operator 838
|| (OR) operator 76, 434, 837

+ (plus sign)
+= (addition and assignment) operator 38, 68, 709
addition operator 68
addition or string concatentation, conversion of types

with 147–148
++ (increment) operator 68, 837
string concatenation operator 68, 839

>> (right shift) operator 839

\r (return character) 397, 425

; (semicolon), ending statements 59, 75

/ (slash)
/* and */ enclosing multiline comments 837
comments beginning with // 75
comments beginning with /// 92, 97
comments surrounded with /* and */ or // 69, 69
division operator 68
division operator, converting types 147
/// (triple-slash), denoting XML comments 834

[] (square brackets)
using to access elements 168
using to retrieve object from list, array, or dictionary

852
usng to declare and initialize arrays 166

\t (tab character) 143, 413, 425

^ (XOR) operator 838, 849

A
About popup control, using Settings charm to open 822

abstract classes 320–327
Fireside Chat 326–327
usefulness 321–322

1028   Index

the index

abstraction
as principle of OOP 330
general versus specific 249–255

abstract keyword 323

abstract methods 320, 323

access modifiers 315–317, 842
internal 315
private 315
protected 315
protected versus private or public 318
public 315
scope 316
sealed 315

addition and assignment operator (+=). See + (plus sign),
under Symbols; compound operators

addition operator. See + (plus sign), under Symbols

Adventure Game program (see labs, #2 The Quest)

Albahari, Ben 860

Albahari, Joe 690, 854, 860,

aliens , 8–9, 45–52, 53–56, xi–xiv
gastronomy 8
saving Earth from 807–830

allocate, defined 429

allocated resources 429

ambiguity, avoiding 328

AND operator. See & (ampersand), under Symbols

AngleConverter class 781, 781

animal inheritance program 250–256

animations
bouncing Label controls 180
building program that animates bees and stars 796–

805, 796–805
building with C# 788

making bees fly around a page 790, 790
code creating enemy bouncing animation (example)

34, 32
desktop apps 98–100
generating method stub for AnimateEnemy() method

(example) 33, 31
key frame 780
using DoubleAnimation to animate double values 779
visual state changes for buttons 778

anonymous, defined 661

anonymous methods 856

anonymous types 680, 856
creating using new keyword 661, 662

APIs, defined 57

AppBar controls 542

AppendAllText() method 424

Append(), AppendFormat() and AppendLine(), String-
Builder 839

Appliance project 308–312
Appliance class 308
downcasting 310

interfaces 311
upcasting 309

interfaces 311
ApplicationData.Current.LocalFolder 549

application life cycle, Windows Store apps 522

Application object 658

application programming interfaces. See APIs

AppName, changing for Windows Store app 23

apps. See also Windows Store apps
building from ground up 73, 73

App.xaml.cs file 4, 658, 720–723

App.xaml file 658, 688, 692

ArgumentException 577, 601

arguments 148
compatibility with types of parameters 149

arithmetic operators 68
automatic casting with 147, 148

arrays 166–167, 304
containing reference variables 167
difficulty in working with 358
finding length 167
of objects 184
using to create deck of cards 357
using [] to return object from 852
versus Lists 360–362

as keyword 307
illegal downcasting 312
use with objects 641
using in downcasting 310, 331
value types and 632

assemblies 315, 840–843

you are here 4   1029

the index

Assets folder
adding image files to 663

assignment 15, 77, 81
= operator 837
values to variables 67

assignment operator (=) 72. See also = (equals sign),
under Symbols

asynchronous methods 538, 538
using Task to call one from another 557
using to find and open files 548

async modifier 538, 538
in OpenFile() and SaveFile() methods 545
with await operator in method’s delcaration 544

attributes 445

automatic properties 304

await operator 538, 557, 580, 721, 538
inability to use in body of catch clause 585
in OpenFile() and SaveFile() methods 545
with async keyword in method declaration 544

B
BackgroundWorker, using to make WinForms responsive

844–846

backing fields 223, 228, 336

Baseball Simulator project 702–719
callbacks 736–738
Fan class 712–715, 712–715
Pitcher class 712–715, 712–715
subscription and public events 735

base classes 248
building Animal base class for zoo simulator 251–252
colon (:) 256
constructors 273
extending 255
subclasses accessing with base keyword 272
upcasting 309
using subclasses instead 261

base keyword 272, 317

Basic Page template 502

Beehive Management System project 279–289, 294–307
building form 283
building Worker and Queen classes 283

class hierarchy with Worker and Queen classes 295
extending through inheritance 287–291
interfaces 296–305

inheritance 305
references 302–303

making Worker class inherit from Bee class 288
OutOfHoneyException 598
updating form to instantiate bees 288

bees 279, 596–598, 602
accounting systems 279–285, 287–291
animating 788–791
animating bees and stars 796–805, 796–805

binary and decimal, converting between 143

binary files 448
comparing 453
hex dump 455
working with 455
writing 451

BinaryFormatter 444
Deserialize() method 444, 447
Serializable attribute 445, 447
SerializationException 584, 584
Serialize() method 444

BinaryReader 452

binary serialization versus data contract serialization 546

BinaryWriter 451

binding. See data binding

Binding object 512, 513

binding path 512
property type 525, 525

Birthday Party project 238–246
adding controls to form 243
adding fee for parties over 12 people 247
BirthdayParty.CalculateCost() 247
BirthdayParty class 239–242
inheriting from Party class 274–278
testing the program 246
writing code to make controls work 244

bitwise complement operator (~) 838

Blank App template 12, 58, 4

Blend for Visual Studio 2012 796, 796

blocks (of code) 31, 62, 81
leaving out curly brackets 241

1030   Index

the index

Boolean values, converters for 773, 773

bool type 67, 142, 144
true or false values 68

Border controls 514

BottomAppBar property 542

boxed objects and structs 632, 640
boxed struct 641

break keyword in case statements 437, 438

breakpoints
inserting into code 69, 69
knowing where to put 582, 582

break statements 836

Build menu (IDE) 56

Bullet Points
delegates 739
event handlers 739
exception handling 601
Lists 364
reference variables 172
try/catch blocks 601
types 172

Button controls
adding code to interact with objects 131
adding to form 130, 135
adding to page 54
adding to Windows Desktop app 89
Button class 110
changing properties for Windows Desktop app 97
changing Text property in Properties window 90
Content property 73, 73
making them do something 75
MenuMaker project 517, 517
naming using x:Name property 73, 73
visual states 778

buttons. See Button controls

by keyword 679

byte arrays 425
moving text around in 450

byte order mark 460

byte type 142, 144
casting int variable too large for 147

C
C#

and .NET Framework, capabilities of 860
application code 11
benefits of 2
case in 231
code for AnimateEnemy() method (example) 32
combining with XAML 7
files created by Visual Studio when creating new

project 4
Microsoft reference for 839
using with Visual Studio IDE, capabilities of 3

C# 5.0 in a Nutshell 860

Calculator program 604–605
temporary solution 605

callbacks 736–740
versus events 740

camelCase 231

Candy Control System 120–126

Canvas control
adding Ellipse control 26
adding to Windows Store app 21, 19
animating Canvas.Left property 791, 791
binding controls to, using ItemsPanelTemplate

793–795, 793–795
child controls, data binding and 792, 792
dragging, changes to Left and Top properties 26
turning into gameplay area 24, 22

Canvas controls
adding Ellipse control 24
dragging control around, changes to Left and Top

properties 24
capitalization 231

Captain Amazing 612–616, 625, 626, 641, 647

case in C# 231

case sensitivity in C# and XAML 19, 17

case statements 437, 438. See also switch statements

casting 146–148
arithmetic operators, automatic conversions with 147
automatic casting in C# 148
decimal value to int type 146
too-large value, automatic adjustment in C# 147

you are here 4   1031

the index

wrapping numbers 147
catch blocks 585, 587, 601, 585, 587

following in debugger 588–589, 588–589
letting your program keep running 604
multiple, to handle multiple types of exceptions 596
with no specified exceptions 592

chaining events 709, 718

Character Map (Charmap.exe) 448, 449

Charms 742–743

char type 143, 144, 449

CheckBox controls 83, 75
adding to Windows Desktop app 89
Birthday Party project 243
changing Text and Checked properties in Properties

window 90
CheckFileExists property, OpenFileDialog 421

CheckPathExists property, OpenFileDialog 421

child 250

Children collection, XAML controls 515

class diagrams 107
DinnerParty class (example) 202
moving up, not down 265
organizing classes to make sense 124–126
private fields and types 282
using to plan classes 122

classes 60–62, 65, 92–94, 102–107
abstract (see abstract classes)
adding new class to desktop app 94
code between { } (curly braces) 75
collection 359
concrete 320
copying 107
creating (example) 129
creating instances of 117–119
creating using code snippets 84
designing 103, 124–126, 128, 134, 239

separation of concerns 278
encapsulation 212–217, 220–221
finding out if class implements specific interface 304
inheritance. See inheritance
internal 315
looking for common 253
members 315
methods 61

namespaces 65
naming 120–121
natural structure 122
never instantiated 319
organizing 124
partial 81
private 315
protected 315
public 315
required by interface to implement certain methods

and properties 296
sealed 315, 643
serializable 445
similarities between 134
statements in 81
static 115
subscribing 707
using lines for adding methods from other namespaces

91
using to build objects 109
versus structs 640
why some should never be instantiated 322

class hierarchy 249, 254
Hive Simulator 295

class libraries, creating 840

clauses in LINQ queries 654

Clone class, implementing IDisposable 620, 621

Close buttons, Windows Store apps and 522

clowns 117–119, 313
Fingers the Clown 313, 734, 756
scary clown 313

CLR (Common Language Runtime) 57, 171

code
advice for code exercises 112
automatically generated by IDE 7, 81
avoiding duplication 251
copying 107
repeating 247
similar 248

code blocks 31, 62, 81
leaving out curly brackets 241

code snippets
rearranging to make working C# program 82
using to create classes 84, 127, 138
using to write for loops 71

1032   Index

the index

collection initializers 168, 368–369

collections 358–408. See also listings of individual collec-
tion types

binding to, with ObservableCollection 513
controls contained in another control 515
dictionaries 387–400
exception from trying to access nonexistent element

577, 577
generic 367
implementing IEnumerator<T> GetEnumerator()

653
indexers 852
lists 359–376
performing calculations on 666
queues and stacks 401–406
using join to combine two collections into one query

677, 678
Collection<T> interface 851

colon operator 298

Color.FromArgb() method 98

color gradient, adding to XAML control 24

color gradients
adding to Canvas control 22

colors
cycling through form’s background colors in anima-

tion 98
predefined, or making your own 98
selecting color theme in Visual Studio 5

ComboBoxItem object 524, 524

command-line arguments 458

CommandsRequested event 743

comments
adding to code, starting with // 75
/* and */ enclosing multiline comments 837
beginning with /// 92, 97
starting with /* or // 69, 69
XML 834

Common Intermediate Language (IL) 843

Common Language Runtime (CLR) 57, 171

CommonStates group 778

CompareTo() method 371

compiler errors, classes implementing interfaces 296

compiling programs, using Build menu in IDE 56

compound operators 68, 151, 154

concatenation operator (+) 68
automatic type conversions with 148

concrete classes 320

conditional expressions. See also conditional tests
consolidating 855

conditional operator (?:) 766, 837, 849

conditional operators 76

conditional tests 76–80, 81
resulting in infinite loops 79

console applications 266

Console.Error.WriteLine() 458

Console.WriteLine() method 224

constants 202

constructors 227, 229
base class and subclass 273
building new with switch statement 439
closer examination of 228
exceptions in 589, 589
parameterless 523, 528, 789, 523, 528, 789
without parameters 228

container tags 7

ContentControl
adding to Windows Store app 21, 19
creating new ContentControl object and adding

method 32, 30
Edit Template, Create Empty... 25, 23
grouping, using StackPanel 23, 21

content controls 514

Content property
Button controls 22
XAML controls 514, 515

Content property, Button controls 20

continue statements 836

ControlCollection object 494

controls 10
adding code to make controls interact with player 42,

40
adding code to make them interact with player

42–44, 40–42
adding to page 54
altering appearance of a type, using styles 774–777

you are here 4   1033

the index

binding to canvas using ItemsPanelTemplate 793–
795, 793–795

C# code for 11
creating UI controls with C# code 786, 786
data binding, connecting XAML pages to classes 512
displaying collections, data binding to collection 513
double properties, animation for 779
dragged from Toolbox onto page, XAML generated

for 21, 19
dragging around Canvas 26, 24
initialization on forms with InitializeComponent()

228
in MVVM applications 769
in .NET for Windows Store apps 57
making game work in Windows Store app 24, 22
nesting inside other controls 515
page layout starting with 502, 502
program animating Label controls 180
using properties to change look of 22, 20
visual states causing response to changes 778
Windows Store app, on a page 500
WinForms apps 494–497
XAML, containing text and more 514

Controls property
controls containing other controls 494
Form class and 497

ControlTemplate 25, 47. See also templates

Convert() and ConvertBack() methods, value converter
770, 770

converters 770–773, 770–773
automatically converting values for binding 770, 770
converting minutes and seconds to angles 781, 781
Convert.ToString() and Convert.ToInt32() 838
working with many different types 772, 772

covariance 380

CreateDirectory() method 424

CreateFileAsync() method 549

Create() method 424

CryptoStream 418

.csproj (project) files 56

curly brackets. See { }, under Symbols

CurrentQueryResults property 662

D
data

pulling data from multiple sources 652
storing categories of 352

data binding
Canvas child controls and 792, 792
connecting XAML pages to classes 512
converters automatically convering values for 770,

770
designing for 748
designing for binding and data handling with MVVM

pattern 749
INotifyPropertyChanged, bound objects sending

updates 526, 526
public properties for Go Fish game conversion 528,

528
RosterControl XAML control (example) 754, 754
to collections, with ObservableCollection 513
two way binding, getting or setting source property

513
using data template to display objects 524, 524
using ItemsPanelTemplate to bind controls to a canvas

793–795, 793–795
using to build Sloppy Joe’s menu 516–521, 516–521

data context 512, 756, 765, 793, 756, 765, 793
RosterControl (example) 754, 754
setting for menu maker (example) 517, 517
setting for StackPanel and its children 523, 523

DataContract attribute 547, 551

data contract serialization 546
data contract, defined 547
disambiguation in 556, 556
sending some objects to app’s local folder 552–556,

552–556
using XML files 547
whole object graph serialized to XML 551

DataMember attribute 547, 551

DataModel folder, adding data classes to 694

data template, using to display objects 524, 524

Deadly Diamond of Death 328

debugger 575, 579–581
Bullet Points 601
catch blocks

1034   Index

the index

following flow 588–589, 588–589
multiple 596
with no specified exceptions 592

exploring delegates 733
finally block 590, 590
following try/catch flow 588, 588
knowing where to put breakpoints 582, 582
Step Into command 580
uses for 587, 587
using to see changes in variables 69, 69
Watch window 587, 587

running methods in 582, 582
(see also exception handling)

debugging 579
Excuse Management program 580–581, 580–581
System.Diagnostics.Debug.WriteLine() 496
Windows Desktop app in IDE 91

Debug menu
Continue 70
Start Debugging 56, 70
Step Over 70
Stop Debugging 99

decimal and binary numbers, converting between 143

decimal type 143, 144
attempting to assign decimal value to int variable 146
using for monetry values 205

decrement operator (- -) 68

default property of controls 515

deferred evaluation 667

delegate, defined 730

delegates 739
callbacks and 738
defined 731
delegate type 731
events, callbacks, and 740
exploring in debugger 733
hooking up to one event 736–738
in action 732–733
multiple events 718
using the Windows settings charm 742

Delete() method 424

DependencyProperty class 513

deployment package 11

deselecting controls for editing 23, 21

design
intuitive classes 134
making code intuitive with class and method names

120–121
separation of concerns 278

design patterns 740. See also MVVM pattern
Callback pattern 740
Factory Method pattern 794, 794
Model-View-Controller (MVC) pattern 759
Model-View-ViewModel (MVVM) pattern 748–749,

758–760, 769
Observer pattern 740

desktop applications 57

destructor 618

developer license 51

device-independent units 507

dialog boxes 422–424
as objects 423
customized 425
file dialogs 427
popping up 421

DialogResult 421–423
excuse management program 434

dictionaries 387–389
Add() method 387
building program that uses 389
ContainsKey() method 387
functionality rundown 388
keys 387
keys and values 388
using [] to return object from 852

Dinner Party Planning project 198–209
CalculateCostOfDecorations() method 210
cost estimate 199
DinnerParty class 201, 204–205
encapsulating fields in DinnerParty class 211
fixing calculator 232–234
inheriting from Party class 274–278
numericUpDown control 209
options, caluclating individually 208
recalculating new individual costs 209
similarities between DinnerParty and BirthdayParty

classes 248
test drive 206

directories
creating new 424

you are here 4   1035

the index

deleting 424
getting list of files 424

Directory.GetFiles() method 435

Disabled state (controls) 778

disambiguation 556, 556

Dispose() method 429, 430, 602
calling outside of using statement 603
finalizers 622, 624
making object serialize in 623
using statement 620–622

DivideByZeroException 573, 578

division operator (/) 68

DLL file extension 840

Document Outline window
modifying StackPanel and TextBlock controls 23

Document Outline window, modifying controls 25

documents library, accessing with Windows Store apps
550, 556

dot (.) operator 68

DoubleAnimation 779
animating Canvas.Left property 791, 791

double type 143, 144
defined 142

downcasting 310
failure of 312
interfaces 311
using as keyword 331

E
editors

building less simple text editor 542–545
evolution of code editors 62

Edit Style right-mouse menu 73, 73
changing text style for TextBlock 23

Edit Text right-mouse menu
changing text for TextBlock control 23, 21
editing text for button in Windows Store app 22, 20

Ellipse controls
adding to Canvas 26, 24
editing to make enemies look like aliens (example) 46,

44

ellipses 25, 23

encapsulation, 197–236, 461, xv–xxx
as principle of OOP 330
automatic properties 225
benefits for classes 217
better, using protected modifier 318
BirthdayParty class (example) 245
defined 211
example 222
ideas for 221
Navigator program (example) 218
using to control access to class methods. fields, or

properties 212–217
well encapsulated versus poorly encapsulated classes

220
encodings 412, 425

Unicode 448, 449
end tags 7

entry point for a program 92, 265
changing 94

enumerable objects, creating with yield return 851–853

enumeration 352–353

enums 353–357
big numbers 354
building class that holds playing card 355, 356
representing numbers with names 354
versus Lists 367

equality
== operator, IEquatable, and Equals() 848–850

equality operator (==) 72, 76

Equals() method 848–850

error handling 592

Error List window 5
examining errors in 34, 32
troubleshooting compiler errors 59, 62

errors
avoiding file system errors with using statements 430
compiler errors and interfaces 296
DivideByZero 573
invalid arguments 149

escape sequences 75

EventHandler 706, 709
as type of delegate 739

1036   Index

the index

event handlers 214, 703
adding 709
adding for button in Windows Desktop app 90
adding to controls to interact with player 42–44,

40–42
automatic 710–711
Bullet Points 739
excuse management program 432
for Birthday Party project controls 244
for key presses, swipes, and taps in Invaders lab 824
hooking up 718
how they work 704–705
keyboard, for Invaders game 820
page root, for swipes and taps 820
private or public keyword with 214
returning something other than void 709
stopwatch app user control 768, 768
TextChanged event handler for TextBox 542
types of 709

event keyword 706

events 703–744
callbacks versus 740
connecting senders with receivers 730
creating app to explore routed events 725–729
defined 703
delegates 718, 739
forms 717
how they work 704–705
Model communicating in MVVM apps 759
naming methods when raising events 708
notifying bound controls of changes in Ovservable-

Collection 526, 526
objects subscribing to 735
raising 527, 708, 527
raising events with no handlers 708
reference variables 730
routed events, use by XAML controls 724, 724
stopwatch app Model, alerting rest of app to state

changes 764
subscription to

how it works 704–705
possible probelms with 735
subscribing classes 707

ViewModel, passing to View in MVVM apps 769
(see also event handlers)

exception, defined 574

exception handling , xxiii–xxx
Bullet Points 601
catch block 585, 587, 585, 587
catching specific exception types 592, 603
DivideByZeroException 573, 578
dividing any number by zero 573
Exception object generated when program throws

exception 574
exceptions in constructors 589, 589
finalizers 625
finally block 590, 590
FormatException 578
handled versus unhandled exceptions 592
handling, not burying 604
handling versus fixing 605
IDisposable interface, implementing to do cleanup

602
IndexOutOfRangeException 578
invisible to users 609
NullReferenceException 573
OverFlowException 578
program stopping with exceptions 592
simple ideas for 606
spotting exceptions 575
throwing and catching exceptions 597
try block 585, 587, 585, 587
unexpected input 586, 586
unhandled exceptions 582
using exceptions to find bugs 577, 577
using statement 601
why there are so many exceptions 575
(see also debugger)

Exception objects 574, 575, 601
inheriting from Exception class 578
Message property 596
using to get information about the problem 595

Excuse Manager project 431–435
building the form 432
changing to use binary files with serialized Excuse

objects 461
code problems 583, 583
debugging 580–581, 580–581
DialogResult 434
event handlers 432
Folder button 432
Random Excuse button 435
rebuilding as Windows Store app 558–568

you are here 4   1037

the index

solution 434–435
turning into Windows Store app 488
unexpected user behavior 576–577, 576–577

executables 56

executables 840

Exists() method 424

extend 250

Extensible Application Markup Language. See XAML

extension methods 642, 643
LINQ 653
strings 644

F
Factory Method pattern 794, 794

Farmer class (example) 222–228
constructor, using to initialize private fields 227
fully encapsulating 225
testing 224–225

fields 33, 116, 31
adding to form 130, 132
backing fields, set by properties 223
initializing public fields 226
interfaces 297
masking 228, 235
objects using each other’s fields, problems from 208
private 211–216, 227, 231
public 221
versus methods 116
versus properties 318
with no access 214

FIFO (First In, First Out), queues 402

File class 424
Close() method 460
Create() method 453
OpenWrite() method 453
ReadAllBytes() method 449, 450, 460
ReadAllLines() method 460
ReadAllText() method 427, 460
static methods 460
versus FileInfo class 460
WriteAllBytes() method 449, 450, 460
WriteAllLines() method 460
WriteAllText() method 427, 449, 460

file dialogs 427
causing WinForms apps to become unresponsive 540

FileInfo class 424
versus File class 460

file I/O
FileIO class 540
Windows Store apps 537

filenames, @ in front of 413

FileNotFoundException 603

FileOpenPicker object 540

files
appending text to 424
finding out if exists 424
getting information about 424
reading from or writing to 424

(see also streams)
unsaved files denoted by * (asterisk) in IDE 58
writing 436

FileSavePicker object 541

FileStreams 411
BinaryReader 452
BinaryWriter 451
created and managed by StreamWriter 413, 425
reading and writing bytes to file 412
versus StreamReader and StreamWriter 460

Filter property
OpenFileDialog object 422, 427
SaveFileDialog object 423

finalizers 618
depending on references being valid 622
Dispose() method 622, 624
exceptions thrown in 625
fields and methods 625
garbage collection 619–621

finally block 590, 592, 590
getting with using statements 601
try/finally 603

float type 143, 144
adding int type to, conversion with + operatotr 147

FlowLayoutPanel 427
Controls property 494

focused state, animating 779

folders. See also directories; files

1038   Index

the index

high-profile, accessing with KnownFolders 550
foreach loops

accessing all members in stack of queue 404
from clause in LINQ queries compared to 670
lists 363, 364
using IEnumerable<T> 379

for loops 71, 77–81, 100

Form1 form, programs without 265

FormatException 578

Form object 494, 497

forms
adding buttons 130, 135
adding method 131
adding variables 130
as objects 170–171
events 717

Frame object 658

Frame property, XAML Pages 658

from clause 656, 670, 673

fully qualified names 60

functions 330

G
Game Over text, adding to Windows Store game 26, 24

garbage collection 158, 171, 625
code that automatically triggers, caution with 618
finalizers 619–621

GC.Collect() method 619, 625

GDI+ graphics 489

generic collections 364, 367, 401–404

generic data types 367

get accessor 223, 229
interface properties 304
interfaces with get accessor without set accssor 301

GetFiles() method 424

GetLastAccessTime() method 424

GetLastWriteTime() method 424

GetType() method, Type class 847

Go Fish! card game 390–400

Go To Definition 429
finding information about class not in your project

548
goto statements 837

GPS navigation system 103

gradients
adding to Canvas control 22

gradients, adding to XAML control 24

graphical user interface (see GUI)

greater than operator (>) 76

grids for Windows Store app page 506
adding controls to 20, 18
setting up 18, 16
StackPanel versus 515

GridView controls 793, 793
implementing semantic zoom 685

GroupBox control 239

group by clause 674, 679

group clause 679

group keyword 673, 674

GUI (Graphical User Interface) 111
labs, #1 A Day at the Races 194

guys (Two Guys project) 128–133, 135–136

GZipStream object 411

H
Handled property, RoutedEventArgs object 724, 724

Head First Labs website, downloading solutions from 112

heap 118, 119
versus stack 631–633

Hebrew letters 449

heights and widths, Windows Store app page 504, 504

“Hello World” program, building from command line
843

hexadecimal 448, 455
working with 456

hex dump 455
StreamReader and StreamWriter 457
using file streams to build hex dumper 456

you are here 4   1039

the index

Hide and Seek game 339–346

hiding methods 271
overriding versus 268
using different reference to call hidden methods 269
using new keyword 269

hierarchy 249
creating class hierarchy 254
defined 255

HitTestVisible property 43

HorizontalAlignment property, controls 22, 20

house model exercise 332–339
playing hide-and-seek 339–346

hovering over a variable during debugging 70

I
IClown interface 300

access modifiers 316–317
extending 313–314

ICollection<T> interface 666

IComparable interface 371

IComparer interface 372
complex comparisons 374
creating instance 373
multiple classes 373
SortBy field 374

IDE (Integrated Development Environment) 2. See
also Visual Studio IDE

creating solutions (.sln files) 56
editing program files 56
making changes in, and IDE changes to default files

55
what it does in application development 54

IDisposable interface 429, 603, 620
avoiding exceptions 602
Dispose() as alternative to finalizers 622
streams implementing 430

IEnumerable interface 652, 653, 851
foreach loops using 379
ICollection<T> interface and 666
upcasting entire list with 380

IEnumerator interface 852

IEnumerator<T> interface 852

IEquatable<T> interface 848–850

if/else statements 72, 436
checking CakeWriting.Length (example) 241
practice with 83, 85, 75, 76
seting up conditions and checking if they’re true

76–80
if statements 149, 436

consolidating conditional expressions 855
in CandyController class method (example) 122

IL (Intermediate Language) 843

increment operator (++) 68, 837

index (arrays) 166–167

indexers 852

IndexOutOfRangeException 574, 578

inequality operator (!=) 76, 180

infinite loops 79

inheritance 247–292
as principle of OOP 330
base class method subclass needs to modify 259
building class model from general to more specific

249
classes you can’t inherit from 643
class hierarchy, Hive Simulator 295
class that contains entry point 265
constructors for base class and subclass 273
creating class hierarchy 254
designing zoo simulator 250
each subclass extending its base class 255
interface 305
interface, class implementing 306
looking for classes with much in common 253
multiple 328
Party base class for DinnerParty and BirthdayParty

classes 274–278
passing instance of subclass 265
subclass accessing base class using base keyword 272
subclasses 259–260
terminology 250
using colon to inherit from a base class 256
using override and virtual keywords to inherit behav-

ior 270
using subclass in place of base class 261
using to avoid duplicate code in subclasses 251

1040   Index

the index

using to extend bee management system (example)
287–291

(see also interfaces)
inherit, defined 249

InitialDirectory propery, OpenFileDialog 422, 427

initialization 133

InitializeComponent() method 228

INotifyPropertyChanged interface 526, 757, 526, 757

instances 110
creating 117–119, 129
defined 110
fields 116
keeping track of things 116
requirement for, non-static versus static methods 115

instantiation, interfaces 302

integers, using in code 155

Integrated Development Environment (IDE). See IDE;
Visual Studio IDE

IntelliSense (in Visual Studio) 59

interface keyword 297

interfaces 296–318
abstract classes and 320–322, 326
abstract methods in 323
allowing use of class in more than one situation 298
avoiding ambiguity with 328
colon operator 298
compiler errors 296
containing statements 312
defining using interface keyword 297
downcasting 311
easy way to implement 312
extending 643
fields 297
finding out if class implements specific interface 304
generic, for working with collections 364
get accessor without a set accssor 301
IHidingPlace (example) 340
implementing 299–301
inheriting from other interfaces 305
is keyword 304, 307
naming 297
new keyword 302
object references versus interface references 318
public 297
public void method 301

references 302–303
why use 318

requiring class to implement methods and properties
296

similarity to contracts 312
upcasting 309, 311
void method 300
why use 312, 318

Intermediate Language (IL) 843

internal access modifier 315, 824, 842

Internet Explorer (IE), About option 742

int type 67, 142, 144, 145
adding to float type, conversion with + operatotr 147
assigning value 155
attempting to assign decimal value to int variable 146
casting int variable (too big) to byte 147
declaring 155
no automatic conversion to string 149

invalid arguments error 149

IRandomAccessStream 549

IsHitTestVisible property 45, 724, 728–729, 724,
728–729

is keyword 304, 310
as keyword versus 307
checking class or interface sublcassed or implemented

306
IStorageFolder interface 548

methods to work with its files 548
IStorageItem interface 549

IsVisible property 772, 772

items in a list 524, 524

ItemsPanelTemplate, using to bind controls to a canvas
793–795, 793–795

ItemsSource property 792, 792
binding items to ListView, GridView, or ListBox con-

trols 793, 793
IValueConverter interface 770, 770

J
join clause 677, 678, 679, 680

jump statements 836

you are here 4   1041

the index

K
Kathleen’s Birthday Party Planner. See Birthday Party

project

Kathleen’s Party Planning program. See Dinner Party
Planning project

keyboard event handlers 820, 824

key frame animations 780

key frames, defined 780

keywords 150, 182
reference for C# keywords 839

KnownFolders class 550

L
Label controls

adding to Windows Desktop app 89
animating 180–181
Birtyday Party project 243
button updating 75
changing properties in Properties window 90

labels for objects (see reference variables)

labels, loop using goto statement and 837

labelToChange properties 499, 499

labs
#1 A Day at the Races 187–196

application architecture 192
Bet class 191
Bet object 193
Betting Parlor groupbox 195
dogs array 192
finished executable 196
Greyhound class 190
GUI 194
Guy class 191
Guy object 193
guys array 192
PictureBox control 190, 192, 194
RadioButton controls 192
this keyword 191

#2 The Quest 465–486
Bat subclass 479
BluePotion class 482

Enemy class 478
Enemy subclasses 479
form, bringing it all together 483–485
form, building 468–469
form delegating activity to Game object 471
form, UpdateCharacters() method 484
Game class 472–473
Ghost subclass 479
Ghoul subclass 479
ideas for improving the game 486
IPotion interface 482
Mace subclass 481
Mover class 474–475
Mover class source code 475
objects, Player, Enemy, Weapon, and Game 470
Player class 476
Player class Attack() method 477
Player class Move() method 477
RedPotion class 482
Sword subclass 481
Weapon class 480
Weapon subclasses 481

#3 Invaders 807–830
additions 829
architecture 810
building ViewModel 823
control for big stars 821
Game class 814
Game class, filling out 816
handling user input 824
InvadersHelper class for ViewModel 821
InvadersModel class 814
InvadersModel class, filling out 816
InvadersModel class methods 815
Invaders page, building for the View 818
InvadersViewModel class methods 825
LINQ 817
maintaining play area’s aspect ratio 819
movements 809
object model for the Model 812
player’s ship, moving and dying 827
responding to swipe and keyboard input 820
shots fired 828
types of invaders 809
using Settings charm to open About popup 822
View, updating when timer ticks 826

1042   Index

the index

lambda expressions 856, 857

Launched event handler, updating 723

Length property, arrays 167

less than operator (<) 76

libraries
creating class libraries 840

LIFO (Last In, First Out), stacks 403

line breaks. See also \n; \r
adding to XAML text controls 514

LINQ (Language Integrated Query) , xxv–xxx
combining results into groups 673, 674
complex queries with 655
deferred evaluation of queries 667
difference from most of C# syntax 667
extension methods 653
from clause 670, 673
Invaders lab 817
join queries 680
LINQ to XML 858
modifying items 666
.NET collections 653
orderby clause 670, 673
performing calculations on collections 666
pulling data from multiple sources 652
queries 654
queries, anatomy of 656
query statements 670
select clause 670
Take statement 670
using join to combine two collections into one query

677, 678
var keyword and 680
where clause 670

LINQPad 690

ListBox controls 793, 793
Windows Store Go Fish! app page 502, 502

ListBoxItem object 524, 524

lists
using [] to return object from 852

List<T> class 359–376
building class to store deck of cards and form using it

382–386
CompareTo() method 371
converting from stacks or queues 404

creating, using collection initializer 368
dynamically shrinking and growing 363
foreach loop 363, 378
foreach loop using IEnumerable<T> 379
IComparable interface 371
IComparer interface 372
IComparer interface, complex comparisons with 374
IComparer interface, creating an instance 373
IComparer interface, multiple implementations 373
sorting 370
Sort() method 370
storing any type 364
things you can do with 360
upcasting, using IEnumerable<T> 380
versus arrays 360–362
versus enums 367

ListView controls 793, 793
app managing Jimmy’s comic collection 664
data binding to properties in MenuMaker (example)

517, 517
implementing semantic zoom 685
populating using one-way data binding 516, 516

ListViewItem object 524, 524

literals 143, 172

logical operators 837
&, |, and ^ 838
combining with = 839
using to check conditions 76

long type 142, 144
converting to a string 148

loops 71
adding while and for loops to program 77–79

infinite loops 79
continue and break keywords 836
foreach. See foreach loops
using for Windows desktop app animation 98–100

lowercasing 231

M
Main() method 92, 93

MainPage class 499, 499

Margin property
Button controls 22
Grid control 506

you are here 4   1043

the index

Margin property, Button controls 20

masking fields 228, 231

math operators 68

members (class) 315

memory 118
stack versus heap 631–633

MemoryStreams 411

MessageBox.Show() method 95, 146
argument type not matching parameter type 148
conversion of \n character to line breaks 397

MessageDialog object 538, 538

Message property, Exception object 578, 596

methods 60, 105
abstract 320, 323
accessing private fields with public methods 214
adding for form 131
adding from other namespaces 91
arguments matching types of parameters 149
calling most specific 255
calling on classes in same namespace 65
code between { } (curly braces) 75
creating using IDE 31–34, 29–32
defined 31, 61, 29
delegates standing in for 731
extension (see extension methods)
extracting 854
filling in code for 32, 30
get and set accessors versus 229
hidden, using different references to call 269
hiding versus overriding 268
implementing interfaces 299–300
in desktop app class 93
interface requiring class to implement 296
naming 120–121
Navigator class (example) 104
object 109
optional parameters, using to set default values 636
overloaded (see overloaded methods)
overriding 252, 260
passing arguments by reference 635
private 213–214
public 221
public, capitalization in names 231
returning more than one value with out parameters

634

return values 104
signature 229
static. See static methods
this keyword with 170
using override and virtual keywords 270
versus fields 116
with no return value 227

Microsoft Download Center 49

Microsoft reference for C# 839

mileage and reimbursement calculator 151–154

Model 749. See also MVVM pattern
rules for MVVM apps 769
stopwatch app, events alerting app to state changes

764
using Model statement at top of ViewModel classes

759
Model-View-Controller (MVC) pattern 759

Model-View-ViewModel pattern. See MVVM pattern

monetary values, decimal type for 205

monitors, different, Windows Store apps on 507

multiple inheritance 328

multiplication operator. See * (asterisk), under Symbols

MVC (Model-View-Controller) pattern 759

MVVM (Model-View-ViewModel) pattern , xxvii–xxx
animating bees and stars, program for 796–805,

796–805
debate between Model and ViewModel 760
decisions about implementation 769
decoupling of components 781, 781
designing for binding and data 749
designing for binding or working with data 748
dividing up concerns of the program 758
enabling easier handling of code in future 759
image animation and 792, 792
Invaders game 810
Model communicating with rest of app 759
rules for building apps 769
state of the app 762
stopwatch, analog, building with ViewModel 781–

785, 781–785
stopwatch for BasketballRoster project 763–768
user controls 753–757, 753–757
using to start building basketball roster app 750–752

1044   Index

the index

N
\n (line feed character) 75, 106, 143, 397, 413, 425

Name box, Properties window 22, 20

namespaces 81
and assemblies 840–843
classes in 65
generated by IDE for Windows Desktop app 92, 93
in C# programs 60, 381
reasons for using 556, 556
Windows Runtime and .NET Framework tools 57
XML 522, 522

NavigatedFrom event handler 722

navigating data, building apps for 692–700

navigation, page-based, in Windows Store apps 657

Navigation project 102–114
better encapsulation for Route class 218
Navigator class, methods to set and modify routes 104

.NET Framework 860
built-in classes and assemblies 315
collections 359, 653
events, raising, pattern for 527, 527
for Windows Store apps 489
garbage collection 619
generic collections 401
generic interfaces for working with collections 364
KnownFolders class 550, 556, 556
line breaks, adding with Environment.NewLine 397
Math.Min() method 113
namespaces 57, 60, 182
.NET for Windows Desktop 57
.NET for Windows Store apps 57
ObservableCollection<T> class, for data binding 513
overloaded methods, in built-in classes and objects

381
pre-built structures 2
Random class 168–169
sealed classes 642
streams, readinga and writing data 410
structs 627
System namespace, use of 81
System.Windows.Forms namespace 228
using statement, to use animation code 34
using tools in C# code 60

NetworkStreams 411

new keyword 108
interfaces 302
using to create anonymous types 661, 662
using when hiding methods 269

new statements
creating array object 166
creating class instances 118
using contructor with 227

Normal state (controls) 778

NOT operator (!) 68

nullable types 637
helping to make programs more robust 638

null coalescing operator (??) 837

null keyword 171

NullReferenceException 573

numbers
converting between decimal and binary 143
data types for 142
representing with names, using enums 354

NumericUpDown controls 106, 151
Birthday Party project 243

O
ObjectAnimationUsingKeyFrames animation 780

object graphs 495–497
using IDE to explore 497
whole graph serialized to XML with data contract

serialization 551
object initializers 133, 135, 227

initializing public fields and properties in 226
object-oriented programming (OOP) 330, 461

object references, versus interface references 318

objects , xii–xxx
accessing fields inside object 211
accidentally misusing 210
array of, iterating through 184
assigning value 155
as variables 155
boxed 632
building from classes 109

Guy objects (example) 128
controls as 180
declaring 155

you are here 4   1045

the index

downcasting 310
encapsulation (see encapsulation)
event arguments 706
finalizers (see finalizers)
garbage collection 158
knowing when to respond 702
methods versus fields 116
null keyword 171
object animations to animate object values 780
object tree 724, 724
object type 143

assignments to variables, parameters, or fields with
149

reading entire with serialization 444
references 303
reference variables (see reference variables)
states 442
storage in heap memory 118
subscribing to events 735
talking to other objects 170, 172
upcasting 309
using each other’s fields, problem caused by 208
using to program Navigator class (example) 108, 111,

113
value types versus 628
versus structs 629, 641

ObservableCollection<T> collections 513, 662, 726, 726
changes in, firing off event to tell bound controls 526,

526
changing properties and adding animations to controls

795, 795
using for MenuItems in MenuMaker project 517, 517

Observer pattern 740

on … equals clause 679

OnSuspending() event handler 722

OOP (object-oriented programming) 330, 461

OpenFileDialog control 422, 427

OpenRead() method 424

OpenWrite() method 424

operators 68
compound 154
reference for C# operators 839

optional parameters, using to set default values 636

orderby clause 656, 670, 673

OriginalSource property, RoutedEventArgs object 724,
724

OR operator. See | (pipe symbol), under Symbols

OR operator (||) 434

out parameters
making methods return multiple values 634
use by built-in value types’ TryParse() method 635

Oven class 308

OverFlowException 578

overloaded constructors 789, 789
excuse management program 432
taking a Stream 417

overloaded methods 355
building your own 381

overriding methods 271
abstract class methods 323
hiding versus 268
override keyword 260, 266

using to inherit behavior 270

P
page-based navigation, Windows Store apps 657

page header text, changing 23

Page object 498, 498
creating instance of MenuMaker and using it for data

context 517, 517
page root event handlers for swipes and taps 820

pages
choices for design and creation of 525, 525
in MVVM applications 769
laying out, using Graid versus StackPanel 515

parameterless constructors 523, 528, 789, 523, 528, 789

parameters 104, 106
capitalization 231
masking fields 228, 231, 235
method 61

parent 250

partial classes 65, 81

PascalCase 231

patterns. See design patterns

PictureBox controls 96, 251, 469
labs, #1 A Day at the Races 190, 192, 194
updating 484

pictures, user control to animate 789, 789

1046   Index

the index

pinch/zoom 684

pixels
in grid layout margins 502, 506
use of term in XAML layout 507

PointerOver state (controls) 778

PointerPressed event handler 726, 726

polymorphism 331
as principle of OOP 330

popping up dialog boxes 421

Pressed state (controls) 778
animation of 780

private access modifier 300, 315

private fields 211–216
declaring 231
initializing with constructors 227

private methods 213–214
calculating intermediate costs in Dinner Party calcula-

tor 232
Program class

code for desktop app stored in 93
Main() method 92

Programmer Reference for C# 839

programming
benefits of using C# with Visual Studio IDE 3
C# code, syntax for 32, 30
code automatically generated by Visual Studio IDE 7

programs
anatomy of C# program 60
breaking, restarting, and stopping in IDE 35, 33
IDE helping you code 58
loops in 71
operators in 68
origins of C# programs 56
running 35, 33
using debugger to see variables change 69, 69
variables in 66

ProgressBar
adding to Windows Store app 21, 19
updating for Windows Store app game 24, 22

projects
creating Windows Store project 54
project files (.csproj) 56

properties 116
automatic 225

using backing fields instead of 336
class 105
get and set accessors as 229
in interfaces 304
initializing public properties 226
interface requiring class to implement 296
making encapsulation easier 223
public, capitalization 231
read-only 225, 226
statements in 229
using to fix Dinner Party calculator (example) 232–

234
versus fields 318
XAML controls 20, 18

Properties window
event handlers 42, 40
Search box

using to find XAML properties 26
Search box, using to find XAML properties 28
switching between event handlers and properties in

42, 40
switching between events and properties in 46, 44
transforms 46, 44
using to change controls in Windows Store apps 22,

20
using to set up Windows Desktop app controls 90

PropertyChanged event 526, 526
raising 527, 527

protected access modifier 315

protected keyword 317

public access modifier 315, 842
classes 65

public fields 221
initializing 226

public interfaces 297

public methods 221
accessing private fields 214
capitalization 231

public properties
capitalization 231
initializing 226

public void method 301

you are here 4   1047

the index

Publisher-Subscriber pattern 740

publishing apps to Windows Store 48

Q
queries

anatomy of 656
editing with LINQPad 690
LINQ 654, 667

using join to combine two collections into one
query 677

query manager class 660
query detail page 665

queues 401
converting to lists 404
enqueuing and dequeuing 402
FIFO (First In, First Out) 402
foreach loop 404

R
\r (return character) 397, 425

Racetrack Simulator project. See labs, #1 A Day at the
Races

Random class 168–169
Next() method 355

randomizing results 168–169

random numbers, generation of 214

readonly keyword 795, 795

read-only properties 225, 226
Cost property, Dinner Party calculator 232

ReadTextAsync() method 540

receivers of events, connecting with senders 730

Rectangle controls
adding to Canvas 26, 24
turning into diamond by rotating 27, 25

rectangles
using for Game boundaries 483

refactoring 854–855

references. See also reference variables
interface 302–303
object 303

object versus interface 318
passing by reference using ref modifier 635
versus values 628

reference variables 156–158, 730
arrays of 167
assigning to instance of subclasses 261
for controls 181
garbage collection 158
how they work 172
interface type, pointing to object implementing inter-

face 331
multiple references to single object 157

accessing different methods and properties 311
side effects of 160
unintentional changes 165

objects talking to other objects 170
setting equal to instance of different class 331
substituting subclass reference in place of base class

264
ref keyword 635

reimbursement calculator for mileage 151–154

Remote Debugger, using to sideload your app 49

remote debugging, starting 50

reserved words 150, 172, 182

return statement 61, 104, 105

return type 104, 105

return value 61, 104

risky code , xxiii–xxx, 586–725

RoboBee class 306

robust 584, 586, 592, 638, 584, 586

rotations 27, 25

RoutedEventArgs object 724, 724

routed events 724, 724
creating Windows Store app to explore 725–729,

725–729
user controls 758

rows and columns, resizing in Windows Store app page
504, 504

Auto setting 507
using * for row height or column width 507

RSS feed, LINQ to XML 859

1048   Index

the index

S
SaveFileDialog control 423, 427

Title property 427
sbyte type 142

scope 316

ScrollViewer controls
nesting only single control in 515
Windows Store Go Fish! app page 502, 502

sealed access modifier 315

sealed keyword 643

select clause 670, 679

selecting and deselecting controls for editing 23, 21

SelectionChanged event handler 663

select new clause 677, 679

Selector class 793, 793

semantic zoom control 684–690
adding to comic books management app 686–691
basic XAML pattern for 685

senders of events, connecting with receivers 730

separation of concerns 234, 278

sequences 666
defined 667

Serializable attribute 445

serialization 440–449
data contract 546
finalizers and 622
finding where serialized files differ and altering them

454
making classes serializable 445
making object serialize in Dispose() method 623
object states 442
reading and writing serialized files manually 453
reading entire object 444
serializing and deserializing deck of cards 446–447
serializing objects out to file 448
what happens to objects 441, 443

SerializationException 584, 588, 584
BinaryFormatter 584, 584

set accessor 223, 229
interface properties 304
interfaces with get accessor without set accssor 301

Settings charm 742
using to open About popup 822

SettingsPane class 742

short-circuit operators 837

short type 142, 144, 145

ShowDialog() method 421, 423

signature (method) 229

similar behaviors 248

similar code 248

simulator in Visual Studio, running Windows Store apps
558

skew transforms 46, 44

Sloppy Joe’s Random Menu Item project 168–169
building better menu with data binding 516–525

Solution Explorer 5
Form designer 96
showing everything in a project 58
switching between open project files 58

solutions (.sln files), created by IDE 56

SortBy field 374

Sort() method 370

Source property, getting or setting with two way binding
513

Source property, Image control, animating 789, 789

spec (specification) 390
building a racetrack simulator 188

splash screen, adding to a program 47

Split App template, creating project with 692–700
adding images files to Assets folder 697
modifying code-behind in ItemsPage.xaml.cs 696
modifying code-behind in SplitPage.xaml.cs 696
modifying SplitPage.xaml to show comic book details

698
sprites 795, 795

Spy project 212–214

stack 401, 640
converting to lists 404
foreach loop 404
LIFO (Last In, First Out) 403
popping items off 403
versus heap 631–633

you are here 4   1049

the index

StackPanel 10, 13, 42, 500, 502, 504, 509, 515, 520, 524,
504, 520, 524

adding human to Windows Store app game 26
DataContext property, setting 517, 523, 517, 523
Excuse Manager project 560
Grid layout versus 515
using Document Outline to modify 25
using to group TextBlock and ContentControl 23

StackPanel controls
adding human to Windows Store app game 24
using Document Outline to modify 23
using to group TextBlock and ContentControl 21

StackTrace property, Exception class 578

stars and bees, program that animates 796–805, 796–805

Start button
making it start the program 38

Start button, making it start the program 40

Start Debugging button 70

start tags 7

state 759
changes in, stopwatch app 764
code related to timing 769
thinking about, in MVVM 762

statements 81
defined 61
ending with ; (semicolon) 75
important points about 81
in loops 71

static keyword 115
instance creation and 117

static methods 115
when to use 115

static resources in XAML 522, 525, 528, 522, 525, 528

Step Over (Debug) 70

stopwatch app 761–768
building analog stopwatch using same ViewModel

781–785, 781–785
converters converting values for binding 770, 770
events in Model alerting app to state changes 764
finishing touches 768, 768
View 765, 765
ViewModel 766

Storyboard object
Begin() method 789, 789

garbage collection for 791, 791
SetTarget() and SetTargetProperty() methods 789,

789
Storyboard tags 778

Pressed storyboard, adding animation to 780
Stream object 410

Read() method 458
StreamReader 417, 425

hex dump 457
versus FileStreams 460

streams 410
chaining 418
closing 425
different types 411
Dispose() method 430
forgetting to close 412
reading bytes from, using Stream.Read() 458
serializing objects to 447
things you can do with 411
using file streams to build hex dumper 456
using statements 430
writing text to files 413

StreamWriter 413–417, 425
{0} and {1}, passing variables to strings 425
Close() method 413
hex dump 457
using with StreamReader 417
versus FileStreams 460
Write() and WriteLine() methods 413, 414

StringBuilder class 839

string concatenation operator (+) 839
converting numbers or Booleans to strings 147

String.IsNullOrEmpty() 282

string literals 413, 425

String.PadLeft() method 838

strings
concatenating, automatic type conversions with +

operator 148
concatenation operator (+) 68
converting numbers to 457
converting to byte array 425
extension methods 644
formatting 205
splitting 439
storage of data in memory as Unicode 449

1050   Index

the index

storing categories of data 352
Substring() method 457

string type 67, 142, 144, 151
converting other types to 148

structs 627
boxed 632, 641
setting one equal to another 630, 640
versus classes 640
versus objects 629

styles
altering appearance of a type of control 774–777

subclasses 248, 255, 259–261, 265, 272
avoiding duplicate code, using inheritance 251
child and 250
constructors 273
hiding superclass methods 268–269
inheriting from base class 256
modifying 259–260
overriding inherited methods 260
passing instance of 265
upcasting 309, 331
using instead of base classes 261

subtraction operator. See - (minus sign), under Symbols

superclass 250

Suspending event, Windows Store apps 720–723
modifying OnSuspending() event handler 722

SuspensionManager class 721

swipes and taps, handling in Invaders game 820, 824

switch statements 437–439
building new constructors with 439

System.ComponentModel namespace 527, 527

System.Diagnostics.Debug.WriteLine() 496

System.IO.File class 540

System namespace 81

System.Runtime.Serialization namespace 547

System.Windows.Form class 497

System.Windows.Forms.Control class 497

System.Windows.Forms namespace 93, 105, 129, 228

T
\t (tab character) 143, 413, 425

TabControl 239, 243

TableLayoutPanel 427, 469
Controls property 494

TabPages property 243

tags, XAML 7

Take statement 670

taps, page root event handlers for 820

target portal player will drag human into (game example)
27, 25

Task class (or Task<T>) 557

templates. See also names of individual templates
throughout

creating enemy template for Windows Store app game
25, 23

editing for enemy aliens (example) 46, 44
TextBlock controls 83, 75

binding path 512
changing text and style in Windows Store app 23, 21
data binding to properties in MenuMaker (example)

517, 517
data context 512
Game Over text for Windows Store app 26, 24
Style property 73, 73
updating by pressing buttons 75
using Document Outline to modify 25, 23
Windows Store Go Fish! app page 502, 502

TextBox controls 106
Birthday Party project 243

adding TexChanged event handler 245
Text property, using to modify text 544
two-way data binding 516, 517, 516, 517

TextChanged event handler 245, 542, 544

text editors
building less simple editor 542–545

Text property, XAML controls 514, 515

this keyword 170, 316
distinguishing fields from parameters with same name

231, 235
in extension method’s first parameter 642
labs, #1 A Day at the Races 191
using to raise event 709

this variable 172

threading 846

you are here 4   1051

the index

throw, using to rethrow exceptions 596, 601

tiles 47

TimeNumberFormatConverter class 770, 770

timers
adding to manage gameplay 38, 36
LabelBouncer animation (example) 181

Title property, SaveFileDialog 423, 427

ToggleSwitch controls 725

Toolbox window 5
ALL XAML Controls section 21, 19
Common XAML Controls section 20, 18
expanding 89

ToString() method 148, 205, 354
adding to Card object (example) 378
overriding and letting object describe itself 377

transforms
hands on analog stopwatch 783, 783
performing in Properties window 46, 44
rotating Rectangle 45 degrees 27, 25

try blocks 585, 587, 601, 585, 587. See also exception
handling

following in debugger 588–589, 588–589
getting with using statements 601

try/catch/finally sequence for error handling 592. See
also exception handling

try/finally block 603. See also exception handling

two-way data binding 513
TextBox control in MenuMaker project 517, 517

type argument 364

Type class and GetType() method 847

typeof keyword 658

types , xiii–xxx
arguments, compatibility with types of parameters

149
arrays 166–167
automatic casting in C# 148
char 143
common types in C# 142
delegate 731
different types holding different-sized values 172
for whole numbers 142
generic 367
int, string, and bool types 67

literals 143
multiple references and their side effects 160–162
object 143
referring to objects with reference variables 156–158
return type 104
storing really huge and really tiny numbers 143
value types 146
variable 66–67, 144

typing game, building 176–179

U
UICommandInvokedHandler 742

UICommand object 539

UIElement base class 795, 795

uint type 142

UI (user interface)
creating controls with C# code 786, 786
creating using Visual Designer 3

ulong type 142

Undo command
undoing changes to controls 21

Undo command (IDE) 81
undoing changes to controls 23

unexpected input 586, 586

unhandled exceptions 582
versus exceptions 592

Unicode 397, 448, 460, 514
converting text to 449

units, device-independent 507

upcasting 309
but not downcasting 312
entire list, using IEnumerable<T> 380
interfaces 311
using subclass instead of base class 331

Up Close, access modifiers 316–317

user controls 753–759, 753–765
AnalogStopwatch 781, 781
AnimatedImage 789, 789
objects extending UserControl base class 758
stopwatch app 765, 765

event handlers for 768, 768
ushort type 142

1052   Index

the index

using statements 34, 430, 603, 32
Dispose() 620
exception handling 601
for desktop apps 92, 94

using System.Windows.Forms 93
in C# programs 60

V
value converters 770–773, 770–773

automatically converting values for binding 770, 770
working with many different types 772, 772

value parameter, set accessors 229

values versus references 628

value types 142, 172
bool (see bool type)
byte (see byte type)
casting 146–148
changing 172
char (see char type)
decimal (see decimal type)
double (see double type)
int (see int type)
long (see long type)
more information on 146
sbyte 142
short (see short type)
structs as 629
TryParse() method using out parameters 635
uint 142
ulong 142
ushort 142
variables matching types of parameters 149
versus objects 628

variables 66, 144
adding to form 130, 132
assigning values to 67

data type and 146
data types 142
declarations with name and type 75
declaring 66
matching types of parameters 149
naming 154
objects as 155

reference (see reference variables)
renaming 855
using debugger to see changes in 69, 69
values of 66

var keyword 654, 680

VerticalAlignment property, controls 22, 20

vertical bars 434

View 749. See also MVVM pattern
building for simple stopwatch 765, 765
rules for MVVM apps 769
stopwatch app, buttons calling methods in ViewModel

768, 768
ViewModel 749. See also MVVM pattern

BasketballRoster project 755–757, 755–757
rules for MVVM apps 769
stopwatch app 766
using Model statement at top of classes 759

virtual keyword 260, 266
using to inherit behavior 270

virtual machines 171

virtual methods 265

Visibility enum 772, 772

Visible property, forms or controls 99

Visual Designer 3
editing user interface 5

visual states, making controls respond to changes 778

Visual Studio 2008 Express
setting up xxxix

Visual Studio IDE 2–7
code automatically generated by, handling of 81
creating new project 4
different editions, look of 4
editions and versions of 7
exploring different parts of 5
Extract Method feature, Refactor menu 855
helping you code 58, 62
making changes in, changes to code 96
Remote Debugger 49
Reset Window Layout, from Window menu 35, 33
running Windows Store apps in simulator 558
Undo command, and automatically generated code

81

you are here 4   1053

the index

using with C#, capabilities of 3
Visual Studio 2012 for Windows Desktop 89
Watch windows in Visual Studio 2012 for Windows

8 498
XAML designer, giving message to rebuild code 556,

556
void keyword, preceding methods 61

void method
interfaces 300
public 301

void return type 104, 105, 121, 131

W
Watch window 70

where clause 656, 670

while loops 71, 77–81, 100
continue and break keywords in 836
infinite loop 99

whitespace, extra, in C# code 75

Windows 8 11

Windows 8 Camp Training Kit 832

Windows App Certification Kit 48

Windows calculator 143

Windows Desktop
building an app 87–100

animations 98–100
changes made in IDE and code changes 96
changing program’s entry point 94
entry point, Main() method 92
MessageBox.Show() method 95
nuts and bolts of desktop apps 93

Windows Forms Application project, creating 88

Windows Presentation Foundation. See WPF

Windows Runtime, namespaces for tools in 57

Windows Settings charm, using 742

Windows.Storage.IStorageFolder 548

Windows.Storage namespace 540
KnownFolders class 550

Windows Store apps , xxi–xxx
building with WPF for operating systems before Win-

dows 8 11

creating new project for 54
data binding, connecting XAML pages to classes 512
exploring app page navigation using the IDE 658
INotifyPropertyChanged, letting bound objects send

updates 526, 526
learning more about programming 832
managing Jimmy’s comics collection 657, 659–665,

668
combining values into groups 674
semantic zoom 686–690
Split App for navigating data 692–700

.NET for, tools for building apps 57
protecting your filesystem 548
publishing apps to Windows Store 48
rebuilding Excuse Manager as 558–568
redesigning GoFish! form as app page 500–506

finishing conversion 528–534
page layout starting with controls 502, 502
rows and columns resizing to match screen size

504, 504
using grid system to lay out pages 506

redesigning Windows Desktop forms as 508–511,
508–511, 510–517

running in Visual Studio simulator 558
superior IO tools 537
text editor 542–545
using awit to be more responsive 538, 538
using data binding to build better menu 516–521,

516–521
using data template to display objects 524, 524
using static resources to declare objects in XAML

522, 522
using XAML to create UI objects 498, 498

Windows UI controls. See controls

Windows.UI namespace 786, 786

Windows.UI.Xaml.Conrols namespace 57

Windows.UI.Xaml namespace 795, 795

WinForms apps
GDI+ grpahics 489
reasons for learning 515
using BackgroundWorker to make apps responsive

844–846
using object graph set up by IDE 494
using System.IO.File to read/write files 540
versus Windows Store apps 489

WPF (Windows Presentation Foundation) 11, 13

1054   Index

the index

X
XAML 489

application code 11
changes to code from changes made in IDE 55
combining with C#, creating wisual programs 3
controls, containing text and other controls 514
data binding in 512
defined 7
editing templates 46, 44
file created by Solution Explorer on creating new

project in Visual Studio 4
flexibility with tag order 508
generated for controls dragged from Toolbox onto

page 21, 19
page design with, WinForms versus 515
properties 20, 28, 37, 18, 26, 35

using to change controls 22, 20
redesigning Windows Desktop forms 508–511,

508–511, 510–517
using static resources to declare objects in 522, 522
using to create UI for Windows Store apps 498, 498

XML
comments 97, 834
LINQ to XML 858
namespace 547

xmlns 522, 755, 522, 755
output of data contract serializer 551

x:Name and x:Key properties, static resources 525, 525

x:Name property 73, 73

XOR operator (^) 849

XOR operator (~) 838

Y
yield return, using to create enumerable objects 851–853

Z
zoom, semantic zoom control 684–690

Zoo Simulator project 250–256
class hierarchy 254
extending base class 255
inheriting from base class 255

	Table of Contents
	Intro
	Who is this book for?
	We know what you’re thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do tobend your brain into submission
	Read me
	What version of Windows are you using?
	The technical review team
	Acknowledgments

	Chapter 1: Start building with C#: Build something cool, fast!
	Why you should learn C#
	C# and the Visual Studio IDE make lots of things easy
	What you do in Visual Studio…
	Aliens attack!
	Only you can help save the Earth
	Here’s what you’re going to build
	Start with a blank application
	Set up the grid for your page
	Add controls to your grid
	Use properties to change how the controls look
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens
	Add a splash screen and a tile
	Publish your app
	Use the Remote Debugger to sideload your app
	Start remote debugging

	Chapter 2: It’s all just code: Under the hood
	When you’re doing this…
	…the IDE does this
	Where programs come from
	The IDE helps you code
	Anatomy of a program
	Two classes can be in the same namespace
	Your programs use variables to work with data
	C# uses familiar math symbols
	Use the debugger to see your variables change
	Loops perform an action over and over
	if/else statements make decisions
	Build an app from the ground up
	Make each button do something
	Set up conditions and see if they’re true
	Windows Desktop apps are easy to build
	Rebuild your app for Windows Desktop
	Your desktop app knows where to start
	You can change your program’s entry poin
	When you change things in the IDE, you’re also changing your code

	Chapter 3: Objects: get oriented! Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks
	Mike’s Navigator class has methods to set and modify routes
	Use what you’ve learned to build a program that uses a class
	Mike gets an idea
	Mike can use objects to solve his problem
	You use a class to build an object
	When you create a new object from a class,it’s called an instance of that class
	A better solution…brought to you by objects!
	An instance uses fields to keep track of things
	Let’s create some instances!
	Thanks for the memory
	What’s on your program’s mind
	You can use class and method names to make your code intuitive
	Give your classes a natural structure
	Class diagrams help you organize your classes so they make sense
	Build a class to work with some guys
	Create a project for your guys
	Build a form to interact with the guys
	There’s an easier way to initialize objects
	A few ideas for designing intuitive classes

	Chapter 4: types and references: It’s 10:00. Do you know where your data is?
	The variable’s type determines what kind of data it can store
	A variable is like a data to-go cup
	10 pounds of data in a 5-pound bag
	Even when a number is the right size, you can’t just assign it to any variable
	When you cast a value that’s toobig, C# will adjust it automatically
	C# does some casting automatically
	When you call a method, the arguments mustbe compatible with the types of the parameters
	Debug the mileage calculator
	Combining = with an operator
	Objects use variables, too
	Refer to your objects with reference variables
	References are like labels for your object
	If there aren’t any more references, your object gets garbage-collected
	Multiple references and their side effects
	Two references means TWO ways to change an object’s data
	A special case: arrays
	Arrays can contain a bunch of reference variables too
	Objects use references to talk to each other
	Where no object has gone before
	Build a typing game
	Controls are objects, just like any other object

	C# Lab: A Day at the Races
	The Spec: Build a Racetrack Simulator
	You’ll need three classes and a form
	Here’s your application architecture
	Here’s what your GUI should look like
	The Finished Product

	Chapter 5: encapsulation: Keep your privates...private
	Kathleen is an event planner
	What does the estimator do?
	You're going to build a program for Kathleen
	Kathleen’s test drive
	Each option should be calculated individually
	It’s easy to accidentally misuse your objects
	Encapsulation means keeping some ofthe data in a class private
	Use encapsulation to control access to yourclass’s methods and fields
	But is the RealName field REALLY protected?
	Private fields and methods can only be accessed from inside the class
	Encapsulation keeps your data pristine
	Properties make encapsulation easier
	Build an application to test the Farmer class
	Use automatic properties to finish the class
	What if we want to change the feed multiplier?
	Use a constructor to initialize private fields

	Chapter 6: inheritance: Your object’s family tree
	Kathleen does birthday parties, too
	We need a BirthdayParty class
	Build the Party Planner version 2.0
	One more thing…can you add a $100 fee for parties over 12?
	When your classes use inheritance, you only need to write your code once
	Build up your class model by starting getting more specific
	How would you design a zoo simulator?
	Use inheritance to avoid duplicate code
	Different animals make different noises
	Think about how to group the animals
	Create the class hierarchy
	Every subclass extends its base class
	Use a colon to inherit from a base class
	We know that inheritance adds the base classfields, properties, and methods to the subclass…
	A subclass can override methods to change or replace methods it inherited
	Any place where you can use a base class, youcan use one of its subclasses instead
	A subclass can hide methods in the superclass
	Use the override and virtual keywords to inherit behavior
	A subclass can access its base class using the base keyword
	When a base class has a constructor, your subclass needs one, too
	Now you’re ready to finish the job for Kathleen!
	Build a beehive management system
	How you’ll build the beehive management
	Use inheritance to extend the bee management system

	Chapter 7: interfaces and abstract classes: Making classes keep their promises
	Let’s get back to bee-sics
	We can use inheritance to createclasses for different types of bees
	An interface tells a class that it must implement certain methods and properties
	Use the interface keyword to define an interface
	Now you can create an instance of NectarStinger that does both jobs
	Classes that implement interfaces have to include ALL of the interface’s methods
	Get a little practice using interfaces
	You can’t instantiate an interface,but you can reference an interface
	Interface references work just like object references
	You can find out if a class implements a certain interface with “is”
	Interfaces can inherit from other interfaces
	The RoboBee 4000 can do a worker bee’s job without using valuable honey
	is tells you what an object implements;as tells the compiler how to treat your object
	A CoffeeMaker is also an Appliance
	Upcasting works with both objects and interfaces
	Downcasting lets you turn your appliance back into a coffee maker
	Upcasting and downcasting work with interfaces, too
	There’s more than just public and private
	Access modifiers change visibility
	Some classes should never be instantiated
	An abstract class is like a crossbetween a class and an interface
	Like we said, some classes should never be instantiated
	An abstract method doesn’t have a body
	Polymorphism means that one object can t

	Chapter 8: enums and collections: Storing lots of data
	Strings don’t always work for storing categories of data
	Enums let you work with a set of valid values
	Enums let you represent numbers with names
	We could use an array to create a deck of cards…
	Arrays are hard to work with
	Lists make it easy to store collections of…anything
	Lists are more flexible than arrays
	Lists shrink and grow dynamically
	Generics can store any type
	Collection initializers are similar to object initializers
	Let’s create a List of Ducks
	Lists are easy, but SORTING can be tricky
	IComparable<Duck> helps your list sort its ducks
	Use IComparer to tell your List how to sort
	Create an instance of your comparer object
	IComparer can do complex comparisons
	Overriding a ToString() method lets an object describe itself
	Update your foreach loops to let your Ducks and Cards print themselves
	When you write a foreach loop, you’re using IEnumerable<T>
	You can upcast an entire list using IEnumerable
	You can build your own overloaded methods
	Use a dictionary to store keys and values
	The dictionary functionality rundown
	Build a program that uses a dictionary
	And yet MORE collection types…
	A queue is FIFO—First In, First Out
	A stack is LIFO—Last In, First Out

	Chapter 9: reading and writing files: Save the last byte for me!
	.NET uses streams to read and write data
	Different streams read and write different things
	A FileStream reads and writes bytes to a file
	Write text to a file in three simple steps
	The Swindler launches another diabolical plan
	Reading and writing using two objects
	Data can go through more than one stream
	Use built-in objects to pop up standard dialog boxes
	Dialog boxes are just another WinForms control
	Dialog boxes are objects, too
	Use the built-in File and Directory classesto work with files and directories
	Use file dialogs to open and save files(all with just a few lines of code)
	IDisposable makes sure your objects are disposed of properly
	Avoid filesystem errors with using statements
	Trouble at work
	Writing files usually involves making a lot of decisions
	Use a switch statement to choose the right option
	Use a switch statement to let your deck of cards read from a file or write itself out to one
	Add an overloaded Deck() constructor that reads a deck of cards in from a file
	But what exactly IS an object’s state? What needs to be saved?
	When an object is serialized, all of the objects it refers to get serialized, too…
	Serialization lets you read or write a whole object graph all at once
	Let’s serialize and deserialize a deck of cards
	.NET uses Unicode to store characters and text
	C# can use byte arrays to move data around
	Use a BinaryWriter to write binary data
	You can read and write serialized files manually, too
	Find where the files differ, and use that information to alter them
	Working with binary files can be tricky
	Use file streams to build a hex dumper
	StreamReader and StreamWriter will do just fine (for now)
	Use Stream.Read() to read bytes from a stream

	C# Lab: The Quest
	The spec: build an adventure game
	The design: building the form
	The architecture: using the objects
	Gameplay concerns are separated into the Game object
	Building the Game class
	Finding common behavior: movement
	The Mover class source code
	The Player class keeps track of the player
	Write the Move() method for the Player
	Add an Attack() method, too
	Bats, ghosts, and ghouls inherit from the Enemy class
	Write the different Enemy subclasses
	Weapon inherits from Mover;each weapon inherits from Weapon
	Different weapons attack in different ways
	Potions implement the IPotion interface
	The form brings it all together
	The form’s UpdateCharacters() method moves the PictureBoxes into position
	The fun’s just beginning!

	Chapter 10: designing windows store apps with xaml: Taking your apps to the next level
	Brian's running Windows 8
	Windows Forms use an object graph set up by the IDE
	Use the IDE to explore the object graph
	Windows Store apps use XAML to create UI object
	Redesign the Go Fish! form as a Windows Store app page
	Page layout starts with controls
	Rows and columns can resize to match the page size
	Use the grid system to lay out app pages
	Data binding connects your XAML pages to your classes
	XAML controls can contain text...and more
	Use data binding to build Sloppy Joe a better menu
	Use static resources to declare your objects in XAML
	Use a data template to display objects
	INotifyPropertyChanged lets bound objects send updates
	Modify MenuMaker to notify you when the GeneratedDate property changes

	Chapter 11: async, await, and data contract serialization: Pardon the interruption
	Brian runs into file trouble
	Windows Store apps use await to be more responsive
	Use the FileIO class to read and write files
	Build a slightly less simple text editor
	A data contract is an abstract definition of your object's data
	Use async methods to find and open files
	KnownFolders helps you access high-profile folders
	The whole object graph is serialized to XML
	Stream some Guy objects to XML files
	Take your Guy Serializer for a test drive
	Use a Task to call one async method from another
	Build Brian a new Excuse Manager app
	Separate the page, excuse, and Excuse Manager
	Create the main page for the Excuse Manager
	Add the app bar to the main page
	Build the ExcuseManager class
	Add the code-behind for the page

	Chapter 12: exception handling: Putting out fires gets old
	Brian needs his excuses to be mobile
	When your program throws an exception,.NET generates an Exception object.
	Brian’s code did something unexpected
	All exception objects inherit from Exception
	The debugger helps you track down and prevent exceptions in your code
	Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
	Uh oh—the code’s still got problems…
	Handle exceptions with try and catch
	What happens when a method you want to call is risky?
	Use the debugger to follow the try/catch flow
	If you have code that ALWAYS should run, use a finally block
	Use the Exception object to get information about the problem
	Use more than one catch block to handle multiple types of exceptions
	One class throws an exception that a method in another class can catch
	Bees need an OutOfHoney exception
	An easy way to avoid a lot of problems:using gives you try and finally for free
	Exception avoidance: implement IDisposable to do your own cleanup
	The worst catch block EVER: catch-all plus comments
	Temporary solutions are OK (temporarily)
	A few simple ideas for exception handling
	Brian finally gets his vacation…

	Chapter 13: Captain Amazing: The Death of the Object
	Your last chance to DO something…your object's finalizer
	When EXACTLY does a finalizer run?
	Dispose() works with using; finalizers with garbage collection
	Finalizers can’t depend on stability
	Make an object serialize itself in its Dispose()
	A struct looks like an object…
	…but isn’t an object
	Values get copied; references get assigned
	Structs are value types; objects are reference types
	The stack vs. the heap: more on memory
	Use out parameters to make a method return more than one value
	Pass by reference using the ref modifier
	Use optional parameters to set default values
	Use nullable types when you need nonexistent values
	Nullable types help you make your programs more robust
	“Captain” Amazing…not so much
	Extension methods add new behavior to EXISTING classes
	Extending a fundamental type: string

	Chapter 14: querying data and building apps with LINQ: Get control of your data
	Jimmy’s a Captain Amazing super-fan...
	…but his collection’s all over the place
	LINQ can pull data from multiple sources
	.NET collections are already set up for LINQ
	LINQ makes queries easy
	LINQ is simple, but your queries don’t have to be
	Jimmy could use some help
	Start building Jimmy an app
	Use the new keyword to create anonymous types
	LINQ is versatile
	Add the new queries to Jimmy’s app
	LINQ can combine your results into groups
	Combine Jimmy’s values into groups
	Use join to combine two collections into one sequence
	Jimmy saved a bunch of dough
	Use semantic zoom to navigate your data
	Add semantic zoom to Jimmy’s app
	You made Jimmy’s day
	The IDE’s Split App template helps you build apps for navigating data

	Chapter 15: events and delegates: What your code does when you’re not looking
	Ever wish your objects could think for themselves?
	But how does an object KNOW to respond?
	When an EVENT occurs…objects listen
	One object raises its event, others listen for it...
	Then, the other objects handle the event
	Connecting the dots
	The IDE generates event handlers for you automatically
	Generic EventHandlers let you define your own event types
	Windows Forms use many different events
	One event, multiple handlers
	Windows Store apps use events for process lifetime management
	Add process lifetime management to Jimmy's comics
	XAML controls use routed events
	Create an app to explore routed events
	Connecting event senders with event listeners
	A delegate STANDS IN for an actual method
	Delegates in action
	An object can subscribe to an event…
	Use a callback to control who’s listening
	A callback is just a way to use delegates
	MessageDialog uses the callback pattern
	Use delegates to use the Windows settings charm

	Chapter 16: architecting apps with the mvvm pattern: Great apps on the inside and outside
	The Head First Basketball Conference needs an app
	But can they agree on how to build it?
	Do you design for binding or for working with data?
	MVVM lets you design for binding and data
	Use the MVVM pattern to start building the basketball roster app
	User controls let you create your own controls
	The ref needs a stopwatch
	MVVM means thinking about the state of the app
	Start building the stopwatch app’s Model
	Events alert the rest of the app to state changes
	Build the view for a simple stopwatch
	Add the stopwatch ViewModel
	Finish the stopwatch app
	Converters automatically convert values for binding
	Converters can work with many different types
	Styles set properties on multiple controls
	Use a resource dictionary to share resources between pages
	Visual states make controls respond to changes
	Use DoubleAnimation to animate double values
	Use object animations to animate object values
	Build an analog stopwatch using the same ViewModel
	UI controls can be instantiated with C# code too
	C# can build “real” animations, too
	Create a user control to animate a picture
	Make your bees fly around a page
	Use ItemsPanelTemplate to bind controls to a Canvas
	Congratulations! (But you’re not done yet...)

	C# Lab: Invaders
	The grandfather of video games
	Your mission: defend the planet against wave after wave of invaders
	The architecture of Invaders
	Build out the object model for the Model
	Building the InvadersModel class
	The InvadersModel methods
	Filling out the InvadersModel class
	LINQ makes collision detection much easier
	Build the Invaders page for the View
	Maintain the play area’s aspect ratio
	Respond to swipe and keyboard input
	An AnimatedImage control displays the ships
	Add a control for the big stars
	A static InvadersHelper class helps the ViewModel
	Use the Settings charm to open a SettingsFlyout
	Build the ViewModel
	Handling user input
	Build the InvadersViewModel methods
	The View’s updated when the timer ticks
	The player’s ship can move and die
	“Shots fired!”
	And yet there’s more to do…

	Appendix I: Leftovers: The top 10 things we wanted to include in this book
	#1. There’s so much more to Windows Store
	#2. The Basics
	#3. Namespaces and assemblies
	#4. Use BackgroundWorker to make your WinForms responsive
	#5. The Type class and GetType()
	#6. Equality, IEquatable, and Equals()
	#7. Using yield return to create enumerable objects
	#8. Refactoring
	#9. Anonymous types, anonymous methods, and lambda expressions
	#10. LINQ to XML
	Did you know that C# and the .NET Framework can...

	Appendix ii: Windows Presentation Foundation: WPF Learner's Guide to Head First C#
	Why you should learn WPF
	Build WPF projects in Visual Studio
	How to use this appendix
	Start with a blank application
	Set up the grid for your window
	Add controls to your grid
	Use properties to change how the control
	Controls make the game work
	You’ve set the stage for the game
	What you’ll do next
	Add a method that does something
	Fill in the code for your method
	Finish the method and run your program
	Here’s what you’ve done so far
	Add timers to manage the gameplay
	Make the Start button work
	Run the program to see your progress
	Add code to make your controls interact with the player
	Dragging humans onto enemies ends the game
	Your game is now playable
	Make your enemies look like aliens
	Use the debugger to see your variables change
	Build an app from the ground up
	WPF applications use XAML to create UI objects
	Redesign the Go Fish! form as a WPF application
	Page layout starts with controls
	Rows and columns can resize to match the page size
	Use data binding to build Sloppy Joe a better menu
	Use static resources to declare your objects in XAML
	Use a data template to display objects
	INotifyPropertyChanged lets bound objects send updates
	Modify MenuMaker to notify you when the GeneratedDate property changes
	C# programs can use await to be more responsive
	Stream some Guy objects to a file
	Take your Guy Serializer for a test drive
	Brian’s code did something unexpected
	Use the IDE’s debugger to ferret out exactly what went wrong in the Excuse Manager
	Uh-oh—the code’s still got problems…
	Handle exceptions with try and catch
	What happens when a method you want to call is risky?
	Use the debugger to follow the try/catch flow
	If you have code that should ALWAYS run, use a finally block
	Build a WPF comic query application
	XAML controls use routed events
	Create an app to explore routed events
	Use the MVVM pattern to start building the basketball roster app
	User controls let you create your own controls
	Build the view for a simple stopwatch
	Finish the stopwatch app
	Converters automatically convert values for binding
	Converters can work with many different types
	Build an analog stopwatch using the same ViewModel
	UI controls can be instantiated with C# code, too
	Create a user control to animate a picture
	Make your bees fly around a page
	Use ItemsPanelTemplate to bind controls to a Canvas
	Congratulations! (But you’re not done ye

	Index

