

Essential SQLAlchemy

Essential SQLAlchemy

Rick Copeland

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Essential SQLAlchemy
by Rick Copeland

Copyright © 2008 Richard D. Copeland, Jr.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Copy Editor: Genevieve d’Entremont
Production Editor: Sumita Mukherji
Proofreader: Sumita Mukherji

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:
June 2008: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Essential SQLAlchemy, the image of <image>, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51614-7

[M]

1210573118

http://safari.oreilly.com

Table of Contents

Preface . vii

1. Introduction to SQLAlchemy . 1
What Is SQLAlch 1
The Object/Relational “Impedance Mismatch” 4
SQLAlchemy Philosophy 7
SQLAlchemy Architecture 10

2. Getting Started . 21
Installing SQLAlchemy 21
SQLAlchemy Tutorial 24

3. Engines and MetaData . 33
Engines and Connectables 33
MetaData 39

4. SQLAlchemy Type Engines . 59
Type System Overview 59
Built-in Types 59
Application-Specific Custom Types 63

5. Running Queries and Updates . 67
Inserts, Updates, and Deletes 67
Queries 72

6. Building an Object Mapper . 93
Introduction to ORMs 93
Declaring Object Mappers 95
Declaring Relationships Between Mappers 108
Extending Mappers 120
ORM Partitioning Strategies 122

v

7. Querying and Updating at the ORM Level . 127
The SQLAlchemy ORM Session Object 127
Querying at the ORM Level 139
Contextual or Thread-Local Sessions 153

8. Inheritance Mapping . 157
Overview of Inheritance Mapping 157
Single Table Inheritance Mapping 158
Concrete Table Inheritance Mapping 161
Joined Table Inheritance Mapping 163
Relations and Inheritance 168

9. Elixir: A Declarative Extension to SQLAlchemy . 171
Introduction to Elixir 171
Installing Elixir 174
Using Elixir 174
Elixir Extensions 184

10. SqlSoup: An Automatic Mapper for SQLAlchemy . 189
Introduction to SqlSoup 189
Using SqlSoup for ORM-Style Queries and Updates 191
Using SqlSoup for SQL-Level Inserts, Updates, and Deletes 195
When to Use SqlSoup Versus Elixir Versus “Bare” SQLAlchemy 195

11. Other SQLAlchemy Extensions . 199
Association Proxy 199
Ordering List 203
Deprecated Extensions 205

Index . 207

vi | Table of Contents

Preface

If you’re an application programmer you’ve probably run into a relational database at
some point in your professional career. Whether you’re writing enterprise client-server
applications or building the next Web 2.0 killer application, you need someplace to
put the persistent data for your application, and relational databases, accessed via SQL,
are some of the most common places to put that data.

SQL is a powerful language for querying and manipulating data in a database, but
sometimes it’s tough to integrate it with the rest of your application. You may have
used some language that tries to merge SQL syntax into your application’s program-
ming language, such as Oracle’s Pro*C/C++ precompiler, or you may have used string
manipulation to generate queries to run over an ODBC interface. If you’re a Python
programmer, you may have used a DB-API module. But there is a better way.

This book is about a very powerful and flexible Python library named SQLAlchemy
that bridges the gap between relational databases and traditional object-oriented pro-
gramming. While SQLAlchemy allows you to “drop down” into raw SQL to execute
your queries, it encourages higher-level thinking through a “pythonic” approach to
database queries and updates. It supplies the tools that let you map your application’s
classes and objects onto database tables once and then “forget about it,” or return to
your model again and again to fine-tune performance.

SQLAlchemy is powerful and flexible, but it can also be a little daunting. SQLAlchemy
tutorials expose only a fraction of what’s available in this excellent library, and though
the online documentation is extensive, it is often better as a reference than a way to
learn the library initially. This book is meant as both a learning tool and a handy ref-
erence for when you’re in “implementation mode,” and need an answer fast.

This book covers the 0.4 release series of conservatively versioned SQLAlchemy.

Audience
First of all, this book is intended for those who want to learn more about how to use
relational databases with their Python programs, or have heard about SQLAlchemy
and want more information on it. Having said that, to get the most out of this book,

vii

the reader should have intermediate-to-advanced Python skills and at least moderate
exposure to SQL databases. SQLAlchemy provides support for many advanced SQL
constructs, so the experienced DBA will also find plenty of information here.

The beginning Python or database programmer would probably be best served by
reading a Python book such as Learning Python and/or a SQL book such as Learning
SQL, either prior to this book or as a reference to read in parallel with this book.

Assumptions This Book Makes
This book assumes basic knowledge about Python syntax and semantics, particularly
versions 2.4 and later. In particular, the reader should be familiar with object-oriented
programming in Python, as a large component of SQLAlchemy is devoted entirely to
supporting this programming style. The reader should also know basic SQL syntax and
relational theory, as this book assumes familiarity with the SQL concepts of defining
schemas, tables, SELECTs, INSERTs, UPDATEs, and DELETEs.

Contents of this Book
Chapter 1, Introduction to SQLAlchemy

This chapter takes you on a whirlwind tour through the main components of
SQLAlchemy. It demonstrates connecting to the database, building up SQL state-
ments, and mapping simple objects to the database. It also describes SQLAl-
chemy’s philosophy of letting tables be tables and letting classes be classes.

Chapter 2, Getting Started
This chapter walks you through installing SQLAlchemy using easy_install. It shows
you how to create a simple database using SQLite, and walks though some simple
queries against a sample database to to illustrate the use of the Engine and the SQL
expression language.

Chapter 3, Engines and MetaData
This chapter describes the various engines (methods of connecting to database
servers) available for use with SQLAlchemy, including the connection parameters
they support. It then describes the MetaData object, which is where SQLAlchemy
stores information about your database’s schema, and how to manipulate Meta
Data objects.

Chapter 4, SQLAlchemy Type Engines
This chapter describes the way that SQLAlchemy uses its built-in types. It also
shows how you can create custom types to be used in your schema. You will learn
the requirements for creating custom types as well as the cases where it is useful
to use custom rather than built-in types.

viii | Preface

Chapter 5, Running Queries and Updates
This chapter illustrates how to perform inserts, updates, and deletes. It covers result
set objects, retrieving partial results, and using SQL functions to aggregate and sort
data in the database server.

Chapter 6, Building an Object Mapper
This chapter describes the object-relational mapper (ORM) used in SQLAlchemy.
It describes the differences between the object mapper pattern (used in SQLAl-
chemy) and the active record pattern used in other ORMs. It then describes how
to set up a mapper, and how the mapper maps your tables by default. You will also
learn how to override the default mapping and how to specify various relationships
between tables.

Chapter 7, Querying and Updating at the ORM Level
This chapter shows how to create objects, save them to a session, and flush them
to the database. You will learn how Session and Query objects are defined, their
methods, and how to use them to insert, update, retrieve, and delete data from the
database at the ORM level. You will learn how to use result set mapping to populate
objects from a non-ORM query and when it should be used.

Chapter 8, Inheritance Mapping
This chapter describes how to use SQLAlchemy to model object-oriented inheri-
tance. The various ways of modeling inheritance in the relational model are
described, as well has the support SQLAlchemy provides for each.

Chapter 9, Elixir: A Declarative Extension to SQLAlchemy
This chapter describes the Elixir extension to SQLAlchemy, which provides a de-
clarative, active record pattern for use with SQLAlchemy. You will learn how to
use Elixir extensions such as acts_as_versioned to create auxilliary tables auto-
matically, and when Elixir is appropriate instead of “bare” SQLAlchemy.

Chapter 10, SqlSoup: An Automatic Mapper for SQLAlchemy
This chapter introduces the SQLSoup extension, which provides an automatic
metadata and object model based on database reflection. You will learn how to use
SQLSoup to query the database with a minimum of setup, and learn the pros and
cons of such an approach.

Chapter 11, Other SQLAlchemy Extensions
This chapter covers other, less extensive, extensions to SQLAlchemy. This chapter
describes the extensions that are currently used in the 0.4 release series of SQLAl-
chemy, as well as briefly describing deprecated extensions, and the functionality
in SQLAlchemy that supplants them.

Conventions Used in This Book
The following typographical conventions are used in this book:

Preface | ix

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, the contents of files, or the output from commands.

Constant width italic
Shows text that should be replaced with user-supplied values.

ALL CAPS
Shows SQL keywords and queries.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Essential SQLAlchemy by Rick Copeland.
Copyright 2008 Richard D. Copeland, Jr., 978-0-596-51614-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

x | Preface

1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596516147

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Re-
illy Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Many thanks go to Tatiana Apandi, TECHNICAL REVIEWERS HERE for their critical
pre-publication feedback, without whom this book would have undoubtedly had many
technical snafus.

My appreciation goes out to Noah Gift, whose recommendation led to this book being
written in the first place. I still remember how his phone call started: “You know
SQLAlchemy, right?...”

Thanks to my employer, Predictix, for allowing me the time and energy to finish the
book, and to my co-workers for being unwitting guinea pigs for many of the ideas and
techniques in this book.

Finally, my heartfelt gratitude goes to my beloved wife Nancy, whose support in the
presence of a husband glued to the computer was truly the fuel that allowed this book
to be written at all.

Preface | xi

http://www.oreilly.com/catalog/9780596516147
http://www.oreilly.com

CHAPTER 1

Introduction to SQLAlchemy

What Is SQLAlch
SQLALchemy is a Python Library created by Mike Bayer to provide a high-level, Py-
thonic (idiomatically Python) interface to relational databases such as Oracle, DB2,
MySQL, PostgreSQL, and SQLite. SQLAlchemy attempts to be unobtrusive to your
Python code, allowing you to map plain old Python objects (POPOs) to database tables
without substantially changing your existing Python code. SQLAlchemy includes both
a database server–independent SQL expression language and an object-relational map-
per (ORM) that lets you use SQL to persist your application objects automatically. This
chapter will introduce you to SQLAlchemy, illustrating some of its more powerful fea-
tures. Later chapters will provide more depth for the topics covered here.

If you have used lower-level database interfaces with Python, such as the DB-API, you
may be used to writing code such as the following to save your objects to the database:

sql="INSERT INTO user(user_name, password) VALUES (%s, %s)"
cursor = conn.cursor()
cursor.execute(sql, ('rick', 'parrot'))

Although this code gets the job done, it is verbose, error-prone, and tedious to write.
Using string manipulation to build up a query as done here can lead to various logical
errors and vulnerabilities such as opening your application up to SQL injection attacks.
Generating the string to be executed by your database server verbatim also ties your
code to the particular DB-API driver you are currently using, making migration to a
different database server difficult. For instance, if we wished to migrate the previous
example to the Oracle DB-API driver, we would need to write:

sql="INSERT INTO user(user_name, password) VALUES (:1, :2)"
cursor = conn.cursor()
cursor.execute(sql, 'rick', 'parrot')

1

SQL Injection Attacks
SQL injection is a type of programming error where carefully crafted user input can
cause your application to execute arbitrary SQL code. For instance, suppose that the
DB-API code in the earlier listing had been written as follows:

sql="INSERT INTO user(user_name, password) VALUES ('%s', '%s')"
cursor = conn.cursor()
cursor.execute(sql % (user_name, password))

In most cases, this code will work. For instance, with the user_name and password var-
iables just shown, the SQL that would be executed is INSERT INTO user(user_name,
password) VALUES ('rick', 'parrot'). A user could, however, supply a maliciously
crafted password: parrot'); DELETE FROM user; --. In this case, the SQL executed is
INSERT INTO user(user_name, password) VALUES ('rick', 'parrot'); DELETE FROM
user; --', which would probably delete all users from your database. The use of bind
parameters (as in the first example in the text) is an effective defense against SQL in-
jection, but as long as you are manipulating strings directly, there is always the
possibility of introducting a SQL injection vulnerability into your code.

In the SQLAlchemy SQL expression language, you could write the following instead:

statement = user_table.insert(user_name='rick', password='parrot')
statement.execute()

To migrate this code to Oracle, you would write, well, exactly the same thing.

SQLAlchemy also allows you to write SQL queries using a Pythonic expression-builder.
For instance, to retrieve all the users created in 2007, you would write:

statement = user_table.select(and_(
 user_table.c.created >= date(2007,1,1),
 user_table.c.created < date(2008,1,1))
result = statement.execute()

In order to use the SQL expression language, you need to provide SQLAlchemy with
information about your database schema. For instance, if you are using the user table
mentioned previously, your schema definition might be the following:

metadata=MetaData('sqlite://') # use an in-memory SQLite database
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))

If you would rather use an existing database schema definition, you still need to tell
SQLAlchemy which tables you have, but SQLAlchemy can reflect the tables using the

2 | Chapter 1: Introduction to SQLAlchemy

database server’s introspection capabilities. In this case, the schema definition reduces
to the following:

users_table = Table('users', metadata, autoload=True)

Although the SQLAlchemy SQL expression language is quite powerful, it can still be
tedious to manually specify the queries and updates necessary to work with your tables.
To help with this problem, SQLAlchemy provides an ORM to automatically populate
your Python objects from the database and to update the database based on changes
to your Python objects. Using the ORM is as simple as writing your classes, defining
your tables, and mapping your tables to your classes. In the case of the user table, you
could perform a simple mapping via the following code:

class User(object): pass
mapper(User, user_table)

Notice that there is nothing particularly special about the User class defined here. It is
used to create “plain old Python objects,” or POPOs. All the magic of SQLAlchemy is
performed by the mapper. Although the class definition just shown is empty, you may
define your own methods and attributes on a mapped class. The mapper will create
attributes corresponding to the column names in the mapped table as well as some
private attributes used by SQLAlchemy internally. Once your table is mapped, you can
use a Session object to populate your objects based on data in the user table and flush
any changes you make to mapped objects to the database:

>>> Session = sessionmaker()
>>> session = Session()
>>>
>>> # Insert a user into the database
... u = User()
>>> u.user_name='rick'
>>> u.email_address='rick@foo.com'
>>> u.password='parrot'
>>> session.save(u)
>>>
>>> # Flush all changes to the session out to the database
... session.flush()
>>>
>>> query = session.query(User)
>>> # List all users
... list(query)
[<__main__.User object at 0x2abb96dae3d0>]
>>>
>>> # Get a particular user by primary key
... query.get(1)
<__main__.User object at 0x2abb96dae3d0>
>>>
>>> # Get a particular user by some other column
... query.get_by(user_name='rick')
<__main__.User object at 0x2abb96dae3d0>
>>>
>>> u = query.get_by(user_name='rick')
>>> u.password = 'foo'

What Is SQLAlch | 3

>>> session.flush()
>>> query.get(1).password
'foo'

As you can see, SQLAlchemy makes persisting your objects simple and concise. You
can also customize and extend the set of properties created by SQLAlchemy, allowing
your objects to model, for instance, a many-to-many relationship with simple Python
lists.

The Object/Relational “Impedance Mismatch”
Although a SQL database is a powerful and flexible modeling tool, it is not always a
good match for the object-oriented programming style. SQL is good for some things,
and object-oriented programming is good for others. This is sometimes referred to as
the object/relational “impedance mismatch,” and it is a problem that SQLAlchemy
tries to address in the ORM. To illustrate the object/relational impedance mismatch,
let’s first look at how we might model a system in SQL, and then how we might model
it in and object-oriented way.

SQL databases provide a powerful means for modeling data and allowing for arbitrary
queries of that data. The model underlying SQL is the relational model. In the relational
model, modeled items (entities) can have various attributes, and are related to other
entities via relationships. These relationships can be one-to-one, one-to-many, many-
to-many, or complex, multientity relationships. The SQL expression of the entity is the
table, and relationships are expressed as foreign key constraints, possibly with the use
of an auxiliary “join” table. For example, suppose we have a user permission system
that has users who may belong to one or more groups. Groups may have one or more
permissions. Our SQL to model such a system might be something like the following:

CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 email_address VARCHAR(255) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name),
 UNIQUE (email_address));
CREATE TABLE tf_group (
 id INTEGER NOT NULL,
 group_name VARCHAR(16) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (group_name));
CREATE TABLE tf_permission (
 id INTEGER NOT NULL,
 permission_name VARCHAR(16) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (permission_name));

4 | Chapter 1: Introduction to SQLAlchemy

-- Relate the user and group tables
CREATE TABLE user_group (
 user_id INTEGER,
 group_id INTEGER,
 PRIMARY KEY(user_id, group_id),
 FOREIGN KEY(user_id) REFERENCES tf_user (id),
 FOREIGN KEY(group_id) REFERENCES tf_group (id));
-- Relate the group and permission tables
CREATE TABLE group_permission (
 group_id INTEGER,
 permission_id INTEGER,
 PRIMARY KEY(group_id, permission_id),
 FOREIGN KEY(group_id) REFERENCES tf_group (id),
 FOREIGN KEY(permission_id) REFERENCES tf_permission (id));

Notice the two auxilliary tables used to provide many-to-many joins between users and
groups, and between groups and users. Once we have this schema in place, a common
scenario is to check whether a particular user has a particular permission. In SQL, we
might write:

SELECT COUNT(*) FROM tf_user, tf_group, tf_permission WHERE
 tf_user.user_name='rick' AND tf_user.id=user_group.user_id
 AND user_group.group_id = group_permission.group_id
 AND group_permission.permission_id = tf_permission.id
 AND permission_name='admin';

In a single statement, we join the three entities—user, group, and permission—together
to determine whether the user “rick” has the “admin” permission.

In the object-oriented world, we would probably model the system quite differently.
We would still have users, groups, and permissions, but they would probably have an
ownership relationship between them:

class User(object):
 groups=[]

class Group(object):
 users=[]
 permissions=[]

class Permission(object):
 groups=[]

Suppose we wanted to print out a summary of all of a given user’s groups and permis-
sions, something an object-oriented style would do quite well. We might write some-
thing like the following:

print 'Summary for %s' % user.user_name
for g in user.groups:
 print ' Member of group %s' % g.group_name
 for p in g.permissions:
 print ' ... which has permission %s' % p.permission_name

On the other hand, if we wanted to determine whether a user has a particular permis-
sion, we would need to do something like the following:

The Object/Relational “Impedance Mismatch” | 5

def user_has_permission(user, permission_name):
 for g in user.groups:
 for p in g.permissions:
 if p.permission_name == 'admin':
 return True
 return False

In this case, we needed to write a nested loop, examining every group the user is a
member of to see if that group had a particular permission. SQLAlchemy lets you use
object-oriented programming where appropriate (such as checking for a user’s per-
mission to do something) and relational programming where appropriate (such as
printing a summary of groups and permissions). In SQLAlchemy, we could print the
summary information exactly as shown, and we could detect membership in a group
with a much simpler query. First, we need to create mappings between our tables and
our objects, telling SQLAlchemy a little bit about the many-to-many joins:

mapper(User, user_table, properties=dict(
 groups=relation(Group, secondary=user_group, backref='users')))
mapper(Group, group_table, properties=dict(
 permissions=relation(Permission, secondary=group_permission,
 backref='groups')))
mapper(Permission, permission_table)

Now, our model plus the magic of the SQLAlchemy ORM allows us to detect whether
the given user is an administrator:

q = session.query(Permission)
rick_is_admin = q.count_by(permission_name='admin',
... user_name='rick')

SQLAlchemy was able to look at our mappers, determine how to join the tables, and
use the relational model to generate a single call to the database. The SQL generated
by SQLAlchemy is actually quite similar to what we would have written ourselves:

SELECT count(tf_permission.id)
FROM tf_permission, tf_user, group_permission, tf_group, user_group
WHERE (tf_user.user_name = ?
 AND ((tf_permission.id = group_permission.permission_id
 AND tf_group.id = group_permission.group_id)
 AND (tf_group.id = user_group.group_id
 AND tf_user.id = user_group.user_id)))
 AND (tf_permission.permission_name = ?)

SQLAlchemy’s real power comes from its ability to bridge the object/relational divide
and allow you to use whichever model is appropriate to your task at hand. Aggregation
is another example of using SQLAlchemy’s relational model rather than the object-
oriented model. Suppose we wanted a count of how many users had each permission
type. In the traditional object-oriented world, we would probably loop over each per-
mission, then over each group, and finally count the users in the group (without
forgetting to remove duplicates!). This leads to something like this:

for p in permissions:
 users = set()

6 | Chapter 1: Introduction to SQLAlchemy

 for g in p.groups:
 for u in g.users:
 users.add(u)
print 'Permission %s has %d users' % (p.permission_name, len(users))

In SQLAlchemy, we can drop into the SQL expression language to create the following
query:

q=select([Permission.c.permission_name,
 func.count(user_group.c.user_id)],
 and_(Permission.c.id==group_permission.c.permission_id,
 Group.c.id==group_permission.c.group_id,
 Group.c.id==user_group.c.group_id),
 group_by=[Permission.c.permission_name],
 distinct=True)
rs=q.execute()
for permission_name, num_users in q.execute():
print 'Permission %s has %d users' % (permission_name, num_users)

Although the query is a little longer in this case, we are doing all of the work in the
database, allowing us to reduce the data transferred and potentially increase perform-
ance substantially due to reduced round-trips to the database. The important thing to
note is that SQLAlchemy makes “simple things simple, and complex things possible.”

SQLAlchemy Philosophy
SQLAlchemy was created with the goal of letting your objects be objects, and your
tables be tables. The SQLAlchemy home page puts it this way:

SQLAlchemy Philosophy

SQL databases behave less and less like object collections the more size and performance
start to matter; object collections behave less and less like tables and rows the more
abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

—From http://www.sqlalchemy.org

Using the object mapper pattern (where plain Python objects are mapped to SQL tables
via a mapper object, rather than requiring persistent objects to be derived from some
Persistable class) achieves much of this separation of concerns. There has also been a
concerted effort in SQLAlchemy development to expose the full power of SQL, should
you wish to use it.

In SQLAlchemy, your objects are POPOs until you tell SQLAlchemy about them. This
means that it is entirely possible to “bolt on” persistence to an existing object model
by mapping the classes to tables. For instance, consider an application that uses users,
groups, and permissions, as shown. You might prototype your application with the
following class definitions:

class User(object):

 def __init__(self, user_name=None, password=None, groups=None):
 if groups is None: groups = []

SQLAlchemy Philosophy | 7

 self.user_name = user_name
 self.password = password
 self._groups = groups

 def join_group(self, group):
 self._groups.append(group)

 def leave_group(self, group):
 self._groups.remove(group)

class Group(object):

def __init__(self, group_name=None, users=None, permissions=None):
 if users is None: users = []
 if permissions is None: permissions = []
 self.group_name = group_name
 self._users = users
 self._permissions = permissions

 def add_user(self, user):
 self._users.append(user)

 def del_user(self, user):
 self._users.remove(user)

 def add_permission(self, permission):
 self._permissions.append(permission)

 def del_permission(self, permission):
 self._permissions.remove(permission)

class Permission(object):

 def __init__(self, permission_name=None, groups=None):
 self.permission_name = permission_name
 self._groups = groups

 def join_group(self, group):
 self._groups.append(group)

 def leave_group(self, group):
 self._groups.remove(group)

Once your application moves beyond the prototype stage, you might expect to have to
write code to manually load objects from the database or perhaps some other kind of
persistent object store. If you are using SQLAlchemy, on the other hand, you would
just define your tables:

user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False))

group_table = Table(

8 | Chapter 1: Introduction to SQLAlchemy

 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

permission_table = Table(
 'tf_permission', metadata,
 Column('id', Integer, primary_key=True),
 Column('permission_name', Unicode(16), unique=True,
 nullable=False))

user_group = Table(
 'user_group', metadata,
 Column('user_id', None, ForeignKey('tf_user.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))

group_permission = Table(
 'group_permission', metadata,
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True),
 Column('permission_id', None, ForeignKey('tf_permission.id'),
 primary_key=True))

and your mappers:

mapper(User, user_table, properties=dict(
_groups=relation(Group, secondary=user_group, backref='_users')))
mapper(Group, group_table, properties=dict(
 _permissions=relation(Permission, secondary=group_permission,
 backref=_'groups')))
mapper(Permission, permission_table)

and you’re done. No modification of your objects is required—they are still simply
new-style (derived from the object class) Python classes, and they still have whatever
methods you have defined, as well as a few attributes added by SQLAlchemy (described
in the sidebar “Instrumentation on Mapped Classes”). Your old methods join_group,
leave_group, etc. still work, even without modifying the class code. This means that
you can modify mapped “collection” properties (properties modeling 1:N or M:N re-
lationships) with regular list operations, and SQLAlchemy will track your changes and
flush them to the database automatically.

Instrumentation on Mapped Classes
Mapped classes are actually fairly unmolested by the default SQLAlchemy mapper. In
particular, the mapped class is given the following new attributes:

c
This attribute contains a collection of the columns in the table being mapped. This
is useful when constructing SQL queries based on the mapped class, such as re-
ferring to User.c.user_name.

SQLAlchemy Philosophy | 9

_state
SQLAlchemy uses this property to track whether a mapped object is “clean” (fresh-
ly fetched from the databaes), “dirty” (modified since fetching from the database),
or “new” (as-yet unsaved to the database). This property generally should not be
modified by the application programmer.

mapped properties
One attribute will be added to the mapped class for each property specified in the
mapper, as well as any “auto-mapped” properties, such as columns. In the previous
example, the mapper adds user_name, password, id, and _groups to the User class.

So, if you are planning on using SQLAlchemy, you should stay away from naming any
class attributes c or _state, and you should be aware that SQLAlchemy will instrument
your class based on the properties defined by the mapper.

SQLAlchemy also allows you the full expressiveness of SQL, including compound
(multi-column) primary keys and foreign keys, indices, access to stored procedures,
the ability to “reflect” your tables from the database into your application, and even
the ability to specify cascading updates and deletes on your foreign key relationships
and value constraints on your data.

SQLAlchemy Architecture
SQLALchemy consists of several components, including the aforementioned database-
independent SQL expression language object-relational mapper. In order to enable
these components, SQLAlchemy also provides an Engine class, which manages con-
nection pools and SQL dialects, a MetaData class, which manages your table informa-
tion, and a flexible type system for mapping SQL types to Python types.

Engine
The beginning of any SQLAlchemy application is the Engine. The engine manages the
SQLAlchemy connection pool and the database-independent SQL dialect layer. In our
previous examples, the engine was created implicitly when the MetaData was created:

metadata=MetaData('sqlite://')
engine = metadata.bind

It is also possible to create an engine manually, using the SQLAlchemy function
create_engine():

engine=create_engine('sqlite://')

This engine can later be bound to a MetaData object just by setting the bind attribute
on the MetaData:

metadata.bind = engine

10 | Chapter 1: Introduction to SQLAlchemy

The engine can also be used in SQL statements such as table creation if the MetaData is
unbound (not connected to a particular engine):

user_table.create(bind=engine)

The engine can be used to execute queries directly on the database via dynamic SQL:

for row in engine.execute("select user_name from tf_user"):
 print 'user name: %s' % row['user_name']

Most of the time, you will be using the higher-level facilities of the SQL expression
language and ORM components of SQLAlchemy, but it’s nice to know that you can
always easily drop down all the way to raw SQL if you need to.

Connection Pooling

Thus far, we have glossed over the use of database connections. In fact, all of our
examples up to this point have used SQLAlchemy’s powerful connection pooling sub-
system. In order to execute queries against a database, a connection is required, and
the establishment of a new connection is typically an expensive operation, involving a
network connection, authentication of the user, and any database session setup re-
quired. In order to amortize the costs, the typical solution is to maintain a pool of
database connections that are used over and over again in the application.

The Engine object in SQLAlchemy is responsible for managing a pool of low-level DB-
API connections. In fact, both the engine and the low-level connection objects obey a
Connectable protocol, allowing you to execute dynamic SQL queries either directly
against a connection, or against the engine (in which case the engine will automatically
allocate a connection for the query).

In another instance of making simple things simple and complex things possible,
SQLAlchemy does “The Right Thing” most of the time with connections, and allows
you to override its strategy when required. SQLAlchemy’s default strategy is to acquire
a connection for each SQL statement, and when that connection is no longer used
(when its result set is closed or garbage-collected), to return it to the pool. If you would
like to manually manage your collections, you can also do that via the connect() meth-
od on the engine object:

engine = create_engine('sqlite://')
connection = engine.connect()
result = connection.execute("select user_name from tf_user")
for row in result:
 print 'user name: %s' % row['user_name']
result.close()

SQLAlchemy has another strategy for connection pooling that has some performance
benefits in many cases: the “thread-local” strategy. In the thread-local strategy, a con-
nection that is currently in use by a thread will be reused for other statements within
that thread. This can reduce database server load, which is especially important when
you could have several applications accessing the database simultaneously. If you want

SQLAlchemy Architecture | 11

to use the thread-local strategy, simply create the Engine object and set the strategy to
threadlocal:

engine = create_engine('sqlite://', strategy='threadlocal')

SQL dialect management

Although SQL is a standardized language, many database vendors either do not fully
implement it or simply create extensions to the standard. The dialect object attempts
to manage the idiosyncracies of each supported SQL dialect as well as manage the low-
level DB-API modules implementing the connection.

The dialect is mostly used as a transparent layer for your application programming.
The main exception to this rule is when you want to access a data type that is supported
only for particular database servers. For instance, MySQL has BigInteger and Enum
types. To use these types, you must import them directly from the appropriate module
in the sqlalchemy.databases package:

from sqlalchemy.databases.mysql import MSEnum, MSBigInteger

user_table = Table('tf_user', meta,
 Column('id', MSBigInteger),
Column('honorific', MSEnum('Mr', 'Mrs', 'Ms', 'Miss', 'Dr',
... 'Prof')))

MetaData Management
The MetaData object in SQLAlchemy is used to collect and organize information about
your table layout (i.e., your database schema). We alluded to MetaData management
before in describing how to create tables. A MetaData object must be created before any
tables are defined, and each table must be associated with a MetaData object. Meta
Data objects can be created “bound” or “unbound”, based on whether they are asso-
ciated with an engine. The following is an example of the different ways you can create
MetaData objects:

create an unbound MetaData
unbound_meta = MetaData()

create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db1

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')

12 | Chapter 1: Introduction to SQLAlchemy

Although tables can be defined against unbound MetaData, it is often more convenient
to eventually bind the metadata to an engine, as this allows both the MetaData and the
Table objects defined for it to access the database directly:

Create a bound MetaData
meta = MetaData('sqlite://')

Define a couple of tables
user_table = Table(
 'tf_user', meta,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False))

group_table = Table(
 'tf_group', meta,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

Create all the tables in the (empty) database
meta.create_all()

Select all the groups from the tf_group table
result_set = group_table.select().execute()

As mentioned previously, you can also reflect your schema by setting the autoload
parameter to True in your Table creation. Reflection, however, requires a database
connection to function properly. (SQLAlchemy must query the database to determine
the structure of the tables.) Binding the MetaData to an engine is a convenient way to
provide this connection. Note, however, that you are never required to bind the Meta
Data object; any operation that you can perform with a bound MetaData or a table
defined on it can also be performed by passing the engine or connection to the indi-
vidual method. This might be useful if you wish to use the same MetaData object for
multiple distinct database engines:

meta = MetaData()
engine1 = create_engine('sqlite:///test1.db')
engine2 = create_engine('sqlite:///test2.db')

Use the engine parameter to load tables from the first engine
user_table = Table(
 'tf_user', meta, autoload=True, autoload_with=engine1)
group_table = Table(
 'tf_group', meta, autoload=True, autoload_with=engine1)
permission_table = Table(
 'tf_permission', meta, autoload=True, autoload_with=engine1)
user_group_table = Table(
 'user_group', meta, autoload=True, autoload_with=engine1)
group_permission_table = Table(
 'group_permission', meta, autoload=True, autoload_with=engine1)

Create the tables in the second engine
meta.create_all(engine2)

SQLAlchemy Architecture | 13

Select some data
result_set = engine1.execute(user_table.select())

Types System
In many cases, SQLAlchemy can map SQL types to Python types in a straightforward
way. In order to do this, SQLAlchemy provides a set of TypeEngine-derived classes that
convert SQL data to Python data in the sqlalchemy.types module. TypeEngine sub-
classes are used to define the MetaData for tables.

Sometimes, in keeping with the SQLAlchemy philosophy of letting your objects be
objects, you may find that the provided TypeEngine classes do not express all of the data
types you wish to store in your database. In this case, you can write a custom TypeEn
gine that converts data being saved to the database to a database-native type, and con-
verts data being loaded from the database to a Python native type. Suppose, for instance,
that we wished to have a column that stored images from the Python Imaging Library
(PIL). In this case, we might use the following TypeEngine definition:

class ImageType(sqlalchemy.types.Binary):

 def convert_bind_param(self, value, engine):
 sfp = StringIO()
 value.save(sfp, 'JPEG')
 return sfp.getvalue()

 def convert_result_value(self, value, engine):
 sfp = StringIO(value)
 image = PIL.Image.open(sfp)
 return image

Once we have defined ImageType, we can use that type in our table definitions, and the
corresponding PIL image will be automatically created when we select from the data-
base or serialized when we insert or update the database.

SQL Expression Language
SQLAlchemy’s SQL expression language provides an API to execute queries and up-
dates against your tables, all from Python, and all in a database-independent way
(managed by the SQLAlchemy-provided Dialect). For instance, the following expres-
sion:

select([user_table.c.user_name, user_table.c.password],
 where=user_table.c.user_name=='rick')

would yield the following SQL code:

SELECT tf_user.user_name, tf_user.password
FROM tf_user
WHERE tf_user.user_name = ?

14 | Chapter 1: Introduction to SQLAlchemy

Notice how the SQL generated uses a question mark for the user name value. This is
known as a “bind parameter.” When the query is run, SQLAlchemy will send the query
string (with bind parameters) and the actual variables (in this case, the string “rick”)
to the database engine. Using the SQLAlchemy SQL-generation layer has several ad-
vantages over hand-generating SQL strings:

Security
Application data (including user-generated data) is safely escaped via bind param-
eters, making SQL injection-style attacks extremely difficult.

Performance
The likelihood of re-using a particular query string (from the database server’s
perspective) is increased. For instance, if we wanted to select another user from
the table, the SQL generated would be identical, and a different bind parameter
would be sent. This allows the database server in some cases to re-use its execution
plan from the first query for the second, increasing performance.

Portability
Although SQL is a standardized language, different database servers implement
different parts of the standard, and to different degrees of faithfulness. SQLAl-
chemy provides you a way to write database-independent SQL in Python without
tying you to a particular database server. With a little bit of planning, the same
SQLAlchemy-based application can run on SQLite, Oracle, DB2, PostgreSQL, or
any other SQLAlchemy-supported database without code changes.

Most of the time, you will be using the SQL expression language by creating expressions
involving the attributes of the table.c object. This is a special attribute that is added to
Tables you have defined in the metadata, as well as any objects you have mapped to
tables or other selectables. The “.c” objects represent database columns, and they can
be combined via a rich set of operators:

Select all users with a username starting with 'r' who were
created before June 1, 2007
q = user_table.select(
 user_table.c.user_name.like('r%')
 & user_table.c.created < datetime(2007,6,1))

Alternate syntax to do the same thing
q = user_table.select(and_(
 user_table.c.user_name.like('r%'),
 user_table.c.created < datetime(2007,6,1)))

You can also use mapped classes in the same way:

q = session.query(User)
q = q.filter(User.c.user_name.like('r%')
 & User.c.created > datetime(2007,6,1))

Of course, you aren’t required to use the SQL expression language; you can always
insert custom SQL instead:

q = user_table.select("""tf_user.user_name LIKE 'r%'""")

SQLAlchemy Architecture | 15

You can also use SQL functions in your queries by using the SQLAlchemy-supplied
func object:

q=select([Permission.c.permission_name,
 func.count(user_group.c.user_id)],
 and_(Permission.c.id==group_permission.c.permission_id,
 Group.c.id==group_permission.c.group_id,
 Group.c.id==user_group.c.group_id),
 group_by=[Permission.c.permission_name],
 distinct=True)

Object Relational Mapper (ORM)
Although you can do a lot with the Engine, Metadata, TypeEngine, and SQL expression
language, the true power of SQLAlchemy is found in its ORM. SQLAlchemy’s ORM
provides a convenient, unobtrusive way to add database persistence to your Python
objects without requiring you to design your objects around the database, or the da-
tabase around the objects. To accomplish this, SQLAlchemy uses the data mapper
pattern. In this pattern, you can define your tables (or other selectables, such as joins)
in one module, your classes in another, and the mappers between them in yet another
module.

SQLAlchemy provides a great deal of flexibility in mapping tables, as well as a sensible
set of default mappings. Suppose that we defined the following tables, classes, and
mappers:

user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))

group_table = Table(
 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

user_group = Table(
 'user_group', metadata,
Column('user_id', None, ForeignKey('tf_user.id'), primary_key=True),
Column('group_id', None, ForeignKey('tf_group.id'),
... primary_key=True))

class User(object): pass

class Group(object): pass

16 | Chapter 1: Introduction to SQLAlchemy

mapper(User, user_table)
mapper(Group, group_table)

Here, the mapper would create properties on the User class for the columns of the table:
id, user_name, email_address, password, first_name, last_name, and created. On the
Group class, the id and group_name properties would be defined. The mapper, however,
has a great deal more flexibility. If we wished to store only a hash of the user’s password
in the database, rather than the actual plaintext password, we might modify the User
class and mapper to the following:

import sha
class User(object):

 def _get_password(self):
 return self._password
 def _set_password(self, value):
 self._password = sha.new(value).hexdigest()
 password=property(_get_password, _set_password)

 def password_matches(self, password):
 return sha.new(password).hexdigest() == self._password

mapper(User, user_table, properties=dict(
 _password=user_table.c.password))

By providing an application-level override for the password property, we can ensure
that only hashed passwords are ever stored to the database. By telling the mapper to
map user_table.c.password to the protected property _password, we prevent SQLAl-
chemy from providing the default mapping for the password column.

Perhaps the most powerful feature of the ORM is the ability to use regular Python data
structures to model relationships between tables. In the preceding user/group example,
we can modify the user mapper a bit more to provide the User class with a groups
property, and the Group class with a users property:

mapper(User, user_table, properties=dict(
 _password=user_table.c.password,
 groups=relation(Group, secondary=user_group, backref='users')))

Now we can access all the groups that a user is a member of by simply accessing the
groups property. We can also add a user to a group by either appending the user to the
group’s users property, or appending the group to the user’s groups property:

user1's "groups" property will automatically be updated
group1.users.append(user1)

group2's "users" property will automatically be updated
user2.groups.append(group2)

The ORM uses a Session object to keep track of objects loaded from the database and
the changes made to them. Sessions are used to persist objects created by the applica-
tion, and they provide a query interface to retrieve objects from the database. Rather
than executing the database code to synchronize your objects with your tables every

SQLAlchemy Architecture | 17

time an object is modified, the Session simply tracks all changes until its flush() meth-
od is called, at which point all the changes are sent to the database in a single unit of
work.

A Session class is created using the sessionmaker() function, and a Session object is
created by instantiating the class returned from sessionmaker(). Although you can
instantiate the Session object directly, the sessionmaker function is a convenient way
to fix the parameters that will be passed to the Session’s constructor, rather than re-
peating them wherever a Session is instantiated.

To insert objects into the database, we simply need to save them to the session:

Session=sessionmaker()
session=Session()
u = User()
u.user_name='rick'
u.password='foo'
u.email_address='rick@pyatl.org'
session.save(u) # tell SQLAlchemy to track the object
session.flush() # actually perform the insert

To retrieve objects from the database, we need to first obtain a query object from the
session and then use its methods to specify which objects we retrieve:

q = session.query(User)

user = q.get(1) # retrieve by primary key

retrieve one object by property
user = q.get_by(user_name='rick')

retrieve multiple objects
users = list(q.filter_by(first_name=None))

retrieve multiple objects using the SQL expression language
users = list(q.filter(User.c.first_name==None))

Note that the filter_by() method takes keyword arguments whose names match the
mapped properties. This is often a useful shortcut because you avoid having to type
out “User.c.” over and over, but is less flexible than the filter method, which can take
arbitrary SQL expressions as its criteria for selection. One powerful feature of SQLAl-
chemy is its ability, in the filter_by() method, to automatically search your joined
tables for a matching column:

Retrieve all users in a group named 'admin'
users = list(q.filter_by(group_name='admin'))

SQLAlchemy will automatically search for tables with foreign key relationships that
contain the queried object to find columns to satisfy the keyword arguments. This can
be very powerful, but can also sometimes find the wrong column, particularly if you
are querying based on a common column name, such as name, for instance. In this case,
you can manually specify the joins that SQLAlchemy will perform in the query via the
join() method.

18 | Chapter 1: Introduction to SQLAlchemy

q = session.query(User)
q = q.join('groups') # use the mapped property name for joins
q = q.filter(Group.c.group_name=='admin')
users = list(q)

You can even specify a “join chain” by using a list of properties for the argument to
join():

q = session.query(User)
groups is a property of a User, permissions is a property of a
... Group
q = q.join(['groups', 'permissions'])
q = q.filter(Permission.c.permission_name=='admin')
users = list(q)

The power of SQLAlchemy to construct complex queries becomes clear when we com-
pare the previous code to the SQL generated:

SELECT tf_user.first_name AS tf_user_first_name,
 tf_user.last_name AS tf_user_last_name,
 tf_user.created AS tf_user_created,
 tf_user.user_name AS tf_user_user_name,
 tf_user.password AS tf_user_password,
 tf_user.email_address AS tf_user_email_address,
 tf_user.id AS tf_user_id
FROM tf_user
 JOIN user_group ON tf_user.id = user_group.user_id
 JOIN tf_group ON tf_group.id = user_group.group_id
JOIN group_permission ON tf_group.id = group_permission.group_id
JOIN tf_permission ON tf_permission.id =
... group_permission.permission_id
WHERE tf_permission.permission_name = ? ORDER BY tf_user.oid

SQLAlchemy Architecture | 19

CHAPTER 2

Getting Started

This chapter guides you through installing version 0.4 of SQLAlchemy (the version
documented by this book) via EasyInstall. It will also give you a quick tutorial on the
basic features of SQLAlchemy to “get your hands dirty” as soon as possible.

Installing SQLAlchemy
In order to use SQLAlchemy, you need to install both the SQLAlchemy package as well
as a Python database driver for your database. This section will guide you through
installing both.

Installing the SQLAlchemy Package

Installing setup tools

SQLAlchemy is distributed as an EGG file via the Python package index (PyPI), also
known as the CheeseShop. If you have installed EGGs before using easy_install, you
can skip to the next section. Otherwise, you will need to install SetupTools, a package
that enhances the Python standard library-provided distutils package.

SetupTools includes a tool called easy_install, which can be used to in-
stall various Python modules from the CheeseShop. easy_install is
particularly good at resolving dependencies between Python packages
and installing a package’s dependencies along with the package itself.
If you intend to take advantage of the rich library of free software avail-
able in the CheeseShop, or if you intend to take advantage of the benefits
of distributing your own code through SetupTools, it is a good idea to
become familiar with all its features. You can find more documentation
on SetupTools at http://peak.telecommunity.com/DevCenter/EasyInstall.

21

To install SetupTools, first download the bootstrap script ez_setup.py from http://
peak.telecommunity.com/dist/ez_setup.py. You will then need to run the script to down-
load the rest of SetupTools.

In Windows, you must make certain that you have administrator priv-
iledges before running easy_install or ez_setup.py, as both of these
scripts modify your Python site-packages directory.

In Windows, it is also generally a good idea to make sure that both
Python and your Python scripts directories are on your path. In the de-
fault Python installation, these directories are c:\python25 and c:\py
thon25\scripts.

In Unix-like systems, including Linux, BSD, and OS X, you can install SetupTools as
follows:

$ sudo python ez_setup.py

In Windows, you will need to open a command prompt and run the bootstrap script
as follows:

c:\>python ez_setup.py

Once you have installed SetupTools using ez_setup, you are ready to install SQLAl-
chemy.

Installing SQLAlchemy with easy_install

To install SQLAlchemy using easy_install on a Unix-like system, simply type the fol-
lowing:

$ sudo easy_install -UZ SQLAlchemy

On Windows, the corresponding command is as follows (as long as your scripts direc-
tory, generally c:\python25\scripts, is on your path):

c:\>easy_install -UZ SQLAlchemy

This will download and install SQLAlchemy to your Python site-packages directory. If
you wish to install a particular version of SQLAlchemy, add a version specifier to the
easy_install command line. In Unix, this would be:

$ sudo easy_install -UZ SQLAlchemy==0.4.1

In Windows, the command is similar:

c:\>easy_install -UZ SQLAlchemy==0.4.1

22 | Chapter 2: Getting Started

Python EGGs are typically distributed and installed as ZIP files. Al-
though this is convenient for distribution, it is often nice to see the actual
source code. easy_install includes an option to specify that the EGG
should be unzipped. The -UZ options as shown specify that SQLAl-
chemy should be Updated if already installed and should not be Zipped.
If you are installing SQLAlchemy for the first time, you can leave off the
-U, and if you don’t care to look at the source code, you can leave off
the -Z.

Testing the install

To verify that your installation of SQLAlchemy has been successful, simply open up an
interactive Python interpreter and try importing the module and verifying its version:

>>> import sqlalchemy
>>> sqlalchemy.__version__
'0.4.1'

This book covers the 0.4 release of SQLAlchemy, so confirm that the version installed
on your system is at least 0.4.0.

SQLAlchemy also has an extensive unit test suite that can be downloaded separately
(not via easy_install) from http://sqlalchemy.org if you wish to test the installation more
extensively.

Installing Some Database Drivers
The next step is installing the appropriate DB-API database drivers for the database
you wish to use. If you are using a version of Python greater than or equal to 2.5, you
already have the SQLite driver installed, as it is included in the standard Python library.
If you are using Python 2.3 or 2.4, you will need to install the SQLite driver separately.

Installing the SQLite driver on Python versions before 2.5

For many of the examples in this book, we use the SQLite database driver, mainly
because it requires no separate database server installation, and you can use it to gen-
erate throwaway in-memory databases. Even if your production database is not SQLite,
it can be advantageous to install the driver for prototyping code and running the ex-
amples in this book. The SQLite database driver became part of the Python standard
library in version 2.5, so if you are running more recent versions of Python, you can
skip this section.

Installing SQLite is different depending on whether you are using Windows or another
operating system. If you are using Windows, you can download the pysqlite binary
module from http://pysqlite.org/ and install it. If you are using another operating system,
you will also need to install the SQLite library from http://sqlite.org/.

Installing SQLAlchemy | 23

Other supported drivers

If you wish to connect to other databases, you must install the appropriate DB-API
driver module. The complete list of supported databases and drivers follows:

PostgreSQL
psycopg2 at http://www.initd.org/pub/software/psycopg/

SQLite
pysqlite at http://initd.org/pub/software/pysqlite/ or sqlite3 (included with Python
versions 2.5 and greater)

MySQL
MySQLdb at http://sourceforge.net/projects/mysql-python

Oracle
cx_Oracle at http://www.cxtools.net/

SQL Server
Support for Microsoft SQL server is provided by multiple drivers as follows:

• pyodbc at http://pyodbc.sourceforge.net/ (recommended driver)

• adodbapi at http://adodbapi.sourceforge.net/

• pymssql at http://pymssql.sourceforge.net/

Firebird
kinterbasdb at http://kinterbasdb.sourceforge.net/

Informix
informixdb at http://informixdb.sourceforge.net/

SQLAlchemy Tutorial
Once you have installed SQLAlchemy and the SQLite driver (either pysqlite or
sqlite3), you can start really exploring SQLAlchemy. This tutorial shows off some of
the basic features of SQLAlchemy that you can use to become immediately productive.
This tutorial is based on a stripped-down version of a user authentication module that
might be used in a web application.

Connecting to the Database and Creating Some Tables
Before doing anything, we need to import the modules we will use. In this case, for
simplicity’s sake, we will simply import everything from the sqlalchemy package. We
will also import the datetime class from the datetime package for use in defining default
values for our tables.

from sqlalchemy import *
from datetime import datetime

24 | Chapter 2: Getting Started

To connect to the database, we will create a MetaData object, which is used by SQLAl-
chemy to keep track of the tables we define:

metadata = MetaData('sqlite:///tutorial.sqlite')

The MetaData object we create is bound to a particular database Engine, in this case a
SQLite engine connected to the database located in the file tutorial.sqlite. If tutori
al.sqlite does not already exist, it will be created automatically by SQLite.

Once we have created our MetaData, we can define our tables. The first table defined is
the user table:

user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16),
 unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('display_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))

Notice how the Table constructor is given the SQL name of the table ('tf_user'), a
reference to the metadata object, and a list of columns. The columns are similarly de-
fined with their SQL names, data types, and various optional constraints. In this case,
since we defined an 'id' column as a primary key, SQLAlchemy will automatically
create the column with an auto-increment default value. Also note that we can specify
uniqueness and nullability constraints on columns, provide literal defaults, or provide
Python callables (e.g. datetime.now) as defaults.

Next, we define our group and permission tables:

group_table = Table(
 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16),
 unique=True, nullable=False))

permission_table = Table(
 'tf_permission', metadata,
 Column('id', Integer, primary_key=True),
 Column('permission_name', Unicode(16),
 unique=True, nullable=False))

Each table is simply defined with an auto-increment primary key and a unique name.

Finally, we define the join tables that provide a many-to-many relationship between
users and groups and groups and permissions:

user_group_table = Table(
 'tf_user_group', metadata,
 Column('user_id', None, ForeignKey('tf_user.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))

SQLAlchemy Tutorial | 25

group_permission_table = Table(
 'tf_group_permission', metadata,
 Column('permission_id', None, ForeignKey('tf_permission.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))

Note in particular the use of compound primary keys (each table is keyed by two col-
umns) and the use of foreign key constraints. We also specified the data type of the
foreign key columns as None. When a foreign key column is specified with this datatype,
SQLAlchemy will examine the column on the related table (e.g., 'tf_user.id') to de-
termine the data type for the foreign key column.

Once the tables have been defined, we can create them in the database using the fol-
lowing code:

metadata.create_all()

If you were not creating the database, but rather connecting to an existing database,
you could, of course, leave out the call to metadata.create_all(). SQLAlchemy will in
any case create tables using the IF NOT EXISTS syntax, so a metadata.create_all() is a
safe operation.

Performing Queries and Updates
Once we have defined the tables in our schema, we can insert some data. To create a
new user, we use SQLAlchemy to construct an INSERT statement using the following
syntax:

stmt = user_table.insert()

Once the insert statement has been created, it can be executed multiple times with
different values:

stmt.execute(user_name='rick', password='secret',
 display_name='Rick Copeland')
stmt.execute(user_name='rick1', password='secret',
 display_name='Rick Copeland Clone')

If we wish to see the actual SQL generated, we can instruct SQLAlchemy to log the
queries using the metadata.bind.echo property:

>>> metadata.bind.echo = True
>>> stmt.execute(user_name='rick2', password='secret',
... display_name='Rick Copeland Clone 2')
2007-09-06 10:19:52,317 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, display_name, created)
...
... VALUES (?, ?, ?, ?)
2007-09-06 10:19:52,318 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick2', 'secret', 'Rick Copeland Clone 2', '2007-09-06
... 10:19:52.317540']
2007-09-06 10:19:52,319 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT

26 | Chapter 2: Getting Started

<sqlalchemy.engine.base.ResultProxy object at 0x2b7ee8ffb610>
>>> metadata.bind.echo = False

Note again that SQLAlchemy uses bind parameters for the values to be inserted, and
that SQLAlchemy automatically generates the created column value based on the result
of calling datetime.now() when the insert was executed.

To select data back out of the table, we can use the table’s select() method as follows:

>>> stmt = user_table.select()
>>> result = stmt.execute()
>>> for row in result:
... print row
...
(1, u'rick', u'secret1', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))
(2, u'rick1', u'secret', u'Rick Copeland Clone',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 476505))
(3, u'rick2', u'secret', u'Rick Copeland Clone 2',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 543650))

We can also retrieve values from each row of the result using dict-like indexing or
simple attribute lookup as follows:

>>> result = stmt.execute()
>>> row =result.fetchone()
>>> row['user_name']
u'rick'
>>> row.password
u'secret1'
>>> row.created
datetime.datetime(2007, 9, 7, 10, 6, 4, 415754)
>>> row.items()
[(u'id', 1), (u'user_name', u'rick'), (u'password', u'secret1'),
... (u'display_name', u'Rick Copeland'),
... (u'created', datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))]

To restrict the rows that are returned from the select() method, we can supply a where
clause. SQLAlchemy provides a powerful SQL expression language to assist in the
construction of where clauses, as shown in the following example:

>>> stmt = user_table.select(user_table.c.user_name=='rick')
>>> print stmt.execute().fetchall()
[(1, u'rick', u'secret1', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))]

The SQL expression language is covered in more detail in Chapter 5.

We can also use the SQL expression language to generate updates and deletes by pass-
ing clauses to the update() and delete() methods on Table objects:

>>> # Create an update constrained by user name
... stmt = user_table.update(user_table.c.user_name=='rick')
>>> # Execute the update, setting the password column to secret123
... stmt.execute(password='secret123')
<sqlalchemy.engine.base.ResultProxy object at 0xa20c50>

SQLAlchemy Tutorial | 27

>>>
>>> # Create a delete statement that deletes all users
... # except for 'rick'
... stmt = user_table.delete(user_table.c.user_name != 'rick')
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0x2b12bf430210>
>>> # Select the users back from the database
... user_table.select().execute().fetchall()
[(1, u'rick', u'secret123', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 18, 35, 35, 529412))]
>>> # Add the users back
... stmt = user_table.insert()
>>> stmt.execute(user_name='rick1', password='secret',
... display_name='Rick Copeland Clone')
<sqlalchemy.engine.base.ResultProxy object at 0xa20c90>
>>> stmt.execute(user_name='rick2', password='secret',
... display_name='Rick Copeland Clone 2')
<sqlalchemy.engine.base.ResultProxy object at 0xa20cd0>
>>>

SQLAlchemy also provides for more generalized queries via the insert(), select(),
update(), and delete() functions (rather than the methods on Table objects) to allow
you to specify more complex SQL queries. Again, this is covered in more detail in
Chapter 5.

Mapping Objects to Tables
In addition to the SQL-level features covered thus far, SQLAlchemy also provides a
powerful object-relational mapper (ORM) that allows you to map tables (and other
“selectable” objects, such as SELECT statements) to objects, making those objects au-
tomatically “SQL-persistable.” In order to use the ORM, we need to import the
appropriate names:

from sqlalchemy.orm import *

The simplest case of mapping is to just declare empty classes for our application objects
and declare an empty mapper:

class User(object): pass
class Group(object): pass
class Permission(object): pass

mapper(User, user_table)
mapper(Group, group_table)
mapper(Permission, permission_table)

Now that we have declared the mapping between our classes and tables, we can start
doing queries. First off, though, we need to understand the unit of work (UOW) pat-
tern. In UOW as implemented by SQLAlchemy, there is an object known as a
Session that tracks changes to mapped objects and can flush() them out en masse to
the database in a single “unit of work.” This can lead to substantial performance im-
provement when compared to executing multiple separate updates. In SQLAlchemy,

28 | Chapter 2: Getting Started

the Session class is created using the sessionmaker() function, and the Session object
is created by instantiating the class returned from sessionmaker(). The intent is that
sessionmaker() should be called once (at the module level), with its return value used
to create individual sessions.

Session = sessionmaker()
session = Session()

Once we have the session object, we use it to obtain access to a Query object for our class:

query = session.query(User)

The simplest way to use the Query object is as an iterator for all the objects in the
database. Since we have already inserted a row in the user_table, we can retrieve that
row as a User object:

>>> list(query)
[<__main__.User object at 0xb688d0>,
... <__main__.User object at 0xb68910>,
... <__main__.User object at 0xb68c10>]
>>> for user in query:
... print user.user_name
...
rick
rick1
rick2

We can also retrieve an object from the database by using its primary key with the get(
) method on the Query object:

>>> query.get(1)
<__main__.User object at 0xb688d0>

If we want to filter the results retrieved by the Query object, we can use the filter()
and filter_by() methods:

>>> for user in query.filter_by(display_name='Rick Copeland'):
... print user.id, user.user_name, user.password
...
1 rick secret123
>>> for user in query.filter(User.c.user_name.like('rick%')):
... print user.id, user.user_name, user.password
...
1 rick secret123
2 rick1 secret
3 rick2 secret

Note the use of the .c attribute of the User object. It was added by the mapper as a
convenience to access the names of mapped columns. If we wanted to, we could freely
substitute user_table.c.user_name for User.c.user_name, and vice versa.

To insert objects into the database, we simply create an object in Python and then use
the save() method to notify the session about the object:

>>> newuser = User()
>>> newuser.user_name = 'mike'

SQLAlchemy Tutorial | 29

>>> newuser.password = 'password'
>>> session.save(newuser)

Due to the UOW pattern, the new user has not yet been saved to the database. If we
try to count the users using the user_table, we still get 3:

>>> len(list(user_table.select().execute()))
3

If, however, we try to use the Query object, the ORM recognizes the need to perform a
flush() on the Session, inserts the new user, and we get a count of 4:

>>> metadata.bind.echo = True
>>> query.count()
2007-09-09 21:33:09,482 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, display_name, created)
...
... VALUES (?, ?, ?, ?)
2007-09-09 21:33:09,482 INFO sqlalchemy.engine.base.Engine.0x..50
... ['mike', 'password', '', '2007-09-09 21:33:09.481854']
2007-09-09 21:33:09,485 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT count(tf_user.id)
FROM tf_user
2007-09-09 21:33:09,486 INFO sqlalchemy.engine.base.Engine.0x..50 []
4

You can disable the auto-flushing behavior of SQLAlchemy by specifying auto
flush=False in the call to sessionmaker().

To update objects in the database, we simply make changes to the object in Python and
allow the SQLAlchemy Session to track our changes and eventually flush everything
out to the database:

>>> newuser.password = 'password1'
>>> newuser.display_name = 'Michael'
>>>
>>> rick = query.get(1)
>>> rick.display_name = 'Richard'
>>>
>>> session.flush()
2007-09-09 21:40:21,854 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET display_name=? WHERE tf_user.id = ?
2007-09-09 21:40:21,854 INFO sqlalchemy.engine.base.Engine.0x..50
... ['Richard', 1]
2007-09-09 21:40:21,856 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET password=?, display_name=? WHERE tf_user.id =
... ?
2007-09-09 21:40:21,857 INFO sqlalchemy.engine.base.Engine.0x..50
['password1', 'Michael', 4]

To delete an object, simply call the session’s delete() method with the object to be
deleted. To flush the session and commit the transaction, we call session.commit():

>>> session.delete(newuser)
>>>
>>> session.commit()

30 | Chapter 2: Getting Started

2007-09-09 21:42:56,327 INFO sqlalchemy.engine.base.Engine.0x..50
... DELETE FROM tf_user WHERE tf_user.id = ?
2007-09-09 21:42:56,328 INFO sqlalchemy.engine.base.Engine.0x..50
... [4]
2007-09-09 21:42:56,328 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT

The SQLAlchemy ORM also includes support for managing relationships between
classes, as well as flexible overrides of its column-mapping conventions. The ORM is
covered in more detail in Chapters 6, 7, 8.

SQLAlchemy Tutorial | 31

CHAPTER 3

Engines and MetaData

This chapter introduces SQLAlchemy’s Engine and MetaData classes. The Engine class
provides database connectivity, including a connection pool with various strategies for
acquiring connections from the pool. The MetaData class maintains information about
your database schema, including any tables and indices defined. In this chapter, you
will learn how to define a new database schema using MetaData as well as how to connect
a MetaData instance to an existing schema.

Engines and Connectables
The SQLAlchemy-provided Engine class is responsible for managing the connection to
the database. It does this by incorporating a database connection pool and a database-
specific Dialect layer to translate the SQL expression language (chapter 5) into
database-specific SQL.

To get started using an Engine, you use the create_engine() function:

Create a connection to a SQLite in-memory database
engine = create_engine('sqlite://')

Create a connection to a SQLite on-disk database "data.sqlite"
engine = create_engine('sqlite:///data.sqlite')

Create a connection to a PostGreSQL database
engine = create_engine('postgres://rick:foo@localhost:5432/pg_db')

Create a connection to a MySQL database
engine = create_engine('mysql://localhost/mysql_db')

Create a connection to an Oracle database (via TNS)
engine = create_engine('oracle://rick:foo@oracle_tns')

Create a connection to an Oracle database (without a TNS name)
engine =
... create_engine('oracle://rick:foo@localhost:1521/oracle_sid')

The first argument to create_engine() is the RFC-1738 style URL specifying the data-
base. The general form of the url is: driver://username:password@host:port/database.

33

Of course, the various database drivers interpret these URLs in slightly different ways,
as illustrated here. It is also possible to pass additional arguments to the low-level DB-
API driver created by SQLAlchemy via either a URL query string:

url='postgres://rick:foo@localhost/pg_db?arg1=foo&arg2=bar'
engine = create_engine(url)

or via the connect_args parameter to create_engine():

engine = create_engine('postgres://rick:foo@localhost/pg_db',
 connect_args=dict(arg1='foo', arg2='bar'))

If you wish complete control over the connection creation process, you can even pass
a function (or other callable object) that returns a DB-API connection to create_engine(
) in the creator argument:

import psycopg
def connect_pg():
 return psycopg.connect(user='rick', host='localhost')
engine = create_engine('postgres://', creator=connect_pg)

The full set of keyword arguments accepted by create_engine() are specified in here:

connect_args
A dictionary of options to be passed to the DBAPI’s connect() method. The default
is {}.

convert_unicode
Indicates whether the engine should convert all unicode values into raw byte strings
before going into the database, and convert raw byte strings to unicode coming
out of result sets. This can be useful, for instance, when dealing with a database
server or schema that does not provide unicode support natively. The default is
False.

creator
A callable that returns a DB-API connection. The default is None.

echo
A flag that tells SQLAlchemy to echo all statements and bind parameter values to
its logger. The default is None.

echo_pool
A flag that tells SQLAlchemy to log all connection pool checkins and checkouts.
The default is False.

encoding
Specifies the encoding to use in all translations between raw byte strings and Python
unicode objects. The default is False.

module
Specifies which module to use when a database implementation can use more than
one (such as PostgreSQL and Oracle). The default is None.

34 | Chapter 3: Engines and MetaData

pool
Use an existing connection pool rather than creating a new one. The default is
None.

poolclass
If the engine is creating its own connection pool, the class (a subclass of sqlal
chemy.pool.Pool) to use when constructing the pool object. If no pool class is
specified, sqlalchemy.pool.QueuePool will be used for all database drivers except
for SQLite, which uses the sqlalchemy.pool.SingletonThreadPool. The default is
None.

max_overflow
The number of connections to allow the connection pool to overflow to (only
applicable with the QueuePool). The default is 10.

pool_size
The number of connections to keep alive in the connection pool (only applicable
to the QueuePool and SingletonThreadPool pool classes). The default is 5.

pool_recycle
Close and reopen connections after this number of seconds of inactivity, or, if -1
(the default), disable connection recycling. This is useful if the database server
times out connections after a period of inactivity, as MySQL does.

pool_timeout
The number of seconds to wait when getting a connection from the pool before
giving up, (applicable only to QueuePool connection pools). The default is 30.

strategy
Selects an alternate implementation of the engine; the only current strategies are
'plain' and 'threadlocal‘. 'threadlocal' reuses connections for multiple statements
within a thread; 'plain' (the default) uses a new connection for each statement.

threaded
Used only by cx_Oracle, makes the engine threadsafe. If this is not required, per-
formance might be improved by setting this parameter to False.

use_ansi
Used only by Oracle to correct for a quirk of Oracle versions 8 and earlier when
handling LEFT OUTER JOINs.

use_oids
Used only by PostgreSQL to enable the column name "oid" (object ID).

Configuring SQLAlchemy Logging
SQLAlchemy uses the Python standard library logging module to log various actions.
The echo and echo_pool arguments to create_engine() and the echo_uow flag used on
Session objects all affect the regular loggers.

Engines and Connectables | 35

One useful debugging strategy is to add a logfile for a particular class of operations that
SQLAlchemy is performing. For instance, to capture all of the engine-related opera-
tions, we could set up the logger as follows:

import logging
handler = logging.FileHandler('sqlalchemy.engine.log')
handler.level = logging.DEBUG
logging.getLogger('sqlalchemy.engine').addHandler(handler)

The loggers used with SQLAlchemy are listed next. Note that several of these loggers
deal with material covered in later chapters (in particular, the sqlalchemy.orm.* log-
gers):

• sqlalchemy.engine -- control SQL echoing. logging.INFO logs SQL query output,
logging.DEBUG logs result sets as well.

• sqlalchemy.pool -- control connection pool logging. logging.INFO logs checkins
and checkouts.

• sqlalchemy.orm -- control logging of ORM functions. logging.INFO logs configu-
rations and unit of work dumps.

— sqlalchemy.orm.attributes -- Logs instrumented attribute operations.

— sqlalchemy.orm.mapper -- Logs mapper configurations and operations.

— sqlalchemy.orm.unitofwork -- Logs unit of work operations, including depend-
ency graphs.

— sqlalchemy.orm.strategies -- Logs relation loader operations (lazy and eager
loads).

— sqlalchemy.orm.sync -- Logs synchronization of attributes from one object to
another during a flush.

Database Connections and ResultProxys
Although the Engine is the normal method of performing database operations, SQLAl-
chemy does make the lower-level Connection object available through the connect()
method on the engine, as shown in the following example:

conn = engine.connect()
result = conn.execute('select user_name, email_address from
... tf_user')
for row in result:
 print 'User name: %s Email address: %s' % (
 row['user_name'], row['email_address'])
conn.close()

The Connection object is actually an instance of the sqlalchemy.engine.Connection
class, which serves as a proxy for the particular DB-API connection object. The
result object is an instance of the sqlalchemy.engine.ResultProxy class, which has
many features in common with a database cursor.

36 | Chapter 3: Engines and MetaData

Both Engines and Connections are implementations of the Connectable interface, which
has two important methods: connect(), which in the case of a Connection simply returns
itself, and execute(), which executes some SQL and generates a ResultProxy. Most
SQLAlchemy functions that therefore take an Engine as a parameter (usually named
bind) can also take a Connection, and vice versa.

The ResultProxy object has several useful methods and attributes for returning infor-
mation about the query:

__iter__()
Allows iteration over a result proxy, generating RowProxy objects

fetchone()
Fetches the next RowProxy object from the ResultProxy

fetchall()
Fetches all RowProxy objects at once

scalar()
Fetches the next row from the cursor and treat it as a scalar (i.e. not a RowProxy)

keys
List of the column names in the result set

rowcount
The total number of rows in the result set

close()
Closes the ResultProxy, possibly returning the underlying Connection to the pool

The RowProxy object generated by the ResultProxy provides several useful methods that
allow you to retrieve data, such as a tuple, dictionary, or object:

__getattr__()
Provides access to data via object.column name

__getitem__()
Provides access to data via object[column name] or object[column position]

keys()
Provides a list of all the column names in the row

values()
Provides a list of all the values in the row

items()
Provides a list of (column name, value) tuples for the row

Connection Pooling
SQLAlchemy provides the connection pool as an easy and efficient way to manage
connections through the database. Normally, you don’t need to worry about the con-
nection pool, because it is automatically managed by the Engine class. The connection

Engines and Connectables | 37

pool can, however, be used on its own to manage regular DB-API connections. If you
wish to manage such a pool, you could do the following:

from sqlalchemy import pool
import psycopg2
psycopg = pool.manage(psycopg2)

connection = psycopg.connect(database='mydb',
 username='rick', password='foo')

The pool.manage() call sets up a connection pool (the exact object is an instance of
sqlalchemy.pool.DBProxy). The connect() method then works just as the Engine’s
connect() method, returning a proxy for the DB-API connection from the managed
connection pool. When the connection proxy is garbage collected, the underlying DB-
API connection is returned to the connection pool.

By default, the connect() method returns the same connection object if it is called
multiple times in a given thread (the same “threadlocal” strategy used by the Engine).
To specify that the pool should generate a new connection each time that connect() is
called, pass use_threadlocal=False to the pool.manage() function.

If you wish to use a particular connection pool class instead of the DBProxy as shown
previously, SQLAlchemy provides the ability to directly instantiate the pool:

from sqlalchemy import pool
import psycopg2
import sqlite

def getconn_pg():
 c = psycopg2.connect(database='mydb', username='rick',
 password='foo')
 return c

def getconn_sl():
 c = sqlite.connect(filename='devdata.sqlite')
 return c

pool_pg = pool.QueuePool(getconn_pg, use_threadlocal=True)

SQLite requires use of the SingletonThreadPool
 pool_sl = pool.SingletonThreadPool(getconn_sl)

Some of the various pool types that are available in the sqlalchemy.pool module are:

AssertionPool
Allows only one connection to be checked out at a time and raises an AssertionEr
ror when this constraint is violated.

NullPool
Does no pooling; instead, actually opens and closes the underlying DB-API con-
nection on each check out/check in of a connection.

38 | Chapter 3: Engines and MetaData

QueuePool
Maintains a fixed-size connection pool. This is the default connection pool class
used for non-sqlite connections.

SingletonThreadPool
Maintains a single connection per thread. It is used with sqlite because this data-
base driver does not handle using a single connection in multiple threads well.

StaticPool
Maintains a single connection that is returned for all connection requests.

MetaData
SQLAlchemy provides the MetaData class, which collects objects that describe tables,
indices, and other schema-level objects. Before using any of the higher-level features of
SQLAlchemy, such as the SQL query language and the ORM, the schema of the data-
base must be described using metadata. In some cases, you can reflect the structure of
schema items into the MetaData from the database. In this case, you need only specify
the name of the entity, and its structure will be loaded from the database directly.

Getting Started with MetaData
To create a new MetaData object, you simply call its constructor, possibly with infor-
mation about how to connect to the database. If the constructor is called with no
arguments, it is considered to be unbound; if it is called with either an Engine or a SQL
connection URI, it is considered bound. Shortcuts are available to bound MetaData and
to objects within a bound MetaData to facilitate the execution of statements against the
bound engine. Most of the time you will probably use a bound MetaData object. how-
ever, it is sometimes useful to use an unbound MetaData if you need to connect to
multiple database servers, where each server contains the same database schema.

The various ways to construct MetaData objects are illustrated in the following exam-
ples:

create an unbound MetaData
unbound_meta = MetaData()

create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')

MetaData | 39

Note that you are never required to bind the MetaData object; all operations that rely
on a database connection can also be executed by passing the Engine explicitly as the
keyword parameter bind. This is referred to as explicit execution. If a MetaData instance
is bound, then the bind parameter can be omitted from method calls that rely on the
database connection. This is referred to as implicit execution. The “bound-ness” of a
MetaData object is shared by all Tables, Indexes, and Sequences in the MetaData, so a
Table attached to a bound MetaData, for instance, would be able to create itself via:

table.create()

whereas a Table in an unbound MetaData would need to supply a bind parameter:

table.create(bind=some_engine_or_connection)

Defining Tables
The most common use of the MetaData object is in defining the tables in your schema.
In order to define tables in the MetaData, you use the Table and Column classes as shown
in the following example:

from sqlalchemy import *
from datetime import datetime

metadata=MetaData()
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))

Unlike some other database mapping libraries, SQLAlchemy fully supports the use of
composite and non-integer primary and foreign keys:

brand_table = Table(
 'brand', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255), unique=True, nullable=False))

product_table = Table(
 'product', metadata,
Column('brand_id', Integer, ForeignKey('brand.id'),
... primary_key=True),
 Column('sku', Unicode(80), primary_key=True))

style_table = Table(
 'style', metadata,
 Column('brand_id', Integer, primary_key=True),
 Column('sku', Unicode(80), primary_key=True),
 Column('code', Unicode(80), primary_key=True),

40 | Chapter 3: Engines and MetaData

 ForeignKeyConstraint(['brand_id', 'sku'],
 ['product.brand_id',
 'product.sku']))

To actually create a table, you can call the create() method on it. Here, we will create
the style table on an in-memory SQLite database and view the generated SQL.

>>> style_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 08:05:44,396 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE style (
 brand_id INTEGER NOT NULL,
 sku VARCHAR(80) NOT NULL,
 code VARCHAR(80) NOT NULL,
 PRIMARY KEY (brand_id, sku, code),
FOREIGN KEY(brand_id, sku) REFERENCES product (brand_id, sku)
)

2007-08-25 08:05:44,396 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 08:05:44,397 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT

We see that the composite primary key and foreign key constraints are correctly gen-
erated. Although the foreign key constraints are ignored by SQLite, it is still useful to
generate them, as SQLAlchemy can use this information to perform joins automatically
based on the foreign key relationships between tables.

The Table constructor Table.__init__(self, name, metadata,*args, **kwargs), takes the
following arguments:

name
The table name as known by the database (may be combined with the schema pa-
rameter).

metadata
The MetaData object to which to attach this table.

*args
The series of Column and Constraint objects to define for this table.

schema
The schema name for this table, if required by the database. in **kwargs, the default
is None.

autoload
Indicates whether to reflect the columns from the database. in **kwargs, the default
is False.

autoload_with
The Connectable used to autoload the columns. in **kwargs, the default is None.

MetaData | 41

include_columns
The list of column names (strings) to be reflected if autoload=True. If None, all col-
umns are reflected. If not None, any columns omitted from the list will not be
represented on the reflected Table object. In **kwargs, the default is None.

mustexist
Indicates that the table must already be defined elsewhere in the Python application
(as part of this MetaData). An exception is raised if this is not true. In **kwargs, the
default is False.

useexisting
Directs SQLAlchemy to use the previous Table definition for this table name if it
exists elsewhere in the application. (SQLAlchemy disregards the rest of the con-
structor arguments if this is True.) in **kwargs, the default is False.

owner
Specifies the owning user of the table. This is useful for some databases (such as
Oracle) to help with table reflection. In **kwargs, the default is None.

quote
Forces the table name to be escaped and quoted before being sent to the database
(useful for table names that conflict with SQL keywords, for example). in
**kwargs, the default is False.

quote_schema
Forces the schema name to be escaped and quoted before being sent to the data-
base. In **kwargs, the default False.

The Table constructor also supports database-specific keyword arguments. For in-
stance, the MySQL driver supports the mysql_engine argument to specify the backend
database driver (i.e. 'InnoDB' or 'MyISAM', for instance).

Table reflection

Tables can also be defined using reflection from an existing database. This requires a
database connection, and so either a bound MetaData must be used, or a Connectable
must be supplied via the autoload_with parameter:

db = create_engine('sqlite:///devdata.sqlite')
brand_table = Table('brand', metadata, autoload=True,
... autoload_with=db)

You can also override the reflected columns if necessary. This can be particularly useful
when specifying custom column data types, or when the database’s introspection fa-
cilities fail to identify certain constraints.

brand_table = Table('brand', metadata,
 Column('name', Unicode(255)), # override the reflected type
 autoload=True)

If you want to reflect the entire database schema, you may do so by specifying
reflect=True in the metadata constructor. Of course, in this case, the MetaData must

42 | Chapter 3: Engines and MetaData

be created as a bound MetaData. When reflecting an entire schema in this way, the
individual tables can be accessed via the MetaData’s tables attribute:

db = create_engine('sqlite:///devdata.sqlite')
metadata = MetaData(bind=db, reflect=True)
brand_table = metadata.tables['brand']

You can also use the reflect() method of the MetaData to load the schema. Meta
Data.reflect(bind=None, schema=None, only=None) takes the following arguments:

bind
A Connectable used to access the database; required only when the MetaData is
unbound. The default is None.

schema
Specifies an alternate schema from which to reflect tables. The default is None.

only
Directs the MetaData to load only a subset of the available tables. This can be speci-
fied either as a sequence of the names to be loaded or as a boolean callable that
will be called for each available table with the parameters only(metadata, table
name). If the callable returns True, the table will be reflected. The default is None.

The MetaData constructor itself has the definition MetaData.__init__(bind=None,
reflect=None).

Column Definitions
The Column constructor Column.__init__(self, name, type_, *args, **kwargs) takes the
following arguments:

name
The name of the column as it is known by the database.

type_
The TypeEngine for this column. This can also be None if the column is a Foreign
Key, in which case the type will be the same as the referenced column.

*args
Constraint, ForeignKey, ColumnDefault, and Sequence objects that apply to the col-
umn.

key
An alias for this column. If specified, the column will be identified everywhere in
Python by this name rather than by its SQL-native name. In **kwargs, the default
is None.

primary_key
If True, marks the column as part of the primary key. (Alternatively, the Table can
have a PrimaryKeyConstraint defined.) In **kwargs, the default is False.

MetaData | 43

nullable
If set to False, this does not allow None as a value for the column. in **kwargs, the
default is True, unless the column is a primary key.

default
A Python callable or a SQL expression language construct specifying a default value
for this column. Note that this is an active (Python-generated) default when a call-
able is specified; the SQL has the generated value inserted as a literal. In
**kwargs, the default is None.

index
Indicates that the column is indexed (with an autogenerated index name). Alter-
natively, use an Index object in the table declaration instead. In **kwargs, the default
False.

unique
Indicates that the column has a unique constraint. Alternatively, use an UniqueCon
straint object in the table declation instead. In **kwargs, default False.

onupdate
Specifies an active default value (generated by SQLAlchemy rather than the data-
base server) to be used when updating (but not inserting) a row in the table. In
**kwargs, the default is None.

autoincrement
Indicates that integer-based primary keys should have autoincrementing behavior.
This is applicable only if the column has no default value and is a type or subtype
of Integer. In **kwargs, the default is True.

quote
This forces the column name to be escaped and quoted before being sent to the
database (useful for column names that conflict with SQL keywords, for example).
In **kwargs, the default is False.

Constraints
SQLAlchemy also supports a variety of constraints, both at the column level and at the
table level. All constraints are derived from the Constraint class, and take an optional
name parameter.

If the name is not specified, SQLAlchemy auto-generates a suitable name
if necessary.

Primary keys

The usual way to declare primary key columns is to specify primary_key=True in the
Column constructor:

44 | Chapter 3: Engines and MetaData

product_table = Table(
 'product', metadata,
Column('brand_id', Integer, ForeignKey('brand.id'),
... primary_key=True),
 Column('sku', Unicode(80), primary_key=True))

You can also specify primary keys using the PrimaryKeyConstraint object:

product_table = Table(
 'product', metadata,
 Column('brand_id', Integer, ForeignKey('brand.id')),
 Column('sku', Unicode(80)),
 PrimaryKeyConstraint('brand_id', 'sku', name='prikey'))

To see the SQL generated to create such a table, we can create it on the in-memory
SQLite database:

>>> product_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 14:26:56,706 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE product (
 brand_id INTEGER,
 sku VARCHAR(80),
 CONSTRAINT prikey PRIMARY KEY (brand_id, sku),
 FOREIGN KEY(brand_id) REFERENCES brand (id)
)

2007-08-25 14:26:56,706 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 14:26:56,707 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT

Foreign keys

Foreign keys are references from a row in one table to a row in another table. The usual
way to specify simple (non-complex) foreign keys is by passing a ForeignKey object to
the Column constructor. The ForeignKey constructor ForeignKey.__init__(self, col-
umn, constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None)
takes the following parameters:

column
Either a Column object or a database-recognized string, such as tablename .colum-
nname or schemaname.tablename.columnname, that specifies the referenced column.

constraint
The owning ForeignKeyConstraint, if any. If left unspecified, a new ForeignKeyCon
straint will be created and added to the parent table. The default is None.

use_alter
Use an ALTER TABLE command to create the constraint (passed along to the
owning ForeignKeyConstraint). Otherwise, the constraint will be created in the
CREATE TABLE statement. The default is False.

MetaData | 45

name
The name of the constraint (passed along to the owning ForeignKeyConstraint).
The default is None.

onupdate
Generates an ON UPDATE clause in the SQL for the constraint (e.g., onup-
date='CASCADE' would generate “ON UPDATE CASCADE” to cascade changes in
the referenced columns to the foreign key). Commonly supported values for ON
UPDATE are RESTRICT (raise an error), CASCADE (shown previously), SET
NULL (set the column to NULL), and SET DEFAULT (set the column to it’s pas-
sive default). The default for this parameter is None. Not supported for all database
drivers/backends.

ondelete
Generates an ON DELETE clause in the SQL for the constraint (e.g. onde-
lete='CASCADE' would generate “ON DELETE CASCADE” to cascade deletions
of the referenced row to the row with the foreign key). The default is None. Not
supported for all database drivers/backends.

If you need to reference a compound primary key, SQLAlchemy provides the Foreign
KeyConstraint class for increased flexibility. To use the ForeignKeyConstraint, simply
pass a list of columns in the local table (the compound foreign key) and a list of columns
in the referenced table (the compound primary key):

style_table = Table(
 'style', metadata,
 Column('brand_id', Integer, primary_key=True),
 Column('sku', Unicode(80), primary_key=True),
 Column('code', Unicode(80), primary_key=True),
 ForeignKeyConstraint(
 ['brand_id', 'sku'],
 ['product.brand_id', 'product.sku']))

The ForeignKeyConstraint constructor ForeignKeyConstraint.__init__(self, columns,
refcolumns, name=None, onupdate=None, ondelete=None, use_alter=False) takes the same
parameters as the ForeignKey constructor except for columns and refcolumns:

columns
Either a list of Column objects or a list of database-recognized strings (such as
tablename.columnname or schemaname.tablename.columnname) that specifies the ref-
erenced column in the local table (the compound foreign key)

refcolumns
Either a list of Column objects or a list of database-recognized strings (such as
tablename.columnname or schemaname.tablename.columnname) that specifies the ref-
erenced column in the remote table (the compound primary key)

46 | Chapter 3: Engines and MetaData

UNIQUE constraints

UniqueConstraint is a more flexible version of specifying unique=True in the Column
definition, as it allows multiple columns to participate in a uniqueness constraint:

product_table = Table(
 'product', metadata,
 Column('id', Integer, primary_key=True),
 Column('brand_id', Integer, ForeignKey('brand.id')),
 Column('sku', Unicode(80)),
 UniqueConstraint('brand_id', 'sku'))

The SQL generated is just as we would expect:

>>> product_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 13:55:19,450 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE product (
 id INTEGER NOT NULL,
 brand_id INTEGER,
 sku VARCHAR(80),
 PRIMARY KEY (id),
 FOREIGN KEY(brand_id) REFERENCES brand (id),
 UNIQUE (brand_id, sku)
)

2007-08-25 13:55:19,450 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 13:55:19,451 INFO sqlalchemy.engine.base.Engine.0x..50
COMMIT

CHECK constraints

CheckConstraints can also be specified, either at the column level (in which case they
should only refer to the column on which they are defined), or at the Table level (in
which case they should refer only to any column in the table). CheckConstraints are
specified with a text constraint that will be passed directly through to the underlying
database implementation, so care should be taken if you want to maintain database
independence in the presence of CheckConstraints. MySQL and SQLite, in particular,
do not actively support such constraints.

For instance, if you wanted to validate that payments were always positive amounts,
you might create a payment table similar to the following:

payment_table = Table(
 'payment', metadata,
 Column('amount', Numeric(10,2), CheckConstraint('amount > 0')))

To see the SQL generated, we can execute the table creation statements on SQLite
(recognizing that SQLite will not enforce the CHECK constraint).

>>> payment_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 14:13:13,132 INFO sqlalchemy.engine.base.Engine.0x..90

MetaData | 47

CREATE TABLE payment (
 amount NUMERIC(10, 2) CHECK (amount > 0)
)

2007-08-25 14:13:13,133 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 14:13:13,133 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT

You can also generate CHECK constraints involving multiple columns:

>>> discount_table = Table(
... 'discount', metadata,
... Column('original', Numeric(10,2), CheckConstraint('original
... > 0')),
... Column('discounted', Numeric(10,2),
... CheckConstraint('discounted > 0')),
... CheckConstraint('discounted < original',
... name='check_constraint_1'))
>>>
>>> discount_table.create(bind=create_engine('sqlite://',
... echo=True))
2007-08-25 14:17:57,600 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE discount (
 original NUMERIC(10, 2) CHECK (original > 0),
 discounted NUMERIC(10, 2) CHECK (discounted > 0),
 CONSTRAINT check_constraint_1 CHECK (discounted < original)
)

2007-08-25 14:17:57,601 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 14:17:57,602 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT

Defaults
SQLAlchemy provides several methods of generating default values for columns when
inserting and updating rows. These default values fall into one of two categories: active
defaults or passive defaults.

Active defaults

Active defaults are values that are generated by SQLAlchemy and then sent to the da-
tabase in a separate statement. Active defaults include constants, Python callables, SQL
expressions (including function calls) to be executed before the insert or update, or a
pre-executed sequence. In all of these cases, SQLAlchemy manages the generation of
the default value and the statement that actually sends the default to the database.

Active defaults are divided into two classes: insert defaults and the update defaults,
which are specified separately (allowing a different default on insert and update, if that

48 | Chapter 3: Engines and MetaData

is desired). To specify an insert default, use the default parameter when creating the
Column object. default can be a constant, a Python callable, an SQL expression, or an
SQL sequence. For instance, to record the time at which a user record was created, you
might use the following:

from datetime import datetime
user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created_apptime', DateTime, default=datetime.now),
 Column('created_dbtime', DateTime,
 default=func.current_timestamp(),
 Column('modified', DateTime, onupdate=datetime.now)))

Here, we have created several defaults with constants, as well as two “created” defaults.
One is the standard library function datetime.now(), and the other is the SQL function
CURRENT_TIMESTAMP. The created_apptime column, upon insertion, will contain
the current time on the application’s machine, whereas the created_dbtime column will
contain the database server’s current time. The SQL generated is illustrative:

>>> e=create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 14:52:17,595 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created_apptime TIMESTAMP,
 created_dbtime TIMESTAMP,
 modified TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name)
)

2007-08-25 14:52:17,596 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 14:52:17,597 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>>
>>> e.execute(user_table.insert(), user_name='rick', password='foo')
2007-08-25 14:52:17,604 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT current_timestamp
2007-08-25 14:52:17,605 INFO sqlalchemy.engine.base.Engine.0x..50 []
2007-08-25 14:52:17,606 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, first_name,
... last_name, created_apptime, created_dbtime) VALUES (?,
... ?, ?, ?, ?, ?)

MetaData | 49

2007-08-25 14:52:17,606 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick', 'foo', '', '', '2007-08-25 14:52:17.604140',
... u'2007-08-25 18:52:17']
2007-08-25 14:52:17,607 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x2aff31673690>
>>> e.execute(user_table.update(user_table.c.user_name=='rick'),
... password='secret')
2007-08-25 15:01:48,804 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET password=?, modified=?
... WHERE
... tf_user.user_name = ?
2007-08-25 15:01:48,805 INFO sqlalchemy.engine.base.Engine.0x..50
... ['secret', '2007-08-25 15:01:48.774391', 'rick']
2007-08-25 15:01:48,805 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x2adaf2551e50>
>>>

The SQL generated for the table creation had no reference to the default values. This
is because these values were active defaults, as opposed to the passive defaults covered
in the next section.

The current_timestamp is selected from the database for use in the insert statement.

Two different timestamps are sent to the database, one for created_apptime, and one
for created_dbtime. In this case, the application machine’s native Python time res-
olution is greater than the current_timestamp provided by SQLite.

Though we did not specify an update to the modified column, SQLAlchemy provides
an update value based on the onupdate parameter of the column definition.

Passive defaults

Passive defaults are default values provided by the database itself. If a column is marked
with a PassiveDefault instance, then the column will have a database-level default value
and SQLAlchemy will make the Engine aware of the passive default. The Engine will,
in turn, mark the ResultProxy as having passive default values. The ResultProxy is ac-
tually inspected by the object-relational mapping system to determine whether or not
to re-fetch the row after an insert to get the default column values.

We can enhance the previous example by providing a passive default for the cre
ated_dbtime column:

from sqlalchemy import *
from datetime import datetime

user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),

50 | Chapter 3: Engines and MetaData

 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created_apptime', DateTime, default=datetime.now),
 Column('created_dbtime', DateTime, PassiveDefault('sysdate')),
 Column('modified', DateTime, onupdate=datetime.now))

Again, it is illustrative to see the creation and manipulation SQL:

>>> e=create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 15:50:49,912 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created_apptime TIMESTAMP,
 created_dbtime TIMESTAMP DEFAULT current_timestamp,
 modified TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name)
)

2007-08-25 15:50:49,912 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 15:50:49,913 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>>
>>> rs = e.execute(user_table.insert(), user_name='rick',
... password='foo')
2007-08-25 15:50:49,930 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, first_last_name,
... created_apptime) VALUES (?, ?, ?, ?, ?)
...
2007-08-25 15:50:49,931 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick', 'foo', '', '', '2007-08-25 15:50:49.930339']
2007-08-25 15:50:49,932 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>> if rs.lastrow_has_defaults():
... prikey = rs.last_inserted_ids()
... row = e.execute(user_table.select(
... user_table.c.id == prikey[0])).fetchone()
... print 'Created at', row.created_dbtime
...
2007-08-25 15:50:50,966 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT tf_user.id, tf_user.user_name, tf_user.password,
... tf_user.first_name, tf_user.last_name, tf_user.created_apptime,
... tf_user.created_dbtime, tf_user.modified
FROM tf_user
WHERE tf_user.id = ?
2007-08-25 15:50:50,966 INFO sqlalchemy.engine.base.Engine.0x..50
... [1]
Created at 2007-08-25 19:50:49

MetaData | 51

The SQL generated for the table creation does contain a reference to the default
created_dbtime, unlike the active default example.

The created_dbtime is not provided to the database in the insert statement; it will be
provided by the database itself.

The result set is flagged as having a passive default via the lastrow_has_defaults()
function, and so we recognize the need to fetch the row back from the database.

PostgreSQL does not support passive defaults for primary keys. This is
due to the fact that SQLAlchemy does not use the PostgreSQL OIDs to
determine the identity of rows inserted (OIDs are actually disabled by
default in PostgreSQL version 8.), and psycopg2’s cursor.lastrowid()
function only returns OIDs. Thus the only way to know the primary key
of a row that is being inserted is to provide it as an active default.

Defining Indexes
Once your database grows to a certain size, you will probably need to consider adding
indexes to your tables to speed up certain selects. The easiest way to index a column
is to simply specify index=True when defining the Column.

user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
Column('user_name', Unicode(16), unique=True, nullable=False,
... index=True),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default='', index=True))

In this case, the index will be created with an auto-generated name. If a column is
defined with both index=True and unique=True, then the UNIQUE constraint is created
on the index rather than on the column. The SQL generated for the previous table
definition is illustrative:

>>> e = create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 16:30:36,542 INFO sqlalchemy.engine.base.Engine.0x..90
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 PRIMARY KEY (id)
)

2007-08-25 16:30:36,542 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,543 INFO sqlalchemy.engine.base.Engine.0x..90

52 | Chapter 3: Engines and MetaData

... COMMIT
2007-08-25 16:30:36,544 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE UNIQUE INDEX ix_tf_user_user_name ON tf_user
... (user_name)
2007-08-25 16:30:36,544 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,545 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
2007-08-25 16:30:36,546 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE INDEX ix_tf_user_last_name ON tf_user (last_name)
2007-08-25 16:30:36,546 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,547 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT

The Index object

Although the index=True syntax is convenient in column definition, SQLAlchemy also
provides an independent Index object, which can be used to:

• Define indexes on multiple columns

• Define named indexes

• Create indexes independently of the table (useful when adding an index to an
existing table)

To create an index using the Index object, simply instantiate the object using the column
attributes of the table.c object.

i = Index('idx_name', user_table.c.first_name,
... user_table.c.last_name,
 unique=True)

If the index is defined before the table is created, then the index will be created along
with the table. Otherwise, you can create the index independently via its own create(
) function:

>>> i = Index('idx_name', user_table.c.first_name,
... user_table.c.last_name,
... unique=True)
>>> i.create(bind=e)
2007-08-25 16:30:36,566 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE UNIQUE INDEX idx_name ON tf_user (first_name, last_name)
2007-08-25 16:30:36,566 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,567 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
Index("idx_name", Column('first_name', Unicode(length=255),
... default=ColumnDefault('')),
... Column('last_name',Unicode(length=255),
... default=ColumnDefault('')), unique=True)

MetaData | 53

Creating Explicit Sequences
In our examples up to this point, in order to generate a unique integer key for inserted
rows, we have simply specified that the table’s primary key was an integer value. In this
case, SQLAlchemy does what is generally “The Right Thing”: either generates a column
with an auto-incrementing data type (AUTOINCREMENT, SERIAL, etc.) if one is available in
the Dialect being used, or if an auto-incrementing data type is not available (as in the
case of PostgreSQL and Oracle), implicitly generates a sequence and fetches values from
that sequence.

SQLAlchemy also provides for the explicit use of a Sequence object to generate default
values for columns (not just primary keys). To use such a sequence, simply add it to
the parameter list of the Column object:

brand_table = Table(
 'brand', metadata,
Column('id', Integer, Sequence('brand_id_seq'), primary_key=True),
 Column('name', Unicode(255), unique=True, nullable=False))

The SQL generated to create this table is:

>>> e = create_engine('postgres://postgres:password@localhost/test',
... echo=True)
>>>
>>> brand_table.create(bind=e)
2007-08-25 18:25:40,624 INFO sqlalchemy.engine.base.Engine.0x..d0
... CREATE SEQUENCE brand_id_seq
2007-08-25 18:25:40,624 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 18:25:40,630 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
2007-08-25 18:25:40,634 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE brand (
 id INTEGER,
 name VARCHAR(255) NOT NULL,
 UNIQUE (name)
)

2007-08-25 18:25:40,635 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 18:25:40,659 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT

The parameters accepted by the Sequence constructor Sequence.__init__(name,
start=None, increment=None, optional=False, quote=False, for_update=False) are as
follows:

name
The name of the sequence to be created.

54 | Chapter 3: Engines and MetaData

start
The initial value of the sequence being created (default None). This may be ignored,
depending on the Dialect.

increment
The increment value of the sequence being created (default None). This may be
ignored, depending on the Dialect.

optional
If True, this specifies that the sequence should be used only if it is necessary (e.g.,
if no other method of generating autoincrementing columns is possible). The de-
fault is False.

quote
This forces the sequence name to be escaped and quoted before being sent to the
database (useful for names that conflict with SQL keywords, for example). The
default is False.

for_update
Uses the sequence when updating the row, not just when inserting. The default
False.

MetaData Operations
SQLAlchemy uses the MetaData object internally for several purposes, particularly in-
side the object relational mapper (ORM), which is covered in Chapter 6. MetaData can
also be used in connection with Engine and other Connectable instances to create or
drop tables, indices, and sequences from the database.

Binding MetaData

As mentioned previously, MetaData can be bound to a database Engine. This is done in
one of three ways:

• Specify the Engine URI in the MetaData constructor

• Specify an actual Engine or other Connectable object in the MetaData constructor

• Assign the bind attribute of an “unbound” MetaData to an Engine or other Connect
able

The various ways of binding MetaData are illustrated in the following examples:

Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create an unbound MetaData
unbound_meta = MetaData()

MetaData | 55

Create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db1

Binding the MetaData object to an engine allows the MetaData and the objects attached
to it (Tables, Indexes, Sequences, etc.) to perform database operations without explicitly
specifying an Engine:

from sqlalchemy import *

metadata = MetaData('sqlite://')

user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
Column('user_name', Unicode(16), unique=True, nullable=False,
... index=True),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default='', index=True))

user_table.create() # we can omit the bind parameter

Create/drop MetaData and schema objects

Bound and unbound MetaData objects can create and drop schema objects either by
using the create() and drop() methods on the objects, or by using the MetaData methods
create_all() and drop_all(). The schema objects’ (Table, Index, and Sequence) create(
) and drop() and methods take the following keyword parameters:

bind
The Engine on which to execute the schema item creation (default is None).

checkfirst
Add an IF NOT EXISTS or IF EXISTS clause, whichever is appropriate to the SQL
generated (not supported for Indexes). The default is False.

The MetaData object itself supports the following arguments to its create_all() and
drop_all methods:

bind
The Engine on which to execute the operation. The default None.

tables
The Table objects to create/drop. If not specified, create/drop all schema items
known to the MetaData. The default is None.

checkfirst
Add an IF NOT EXISTS or IF EXISTS clause (whichever is appropriate to the SQL
generated). The default False.

56 | Chapter 3: Engines and MetaData

Adapt Tables from one MetaData to another

A table that has been created against one MetaData can be adapted to another Meta
Data via the Table.tometadata (self, metadata, schema=None) method. This can be useful
when working with the same schema in more than one Engine because it allows you to
have bound MetaData and Tables for both engines. You can also use the MetaData.
table_iterator() method to reflect an entire schema into another engine, for example.

meta1 = MetaData('postgres://postgres:password@localhost/test',
... reflect=True)
meta2 = MetaData('sqlite://')
for table in meta1.table_iterator():
 table.tometadata(meta2)
meta2.create_all()

MetaData | 57

CHAPTER 4

SQLAlchemy Type Engines

This chapter introduces the SQLAlchemy type system. It covers the built-in types pro-
vided by SQLAlchemy, both database-independent types and database-specific types.
It then describes how to create your own custom types for use in mapping application
data onto your database schema.

Type System Overview
When defining the MetaData used by your application, it is necessary to supply the SQL
data type used by each column of each table (unless the tables are defined with auto
load=True, in which case SQLAlchemy provides the data types for you). These SQL
data types are actually instances of SQLAlchemy-provided classes known as TypeEn
gines. TypeEngine objects convert Python values to native database values and vice
versa. For instance, String(40) is an instance of a TypeEngine that represents a VAR
CHAR(40). TypeEngines also supply SQL text for use when creating tables using meta-
data.create_all() or table.create().

SQLAlchemy provides three different ways of constructing types for use in your appli-
cation. First, it provides a set of generic TypeEngines, which are fairly portable across
different database engines. Second, it provides database server-specific TypeEngines,
which can be used to exploit particular types supported by certain databases. Third,
SQLAlchemy allows you to define application-specific custom TypeEngines if you wish
to further customize object conversion to/from the database.

Built-in Types
SQLAlchemy provides a fairly complete set of built-in TypeEngines for support of basic
SQL column types. The SQLAlchemy-provided TypeEngines are broken into the generic
types (those portable across multiple database engines) and the dialect-specific types,
which work only on particular databases.

59

If you want to keep your application portable across database servers,
it is a good idea to stick to the generic types and (possibly) application-
specific custom types, as any code that relies on database dialect-specific
TypeEngines will need to be modified if the database changes. In the
SQLAlchemy tradition of not getting in your way, however, full support
is provided for dialect-specific TypeEngines if you wish to exploit data-
base server-specific types.

Generic Types
The generic TypeEngines provided by SQLAlchemy are found in the sqlalchemy.types
package. These TypeEngines cover a fairly complete set of portable column types. The
TypeEngines supported, their corresponding Python type, and their SQL representation,
are listed in Table 4-1. Note that there are several TypeEngines defined in all caps (such
as CLOB). These are derived from other TypeEngines and may or may not be further
specialized to allow finer-grained specification of the underlying database type.

Table 4-1. Built-in Generic TypeEngines

Class name Python Type SQL Type (for SQLite
driver)

Arguments

String string TEXT or VARCHAR length (default is unbounded)

Integer int INTEGER none

SmallInteger int SMALLINT none

Numeric float, Decimal NUMERIC precision=10, length=2

Float(Numeric) float NUMERIC precision=10

DateTime datetime.date
time

TIMESTAMP none

Date datetime.date DATE none

Time datetime.time TIME none

Binary byte string BLOB length (default is unbounded)

Boolean bool BOOLEAN none

Unicode unicode TEXT or VARCHAR length (default is unbounded)

PickleType any object that can be
pickled

BLOB none

FLOAT(Numeric) float, Decimal NUMERIC precision=10,length=2

TEXT(String) string TEXT length (default is unbounded)

DECIMAL(Numeric) float, Decimal NUMERIC precision=10,length=2

INT, INTEGER(Integer) int INTEGER none

TIMESTAMP(DateTime) datetime.date
time

TIMESTAMP none

60 | Chapter 4: SQLAlchemy Type Engines

Class name Python Type SQL Type (for SQLite
driver)

Arguments

DATETIME(DateTime) datetime.date
time

TIMESTAMP none

CLOB(String) string TEXT length (default is unbounded)

VARCHAR(String) string VARCHAR or TEXT length (default is unbounded)

CHAR(String) string CHAR or TEXT length (default is unbounded)

NCHAR(Unicode) string VARCHAR, NCHAR, or
TEXT

length (default is unbounded)

BLOB(Binary) byte string BLOB length (default is unbounded)

BOOLEAN(Boolean) bool BOOLEAN none

When using TypeEngines to specify columns in Tables, you can use either an instance
of the TypeEngine class or the class itself. If you use the class, the default parameters
will be used when constructing the SQL type. For instance, the following Python code:

test_table3 = Table(
 'test3', metadata,
 Column('c0', Numeric),
 Column('c1', Numeric(4,6)),
 Column('c3', String),
 Column('c4', String(10)))

yields the following SQL creation (in SQLite):

CREATE TABLE test3 (
 c0 NUMERIC(10, 2),
 c1 NUMERIC(4, 6),
 c3 TEXT,
 c4 VARCHAR(10)
)

Dialect-Specific Types
In order to generate appropriate dialect-specific SQL CREATE TABLE statements from
these generic types, SQLAlchemy compiles those generic TypeEngines into dialect-spe-
cific TypeEngines. In some cases, in addition to implementing the generic types, a dialect
may provide dialect-specific types (such as IP address, etc.).

Some of the dialect-specific types don’t actually provide any special support for con-
verting between database values and Python values; these are generally used for
completeness, particularly when reflecting tables. In this case, no conversion is done
between the value supplied by the DB-API implementation and the application. This
behavior is indicated in the following tables by listing “none” as the Python type for
that TypeEngine. Tables 4-2 through 4-5 list some of the types provided by particular
database engines that are not automatically used by SQLAlchemy.

Built-in Types | 61

Table 4-2. MS SQL server types

Class name Python type SQL type Arguments

MSMoney none MONEY none

MSSmallMoney none SMALLMONEY none

AdoMSNVarchar unicode NVARCHAR length

MSBigInteger int BIGINT none

MSTinyInteger int TINYINT none

MSVariant none SQL_VARIANT none

MSUniqueIdentifier none UNIQUEIDENTIFIER none

Table 4-3. MySQL types

Class name Python type SQL type Arguments

MSEnum string ENUM values

MSTinyInteger int TINYINT length

MSBigInteger int BIGINT length

MSDouble float DOUBLE length=10,precision=2

MSTinyText string TINYTEXT none

MSMediumText string MEDIUMTEXT none

MSLongText string LONGTEXT none

MSNVarChar unicode NATIONAL VARCHAR length

MSTinyBlob byte string TINYBLOB none

MSMediumBlob byte string MEDIUMBLOB none

MSLongBlob byte string LONGBLOB none

MSBinary byte string BINARY length

MSVarBinary byte string VARBINARY length

MSSet set SET set values

MSYear int YEAR length

MSBit long BIT length

Table 4-4. Oracle types

Class name Python type SQL type Arguments

OracleRaw byte string RAW length

Table 4-5. PostgreSQL types

Class name Python type SQL type Arguments

PGArray any TypeEngine type engine[] TypeEngine

62 | Chapter 4: SQLAlchemy Type Engines

Class name Python type SQL type Arguments

PGBigInteger int, long BIGINT none

PGInet none INET none

PGInterval none INTERVAL none

Application-Specific Custom Types
Although SQLAlchemy provides a rich set of generic and database-specific types, it is
sometimes helpful to be able to create application-specific custom types. For instance,
you may wish to emulate enumerations in a database engine that does not support
enumerations by restricting the values that can be stored in a column.

In SQLAlchemy, there are two ways to create an application-specific custom type. If
you wish to implement a type that is similar to an existing TypeEngine, you would
implement a TypeDecorator. If your implementation is more involved, you can directly
subclass TypeEngine.

Implementing a TypeDecorator
In order to implement a TypeDecorator, you must provide the base TypeEngine you are
“implementing” as well as two functions, convert_bind_param() and
convert_result_value(). convert_bind_param(self, value, engine) is used to convert
Python values to SQL values suitable for the DB-API driver, and convert_result_value(
self, value, engine) is used to convert SQL values from the DB-API driver back into
Python values. The implemented TypeEngine is specified in the impl attribute on the
TypeDecorator.

For instance, if you wish to implement a type for validating that a particular Integer
column contains only the values 0, 1, 2, and 3 (e.g., to implement an enumerated type
in a database that does not support enumerated types), you would implement the fol-
lowing TypeDecorator:

from sqlalchemy import types

class MyCustomEnum(types.TypeDecorator):

 impl=types.Integer

 def __init__(self, enum_values, *l, **kw):
 types.TypeDecorator.__init__(self, *l, **kw)
 self._enum_values = enum_values

 def convert_bind_param(self, value, engine):
 result = self.impl.convert_bind_param(value, engine)
 if result not in self._enum_values:
 raise TypeError, (
"Value %s must be one of %s" % (result, self._enum_values))

Application-Specific Custom Types | 63

 return result

 def convert_result_value(self, value, engine):
 'Do nothing here'
 return self.impl.convert_result_value(value, engine)

It is not necessary to specify in a TypeDecorator the SQL type used to implement the
column, as this will be obtained from the impl attribute. The TypeDecorator is used only
when an existing TypeEngine provides the correct SQL type for the type you are imple-
menting.

Performance-Conscious TypeDecorators
SQLAlchemy has a second, undocumented (at the time of this book’s writing) interface
for providing bind parameter and result value conversion. If you provide a
bind_processor() or result_processor() method in your TypeDecorator, then these will
be used instead of the convert_bind_param() and convert_result_value() methods. The
new “processor” interface methods take a database dialect as a parameter and return
a conversion function (a “processor”) that takes a single value parameter and returns
the (possibly converted) value. If no processing is necessary, you can simply return
None rather than a new processor:

>>> from sqlalchemy import types
>>> import sqlalchemy.databases.sqlite as sqlite
>>>
>>> class MyCustomEnum(types.TypeDecorator):
... impl = types.Integer
... def __init__(self, enum_values, *l, **kw):
... types.TypeDecorator.__init__(self, *l, **kw)
... self._enum_values = enum_values
... def bind_processor(self, dialect):
... impl_processor = self.impl.bind_processor(dialect)
... if impl_processor:
... def processor(value):
... result = impl_processor(value)
... assert value in self._enum_values, \
... "Value %s must be one of %s" % (result,
... self._enum_values)
... return result
... else:
... def processor(value):
... assert value in self._enum_values, \
... "Value %s must be one of %s" % (value,
... self._enum_values)
... return value
... return processor
...
>>> mce=MyCustomEnum([1,2,3])
>>> processor = mce.bind_processor(sqlite.dialect())
>>> print processor(1)
1
>>> print processor(5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

64 | Chapter 4: SQLAlchemy Type Engines

 File "<stdin>", line 17, in processor
AssertionError: Value 5 must be one of [1, 2, 3]

Creating a New TypeEngine
If creating a TypeDecorator is insufficient for your new type (such as when supporting
a new SQL type), you can directly subclass the TypeEngine class. In this case, in addition
to providing the convert_bind_param() and convert_result_value() methods, you must
also provide the get_col_spec method for SQLAlchemy to use in its create_table()
implementation.

To create a new TypeEngine to implement the SQL type “NEWTYPE”, for instance,
you might use the following class declaration:

class NewType(types.TypeEngine):

 def __init__(self, *args):
 self._args = args

 def get_col_spec(self):
 return 'NEWTYPE(%s)' % ','.join(self._args)

 def convert_bind_param(self, value, engine):
 return value

 def convert_result_value(self, value, engine):
 return value

Application-Specific Custom Types | 65

CHAPTER 5

Running Queries and Updates

SQLAlchemy provides a rich Pythonic interface for constructing SQL updates and
queries, known as the SQL Expression Language. This language is based around the
concept of an SQL statement, which represents some database-independent SQL syntax
that may have one or more bind variables, and that can be executed on an SQL
Engine or other Connectable. This chapter introduces the various kinds of data manip-
ulation supported by SQLAlchemy (SQL INSERT, UPDATE, and DELETE) and
performed on the query interface (SQL SELECT).

Inserts, Updates, and Deletes
Insert, Update, and Delete constructs are created in SQLAlchemy via the Table methods
insert, update, and delete, or via the insert, update, and delete functions. The func-
tionality of these data manipulation language (DML) constructs is equivalent, regard-
less of whether they are constructed via methods or functions; the distinction is a
question of style more than substance.

Although each DML construct has its own particulars regarding construction, they all
end up generating a Statement. We can inspect the SQL text corresponding to the
statement by printing it out.

>>> metadata=MetaData()
>>>
>>> simple_table = Table(
... 'simple', metadata,
... Column('id', Integer, primary_key=True),
... Column('col1', Unicode(20)))
>>>
>>> stmt = simple_table.insert()
>>> print stmt
INSERT INTO simple (id, col1) VALUES (:id, :col1)

Note in the previous example that SQLAlchemy has created bind parameters for each
of the columns in the table we created in the insert statement. We can examine the bind

67

parameters in a statement by compiling the statement and looking at its params attrib-
ute:

>>> compiled_stmt = stmt.compile()
>>> print compiled_stmt.params
ClauseParameters:{'id': None, 'col1': None}

In order to execute the statement, we can directly execute it on an Engine, or we can
bind the MetaData used to construct the statement and use the MetaData’s engine:

>>> engine = create_engine('sqlite://')
>>> simple_table.create(bind=engine)
>>> engine.execute(stmt, col1="Foo")
<sqlalchemy.engine.base.ResultProxy object at 0x2b3210b00f10>
>>> metadata.bind = engine
>>> stmt.execute(col1="Bar")
<sqlalchemy.engine.base.ResultProxy object at 0x2b3210b020d0>

Note that the bind parameter values are supplied to the execute() method as keyword
parameters. These parameters can either be supplied either directly to the execute()
method or in the statement construction phase.

>>> stmt = simple_table.insert(values=dict(col1="Initial value"))
>>> print stmt
INSERT INTO simple (col1) VALUES (?)
>>> compiled_stmt = stmt.compile()
>>> print compiled_stmt.params
ClauseParameters:{'col1': 'Initial value'}

If parameters are supplied in both the statement construction and the execute() call,
the parameters supplied with the execute() call override those supplied when creating
the statement.

Insert Statements
The Insert construct is perhaps the simplest. In order to create an Insert statement,
you can use either the Table.insert() method or the insert() function. (The method
is actually just a wrapper for the function.) The insert takes two arguments: the table
into which a row is being inserted, and an optional dictionary of values to be inserted.
Each key in the dictionary represents a column and may be either the metadata Col
umn object or its string identifier. The values provided can be one of the following:

• A literal Python value to be inserted.

• A SQL expression to be inserted, such as func.current_timestamp(), which will
create the SQL INSERT INTO simple2 (col1, col2) VALUES (?, current_time
stamp).

• A Select statement (covered later in this chapter). In this case, the value to be
inserted is provided by a subquery.

68 | Chapter 5: Running Queries and Updates

If we wish to insert multiple rows into the table, we can create an insert statement and
execute it multiple times with different bind parameters:

>>> stmt = simple_table.insert()
>>> stmt.execute(col1="First value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a490>
>>> stmt.execute(col1="Second value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a050>
>>> stmt.execute(col1="Third value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a3d0>

It is also possible to use the DB-API’s executemany() to insert multiple rows in one
database call. To do this, simply provide an list (or other iterable) of binding dictionaries
to the execute() method on the statement or engine:

>>> stmt.execute([dict(col1="Fourth Value"),
... dict(col1="Fifth Value"),
... dict(col1="Sixth Value")])
<sqlalchemy.engine.base.ResultProxy object at 0xd0a310>

Update Statements
Update statements are similar to inserts, except that they can specify a “where” clause
that indicates which rows to update. Like insert statements, update statements can be
created by either the update() function or the update() method on the table being up-
dated. The only parameters to the update() function are the table being updated
(omitted if using the update() method), the where clause, and the values to be set.

The where clause of the update() query can be either a SQL clause object (covered later
in this chapter) or a text string specifying the update condition. In order to update every
row of a table, you can simply leave off the where clause. To update this simple table,
we can execute the following statement:

>>> stmt = simple_table.update(
... whereclause=text("col1='First value'"),
... values=dict(col1='1st Value'))
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0xc77910>
>>> stmt = simple_table.update(text("col1='Second value'"))
>>> stmt.execute(col1='2nd Value')
...
<sqlalchemy.engine.base.ResultProxy object at 0xc77950>
>>> stmt = simple_table.update(text("col1='Third value'"))
>>> print stmt
UPDATE simple SET id=?, col1=? WHERE col1='Third value'
...
>>> engine.echo = True
>>> stmt.execute(col1='3rd value')
2007-09-25 08:57:11,253 INFO sqlalchemy.engine.base.Engine.0x..d0
... UPDATE simple SET col1=? WHERE col1='Third value'
2007-09-25 08:57:11,254 INFO sqlalchemy.engine.base.Engine.0x..d0

Inserts, Updates, and Deletes | 69

... ['3rd value']
2007-09-25 08:57:11,255 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xc77990>

Here, we create an UPDATE statement, complete with both values to update and a
where clause.

Here, the where clause is bound when the statement is created, but the actual values
to be updated are passed to the execute() method.

Note that prior to execution, the SQL has a bind parameter for the id column, but
when the statement is executed, id is omitted because no value was provided for it.

Correlated update statements can also be generated using the SQL expression language.
A correlated update is an update whose values are provided by a select statement.
Suppose that we have a product catalog with the schema in the following listing, and
the data in Tables 5-1 through 5-3.

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

Table 5-1. Contents of product table

sku msrp

"123" 12.34

"456" 22.12

"789" 41.44

Table 5-2. Contents of store table

id name

1 "Main Store"

2 "Secondary Store"

Table 5-3. Contents of product_price table (initial)

sku store_id price

"123" 1 0

70 | Chapter 5: Running Queries and Updates

sku store_id price

"456" 1 0

"789" 1 0

"123" 2 0

"456" 2 0

"789" 2 0

If we wish to globally set the price for all products in all stores to their MSRP price, we
could execute the following update:

>>> msrp = select(
... [product_table.c.msrp],
... product_table.c.sku==product_price_table.c.sku,
... limit=1)
>>> stmt = product_price_table.update(
... values=dict(price=msrp))
>>> stmt.execute()
2007-09-26 10:05:17,184 INFO sqlalchemy.engine.base.Engine.0x..d0
... UPDATE product_price SET price=(SELECT product.msrp
FROM product
WHERE product.sku = product_price.sku
 LIMIT 1 OFFSET 0)
2007-09-26 10:05:17,184 INFO sqlalchemy.engine.base.Engine.0x..d0
... []
2007-09-26 10:05:17,185 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xd0e510>

This would cause the updated product_price_table to contain the values in Table 5-4.

Table 5-4. Contents of product_price table (after update)

sku store_id price

"123" 1 12.34

"456" 1 22.12

"789" 1 41.44

"123" 2 12.34

"456" 2 22.12

"789" 2 41.44

Delete Statements
The Delete construct is used to delete data from the database. To create a Delete con-
struct, you can use either the delete() function or the delete() method on the table
from which you are deleting data. Unlike insert() and update(), delete() takes no
values parameter, only an optional where clause (omitting the where clause will delete

Inserts, Updates, and Deletes | 71

all rows from the table). In order to delete all rows from the product_price table for sku
123, in the previous section, for instance, we would execute the code as shown here:

>>> stmt = product_price_table.delete(
... text("sku='123'"))
>>> stmt.execute()
2007-09-27 19:22:51,612 INFO sqlalchemy.engine.base.Engine.0x..d0
... DELETE FROM product_price WHERE sku='123'
2007-09-27 19:22:51,612 INFO sqlalchemy.engine.base.Engine.0x..d0
... []
2007-09-27 19:22:51,613 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xd92510>

Queries
The real power of the SQL expression language is in its query interface. This includes
both the actual queries (SQL “SELECT” statements) as well as the syntax for specifying
“WHERE” clauses (which may be used in UPDATEs and DELETEs, as well).

The goal of the SQL expression language, like the goal of SQLAlchemy in general, is
to provide functionality that doesn’t “get in your way” when you need to be more
specific about the SQL you need. In that vein, you can always use the Text construct
(used previously in the UPDATE and DELETE examples) to specify the exact SQL text
you would like to use. For most operations, however, the SQL expression language
makes for a succinct, secure, and less error-prone way of expressing your queries.

Basic Query Construction
SQLAlchemy makes simple SQL queries easy to express, while also enabling the con-
struction of quite complex queries in a straightforward manner. This section describes
the basic building blocks of query construction in SQLAlchemy.

The select() function versus the select() method

Like the DML statements INSERT, UPDATE, and DELETE, SELECT statements can
be generated using either a function or a Table method. Unlike the DML statements,
however, there is a minor difference in functionality between the select() function
and the Table.select() method. The select() function requires you to specify which
columns you want in your result set. So, to select one column from the prod
uct_table shown previously, you could use the select() function:

>>> stmt = select([product_table.c.sku])
>>> for row in stmt.execute():
... print row
...
(u'123',)
(u'456',)
(u'789',)

72 | Chapter 5: Running Queries and Updates

To select all columns from the product_table, you would use the Table.select() meth-
od:

>>> stmt = product_table.select()
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"))
(u'456', Decimal("22.12"))
(u'789', Decimal("41.44"))

To achieve the same result using the select() function, simply provide the table in lieu
of columns:

>>> stmt = select([product_table])
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"))
(u'456', Decimal("22.12"))
(u'789', Decimal("41.44"))

The actual parameters used by select() are listed next. They are discussed in more
detail later in the chapter.

columns=None
A list of ClauseElement structures to be returned from the query.

bind=None
An engine on a connectable object on which to execute the statement. If this is
omitted, an engine binding will be inferred from referenced columns and/or tables,
if possible.

whereclause=None
A ClauseElement expression used to for the WHERE clause.

from_obj=[]
A list of Tables or other selectable objects that will be used to form the FROM
clause. If this is not specified, the FROM clause is inferred from the tables refer-
enced in other clauses.

order_by=None
A list of ClauseElements used to construct the ORDER BY clause.

group_by=None
A list of ClauseElements used to construct the GROUP BY clause.

having=None
A ClauseElement used to construct the HAVING clause.

distinct=False
Adds a DISTINCT qualifier to the column list in the SELECT statement.

Queries | 73

for_update=False
Adds a FOR UPDATE qualifier to the SELECT statement. Some databases support
other values for this parameter, such as MySQL, which supports "read" (translating
to LOCK IN SHARE MODE), or Oracle, which supports "nowait" (translating to
FOR UPDATE NOWAIT).

limit=None
The numerical limit for the number of rows returned. Typically this uses the LIMIT
clause, but SQLAlchemy provides some support for LIMIT even when the under-
lying database does not support it directly.

offset=None
The numerical offset for the starting row that is returned. Typically this uses the
OFFSET clause, but SQLAlchemy provides some support for OFFSET even when
the underlying database does not support it directly.

correlate=True
Indicates that this SELECT statement is to be “correlated” with its enclosing SE-
LECT statement if it is used as a subquery. In particular, any selectables present in
both this statement’s from_obj list and the enclosing statement’s from_obj list will
be omitted from this statement’s FROM clause.

use_labels=False
Generates unique labels for each column in the columns list, to ensure there are no
name collisions.

prefixes=None
A list of ClauseElements to be included directly after the SELECT keyword in the
generated SQL. This is used for dialect-specific SQL extensions, to insert text be-
tween the SELECT keyword and the column list.

Result set objects

Thus far, we have glossed over the return value of the execute() method on SQL state-
ments, showing only that it is possible to iterate over this value and receive tuple-like
objects. In fact, SQLAlchemy provides an object, defined in the ResultProxy class, to
allow cursor-like access to the results of a query. Some of the useful methods and at-
tributes available on the ResultProxy object are summarized next.

fetchone()
Fetch one result from the cursor.

fetchmany (size=None)
Fetch several results from the cursor (if size is omitted, fetch all results).

fetchall()
Fetch all results from the cursor.

__iter__()
Return an iterator through the result set.

74 | Chapter 5: Running Queries and Updates

close()
Close the ResultProxy, as well as the underlying cursor. This method is called au-
tomatically when all result rows are exhausted.

scalar()
Fetch the first column of the first row, and close the result set (useful for queries
such as “SELECT DATETIME('NOW')”).

rowcount (valid only for DML statements)
Return the number of rows updated, deleted, or inserted by the statement.

The “rows” returned from a ResultProxy object, either via the fetch*() methods or
iteration, is actually a RowProxy object. As we have seen previously, it supports a tuple-
like interface. We can also retrieve columns from the RowProxy object through its dict-
like interface or its object-like interface:

>>> result = select([product_table]).execute()
>>> row = result.fetchone()
>>> print row
(u'123', 12.34)
>>> print row[0]
123
>>> print row['sku']
123
>>> print row[product_table.c.sku]
123
>>> print row.sku
123
>>> print row.items()
[('sku', u'123'), ('msrp', 12.34)]
>>> print row.keys()
['sku', 'msrp']
>>> print row.values()
[u'123', 12.34]
>>> print row.has_key('msrp')
True
>>> print row.has_key('price')
False

Operators and functions in WHERE clauses

To actually construct a SELECT statement with a WHERE clause, we can use either
the Text construct (as shown previously) or the SQL expression language. The easiest
way to use the SQL expression language to generate a WHERE clause is to use SQLAl-
chemy-provided operator overloading on the Column class:

>>> x = product_table.c.sku=="123"
>>> print type(x)
<class 'sqlalchemy.sql._BinaryExpression'>
>>> print x
product.sku = ?
>>> stmt=product_table.select(product_table.c.sku=="123")

Queries | 75

>>> print stmt
SELECT product.sku, product.msrp
FROM product
WHERE product.sku = ?
...
>>> print stmt.execute().fetchall()
2007-09-30 16:34:44,800 INFO sqlalchemy.engine.base.Engine.0x..10
... SELECT product.sku, product.msrp
FROM product
WHERE product.sku = ?
2007-09-30 16:34:44,800 INFO sqlalchemy.engine.base.Engine.0x..10
... ['123']
[(u'123', 12.34)]

Note that the “123” literal has been replaced by a “?” placeholder. This is an example
of SQLAlchemy using a bind parameter. By using bind parameters, SQLAlchemy
ensures that the entire SQL string passed to the database driver was constructed by
SQLAlchemy, and that it is safe from SQL-injection attacks. (Of course, this can be
subverted via the Text construct, which passes whatever the programmer specifies
to the database driver.)

Here, SQLAlchemy provides the value of the bind parameter to the database driver
directly.

All SQLAlchemy-provided operators generate a ClauseElement-derived object as a re-
sult of the operation. ClauseElements provide the overloaded operators (and other SQL-
constructing features) of the SQL expression language. This allows complex SQL
expressions to be built up from complex Python expressions. SQLAlchemy provides
overloading for most of the standard Python operators. This includes all the standard
comparison operators (==, !=, <, >, <=, >=). Note in particular the conversion of “==
None” to “IS NULL”.

>>> print product_price_table.c.price == 12.34
product_price.price = ?
>>> print product_price_table.c.price != 12.34
product_price.price != ?
>>> print product_price_table.c.price < 12.34
product_price.price < ?
>>> print product_price_table.c.price > 12.34
product_price.price > ?
>>> print product_price_table.c.price <= 12.34
product_price.price <= ?
>>> print product_price_table.c.price >= 12.34
product_price.price >= ?
>>> print product_price_table.c.price == None
product_price.price IS NULL

Support is also provided for the arithmetic operators (+, -, *, /, and %), with special
support for database-independent string concatenation:

>>> print product_price_table.c.price + 14.44

76 | Chapter 5: Running Queries and Updates

product_price.price + ?
>>> expr = product_table.c.sku + "-sku"
>>> print expr
product.sku || ?
>>> from sqlalchemy.databases.mysql import MySQLDialect
>>> print expr.compile(dialect=MySQLDialect())
product.sku + %s

Arbitrary SQL operators (such as MySQL’s NULL-safe equality operator, <=>) are also
supported via the op() method on ClauseElements:

>>> print product_table.c.sku.op('my_new_operator')(
... product_table.c.msrp)
product.sku my_new_operator product.msrp

SQLAlchemy also provides for use of the SQL boolean operators AND, OR, and NOT,
as well as the LIKE operator for comparing strings. The bitwise logical operators &, |,
and ~ are used to implement AND, OR, and NOT, while the like() method on Clau
seElements is used to implement LIKE. Special care must be taken when using the AND,
OR, and NOT overloads because of Python operator precendence rules. For instance,
& binds more closely than <, so when you write A < B & C < D, what you are actually
writing is A < (B&C) < D, which is probably not what you intended. You can also use
the SQLAlchemy-provided functions and_, or_, and not_ to represent AND, OR, and
NOT if you prefer.

>>> print (product_table.c.msrp > 10.00) & (product_table.c.msrp <
... 20.00)
product.msrp > ? AND product.msrp < ?
>>> print and_(product_table.c.msrp > 10.00,
... product_table.c.msrp < 20.00)
product.msrp > ? AND product.msrp < ?
>>> print product_table.c.sku.like('12%')
product.sku LIKE ?
>>> print ~((product_table.c.msrp > 10.00) &
... (product_table.c.msrp < 20.00))
NOT (product.msrp > ? AND product.msrp < ?)
>>> print not_(and_(product_table.c.msrp > 10.00,
... product_table.c.msrp < 20.00))
NOT (product.msrp > ? AND product.msrp < ?)

SQLAlchemy also provides for the use of arbitrary SQL functions via the func variable,
which generates functions using attribute access. You can also use the special function
func._ to add parentheses around a sub-expression if necessary.

>>> print func.now()
now()
>>> print func.current_timestamp
current_timestamp
>>> print func.abs(product_table.c.msrp)
abs(product.msrp)
>>> print func._(text('a=b'))
(a=b)

Queries | 77

SQLAlchemy provides several other useful methods on ClauseElements, summarized
next.

between(cleft, cright)
Produces a BETWEEN clause like column BETWEEN cleft AND cright.

distinct()
Adds a DISTINCT modifier like DISTINCT column.

startswith(other)
Produces the clause column LIKE 'other%.

endswith(other)
Produces the clause column LIKE '%other‘.

in_(*other)
Produces an IN clause like column IN (other[0], other[1], ...). other can also be a
subquery.

like(other)
Produces a LIKE clause like column LIKE other.

op(operator)
Produces an arbitrary operator like column operator.

label(name)
Produces an AS construct for the column (a column alias) like column AS name.

Using custom bind parameters

Up to this point, SQLAlchemy has been automatically creating bind parameters when-
ever we used a literal expression in the SQL query language. It is also possible to
generate a custom bind parameter. This might be useful, for instance, if you wanted to
generate a statement without knowing a priori what values would be used to bind the
statement. You can also use this to speed up your queries when you have many state-
ments that are identical except for the bind parameter values. (The Python overhead
for executing each query is lower in such cases, and some database servers will cache
the execution plan, making the server-side processing faster as well.) Using the schema
introduced earlier in this chapter, we might generate a statement that selects the price
for a given product using the following code:

>>> stmt = select([product_table.c.msrp],
... whereclause=product_table.c.sku==bindparam('sku'))
>>> print stmt
SELECT product.msrp
FROM product
WHERE product.sku = ?
>>> print stmt.compile().get_params()
ClauseParameters:{'sku': None}
>>> print stmt.execute(sku='123').fetchall()
[(12.34,)]
>>> print stmt.execute(sku='456').fetchall()

78 | Chapter 5: Running Queries and Updates

[(22.120000000000001,)]
>>> print stmt.execute(sku='789').scalar()
41.44

The actual bindparam() parameters are summarized next.

key
Either a string representing the bind parameter name or a Column object (which will
be used to generate a bind parameter name). This name is used in the execute()
call to provide a value for the bind parameter.

value=None
The default value for this bind parameter (If no value is supplied in the execute()
call, this value will be used instead.) If no value is supplied here or in the execute(
) call, an exception is raised.

type=None
A TypeEngine object representing the type of the bind parameter. The TypeEngine
is used to format the value provided to the bind parameter using the TypeEngine’s
convert_bind_param() method.

shortname=None
An alias for the bind parameter (this name can be used in the execute() call instead
of the key parameter). This can be useful if the key name is cumbersome, as when
using a Column object.

unique=False
Generate a unique name for the bind parameter based on the key. This can be useful
for ensuring there are no unintended name collisions. This is typically used along
with the value parameter.

Using literal text in queries

We have already briefly seen the use of the text() in constructing customized SQL
strings. In fact, even when we want to use custom SQL strings, we rarely need to use
the text() function; SQLAlchemy can infer the need for it automatically in most cases.
For instance, if we wanted to select the price for SKU “123”, we could simply write:

>>> stmt = select(['product.msrp'],
... from_obj=['product'],
... whereclause="product.sku=='123'")
>>> print stmt
SELECT product.msrp
FROM product
WHERE product.sku=='123'
>>> print metadata.bind.execute(stmt).fetchall()
[(12.34,)]
>>> stmt2 = select([text('product.msrp')],
... from_obj=[text('product')],
... whereclause=text("product.sku=='123'"))

Queries | 79

>>> print str(stmt2) == str(stmt)
True

We can use bind parameters with text() by using the “named colon” format (:name)
for the bind parameters. We can also bind the clause constructed to a particular engine
using the bind parameter to the text() function.

>>> stmt = text("SELECT product.msrp FROM product WHERE
... product.sku==:sku",
... bind=metadata.bind)
>>> print stmt
SELECT product.msrp FROM product WHERE product.sku==?
>>> print stmt.compile().get_params()
ClauseParameters:{'sku': None}
>>> print stmt.execute(sku='456').fetchall()
[(22.120000000000001,)]

The actual parameters of the text() function are summarized next.

text
The string with the SQL text to be constructed. Bind parameters can be used with
the :parameter syntax.

bind=None
The engine to which to bind the constructed ClauseElement. Useful when con-
structing a statement entirely out of text() objects.

bindparams=None
A list of bindparam() objects to be used to define the types and/or values of the
bind parameters used.

typemap=None
A dictionary mapping column names used in a SELECT statement to TypeEn
gines. Used to convert result set values to Python objects.

Ordering and grouping results, returning distinct values

SQLAlchemy supports the use of the ORDER BY, GROUP BY, HAVING, and
UNIQUE clauses of SQL queries via the order_by, group_by, having, and unique pa-
rameters of the select() function and method.

The Difference Between WHERE and HAVING
Both the WHERE clause in SQL and the HAVING clause restrict results to those results
matching a given SQL expression. The difference is that HAVING is always accompa-
nied by grouping (typically via the GROUP BY clause), and the HAVING clause filters
the results after they are grouped, whereas the WHERE clause filters the rows before
they are grouped. WHERE clauses therefore can’t reference the results of aggregation
functions such as SUM or COUNT, but the HAVING clause can.

80 | Chapter 5: Running Queries and Updates

If we wanted to see the products in our database listed by price, for instance, we could
use the following query:

>>> stmt = product_table.select(order_by=[product_table.c.msrp])
>>> print stmt
SELECT product.sku, product.msrp
FROM product ORDER BY product.msrp
>>> print stmt.execute().fetchall()
[(u'123', 12.34), (u'456', 22.120000000000001), (u'789',
... 41.439999999999998)]
>>> stmt =
... product_table.select(order_by=[desc(product_table.c.msrp)])
>>> print stmt
SELECT product.sku, product.msrp
FROM product ORDER BY product.msrp DESC
>>> print stmt.execute().fetchall()
[(u'789', 41.439999999999998), (u'456', 22.120000000000001),
... (u'123', 12.34)]

We could use the grouping provided by group_by (possibly filtered by having) to retrieve
how many stores carry each product:

>>> stmt = select([product_price_table.c.sku,
... func.count(product_price_table.c.store_id)],
... group_by=[product_price_table.c.sku])
>>> print stmt
SELECT product_price.sku, count(product_price.store_id)
FROM product_price GROUP BY product_price.sku
>>> print stmt.execute().fetchall()
[(u'456', 2), (u'789', 2)]
>>>
>>> stmt = select([product_price_table.c.sku,
... func.count(product_price_table.c.store_id)],
... group_by=[product_price_table.c.sku],
... having=func.count(product_price_table.c.store_id)
... > 2)
>>> print stmt
SELECT product_price.sku, count(product_price.store_id)
FROM product_price GROUP BY product_price.sku
HAVING count(product_price.store_id) > ?
>>> print stmt.execute().fetchall()
[]

We have already seen how we can use the distinct() method on ClauseElements to
specify that a column should be distinct in a result set. SQLAlchemy also provides
support for selecting only distinct rows in a result set via the distinct parameter to
select().

>>> stmt = select([product_price_table.c.sku,
... product_price_table.c.price])
>>> print stmt
SELECT product_price.sku, product_price.price

Queries | 81

FROM product_price
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001), (u'789', 41.439999999999998),
... (u'456', 22.120000000000001), (u'789', 41.439999999999998)]
>>> stmt = select([product_price_table.c.sku,
... product_price_table.c.price],
... distinct=True)
>>> print stmt
SELECT DISTINCT product_price.sku, product_price.price
FROM product_price
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001), (u'789', 41.439999999999998)]

Limiting results returned

One common operation when working with large data sets is the use of the OFFSET
and LIMIT clauses to return only a subset of data from a cursor. SQLAlchemy supports
OFFSET and LIMIT (even in databases without direct support) through the use of
offset and limit with the select() function and method:

>>> stmt = product_table.select()
>>> print stmt.execute().fetchall()
[(u'123', 12.34), (u'456', 22.120000000000001), (u'789',
... 41.439999999999998)]
>>> stmt = product_table.select(offset=1, limit=1)
>>> print stmt
SELECT product.sku, product.msrp
FROM product
 LIMIT 1 OFFSET 1
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001)]

Limiting and offseting is done after ordering and grouping, so you can use this construct
to provide a “paged” view of sorted data. This can be very useful, for instance, when
displaying sortable data on a web form.

Using the “generative” query interface

Up until this point, we have been using the select() function and method as a query
constructor, generating a complete SQL statement as a result of the select() call.
SQLAlchemy also supports a “generative” interface for the select() function and
method that allows us to build up the query, one piece at a time. For instance, suppose
we have a product table with the following defintion:

product_table = Table(
 'product', metadata,
 Column('id', Integer, primary_key=True),
 Column('sku', String(20), unique=True),
 Column('manufacturer', Unicode(255)),
 Column('department', Unicode(255)),
 Column('category', Unicode(255)),

82 | Chapter 5: Running Queries and Updates

 Column('class', Unicode(255)),
 Column('subclass', Unicode(255)))

Now, suppose we have a user interface that displays all the “product” records in the
system, optionally filtered by various criteria (manufacturer, department, etc.). We
might write the following function to return the filtered user list:

def get_prods(manufacturer=None,
 department=None,
 category=None,
 class_=None,
 subclass=None,
 offset=None,
 limit=None):
 where_parts = []
 if manufacturer is not None:
 where_parts.append(product_table.c.manufacturer
 == manufacturer)
 if department is not None:
 where_parts.append(product_table.c.department
 == department)
 if category is not None:
 where_parts.append(product_table.c.category
 == category)
 if class_ is not None:
 where_parts.append(product_table.c.class_
 == class_)
 if subclass is not None:
 where_parts.append(product_table.c.subclass
 == subclass)
 whereclause=and_(*where_parts)
 query = product_table.select(whereclause,
 offset=offset, limit=limit)
 return query

Now, we can use arbitrary filters, and the appropriate SQL WHERE clause will auto-
matically be constructed for us automatically:

>>> q = get_prods()
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,
... product.subclass
FROM product
>>> q = get_prods(manufacturer="Neon")
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,
... product.subclass
FROM product
WHERE product.manufacturer = ?
>>> q = get_prods(manufacturer="Neon", department="Auto")
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,

Queries | 83

... product.subclass
FROM product
WHERE product.manufacturer = ? AND product.department = ?

The generative interface allows us to rewrite the previous function as the following:

def get_prods(manufacturer=None,
 department=None,
 category=None,
 class_=None,
 subclass=None,
 offset=None,
 limit=None):
 query = product_table.select()
 if manufacturer is not None:
 query = query.where(product_table.c.manufacturer
 == manufacturer)
 if department is not None:
 query = query.where(product_table.c.department
 == department)
 if category is not None:
 query = query.where(product_table.c.category
 == category)
 if class_ is not None:
 query = query.where(product_table.c.class_
 == class_)
 if subclass is not None:
 query = query.where(product_table.c.subclass
 == subclass)
 query = query.offset(offset)
 query = query.limit(limit)
 return query

Although the two functions have the same functionality, the second one (using the
generative interface) is more flexible. Suppose we wanted to refactor the original func-
tion into multiple parts, with each part potentially adding a different filtering criterion.
In that case, we would need to pass a where_parts list through all the intermediate
functions. In the generative approach, all the information about the query is “wrapped
up” in the query itself, allowing us to build up a query piecemeal in several different
functions, without passing anything around but the query itself.

The generative interface actually consists of a set of methods on the statement con-
structed by the select() function or method. Those methods are summarized next.
Note that none of these functions actually modify the query object in place; rather, they
return a new query object with the new condition applied.

where(whereclause)
Add a constraint to the WHERE clause. All constraints added this way will be
AND-ed together to create the whole WHERE clause.

order_by(*clauses)
Generate an ORDER BY clause (or append the given clauses to an existing ORDER
BY clause).

84 | Chapter 5: Running Queries and Updates

group_by(*clauses)
Generate a GROUP BY clause (or append the given clauses to an existing GROUP
BY clause).

having(having)
Generate a HAVING clause (or add to an existing HAVING clause). Like where(
), the final statement’s HAVING clause will be all of the clauses added via this
function, AND-ed together.

select_from(fromclause)
Generate a FROM clause or append to the existing one.

limit(limit)
Equivalent to the limit parameter in the select() function or method.

offset(offset)
Equivalent to the offset parameter in the select() function or method.

column(column)
Add a column to the list of columns being selected.

distinct()
Equivalent to passing distinct=True to the select() function or method.

count(whereclause=None, **params)
Generate a statement that will count the rows that would be returned from the
query, optionally with a whereclause and additional params to be passed to the
generated SELECT COUNT(...) statement.

apply_labels()
Equivalent to use_labels=True in the select() function/method.

prefix_with(clause)
Append a prefix to the generated SQL. (A prefix is inserted immediately after the
SELECT keyword, as in the prefixes parameter to select().)

replace_selectable(old, alias)
Replace every occurrence of old with the alias alias. (Aliasing is covered in more
detail in later in this chapter, “Using aliases“). This can be useful when it is nec-
essary to modify a query to use an alias when that query was originally written to
use a reference to the actual table, for instance.

union(other, **kwargs)
Return an UNION with this selectable and another (covered in more detail later
under “Joins and Set Operations“).

union_all(other, **kwargs)
Return an UNION ALL with this selectable and another (covered in more detail
later under “Joins and Set Operations“).

intersect(other, **kwargs)
Return an INTERSECT with this selectable and another (covered in more detail
later under “Joins and Set Operations“).

Queries | 85

intersect_all(other, **kwargs)
Return an INTERSECT ALL with this selectable and another (covered in more
detail under “Joins and Set Operations“).

except_(other, **kwargs)
Return an EXCEPT with this selectable and another (covered in more detail under
“Joins and Set Operations“).

except_all(other, **kwargs)
Return an EXCEPT ALL with this selectable and another (covered in more detail
under “Joins and Set Operations“).

join(right, *args, **kwargs)
Return a INNER JOIN between this selectable and another (covered in more detail
under “Joins and Set Operations“).

outerjoin(right, *args, **kwargs)
Return a LEFT OUTER JOIN between this selectable and another (covered in more
detail under “Joins and Set Operations“).

as_scalar()
Allows the query to be embedded in a column list of an enclosing query.

label(name)
Label the result of this query with name for use in the column list of an enclosing
query. Also implies as_scalar().

correlate(fromclause)
Specify a table on which to correlate, or use None to disable SQLAlchemy’s auto-
correlation on embedded subqueries.

select(whereclauses, **params)
Generate an enclosing SELECT statment that selects all columns of this select.

Joins and Set Operations
In addition to the interface for selecting, filtering, sorting, and grouping on SELECT
statements from single tables, SQLAlchemy provides full support for operations that
combine multiple tables or other selectables (JOINs), as well as set operations on se-
lectables (UNION, INTERSECT, and EXCEPT).

Joining selectables

To join two selectablesin (tables or other select statements) together, SQLAlchemy
provides the join() (implementing INNER JOIN) and outerjoin() (implementing
OUTER JOIN) functions, as well as join() and outerjoin() methods on all selectables.
The only difference between the *join() methods and the *join() functions is that the
methods implicitly use self as the left-hand side of the join.

86 | Chapter 5: Running Queries and Updates

If you are familiar with the JOIN constructs in SQL, then you are used to specifying
the ON clause of the JOIN. For instance, to select all stores where the price of a product
is different than its MSRP, you might write the following SQL:

SELECT store.name
FROM store
 JOIN product_price ON store.id=product_price.store_id
 JOIN product ON product_price.sku=product.sku
WHERE product.msrp != product_price.price;

Notice how we had to specify the join criteria for each of the joins in the statement.
Wouldn’t it be nice if the database could infer the ON clauses based on the foreign key
constraints? Well, SQLAlchemy does this automatically:

>>> from_obj = store_table.join(product_price_table)
... .join(product_table)
>>> query = store_table.select()
>>> query = query.select_from(from_obj)
>>> query = query.where(product_table.c.msrp
... != product_price_table.c.price)
>>> print query
SELECT store.id, store.name
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price

In some cases, we are not using the JOINed table to filter results, but we would like to
see the results from a JOINed table alongside results from the table we are using. In
this case, we can either use the select() function or use the column() method of the
query object:

>>> print query.column('product.sku')
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
>>> query2 = select([store_table, product_table.c.sku],
... from_obj=[from_obj],
... whereclause=(product_table.c.msrp
... !=product_price_table.c.price))
>>> print query2
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price

But what if we want to return results that may not have matching rows in the JOINed
table? For this, we use the outerjoin function/method:

>>> from_obj = store_table.outerjoin(product_price_table)
>>> from_obj = from_obj.outerjoin(product_table)
>>> query = store_table.select()

Queries | 87

>>> query = query.select_from(from_obj)
>>> query = query.column('product.msrp')
>>> print query
SELECT store.id, store.name, product.msrp
FROM store LEFT OUTER JOIN product_price
... ON store.id = product_price.store_id
LEFT OUTER JOIN product
... ON product.sku = product_price.sku

In this case, if there is not a matching entry in the product_price table or the product
table, then the query will insert None for the msrp column.

Although SQLAlchemy can automatically infer the correct join condition most of the
time, support is also provided for custom ON clauses via the onclause argument to
join() and outerjoin(), a ClauseElement specifying the join condition.

Set operations (UNION, INTERSECT, EXCEPT)

The SQL language and SQLAlchemy also support set operations on selectables. For
instance, you may wish to retrieve the union of results from two queries (those rows
satisfying either or both queries), the intersection (those rows satisfying both queries),
or the difference (those rows satisfying the first query but not the second). For these
functions, SQL provides the UNION, INTERSECT, and EXCEPT clauses, as well as
the related UNION ALL, INTERSECT ALL, and EXCEPT ALL clauses (although the
INTERSECT and EXCEPT clauses are not supported on all databases).

To support these constructs, SQLAlchemy provides the union(), union_all(),
intersect(), intersect_all(), except_(), and except_all() functions and selectable
methods. Like the *join() methods, the set-oriented methods are simply the corre-
sponding functions with the first parameter bound to itself. Suppose we wanted to
select all the products with prices greater than $10.00 but less than $20.00. One way
we could do this is with the following simple query:

>>> query = product_table.select(and_(product_table.c.msrp > 10.00 ,
... product_table.c.msrp < 20.00))
>>> print query
SELECT product.sku, product.msrp
FROM product
WHERE product.msrp > ? AND product.msrp < ?
>>> for r in query.execute():
... print r
...
(u'123', Decimal("12.34"))

We could rewrite this query as an INTERSECT using the intersect() function:

>>> query0 = product_table.select(product_table.c.msrp > 10.00)
>>> query1 = product_table.select(product_table.c.msrp < 20.00)
>>> query = intersect(query0, query1)
>>> print query
SELECT product.sku, product.msrp

88 | Chapter 5: Running Queries and Updates

FROM product
WHERE product.msrp > ? INTERSECT SELECT product.sku, product.msrp
FROM product
WHERE product.msrp < ?
>>> for r in query.execute():
... print r
(u'123', Decimal("12.34"))

Using aliases

When using joins, it is often necessary to refer to a table more than once. In SQL, this
is accomplished by using aliases in the query. For instance, suppose we have the fol-
lowing (partial) schema that tracks the reporting structure within an organization:

employee_table = Table(
 'employee', metadata,
 Column('id', Integer, primary_key=True),
 Column('manager', None, ForeignKey('employee.id')),
 Column('name', String(255)))

Now, suppose we want to select all the employees managed by an employee named
Fred. In SQL, we might write the following:

SELECT employee.name
FROM employee, employee AS manager
WHERE employee.manager_id = manager.id
 AND manager.name = 'Fred'

SQLAlchemy also allows the use of aliasing selectables in this type of situation via the
alias() function or method:

>>> manager = employee_table.alias('mgr')
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print stmt
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?

SQLAlchemy can also choose the alias name automatically, which is useful for guar-
anteeing that there are no name collisions:

>>> manager = employee_table.alias()
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print stmt
SELECT employee.name
FROM employee, employee AS employee_1
WHERE employee.manager_id = employee_1.id AND employee_1.name = ?

Queries | 89

Subqueries
SQLAlchemy provides rich support for subqueries (using a query inside another query).
We have already seen one type of subquery in the use of the join and in set operation
support. SQLAlchemy also allows subqueries to appear in the column list of a select
statement, in the right hand side of the SQL IN operator (using the SQLAlchemy-
provided in_() method on ClauseElements), and as an argument to the from_obj
parameter on the select() function.

Embedding subqueries in the column list

In order to embed a subquery in a column list, we need to use the as_scalar() method
on the inner query to indicate that the query will return a single value. For instance, if
we want to retrieve the number of stores that offer each product, we could use the
following query:

>>> subquery = select(
... [func.count(product_price_table.c.sku)],
... product_price_table.c.sku==product_table.c.sku)
>>> print subquery
SELECT count(product_price.sku)
FROM product_price, product
WHERE product_price.sku = product.sku
>>> stmt = select([product_table.c.sku,
... product_table.c.msrp,
... subquery.as_scalar()])
>>> print stmt
SELECT product.sku, product.msrp, (SELECT count(product_price.sku)
FROM product_price
WHERE product_price.sku = product.sku)
FROM product
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"), 0)
(u'456', Decimal("22.12"), 2)
(u'789', Decimal("41.44"), 2)

Correlated versus uncorrelated subqueries

You may have noticed in the previous example that when SQLAlchemy inserted the
subquery into the main query, it left out the product table in the subquery’s FROM list.
This is because SQLAlchemy attempts to correlate subqueries with outer queries when-
ever they reference the same table. To disable this behavior, you can use the correlate(
) method on the subquery to manually specify a FROM clause to remove from the
subquery, or, by passing None, to disable correlation in the subquery:

>>> stmt = select([product_table.c.sku,
... product_table.c.msrp,

90 | Chapter 5: Running Queries and Updates

... subquery.correlate(None).as_scalar()])
>>> print stmt
SELECT product.sku, product.msrp, (SELECT count(product_price.sku)
FROM product_price, product
WHERE product_price.sku = product.sku)
FROM product
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"), 4)
(u'456', Decimal("22.12"), 4)
(u'789', Decimal("41.44"), 4)

Because the inner query is uncorrelated, rather than totaling the number of stores that
carry the given product, the query repeatedly calculates the number of rows in the
product_price table with any valid SKU.

Embedding subqueries in an IN clause

It is often useful in SQL to embed subqueries in an IN clause of another query. SQLAl-
chemy provides support for this as well, allowing you to specify a selectable as an
argument for the ClauseElement’s in_() method. For instance, if we wanted to retrieve
all the employees whose names start with “Ted” and who do not have a manager, we
could write the query as follows:

>>> subquery = select([employee_table.c.id],
... employee_table.c.manager_id==None)
>>> stmt = employee_table.select(
... and_(employee_table.c.id.in_(subquery),
... employee_table.c.name.like('Ted%')))
>>> print stmt
SELECT employee.id, employee.manager_id, employee.name
FROM employee
WHERE employee.id IN (SELECT employee.id
FROM employee
WHERE employee.manager_id IS NULL) AND employee.name LIKE ?

Embedding subqueries in the FROM clause

It is sometimes useful to generate a SQL query in multiple stages by using a subquery
in the FROM clause of another query (and continuing this nesting if necessary). SQLAl-
chemy provides support for such subqueries by allowing you to specify any list of
selectables (not just Table objects) to the from_obj parameter of the select(). If we
follow this pattern, then the previous query could be rewritten as follows:

>>> subquery =
... employee_table.select(employee_table.c.manager_id==None)
>>> stmt = select([subquery.c.id, subquery.c.manager_id,
... subquery.c.name],
... whereclause=subquery.c.name.like('Ted%'),
... from_obj=[subquery])

Queries | 91

>>> print stmt
SELECT id, manager_id, name
FROM (SELECT employee.id AS id, employee.manager_id AS manager_id,
... employee.name AS name
FROM employee
WHERE employee.manager_id IS NULL)
WHERE name LIKE ?

92 | Chapter 5: Running Queries and Updates

CHAPTER 6

Building an Object Mapper

Atop the SQL expression language, SQLAlchemy provides an object-relational mapper
(ORM). The purpose of an ORM is to provide a convenient way to store your appli-
cation data objects in a relational database. Generally, an ORM will provide a way to
define the method of storing your object in the database. This chapter focuses on the
SQLAlchemy methods that do this.

Introduction to ORMs
ORMs provide methods of updating the database by using your application objects.
For instance, to update a column in a mapped table in SQLAlchemy, you merely have
to update the object, and SQLAlchemy will take care of making sure that the change
is reflected in the database. ORMs also allow you to construct application objects based
on database queries. Chapter 7 will focus on how to use SQLAlchemy’s ORM to update
and query objects in the database.

Design Concepts in the ORM
There are two major patterns used in the ORM you should become familiar with in
order to understand how to best use the ORM. These are the data mapper pattern and
the unit of work pattern.

The data mapper pattern

In the data mapper pattern (shown in Figure 6-1), database tables, views, and other
“selectable” objects are mapped onto “plain old Python objects” (POPOs) by “mapper”
objects. This is different from the “active record” pattern (shown in Figure 6-2), where
the objects themselves are responsible for mapping themselves to database views. The
data mapper pattern can, of course, be used to emulate the active record pattern by
merging the mapper with the application objects.

One benefit of using the data mapper pattern as implemented in SQLAlchemy is that
it allows the database design to be decoupled from the object hierarchy. In SQLAl-

93

chemy, this decoupling can be nearly complete: you can define your classes in one
module and your tables in another with no references from one to the other. The map-
ping can then be performed by a third module, which imports the other two modules
and instantiates the Mapper objects, which do the work of mapping the selectables to
your objects.

The unit of work pattern

The major second pattern used in the SQLAlchemy ORM is the unit of work pattern.
In this pattern, when you make a change to an object, the database is not updated
immediately. Instead, SQLAlchemy tracks changes to your objects in a session object,
and then flushes all your changes at once in a single “unit of work.” This has the ad-
vantage of generally improving performance by reducing the number of round-trips to
the database.

The alternative to the unit of work pattern, of course, is to update the database as soon
as a mapped object property changes. This can lead to a very “chatty” application, but
it does have the advantage of keeping your objects in sync with the database, which
can be handy if you wish to execute queries before flushing the objects you’ve modified
back out to the database.

To alleviate this concern, SQLAlchemy actually provides an “autoflush” feature on the
session object that will take care of flushing the session before any queries are per-
formed on it. As long as you use an autoflushing session and execute all queries through

Figure 6-1. Data mapper pattern

Figure 6-2. Active record pattern

94 | Chapter 6: Building an Object Mapper

the session, you generally do not need to worry about inconsistencies between your
objects in memory and the database on disk.

Of course, if you use the SQL expression layer of SQLAlchemy, you
can get your in-memory objects out-of-sync with the database, so some
care needs to be taken when mixing ORM-level semantics with SQL-
level semantics in the same transaction.

Declaring Object Mappers
In order to use the SQLAlchemy ORM, we need three things: a database schema defined
on a MetaData object, an object model (no special preparation of the object model is
required for use by SQLAlchemy), and a mapper configuration. In this section, we will
use the following schema, designed to maintain information about a retail product
catalog.

level_table = Table(
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))
category_table = Table(
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table(
 'product_summary', metadata,
 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))
product_category_table = Table(
 'product_category', metadata,
 Column('product_id', None, ForeignKey('product.sku'), primary_key=True),
 Column('category_id', None, ForeignKey('category.id'), primary_key=True))
region_table = Table(
 'region', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('region_id', None, ForeignKey('region.id')),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,

Declaring Object Mappers | 95

 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

This is a “level” used in categorizing a product in a hierarchy. In our example, we
will use the levels “Gender”, “Department”, “Class”, and “Subclass”.

These are the individual categories within a level. In our example, for instance,
within the “Gender” level, we have “Men”, “Women”, “Children”, and “Unisex.”

This table contains auxilliary information about products that may or may not be
present for each product.

This table links the product table with the category table. A product should generally
have one category per level.

This table lists the retail price for each product at each store location.

The application object model in the following listing is extremely basic. In a real ap-
plication, the classes would probably have additional methods defined for performing
domain-specific operations.

class Level(object):

 def __init__(self, name, parent=None):
 self.name = name
 self.parent = parent

 def __repr__(self):
 return '<Level %s>' % self.name

class Category(object):

 def __init__(self, name, level, parent=None):
 self.name = name
 self.level = level
 self.parent = parent

 def __repr__(self):
 return '<Category %s.%s>' % (self.level.name, self.name)

class Product(object):

 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []

 def __repr__(self):
 return '<Product %s>' % self.sku

96 | Chapter 6: Building an Object Mapper

class ProductSummary(object):

 def __init__(self, name, description):
 self.name = name
 self.description = description

 def __repr__(self):
 return '<ProductSummary %s>' % self.name

class Region(object):

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Region %s>' % self.name

class Store(object):

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Store %s>' % self.name

class Price(object):

 def __init__(self, product, store, price):
 self.product = product
 self.store = store
 self.price = price

 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)

Basic Object Mapping
Now that we have the basic schema and object model in place, we can start exploring
how to map objects. The region_table is one of the simplest tables, so we will start
there. The following example demonstrates mapping the region_table to the Region
class, and also illustrates the alterations that SQLAlchemy performs on the Region class
during mapping:

>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__',
... '__module__','__new__', '__reduce__', '__reduce_ex__',
... '__repr__', '__setattr__', '__str__', '__weakref__']
>>> mapper(Region, region_table)
<sqlalchemy.orm.mapper.Mapper object at 0x2af4d7004310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',

Declaring Object Mappers | 97

... '__getattribute__', '__hash__', '__init__', '__module__',

... '__new__', '__reduce__', '__reduce_ex__', '__repr__',

... '__setattr__', '__str__', '__weakref__',

... '_sa_attribute_manager', 'c', 'id', 'name']
>>> print Region.id
<sqlalchemy.orm.mapper._CompileOnAttr object at 0x2af4d70046d0>
>>> print Region.name
<sqlalchemy.orm.mapper._CompileOnAttr object at 0x2af4d7004790>
>>> print Region.c.id
region.id
>>> print Region.c.name
region.name

It is possible to make SQLAlchemy “forget” all the mappings that have
been declared by invoking the clear_mappers() function. This feature
can be useful when prototyping various mappers within the interactive
shell, as it will let you re-map classes to try out different strategies.

As shown previously, the mapper() function has added a few attributes to our class. The
attributes we’re interested in are c, id, and name. This c attribute is a proxy for the
store_table’s c attribute, and allows access to all the columns of the store_table.

The id and name attributes are actually class properties that track access to these at-
tributes in order to synchronize them with the database later. These are mapped
because the default behavior of the SQLAlchemy mapper is to provide a property for
each column in the selectable mapped, and the store_table has two columns, id and
name.

Note that we can still use the object just as if it had not been mapped (unless, of course,
we were relying on existing properties id and name, or an existing attribute c):

>>> r0 = Region(name="Northeast")
>>> r1 = Region(name="Southwest")
>>> print r0
<Region Northeast>
>>> print r1
<Region Southwest>

The difference now is that these objects can be loaded or saved to the database using
a session object (covered in more detail in the next chapter):

>>> Session = sessionmaker()
>>> session = Session()
>>>
>>> session.save(r0)
>>> session.save(r1)
>>> metadata.bind.echo = True
>>> print r0.id
None
>>> print r1.id

98 | Chapter 6: Building an Object Mapper

None
>>> session.flush()
2007-10-13 12:47:07,621 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-13 12:47:07,623 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO region (name) VALUES (?)
2007-10-13 12:47:07,623 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Northeast']
2007-10-13 12:47:07,625 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO region (name) VALUES (?)
2007-10-13 12:47:07,625 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Southwest']
>>> print r0.id
1
>>> print r1.id
2

Note how SQLAlchemy automatically inserted the store names we specified into the
database, and then populated the mapped id attribute based on the synthetic key value
generated by the database. We can also update mapped properties once an object has
been saved to the database:

>>> r0.name = 'Northwest'
>>> session.flush()
2007-10-13 12:47:53,879 INFO sqlalchemy.engine.base.Engine.0x..90
... UPDATE region SET name=? WHERE region.id = ?
2007-10-13 12:47:53,879 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Northwest', 1]

Customizing Property Mapping
The basic way mapping that SQLAlchemy performs is useful, but what if we have a
property or function that conflicts with the way SQLAlchemy wants to map columns?
Or what if we just want to customize the columns mapped by SQLAlchemy? Fortu-
nately, SQLAlchemy provides a rich set of ways to customize the way properties are
mapped onto your classes.

Using include_properties and exclude_properties

The simplest case is where we want to restrict the properties mapped. In this case, we
can use the include_properties to only map those columns specified:

>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__']
>>> mapper(Region, region_table, include_properties=['id'])
<sqlalchemy.orm.mapper.Mapper object at 0x2ba1a7ca3310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',

Declaring Object Mappers | 99

... '__getattribute__', '__hash__', '__init__', '__module__',

... '__new__', '__reduce__', '__reduce_ex__', '__repr__',

... '__setattr__', '__str__', '__weakref__',

... '_sa_attribute_manager', 'c', 'id']

We can also use exclude_properties to specify columns to be excluded:

>>> mapper(Region, region_table, exclude_properties=['id'])
<sqlalchemy.orm.mapper.Mapper object at 0x2ba1a7ca34d0>

Customizing the name of the mapped column

If we want to map all the columns to properties with a particular prefix, we can use the
column_prefix keyword argument:

>>> mapper(Region, region_table, column_prefix='_')
<sqlalchemy.orm.mapper.Mapper object at 0x2aecf62d5310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__', '_id', '_name',
... '_sa_attribute_manager', 'c']

We can also customize the mapped property names on a column-by-column basis using
the properties parameter:

>>> mapper(Region, region_table, properties=dict(
... region_name=region_table.c.name,
... region_id=region_table.c.id))
<sqlalchemy.orm.mapper.Mapper object at 0x2b37165b8310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__',
... '_sa_attribute_manager', 'c', 'region_id', 'region_name']

Using synonyms

SQLAlchemy provides certain functions and methods (covered in the next chapter)
that expect mapped property names as keyword arguments. This can be cumbersome
to use if we have mapped the column names to other property names (perhaps to allow
for user-defined getters and setters). In order to alleviate the burden of using the actual
property names, SQLAlchemy provides the synonym() function to allow a name to be
used “as if” it were a real property. Suppose, for instance, that we wish to verify that
all store names end in “Store”. We might use the following approach:

>>> class Region(object):
... def __init__(self, name):

100 | Chapter 6: Building an Object Mapper

... self.name = name

... def __repr__(self):

... return '<Region %s>' % self.name

... def _get_name(self):

... return self._name

... def _set_name(self, value):

... assert value.endswith('Region'), \

... 'Region names must end in "Region"'

... self._name = value

... name=property(_get_name, _set_name)

...
>>> mapper(Region, region_table, column_prefix='_', properties=dict(
... name=synonym('_name')))
<sqlalchemy.orm.mapper.Mapper object at 0x2b2f953ff4d0>
>>>
>>> s0 = Region('Southeast')
Traceback (most recent call last):
...
AssertionError: Region names must end in "Region"
>>> s0 = Region('Southeast Region')
>>> session.save(s0)
>>> session.flush()
>>> session.clear()
>>>
>>> q = session.query(Region)
>>> print q.filter_by(name='Southeast Region').first()

<Region Southeast Region>
>>> print s0.name
Southeast Region

This defines the synonym “name” to be usable in all SQLAlchemy functions where
“_name” is useable.

Here we tried to create an object with an invalid name and were rejected.

Using the synonym, we can still select stores by name without abusing the private
attribute.

If you wish to create a property that is a true proxy for the original mapped property
(so you don’t have to write the getter and setter), you can use synonym(name,
proxy=True) to define it.

Mapping subqueries

In some cases, we may wish to create a property that is a combination of a few columns
or the result of a subquery. For instance, suppose we wanted to map the prod
uct_table, providing a property that will yield the average price of the product across
all stores. To do this, we use the column_property() function:

>>> average_price = select(
... [func.avg(product_price_table.c.price)],

Declaring Object Mappers | 101

... product_price_table.c.sku==product_table.c.sku)\

... .as_scalar() \

... .label('average_price')
>>> print average_price
(SELECT avg(product_price.price)
FROM product_price, product
WHERE product_price.sku = product.sku) AS average_price
>>> mapper(Product, product_table, properties=dict(
... average_price=column_property(average_price)))
<sqlalchemy.orm.mapper.Mapper object at 0x2b6b9d5336d0>
>>> metadata.bind.echo = True
>>> p = session.query(Product).get('123')
2007-10-06 18:47:27,289 INFO sqlalchemy.engine.base.Engine.0x..90.
... SELECT (SELECT avg(product_price.price)
FROM product_price
WHERE product_price.sku = product.sku) AS average_price,
... product.sku AS product_sku, product.msrp AS product_msrp
FROM product
WHERE product.sku = ? ORDER BY product.oid
 LIMIT 1 OFFSET 0
2007-10-06 18:47:27,290 INFO sqlalchemy.engine.base.Engine.0x..90.
... ['123']
>>> print p.sku, p.msrp, p.average_price
123 12.34 12.34

Mapping composite values

The SQLAlchemy ORM also provides for creating properties from a group of columns.
To use this feature, we must create a custom class to store the composite value. That
class must have a constructor that accepts column values as positional arguments (to
create the object from the database result) and a method __composite_values__(),
which returns a list or tuple representing the state of the object in the order of the
columns that map to it. The custom class should also support equality comparisons
via the __eq__() and __ne__() methods.

For instance, suppose we have a mapping database that stores route segments in the
following table:

segment_table = Table(
 'segment', metadata,
 Column('id', Integer, primary_key=True),
 Column('lat0', Float),
 Column('long0', Float),
 Column('lat1', Float),
 Column('long1', Float))

In this case, our application expects RouteSegments to have a beginning and an ending
MapPoint object, defined as follows:

class RouteSegment(object):
 def __init__(self, begin, end):
 self.begin = begin
 self.end = end

102 | Chapter 6: Building an Object Mapper

 def __repr__(self):
 return '<Route %s to %s>' % (self.begin, self.end)

class MapPoint(object):
 def __init__(self, lat, long):
 self.coords = lat, long
 def __composite_values__(self):
 return self.coords
 def __eq__(self, other):
 return self.coords == other.coords
 def __ne__(self, other):
 return self.coords != other.coords
 def __repr__(self):
 return '(%s lat, %s long)' % self.coords

We can then map the class and use it with the composite() function:

>>> mapper(RouteSegment, segment_table, properties=dict(
... begin=composite(MapPoint,
... segment_table.c.lat0,
... segment_table.c.long0),
... end=composite(MapPoint,
... segment_table.c.lat1, segment_table.c.long1)))
<sqlalchemy.orm.mapper.Mapper object at 0x2b13e58a5450>
>>>
>>> work=MapPoint(33.775562,-84.29478)
>>> library=MapPoint(34.004313,-84.452062)
>>> park=MapPoint(33.776868,-84.389785)
>>> routes = [
... RouteSegment(work, library),
... RouteSegment(work, park),
... RouteSegment(library, work),
... RouteSegment(library, park),
... RouteSegment(park, library),
... RouteSegment(park, work)]
>>> for rs in routes:
... session.save(rs)
...
>>> session.flush()
>>>
>>> q = session.query(RouteSegment)
>>> print RouteSegment.begin==work
segment.lat0 = ? AND segment.long0 = ?
>>> q = q.filter(RouteSegment.begin==work)
>>> for rs in q:
... print rs
...
<Route (33.775562 lat, -84.29478 long) to (34.004313 lat, -84.452062
... long)>
<Route (33.775562 lat, -84.29478 long) to (33.776868 lat, -84.389785
... long)>

By default, SQLAlchemy generates an equality comparator that generates SQL to com-
pare all mapped columns for use in methods such as filter(), shown previously. If

Declaring Object Mappers | 103

you want to provide custom comparison operators, you can do so by implementing a
subclass of PropComparator:

class MapPointComparator(PropComparator):
 def __lt__(self, other):
 return and_(*[a<b for a, b in
 zip(self.prop.columns,
 other.__composite_values__())])

mapper(RouteSegment, segment_table, properties=dict(
 begin=composite(MapPoint,
 segment_table.c.lat0, segment_table.c.long0,
 comparator=MapPointComparator),
 end=composite(MapPoint,
 segment_table.c.lat1, segment_table.c.long1,
 comparator=MapPointComparator)))

Eager versus deferred loading

In some cases, it may not be efficient to retrieve all properties of an object at object
creation time. For instance, if the table being mapped has a BLOB column that is needed
only infrequently in the mapped object, it may be more efficient to retrieve that column
only when the property is accessed. In SQLAlchemy, this is referred to as “deferred
column loading,” and is accomplished by mapping a property to the deferred() func-
tion.

In our product catalog schema, for instance, suppose we have an image stored for each
product in a BLOB column:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('image', BLOB))

In this case, we can map the image column as a deferred column:

mapper(Product, product_table, properties=dict(
 image=deferred(product_table.c.image)))

Now, if we select a product, we can observe that SQLAlchemy delays loading the de-
ferred column until its mapped property is actually accessed:

>>> metadata.bind.echo=True
>>> q = session.query(Product)
>>> prod=q.get_by(sku='123')
2007-10-08 11:27:45,582 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product
WHERE product.sku = ? ORDER BY product.oid
 LIMIT 1 OFFSET 0
2007-10-08 11:27:45,583 INFO sqlalchemy.engine.base.Engine.0x..d0
... ['123']
>>> print prod.image

104 | Chapter 6: Building an Object Mapper

2007-10-08 11:27:45,589 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.image AS product_image
FROM product
WHERE product.sku = ?
2007-10-08 11:27:45,589 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'123']
abcdef

We can also mark multiple deferred columns to be members of a “group” of deferred
columns, so that they are all loaded when any column in the group is accessed:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('image1', Binary),
 Column('image2', Binary),
 Column('image3', Binary))

mapper(Product, product_table, properties=dict(
 image1=deferred(product_table.c.image, group='images'),
 image2=deferred(product_table.c.image, group='images'),
 image3=deferred(product_table.c.image, group='images')))

If the default deferred behavior is not desired, columns can be individually deferred or
undeferred at query creation time by using the defer() and undefer() functions along
with the options() method of the Query object (described more completely in the next
chapter).

Mapping Arbitrary Selectables
It is worth noting that, although we have been mapping tables in our examples, it is
possible to map any “selectable” object in SQLAlchemy. This includes tables, and the
result of the select(), *join(), union*(), intersect*(), and except*() functions or
methods. For instance, we may wish to map the result of joining the product table with
the product summary table to a single object:

q = product_table.join(
 product_summary_table,
product_table.c.sku==product_summary_table.c.sku).alias('full_product')

class FullProduct(object): pass

mapper(FullProduct, q)

Other mapper() Parameters
The mapper() function takes a number of keyword arguments, listed next.

Declaring Object Mappers | 105

entity_name =None
A string to associate with a nonprimary mapper (see the non_primary parameter
description for more detail) that allows it to be distinguished from the primary
mapper in session methods such as save() and query().

always_refresh =False
Whenever a query returns an object corresponding to an in-memory object, over-
write the in-memory object’s fields with the fields from the query if this flag is
True. This will overwrite any changes to the in-memory object, and so using the
populate_existing() method on Query objects is preferred over this parameter.

allow_column_override =False
Allow a relation() property to be defined with the same name as a mapped column
(the column will not be mapped in this case). Otherwise the name conflict will
generate an exception.

allow_null_pks =False
If using a composite primary key in the mapped selectable, this flag allows some
(but not all) of the primary key columns to be NULL. Otherwise, any NULL value
in any primary key column will cause the row to be skipped when constructing
objects.

batch=True
Allow the save operations of multiple object to be batched together for efficiency
(for instance, saving all the sku columns of multiple Products). If False, each object
will be completely created in the database before moving on to the next object.

column_prefix= None
A string that will be used to prefix all automatically mapped column property
names. This is ignored on all explicitly named properties.

concrete =False
If True, indicates the use of concrete table inheritance (covered in detail in Chapter
8).

extension =None
Either a MapperExtension or a list of MapperExtensions to be applied on all opera-
tions on this mapper (covered in detail later in this chapter in the section
“Extending Mappers).

inherits=None
Another mapper that will serve as the “parent” when using mapper inheritance
(covered in detail in Chapter 8).

inherit_condition=None
The method of joining tables in joined table inheritance (covered in detail in
Chapter 8).

inherit_foreign_keys=None
The “foreign” side of the inherit_condition parameter.

106 | Chapter 6: Building an Object Mapper

order_by=None
The default ordering for entities when selecting from this mapper.

non_primary=False
When True, specifies that this is a non-primary mapper. For any mapped class,
only one primary mapper can be registered. When you create an instance of the
class and save it to the database, the primary mapper alone determines how that
object will be saved. Nonprimary mappers are useful for loading objects through
a different way than the primary mapper (e.g., from a different table, with a dif-
ferent set of columns, etc). Any number of non_primary mappers may be defined
for a class.

polymorphic_on=None
Column that identifies which class/mapper should be used when using ineritance
for a particular row (covered in detail in Chapter 8).

polymorphic_identity=None
Value stored in the polymorphic_on parameter to identify this mapper in an inher-
itance relationship (covered in detail in Chapter 8).

polymorphic_fetch='union'
The method used to fetch subclasses using joined-table inheritance, either ‘union',
’select', or ‘deferred’. (covered in detail in Chapter 8).

properties=None
Dictionary of properties to be mapped onto the class (in addition to automatically
mapped properties).

include_properties=None
List of properties to map onto the class (columns in the mapped table but not
referenced in this list will not be mapped automatically).

exclude_properties=None
List of properties not to map onto the class (columns in the mapped table will be
mapped automatically unless they are in this list)

primary_key=None
List of columns that define the primary key for the selectable being mapped. (By
default, this is the primary key of the table being mapped, but this behavior can be
overridden with this parameter.)

select_table=None
The selectable used to select instances of the mapped class. Generally used with
polymorphic loading (covered in detail in Chapter 8).

version_id_col=None
An integer column on the mapped selectable that is used to keep a version ID of
the data in that row. Each save will increment this version number. If the version
number is changed between the time when the object is selected and when it is
flushed, then a ConcurrentModificationError is thrown.

Declaring Object Mappers | 107

Declaring Relationships Between Mappers
Although the features that SQLAlchemy provides for mapping tables and other select-
ables to classes are powerful in their own right, SQLAlchemy also allows you to model
relationships between tables as simple Python lists and properties using the relation(
) function in the properties parameter of the mapper() function.

Basic Relationships
The three main relationships modeled by SQLAlchemy are 1:N, M:N, and 1:1 (which
is actually a special case of 1:N). In a 1:N relationship, one table (the “N” side) generally
has a foreign key to another table (the “1” side). In M:N, two tables (the “primary”
tables) are related via a scondary, “join” table that has foreign keys into both primary
tables. A 1:1 relationship is simply a 1:N relationship where there is only one “N"-side
row with a foreign key to any particular “1"-side row.

1:N relations

To model each type of relationship, SQLAlchemy uses the relation() function in the
properties dict of the mapper. In many cases, SQLAlchemy is able to infer the proper
join condition for 1:N relations. For instance, since the stores in our data model are
members of regions (a 1:N relationship region:store), we can model this on our
Region class as follows:

>>> mapper(Store, store_table)
<sqlalchemy.orm.mapper.Mapper object at 0x2b794eb2f610>
>>> mapper(Region, region_table, properties=dict(
... stores=relation(Store)))

<sqlalchemy.orm.mapper.Mapper object at 0x2b794eb3af90>
>>> rgn = session.query(Region).get(1)
2007-10-13 12:59:47,876 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT region.id AS region_id, region.name AS region_name
FROM region
WHERE region.id = ? ORDER BY region.oid
 LIMIT 1 OFFSET 0
2007-10-13 12:59:47,877 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> s0 = Store(name='3rd and Juniper')
>>> rgn.stores.append(s0)
2007-10-13 13:00:06,339 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT store.id AS store_id, store.region_id AS store_region_id,
... store.name AS store_name
FROM store
WHERE ? = store.region_id ORDER BY store.oid
2007-10-13 13:00:06,339 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> session.flush()

108 | Chapter 6: Building an Object Mapper

2007-10-13 13:00:14,344 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO store (region_id, name) VALUES (?, ?)
2007-10-13 13:00:14,345 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, '3rd and Juniper']

SQLAlchemy is able to infer the 1:N relation type by the foreign key relationship
between region_table and store_table.

Adding a store to the region is as simple as appending on to the property. Generally,
when working at the ORM level, it is not necessary to worry about foreign keys. The
SELECT statement is necessary for SQLAlchemy to retrieve the inital contents of
the “stores” property.

SQLAlchemy automatically infers that a new store must be inserted with the
region_id properly set.

In some cases, SQLAlchemy is unable to infer the proper join condition (for instance,
when there are multiple foreign key relations between the two tables). In this case, we
can simply use the primaryjoin parameter to the relation() function:

mapper(Region, region_table, properties=dict(
 stores=relation(Store,
 primaryjoin=(store_table.c.region_id
 ==region_table.c.id))))

M:N relations

It is often useful to model many-to-many (M:N) type relations between objects. In the
database, this is accomplished by the use of an association or join table. In the following
schema, the relation between the product_table and the category_table is a many-to-
many:

category_table = Table(
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_category_table = Table(
 'product_category', metadata,
Column('product_id', None, ForeignKey('product.sku'),
... primary_key=True),
Column('category_id', None, ForeignKey('category.id'),
... primary_key=True))

In SQLAlchemy, we can model this relationship with the relation() function and the
secondary parameter:

>>> mapper(Category, category_table, properties=dict(

Declaring Relationships Between Mappers | 109

... products=relation(Product,

... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0xee6810>
>>> mapper(Product, product_table, properties=dict(
... categories=relation(Category,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0xee6d10>
>>>
>>> session.query(Product).get('123').categories
2007-10-15 20:06:17,375 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-10-15 20:06:17,375 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'123']
[]

As in the case of the 1:N join, we can also explicitly specify the join criteria by using
the primaryjoin (the join condition between the table being mapped and the join table)
and the secondaryjoin (the join condition between the join table and the table being
related to) parameters:

mapper(Category, category_table, properties=dict(
 products=relation(Product, secondary=product_category_table,
primaryjoin=(product_category_table.c.category_id
 == category_table.c.id),
secondaryjoin=(product_category_table.c.product_id
 == product_table.c.sku))))
mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
primaryjoin=(product_category_table.c.product_id
 == product_table.c.sku),
secondaryjoin=(product_category_table.c.category_id
 == category_table.c.id))))

1:1 relations

SQLAlchemy also supports 1:1 mappings as a type of 1:N mappings. This is modeled
in our schema with the product_table and the product_summary_table:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table(
 'product_summary', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))

Note in particular the foreign key relationship between product_table and product_sum
mary_table. This relationship allows, in SQL, many product_summary_table rows to ex-

110 | Chapter 6: Building an Object Mapper

ist for one product_table row. If left to its own devices, then, SQLAlchemy will assume
that this is a 1:N join:

>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xeee150>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary)))
<sqlalchemy.orm.mapper.Mapper object at 0xef0410>
>>>
>>> prod = session.query(Product).get('123')
>>> print prod.summary
[]

To avoid this, we simply specify uselist=False to the relation() function:

>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xef5c90>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary, uselist=False)))
<sqlalchemy.orm.mapper.Mapper object at 0xef88d0>
>>>
>>> prod = session.query(Product).get('123')
>>> print prod.summary
None

Using BackRefs
In most cases, when mapping a relation between two tables, we want to create a prop-
erty on both classes. We can certainly do this in SQLAlchemy by using two relation(
) calls, one for each mapper, but this is verbose and potentially leads to the two prop-
erties becoming out-of-sync with each other. To eliminate these problems, SQLAl-
chemy provides the backref parameter to the relation() function:

>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xfbba10>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary, uselist=False,
... backref='product')))
<sqlalchemy.orm.mapper.Mapper object at 0xee7dd0>
>>>
>>> prod = session.query(Product).get('123')
>>> prod.summary = ProductSummary(name="Fruit", description="Some
... Fruit")
>>> print prod.summary
<ProductSummary Fruit>
>>> print prod.summary.product
<Product 123>
>>> print prod.summary.product is prod
True

Declaring Relationships Between Mappers | 111

Note in particular that SQLAlchemy automatically updated the backref property. This
is particularly useful in many-to-many (M:N) relations. For instance, to model an M:N
relation, we could use the relation() function twice, but the two properties would not
remain synchronized with each other. Note the incorrect behavior in the following
example:

>>> mapper(Level, level_table, properties=dict(
... categories=relation(Category, backref='level')))
<sqlalchemy.orm.mapper.Mapper object at 0x1044d90>
>>> mapper(Category, category_table, properties=dict(
... products=relation(Product,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0x104a8d0>
>>> mapper(Product, product_table, properties=dict(
... categories=relation(Category,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0x104aed0>
>>> lvl = Level(name='Department')
>>> cat = Category(name='Produce', level=lvl)
>>> session.save(lvl)
>>> prod = session.query(Product).get('123')
>>> print prod.categories
[]
>>> print cat.products
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]
>>> print cat.products
[]

If we declare a backref on the products property, however, the two lists are kept in sync:

>>> mapper(Level, level_table, properties=dict(
... categories=relation(Category, backref='level')))
<sqlalchemy.orm.mapper.Mapper object at 0x107cf90>
>>> mapper(Category, category_table, properties=dict(
... products=relation(Product, secondary=product_category_table,
... backref='categories')))
<sqlalchemy.orm.mapper.Mapper object at 0x107c350>
>>> mapper(Product, product_table)
<sqlalchemy.orm.mapper.Mapper object at 0x104f110>
>>> lvl = Level(name='Department')
>>> cat = Category(name='Produce', level=lvl)
>>> session.save(lvl)
>>> prod = session.query(Product).get('123')
>>> print prod.categories
[]
>>> print cat.products
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]

112 | Chapter 6: Building an Object Mapper

>>> print cat.products
[<Product 123>]

Rather than specifying just the backref’s name, we can also use the SQLAlchemy-pro-
vided backref() function. This function allows us to pass along arguments to the
relation that is created by the backref. For instance, if we wanted to declare the prod
uct property on the ProductSummary class rather than declaring the summary property on
the Product class, we could use backref() with uselist=False as follows:

mapper(ProductSummary, product_summary_table, properties=dict(
 product=relation(Product,
 backref=backref('summary', uselist=False))))
mapper(Product, product_table)

Using a Self-Referential Mapper
It is sometimes useful to have a relation() map from one object to another object of
the same class. This is referred to as self-referential mapping. For instance, in our sche-
ma, each row of the level_table has a parent_id column referring to another
level_table row:

level_table = Table(
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))

To specify the parent-child relationship between different levels, we can use the
relation() function with a little extra work. When there is a relation specified with a
self-referential foreign key constraint, SQLAlchemy assumes that the relation will be a
1:N relation. If we want to get only the “children” property working, then the mapper
setup is as simple as the following:

mapper(Level, level_table, properties=dict(
 children=relation(Level)))

However, we would also like to get the backref to the parent working as well. For this,
we need to specify the “remote side” of the backref. In the case of the “parent” attribute,
the “local side” is the parent_id column, and the “remote side” is the id column. To
specify the remote side of a relation (or backref), we use the remote_side parameter:

 >>> mapper(Level, level_table, properties=dict(
... children=relation(Level,
... backref=backref('parent',
...
... remote_side=[level_table.c.id]))))
<sqlalchemy.orm.mapper.Mapper object at 0x1050990>
>>>
>>> l0 = Level('Gender')
>>> l1 = Level('Department', parent=l0)
>>> session.save(l0)
>>> session.flush()

Declaring Relationships Between Mappers | 113

2007-10-19 10:23:53,861 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-19 10:23:53,862 INFO sqlalchemy.engine.base.Engine.0x..50
... [None, 'Gender']
2007-10-19 10:23:53,875 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-19 10:23:53,876 INFO sqlalchemy.engine.base.Engine.0x..50
... [1, 'Department']

We could, of course, specify the relation “in reverse” as well:

mapper(Level, level_table, properties=dict(
 parent=relation(Level, remote_side=[level_table.c.parent_id],
 backref='children')))

Note that a list is used for the remote_side parameter to allow for compound foreign
keys in the relation.

Cascading Changes to Related Objects
It is often the case, particularly in 1:N relations, that you want to cascade the changes
on one object to another “child” object. For instance, in the previous schema, if we
delete a row from the product_table, we would also want to delete it from the prod
uct_summary_table. In many cases, this can be handled natively by the database using
ON DELETE CASCADE in SQL or the ondelete parameter in the Table() definition. In some
cases, however, the underlying database may not support cascading deletes natively.
For circumstances such as these, SQLAlchemy provides the cascade parameter to
relation()s and backref()s.

The cascade parameter is specified as a string composed of a comma-separated list of
keywords that specify which session operations should cascade onto the related objects.
In the following list, the “parent” object is the one that has the relation as a property.
The “child” object is the object that is related to. For instance, in the following relation,
the Region object is the “parent”, and the related Store objects are the “children”.

mapper(Region, region_table, properties=dict(
 stores=relation(Store)))

All of the cascade values in the following list refer to various functions that are per-
formed by the Session object (covered in more detail in Chapter 7). The default value
for the cascade parameter on a relation is "save-update,merge".

all
Specifies that all options should be enabled except delete-orphan:

delete
When the parent object is marked for deletion via session.delete(), mark the
child(ren) as well.

114 | Chapter 6: Building an Object Mapper

save-update
When the parent object is attached to the session, attach the child(ren) as well.
(Attachment to a session generally happens by calling the save(), update(), or
save_or_update() methods on the Session object.)

refresh-expire
When the parent object is refreshed (re-loaded from the database) or expired
(marked as expired, to be refreshed if any properties are subsequently read), refresh
or expire the child(ren) as well.

merge
When the parent object is merged, the merge the child(ren) as well. Merging is the
process of taking an object and copying its state onto a persistent instance of that
object that is managed by the session.

expunge
When the parent object is expunged from the session (removing all references to
the object from the session, the opposite of save_or_update()), expunge the
child(ren) as well.

delete-orphan
When the child object is removed from the relation (by reassigning a 1:1 or N:1
relation or by removing it from the list in a 1:N or M:N relation), mark the child
object for deletion. (This operation is referred to as “orphaning” the child object
by removing its relation to its parent.)

Other relation() and backref() Parameters
The relation(argument, secondary=None, **kwargs) and backref(name, **kwargs) func-
tions also take a number of other parameters, specified in the following list of argu-
ments. relation() and backref() take the same keyword arguments.

backref (relation() only)
Either the name of the property to be used for the reverse relationship, or an in-
vocation of the backref() function to customize the backreference further.

cascade
String of comma-separated cascade values (for more detail, see the list of cascade
values in the preceding section).

collection_class
The class or function used to build a list-holding object (used to store 1:N and M:N
relations). See the section “Using custom collections in relations“ for more detail.

foreign_keys
List of columns that are used as the “foreign keys” in the relation, if no actual
foreign keys are present. Always used in conjunction with explicit primaryjoin and/
or secondaryjoin parameters.

Declaring Relationships Between Mappers | 115

join_depth=None
When non-None, limits the depth an eager-loading join will traverse with a self-
referential mapper. The join_depth specifies the maximum number of times the
same mapper can be present along a join branch before eager loading is stopped.
The default value of None stops the traversal of an eager join when it encounters
the first duplicate mapper.

lazy=True
Specifies how related items should be loaded. The options are:

True (default)
Load items when the property is first accessed.

False
Load the items eagerly when the parent is fetched, using a JOIN or LEFT
OUTER JOIN.

None
SQLAlchemy will never automatically load the related items. This is used for
write-only properties or properties that are populated in some other way.

'dynamic'
Returns a Query object when reading the property and supports writes only
through the append() and remove() methods. This option allows partial results
to be fetched lazily. This option is mainly used in backrefs. To use dynamic
loading on a forward relation, use the dynamic_loader() function in place of
relation().

order_by
List of ClauseElements specifying the ordering that should be applied when loading
a 1:N or M:N relation.

passive_deletes=False
When True, indicates that the database will automatically cascade deletes (either
by deleting the child row or by setting its foreign key to NULL, whichever is ap-
propriate). This prevents the default SQLAlchemy behavior of loading related
objects from the database to either set them to deleted or to set their foreign key
column to NULL.

post_update=False
If True, this property will be handled by a separate statement whenever inserting,
updating, or deleting the parent row. If False, SQLAlchemy will attempt to update
the row along with all its relations in a single statement, something that is impos-
sible to do when there is a cyclical set of foreign key relationships.

Attempting to insert, update, or delete such a cyclical set will raise a “cyclical de-
pendency” exception when flush()ing the session. Setting post_update to True on
one of the relations in the cycle will “break” it and allow flushing to proceed.

116 | Chapter 6: Building an Object Mapper

primaryjoin
The ClauseElement that specifies how to join the parent row to the child row (in a
1:N, N:1, or 1:1 relation) or the association table row (in an M:N relation). If not
specified, SQLAlchemy will infer a relationship based on the foreign key relation-
ships between the tables involved in the relation.

remote_side
In a self-referential relationship, the column or columns that form the “remote
side” (i.e. the “child side”) of the relationship.

secondary
In an M:N relationship, this argument specifies the join table used to create the
relation. Note that, if you are using SQLAlchemy’s ability to do M:N relationships,
the join table should only be used to join the two tables together, not to store
auxilliary properties. If you need to use the intermediate join table to store addi-
tional properties of the relation, you should use two 1:N relations instead.

secondaryjoin
The ClauseElement that specifies how to join the association table row to the child
row in an M:N relation. If not specified, SQLAlchemy will infer a relationship based
on the foreign key relationships between the tables involved in the relation.

uselist=True
If False, forces SQLAlchemy to use a scalar to represent a 1:N relationship (thus
modeling a 1:1 relationship).

viewonly=False
If True, tells SQLAlchemy that the relation is suitable only for read operations. This
allows greater flexibility in the join conditions (normally these must be fairly
straightforward in order for SQLAlchemy to determine how to persist the relation).
Updates to a relation marked as viewonly will not have any effect on the flush
process.

Using custom collections in relations

When you specify a relation() that implements a one-to-many or many-to-many join,
SQLAlchemy uses a collection to implement the property on the mapped object. By
default, this collection is a list. In order to implement appropriate cascade and back-
ref behavior, however, SQLAlchemy must instrument the class, tracking additions and
removals of objects to and from the collection. This happens via the CollectionAdap
ter class, which is used by SQLAlchemy to link the class that implements the collection
with the attribute on the mapped object.

To complicate matters further, SQLAlchemy provides the collection_class parameter,
which allows you to customize the implementation of list-like relationships. If you
specify a collection_class value of the built-in types of list, dict, set, or any subclass
of these types, SQLAlchemy will automatically apply the appropriate instrumentation

Declaring Relationships Between Mappers | 117

to track changes. For instance, if we wish to use a set to track the changes to the
stores attribute in a Region, we could simply write the following:

mapper(Region, region_table, properties=dict(
 stores=relation(Store, collection_class=set)))

In some cases, SQLAlchemy can even instrument custom collection classes that are
not derived from Python’s built-in collection types by inspecting the class definition
and determining whether it is list-like, set-like, or dict-like. This inference is not
perfect, however, so SQLAlchemy provides two methods to override it. The first is the
__emulates__ class attribute. If you supply a built-in type as the value for this attribute,
SQLAlchemy will assume that your custom collection class is “like” the type you name.
So, to implement a collection that is set-like but includes a list-like append() method,
we could do the following:

class SetAndListLike(object):
 __emulates__ = set
 def __init__(self):
 self._c = set()
 def append(self, o):
 self._c.add(o)
 def remove(self, o):
 self._c.remove(o)
 def __iter__(self):
 return iter(self._c)

The second method for overriding the collection_class inference mechanism is by
using the SQLAlchemy-provided collection decorators, which are available as attrib-
utes of the collections class in the sqlalchemy.orm.collections module. In the previous
example, for instance, SQLAlchemy will correctly infer the usage of remove() and
__iter__(), but since append() is not normally used in set-like objects, it will not be
instrumented. To force SQLAlchemy to instrument this method, we can use collec
tion.appender:

from sqlalchemy.orm.collections import collection

class SetAndListLike(object):
 __emulates__ = set
 def __init__(self):
 self._c = set()
 @collection.appender
 def append(self, o):
 self._c.add(o)
 def remove(self, o):
 self._c.remove(o)
 def __iter__(self):
 return iter(self._c)

The following decorators are available for manually instrumenting your custom col-
lection class:

118 | Chapter 6: Building an Object Mapper

appender(cls, fn)
This decorator marks the decorated function as a “collection appender.” The dec-
orated function should take one positional argument: the value to add to the
collection.

remover(cls, fn)
This decorator marks the decorated function as a “collection remover.” The dec-
orated function should take one positional argument: the value to remove from
the collection.

iterator(cls, fn)
This decorator marks the decorated function as a “collection iterator.” The deco-
rated function should take no arguments and return an iterator over all collection
members.

internally_instrumented(cls, fn)
This decorator prevents other decorators from being applied to the decorated
function. This is useful to prevent “recognized” method names such as append()
from being automatically decorated.

on_link(cls, fn)
This decorator marks the decorated function as a “linked to attribute” event han-
dler. This event handler is called when the collection class is linked to the
CollectionAdapter that, in turn, is linked to the relation attribute. The decorated
function should take one positional argument: the CollectionAdapter being linked
(or None if the adapter is being unlinked). This might be useful if you wish to per-
form some setup on the mapped class or relation when your custom collection is
initially linked.

adds(cls, arg)
This decorator factory is used to create decorators that function as “collection
appenders.” The one argument to the factory is an indicator of which parameter
to the decorated function should be added to the collection. This argument may
be specified as either an integer (representing the position number of a positional
argument) or a string (indicating the name of the parameter).

replaces(cls, arg)
This decorator factory is used to create decorators that function as “collection
replacers.” The one argument to the factory is an indicator of which parameter to
the decorated function should be added to the collection. This argument may be
specified as either an integer (representing the position number of a positional
argument) or a string (indicating the name of the parameter). The return value from
the decorated function, if any, is used as the value to be removed from the function.

removes(cls, arg)
This decorator factory is used to create decorators that function as “collection
removers.” The one argument to the factory is an indicator of which parameter to
the decorated function should be removed from the collection. This argument may

Declaring Relationships Between Mappers | 119

be specified as either an integer (representing the position number of a positional
argument) or a string (indicating the name of the parameter).

removes_return(cls)
This decorator factory is used to create decorators that function as “collection
removers.” The value that is returned from the decorated function is the value that
SQLAlchemy will consider to be removed from the collection. This is useful for
implementing a list-like pop() method, for instance.

One common use-case is using a dict to represent a relation. This presents a problem
over using sets and lists, however, as dicts require key values. The sqlal
chemy.orm.collections module provides the following helpers for just this purpose:

column_mapped_collection(mapping_spec)
Return a collection class that will be keyed by the mapping_spec, which may be
either a column from the related table or a list of columns from the related table.

attribute_mapped_collection(attr_name)
Return a collection class that will be keyed by the attr_name, which is the name of
an attribute on the related class.

mapped_collection(keyfunc)
Return a collection class that will be keyed by the value returned from the supplied
keyfunc function. keyfunc takes as its single parameter the related object and re-
turns a key value.

To use a dictionary that is keyed by the store name in our Region class, for instance, we
could either use the column:

mapper(Region, region_table, properties=dict(
 stores=relation(Store,
collection_class=column_mapped_collection(store_table.c.name)))

or the attribute:

mapper(Region, region_table, properties=dict(
 stores=relation(Store,
collection_class=attribute_mapped_collection('name')))

If you wish to determine the key value to be used in some other way, you can also use
the SQLAlchemy-supplied MappedCollection class as base class for your custom dict-
like classes. MappedCollection takes a keyfunc parameter in its constructor just like the
mapped_collection() function.

Extending Mappers
Although the mapper function, combined with the various property creation functions,
is extremely powerful, it is sometimes useful to extend the functionality of a mapper.
To that end, SQLAlchemy provides the MapperExtension class, which can be extended
to provide mapper behavior modification via a series of hooks. Multiple MapperExten

120 | Chapter 6: Building an Object Mapper

sions can be registered on a mapper, allowing a chain of responsibility for modifying
the mapper behavior. MapperExtensions are registered either in the mapper() function
call via the extension parameter, or by using an extension() argument to the option()
method in queries (covered in Chapter 7).

Each hook should return either orm.EXT_CONTINUE or orm.EXT_STOP. (Any other value
will be interpreted by SQLAlchemy as orm.EXT_STOP.) If orm.EXT_CONTINUE is returned,
processing continues, either to the next MapperExtension or by the mapper itself. If
orm.EXT_STOP is returned, then the mapper will not call any other extensions in the
chain.

Some of the useful hooks in MapperExtension are described in the following list:

before_delete(self, mapper, connection, instance)
Called with an object instance before that instance is deleted.

before_insert(self, mapper, connection, instance)
Called with an object instance before that instance is inserted.

before_update(self, mapper, connection, instance)
Called with an object instance before that instance is updated.

after_delete(self, mapper, connection, instance)
Called with an object instance after that instance is deleted.

after_insert(self, mapper, connection, instance)
Called with an object instance after that instance is inserted.

after_update(self, mapper, connection, instance)
Called with an object instance after that instance is updated.

append_result(self, mapper, selectcontext, row, instance, result, **flags)
Called just before an object instance is appended to a result list. Returning anything
other than EXT_CONTINUE will prevent the instance from being appended to the re-
sult.

create_instance(self, mapper, selectcontext, row, class_)
Called when a new object is about to be created from a row. If None is returned,
normal object creation will take place. Any other value is presumed to be the object
instance created by the MapperExtension.

get(self, query, *args, **kwargs)
Overrides the get() method of the Query object if anything other than EXT_CON
TINUE is returned.

get_session(self)
Called to retrieve a Session instance with which to register a new object.

load(self, query, *args, **kwargs)
Used to override the load() method of the Query object, if anything other than
EXT_CONTINUE is returned.

Extending Mappers | 121

populate_instance(self, mapper, selectcontext, row, instance, **flags)
Called when a new object is about to have its attributes populated. If EXT_CON
TINUE is returned, normal attribute population will take place. Any other value will
prevent attribute population by SQLAlchemy.

translate_row(self, mapper, context, row)
Called before rows are converted to instances, allowing the row to be transformed.
The new row (or the original, unmodified row) must be returned from this method.

instrument_class(self, mapper, class_)
Called at class instrumentation time.

init_instance(self, mapper, class_, oldinit, instance, args, kwargs)
Called when initializing an instance (as part of the constructor call).

init_failed(self, mapper, class_, oldinit, instance, args, kwargs)
Called when instance initialization fails (when the constructor raises an unhandled
exception).

ORM Partitioning Strategies
Sometimes you want to use the ORM to map objects that may exist in multiple data-
bases. SQLAlchemy provides support for both “vertical” partitioning (placing different
kinds of objects or different tables in different databases) as well as “horizontal” par-
titioning, also called “sharding” (partitioning the rows of a single table across multiple
databases).

Vertical Partitioning
In vertical partitioning, different mapped classes are retrieved from different database
servers. In the following example, we create product_table in one in-memory sqlite
database and product_summary_table in another:

engine1 = create_engine('sqlite://')
engine2 = create_engine('sqlite://')

metadata = MetaData()

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table(
 'product_summary', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))

product_table.create(bind=engine1)
product_summary_table.create(bind=engine2)

122 | Chapter 6: Building an Object Mapper

stmt = product_table.insert()
engine1.execute(
 stmt,
 [dict(sku="123", msrp=12.34),
 dict(sku="456", msrp=22.12),
 dict(sku="789", msrp=41.44)])
stmt = product_summary_table.insert()
engine2.execute(
 stmt,
 [dict(sku="123", name="Shoes", description="Some Shoes"),
 dict(sku="456", name="Pants", description="Some Pants"),
 dict(sku="789", name="Shirts", description="Some Shirts")])

Now, we can create and map the Product and ProductSummary classes:

class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 def __repr__(self):
 return '<Product %s>' % self.sku

class ProductSummary(object):
 def __init__(self, name, description):
 self.name = name
 self.description = description
 def __repr__(self):
 return '<ProductSummary %s>' % self.name

clear_mappers()
mapper(ProductSummary, product_summary_table, properties=dict(
 product=relation(Product,
 backref=backref('summary', uselist=False))))
mapper(Product, product_table)

Finally, we configure the session to load the Product class from engine1 and Product
Summary from engine2:

>>> Session = sessionmaker(binds={Product:engine1,
... ProductSummary:engine2})
>>> session = Session()
>>> engine1.echo = engine2.echo = True
>>> session.query(Product).all()
2007-11-17 14:32:20,890 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-11-17 14:32:20,895 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-17 14:32:20,895 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Product 789>]
>>> session.query(ProductSummary).all()
2007-11-17 14:32:20,900 INFO sqlalchemy.engine.base.Engine.0x..10

ORM Partitioning Strategies | 123

... BEGIN
2007-11-17 14:32:20,901 INFO sqlalchemy.engine.base.Engine.0x..10
... SELECT product_summary.sku AS product_summary_sku,
... product_summary.name AS product_summary_name,
... product_summary.description AS product_summary_description
FROM product_summary ORDER BY product_summary.oid
2007-11-17 14:32:20,902 INFO sqlalchemy.engine.base.Engine.0x..10 []
[<ProductSummary Shoes>, <ProductSummary Pants>, <ProductSummary
... Shirts>]

Note that the appropriate engine is invoked depending on which class is being queried,
completely transparently to the user.

Horizontal Partitioning
In horizontal partitioning, or “sharding,” the database schema (or part of it) is repli-
cated across multiple databases (“shards”). This essentially means that some rows of
a mapped table will be loaded from one database and some from another. In order to
use sharding, you must provide functions that identify which database to access in
various situations. These arguments are passed to the sessionmaker() function, along
with a class_ parameter specifying that we will be creating a ShardedSession:

Session = sessionmaker(class_=ShardedSession)

The first function that must be provided is the shard_chooser(mapper, instance,
clause=None) function. This function is responsible for returning a “shard ID” that
should contain the row for the given mapper and instance. The ID may be based off of
the instance’s properties, or it may simply be the result of a round-robin selection
scheme. If it is not based on attributes of the instance, the shard_chooser() should
modify the instance in some way to mark it as participating in the returned shard.

The next function that must be provided is the id_chooser(query, ident) function. This
function, when presented with a query and a tuple of identity values (the primary key
of the mapped class), should return a list of shard IDs where the objects sought by the
query might reside. In a round-robin implementation, all of the shard IDs might be
returned. In other implementations, the shard ID might be inferred from the ident
parameter.

The final function that must be provided when using sharding is the
query_chooser(query) function, which should return a list of shard IDs where results
for a given query might be found. Note that both id_chooser() and query_chooser()
may simply return a list of all the shard IDs, in which case each shard will be searched
for the results of the query.

In the following example, we create a sharded implementation of the product database
where products are stored according to the first digit of their SKU. If the first digit is
even, the products are stored in engine1; otherwise they are stored in engine2. All other
types of objects will be stored in engine2.

124 | Chapter 6: Building an Object Mapper

engine1 = create_engine('sqlite://')
engine2 = create_engine('sqlite://')

metadata = MetaData()

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
metadata.create_all(bind=engine1)
metadata.create_all(bind=engine2)

class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 def __repr__(self):
 return '<Product %s>' % self.sku

clear_mappers()
product_mapper = mapper(Product, product_table)

def shard_chooser(mapper, instance, clause=None):
 if mapper is not product_mapper:
 return 'odd'
 if (instance.sku
 and instance.sku[0].isdigit()
 and int(instance.sku[0]) % 2 == 0):
 return 'even'
 else:
 return 'odd'

def id_chooser(query, ident):
 if query.mapper is not product_mapper:
 return ['odd']
 if (ident \
 and ident[0].isdigit()
 and int(ident[0]) % 2 == 0):
 return ['even']
 return ['odd']

def query_chooser(query):
 return ['even', 'odd']

Session = sessionmaker(class_=ShardedSession)
session = Session(
 shard_chooser=shard_chooser,
 id_chooser=id_chooser,
 query_chooser=query_chooser,
 shards=dict(even=engine1,
 odd=engine2))

ORM Partitioning Strategies | 125

Now we can create some products, save them to the database, observe their partitioning
using the SQL layer, and observe that the session’s Query object is able to correctly
merge results from both databases:

>>> products = [Product('%d%d%d' % (i,i,i), 0.0)
... for i in range(10)]
>>> for p in products:
... session.save(p)
...
>>> session.flush()
>>>
>>> for row in engine1.execute(product_table.select()):
... print row
...
(u'000', Decimal("0"))
(u'222', Decimal("0"))
(u'444', Decimal("0"))
(u'666', Decimal("0"))
(u'888', Decimal("0"))
>>> for row in engine2.execute(product_table.select()):
... print row
...
(u'111', Decimal("0"))
(u'333', Decimal("0"))
(u'555', Decimal("0"))
(u'777', Decimal("0"))
(u'999', Decimal("0"))
>>> for row in engine1.execute(product_table.select()):
... print row
...
>>> for row in engine2.execute(product_table.select()):
... print row
...
>>> session.query(Product).all()
[<Product 000>, <Product 222>, <Product 444>, <Product 666>,
... <Product 888>, <Product 111>, <Product 333>, <Product 555>,
... <Product 777>, <Product 999>]

126 | Chapter 6: Building an Object Mapper

CHAPTER 7

Querying and Updating at the ORM
Level

This chapter introduces the SQLAlchemy Session object. You will learn how to use the
Session to perform queries and updates of mapped classes, as well as how to customize
the Session class and create a “contextual” session that simplifies session management.

The SQLAlchemy ORM Session Object
SQLAlchemy manages all querying and updating of objects in the ORM with Session
objects. The Session is responsible for implementing the unit of work pattern of syn-
chronization between in-memory objects and database tables. Sessions also provide a
rich interface for querying the database based on object attributes rather than the un-
derlying SQL database structure.

Creating a Session
The first step in creating a session is to obtain a Session object from SQLAlchemy. One
way to do this is to directly instantiate the sqlalchemy.orm.session.Session class.
However, this constructor for the SQLAlchemy-provided Session has a number of
keyword arguments, making instantiating Sessions in this manner verbose and tedious.
In order to alleviate this burden, SQLAlchemy provides the sessionmaker() function,
which returns a subclass of orm.session.Session with default arguments set for its
constructor.

Once you have this customized Session class, you can instantiate it as many times as
necessary in your application without needing to retype the keyword arguments (which
in many applications will not change between Session instantiations). If you wish to
override the defaults supplied to sessionmaker, you can do so at Session instantiation
time. You can also modify the default arguments bound to a particular Session subclass
by calling the class method Session.configure():

127

Create a Session class with the default
options
Session = sessionmaker(bind=engine)

Create an unbound Session class
Session = sessionmaker()

Bind the Session class once the engine
is available
Session.configure(bind=engine)

The sessionmaker() and the associated Session subclass’s configure class method and
constructor take the following keyword arguments:

bind=None
The database Engine or Connection to which to bind the session.

binds=None
Optional dictionary that provides more detailed binding information. The keys to
this dictionary can be mapped classes, mapper() instances, or Tables. The values
in the dictionary indicate which Engine or Connectable to use for a given mapped
class, overriding the values set in the bind parameter.

autoflush=True
When True, the Session will automatically be flush()ed before executing any
queries against the session. This ensures that the results returned from the query
match the operations that have been done in-memory in the unit-of-work.

transactional=False
When True, the Session will automatically use transactions. To commit a set of
changes, simply use the Session’s commit() method. To revert changes, use the
rollback() method. Using transactional=True, it is never necessary to explicitly
begin() a transaction on a Session. It is, however, necessary to explicitly call
commit() at the end of your transaction.

twophase=False
This tells SQLAlchemy to use two-phase commits on all transactions (on databases
that support two-phase commits, currently MySQL and PostgreSQL, soon to in-
clude Oracle), which is useful when dealing with multiple database instances. In
this case, after flush()ing changes to all databases but before issuing a COMMIT,
SQLAlchemy issues a PREPARE to each database, allowing the entire transaction
to be rolled back if an error is raised during any of the PREPARE executions.

echo_uow=False
When True, instructs the Session to log all unit-of-work operations. This is the
equivalent of setting a log level of logging.DEBUG for the 'sqlalchemy.orm.unitof
work' logger.

128 | Chapter 7: Querying and Updating at the ORM Level

extension=None
Optional SessionExtension that receives various session events, similar to the Map
perExtension. (SessionExtensions are covered in more detail later in this chapter
in “Extending Sessions.”)

weak_identity_map=True
The default value uses weak references in the identity map maintained by the ses-
sion, allowing objects that are a) no longer referenced outside the session and b)
have no pending changes to be automatically garbage-collected. If this is set to
False, then a regular Python dict is used, and objects will remain in the Session’s
identity map until they are explicitly removed using the Session methods
expunge(), clear(), or purge().

Saving Objects to the Session
Once you have a Session instance, you can begin persisting in-memory objects. This is
accomplished quite simply by calling the save() method on the Session object. Suppose
we have the following schema and mapping:

from sqlalchemy import *
from sqlalchemy.orm import *

engine = create_engine('sqlite://')
metadata = MetaData(engine)

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))

class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

mapper(Product, product_table)

In order to save two products to the database, we can do the following. Note that both
the echo_uow property on the session as well as the echo property on the Engine are
True in order to display exactly what SQLAlchemy is doing in response to our
flush() call:

>>> Session = sessionmaker(bind=engine, echo_uow=True)
>>> engine.echo = True
>>> session = Session()

The SQLAlchemy ORM Session Object | 129

>>>
>>> p1 = Product('123', 11.22)
>>> p2 = Product('456', 33.44)
>>> session.save(p1)
>>> session.save(p2)
>>> session.flush()
2007-10-28 16:55:05,117 INFO
... sqlalchemy.orm.unitofwork.UOWTransaction.0x..90 Task dump:

 UOWTask(0xb4e7d0, Product/product/None) (save/update phase)
 |- Save Product@0xb4e750
- Save Product@0xb4e690

2007-10-28 16:55:05,118 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-28 16:55:05,119 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 16:55:05,119 INFO sqlalchemy.engine.base.Engine.0x..90
... ['123', '11.22']
2007-10-28 16:55:05,120 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 16:55:05,120 INFO sqlalchemy.engine.base.Engine.0x..90
... ['456', '33.44']
2007-10-28 16:55:05,121 INFO
... sqlalchemy.orm.unitofwork.UOWTransaction.0x..90 Execute Complete

Object States with a Session
Objects can have various states as they relate to Sessions. These states are defined as
follows:

Transient
The object exists in memory only. It is not attached to a session, and it has no
representation in the database. A Transient object has no relationship to the ORM
other than the fact that its class has an associated mapper().

Pending
A Pending object has been marked for insertion into the database at the next
flush() operation. Transient objects become Pending when they are save()d to
the Session.

Persistent
The object is present in both the session and the database. Persistent objects are
created either by flush()ing Pending objects or by querying the database for ex-
isting instances.

Detached
The object has a corresponding record in the database, but is not attached to any
session. Detached objects cannot issue any SQL automatically to load related ob-
jects or attributes, unlike Persistent objects. An object becomes detached if it is
explicitly expunge()d from the session.

130 | Chapter 7: Querying and Updating at the ORM Level

We can actually save large graphs of objects to the database by using the default cas-
cade value 'save-update' on our relation() objects. For instance, consider the addi-
tional schema and mapping:

level_table = Table(
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))

category_table = Table(
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))

product_category_table = Table(
 'product_category', metadata,
Column('product_id', None, ForeignKey('product.sku'),
... primary_key=True),
Column('category_id', None, ForeignKey('category.id'),
... primary_key=True))

class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

class Level(object):
 def __init__(self, name, parent=None):
 self.name = name
 self.parent = parent
 def __repr__(self):
 return '<Level %s>' % self.name

class Category(object):
 def __init__(self, name, level, parent=None):
 self.name = name
 self.level = level
 self.parent = parent
 def __repr__(self):
 return '<Category %s.%s>' % (self.level.name, self.name)

Clear the mappers so we can re-map the Product class
with an additional property
clear_mappers()

mapper(Product, product_table, properties=dict(

The SQLAlchemy ORM Session Object | 131

 categories=relation(Category, secondary=product_category_table,
 backref='products')))

mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))

Now we can create a product hierarchy and assign some categories just as if there were
no database, and the Session will infer the appropriate operations to persist the entire
data model:

>>> department = Level('Department')
>>> tops = Category('Tops', level=department)
>>> bottoms = Category('Bottoms', level=department)
>>>
>>> class_ = Level('Class', parent=department)
>>> shirts = Category('Shirts', level=class_, parent=tops)
>>> pants = Category('Pants', level=class_, parent=bottoms)
>>>
>>> subclass = Level('SubClass', parent=class_)
>>> tshirts = Category('T-Shirts', level=subclass, parent=shirts)
>>> dress_shirts = Category('Dress Shirts', level=subclass,
... parent=shirts)
>>> slacks = Category('Slacks', level=subclass, parent=pants)
>>> denim = Category('Denim', level=subclass, parent=pants)
>>>
>>> # Create two more products
... p3 = Product('111', 55.95)
>>> p4 = Product('222', 15.95)
>>> p3.categories=[denim, pants, bottoms]
>>> p4.categories=[tshirts, shirts, tops]

Now that we have created all the objects and specified the relations between them, we
can save one object to the Session, and all related objects will be saved as well (this is
due to the default 'save-update' value of the cascade parameter in all the
relations() created). In this example, the department object is connected to all the
other objects through various relation()s, so it is sufficient to save it alone. Once this
is done, we can flush the changes out to the database. For the purposes of brevity, we
will use a fresh session with echo_uow set to False.

>>> session = Session(echo_uow=False)
>>> session.save(department)
>>> session.flush()
2007-10-28 18:41:10,042 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-28 18:41:10,043 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 18:41:10,043 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', '55.95']

132 | Chapter 7: Querying and Updating at the ORM Level

2007-10-28 18:41:10,045 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 18:41:10,045 INFO sqlalchemy.engine.base.Engine.0x..90
... ['222', '15.95']
2007-10-28 18:41:10,047 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,047 INFO sqlalchemy.engine.base.Engine.0x..90
... [None, 'Department']
2007-10-28 18:41:10,049 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,049 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, 'Class']
2007-10-28 18:41:10,053 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,053 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 'SubClass']
2007-10-28 18:41:10,057 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,057 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, None, 'Bottoms']
2007-10-28 18:41:10,059 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,059 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, None, 'Tops']
2007-10-28 18:41:10,060 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,060 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 1, 'Pants']
2007-10-28 18:41:10,062 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,063 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 2, 'Shirts']
2007-10-28 18:41:10,065 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,065 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 4, 'T-Shirts']
2007-10-28 18:41:10,066 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,066 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 4, 'Dress Shirts']
2007-10-28 18:41:10,068 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,068 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 3, 'Slacks']
2007-10-28 18:41:10,069 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,070 INFO sqlalchemy.engine.base.Engine.0x..90

The SQLAlchemy ORM Session Object | 133

... [3, 3, 'Denim']
2007-10-28 18:41:10,071 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product_category (product_id, category_id) VALUES
... (?, ?)
2007-10-28 18:41:10,072 INFO sqlalchemy.engine.base.Engine.0x..90
... [['222', 2], ['111', 1], ['111', 8], ['222', 4], ['111', 3],
... ['222', 5]]

Updating Objects in the Session
If we wish to update Persistent or Pending objects, we can simply modify them in-
memory and rely on the Session to figure out the changes required in the database.
This even works for related objects. For instance, if we decide to recategorize the prod-
uct with sku “111”, we would simply update the list of categories:

>>> p3.categories = [slacks, pants, bottoms]
2007-10-28 18:48:31,534 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product, product_category
WHERE ? = product_category.category_id AND product.sku =
... product_category.product_id ORDER BY product_category.oid
2007-10-28 18:48:31,534 INFO sqlalchemy.engine.base.Engine.0x..90
... [7]
>>> session.flush()
2007-10-28 18:48:31,554 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product_category WHERE product_category.product_id =
... ? AND product_category.category_id = ?
2007-10-28 18:48:31,555 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', 8]
2007-10-28 18:48:31,558 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product_category (product_id, category_id) VALUES
... (?, ?)
2007-10-28 18:48:31,558 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', 7]

Note in particular that SQLAlchemy has inferred the minimum change necessary to
update the relationship. Also note that SQLAlchemy allowed us to assign a normal
Python list for a relation()-type property. This is in contrast to some other ORMs,
which require you to use specialized add/remove functions to change object relation-
ships. One caveat with SQLAlchemy is that you are still required to only use the
remove() and append() list when using dynamic relation loaders (declared with
dynamic_loader() or lazy='dynamic'). This is due to the fact that SQLAlchemy never
implicitly loads the entire list of related objects into memory and so cannot deduce how
to update the database if you use other methods of modifying the property.

Embedding SQL expressions in a flush

One feature that can be particularly useful in performing atomic updates to an object
is the ability to assign an SQL expression (from the SQL expression language) to a
mapped property on an object. For instance, consider a banking application where

134 | Chapter 7: Querying and Updating at the ORM Level

there is a need to deduct a certain amount from the balance. In many cases, it is both
unsafe and inefficient to SELECT the balance and then UPDATE it to the previous
balance minus some amount. It would be better to simply deduct the amount atomically
in one UPDATE statement. So if we have the following (partial) schema and mapping:

account_table = Table(
 'account', metadata,
 Column('id', Integer, primary_key=True),
 Column('balance', Numeric))

class Account(object): pass

mapper(Account, account_table)

we could deduct a certain amount from an account balance atomically by doing some-
thing like the following:

>>> # Create the table for testing purposes
>>> account_table.create()
2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90
CREATE TABLE account (
 id INTEGER NOT NULL,
 balance NUMERIC(10, 2),
 PRIMARY KEY (id)
)

2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90 {}
2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
>>> # Create an account for testing purposes
>>> a = Account()
>>> a.balance = 100.00
>>> session.save(a)
>>> session.flush()
2007-10-28 19:21:29,581 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO account (balance) VALUES (?)
2007-10-28 19:21:29,582 INFO sqlalchemy.engine.base.Engine.0x..90
... ['100.0']
>>>
>>> a.balance = Account.c.balance - 50.0
>>> session.flush()
2007-10-28 19:21:29,700 INFO sqlalchemy.engine.base.Engine.0x..90
... UPDATE account SET balance=(account.balance - ?) WHERE
... account.id = ?
2007-10-28 19:21:29,700 INFO sqlalchemy.engine.base.Engine.0x..90
... ['50.0', 1]

Deleting Objects from the Session
In order to delete an object from the session, simply use the Session’s delete() method:

The SQLAlchemy ORM Session Object | 135

>>> session.delete(p3)
>>> session.flush()
2007-10-28 18:58:51,150 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product_category WHERE product_category.product_id =
... ? AND product_category.category_id = ?
2007-10-28 18:58:51,150 INFO sqlalchemy.engine.base.Engine.0x..90
... [['111', 1], ['111', 3], ['111', 7]]
2007-10-28 18:58:51,152 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product WHERE product.sku = ?
2007-10-28 18:58:51,153 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111']

Notice that SQLAlchemy automatically removed the corresponding entries in the prod
uct_category_table. This is because we declared that to be the secondary parameter of
a many-to-many relation(). This is a special feature of M:N relations. In 1:N relations,
unless you tell SQLAlchemy how to cascade a delete on the parent object, it will not
assume that the delete should be cascaded. In order to cascade delete()s onto the child
objects, simply specify cascade='delete' (or 'all') in the relation() function call.

Flushing, Committing, and Rolling Back Session Changes
We have already seen the basic usage of the flush() Session method. flush() can also
take an optional parameter objects, which specifies a list of objects to be flushed. If
this is omitted, all modified objects are flushed.

SQLAlchemy also provides support for managing transactions on a Session basis via
the begin(), commit(), and rollback() methods, and via the transactional=True pa-
rameter to the Session constructor. begin() begins a transaction, commit() commits
it, and rollback() rolls back to the state of the database at the last begin().

Specifying transactional=True lets SQLAlchemy know that all operations on this Ses
sion are intended to be in the context of a transaction, and so there is no need to issue
an explicit begin(). SQLAlchemy also supports the use of SAVEPOINTs on supported
databases (currently MySQL and PostgreSQL, soon to include Oracle) via the
begin_nested() method. In this case, the commit() and rollback() methods apply only
to the last “nested” transaction, so you can roll back “part” of a transaction.

Other Session Methods
Sessions have several utilities other than save() and delete() for dealing with objects
that they manage. These methods, as well as save(), delete(), and a few query-related
methods (covered in detail later in this chapter, in “Querying at the ORM Level”), are
documented here:

save(self, obj, entity=None)
Save the given object to the session. This operation cascades to related objects
according to the 'save-update' cascade rule.

136 | Chapter 7: Querying and Updating at the ORM Level

If an entity name is specified, then use the named nonprimary mapper() to persist
the object.

delete(self, obj)
Mark the given object for deletion at the next flush().

expire(self, obj)
Mark the given object as no longer up-to-date. This causes any mapped attributes
to be refetched from the database the next time they are accessed. This operation
cascades to related objects according to the 'refresh-expire' cascade rule.

refresh(self, obj)
Reload the object from the database with a fresh query. This operation cascades
to related objects according to the 'refresh-expire' cascade rule.

merge(self, obj, entity=None)
Copy the state of the given object onto a persistent object with the same database
identity. This will either load an existing Persistent instance from the database,
modify one in memory, or save a copy of the given obj. In none of these cases does
the object passed in become associated with the Session. This operation cascades
to related objects according to the 'merge' cascade rule.

If an entity name is specified, then use the named nonprimary mapper() to load
or save the Persistent object.

expunge(self, obj)
Remove all references to obj from the Session. This operation cascades to related
objects according to the 'expunge' cascade rule.

update(self, obj, entity=None)
Bring a given Detached obj into this session. This operation cascades to related
objects according to the 'save-or-update' cascade rule.

If an entity name is specified, then use the named nonprimary mapper() to load
or save the Detached object.

get(self, class_, ident, **kwargs)
Return a Persistent instance of the object with the given class_ and identifier. (An
object identifier is either the primary key value if there is only one primary key in
the underlying table, or a tuple of primary keys in the case of a composite primary
key.) If an entity_name is specified as part of kwargs, then use the named nonpri-
mary mapper to map the class. The other kwargs are passed unchanged to the
underlying query() used to retrieve the object.

load(self, class_, ident, **kwargs)
This is the same as the get() method with one exception: if the object was already
in the Session, the session will overwrite any pending changes with fresh values
from the database.

query(self, mapper_or_class, *addtl_entities, **kwargs)
Return a new Query object corresponding to this Session and the given map-
per_or_class.

The SQLAlchemy ORM Session Object | 137

close(self)
Clear the session and end any transactions in progress. This restores the Session
object to a “pristine” state, exactly the same as when it was initially instantiated.

execute(self, clause, params=None, mapper=None, **kwargs)
This method is a thin wrapper around the underlying engine or connection’s
execute() method. (The clause, params, and kwargs parameters are passed through
unmodified, for instance.) It is useful for executing SQL-level queries and updates
within the same transactional environment as your ORM queries and updates. If
the mapper parameter is specified, that mapper is used to determine the engine on
which to execute the query.

identity_map
The identity mapping between (class,identity) tuples and objects in the session.
Note that Persistent objects have an _instance_key attribute attached to them,
which is their Session identity.

new
A collection of all Pending objects added to the Session since the last flush().

dirty
A collection of all Persistent objects that have changes detected.

deleted
A collection of all Persistent objects that have been marked for deletion via the
Session delete() method.

Extending Sessions
Similar to the MapperExtension covered in Chapter 6, SessionExtensions can be used to
hook into session operations. Unlike MapperExtensions, SessionExtensions cannot
modify the process that they “hook into” easily, making SessionExtensions more useful
for recording Session operations than influencing them directly. SessionExtensions are
installed via the extension parameter to the Session constructor.

The various methods that a subclass of SessionExtension can implement are described
here:

before_commit(self, session)
Called just before a commit is executed.

after_commit(self, session)
Called just after a commit is executed.

after_rollback(self, session)
Called just after a rollback has occurred.

before_flush(self, session, flush_context, objects)
Called just before the flush process starts. The objects parameter is the optional
list of objects passed to the Session’s flush() method.

138 | Chapter 7: Querying and Updating at the ORM Level

after_flush(self, session, flush_context)
Called just after the flush process completes, but before any commit(). The ses-
sion’s properties at this point still show their pre-flush state.

after_flush_postexec(self, session, d flush_context)
Called just after the flush process completes, as well as after any automatic
commit() occurs. (If no explicit transaction is specified, all flush()es generate their
own transactions.) The session’s properties at this point show their final, post-
flush state.

Querying at the ORM Level
Saving and updating objects via SQLAlchemy’s ORM interface isn’t very useful without
the ability to retrieve objects from the database. This is where the Session’s query()
method comes in handy. In order to retrieve an iterator over all the objects of a particular
type in the database, simply specify either the class you wish to query or its mapper:

>>> query = session.query(Product)
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
>>> for obj in query:
... print obj
...
2007-11-16 16:19:42,669 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 16:19:42,669 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123>
<Product 456>
<Product 222>

Notice here that the query is generative, as were the SQL-layer queries mentioned in
Chapter 5. This means that SQLAlchemy will not actually execute the query on the
database until the results are iterated over. You can also retrieve all the results as a list
by calling the all() method on the query object:

>>> query.all()
2007-11-16 16:21:35,349 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 16:21:35,349 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Product 222>]

Since retrieving the entire collection of mapped objects isn’t very useful, SQLAlchemy
provides various methods to modify the query object. Note that all of these methods
actually generate and return a new query object rather than modifying the existing query
object. The most useful of these methods are filter() and filter_by(). These meth-
ods work, as their names imply, by restricting the set of objects returned from the query.

Querying at the ORM Level | 139

For instance, to retrieve all the products with an MSRP between $10 and $20, we could
use filter() as follows:

>>> session.bind.echo = False
>>> query = query.filter(Product.msrp > 10.00)
>>> query = query.filter(Product.msrp < 20.00)
>>> for product in query:
... print product.sku, product.msrp
...
123 11.22
222 15.95

Note that we can use mapped properties just like column objects in SQL expressions.
SQLAlchemy also provides access to the c attribute (and all the attached columns) from
the mapper’s underlying selectable. In addition to this, SQLAlchemy provides a number
of methods on mapped properties to facilitate the construction of complex queries.
Some of these methods are summarized in the following lists.

The following are methods on mapped columns:

asc(self)
Return a clause representing the mapped column in ascending order.

between(self, cleft, cright)
Generate a BETWEEN clause with the specified left and right values (column BE-
TWEEN cleft AND cright).

concat(self, other)
Generate a clause that concatenates the value of the column with the value given.

desc(self)
Generate a clause representing the mapped column in ascending order.

distinct(self)
Generate a clause that limits the result set to rows with distinct values for this
column.

endswith(self, other)
Generate a clause (using LIKE) that implements the Python endswith() string
method.

in_(self, other)
Generate an IN clause with other as the righthand side. other may be either a
sequence of literal values or a selectable.

like(self, other)
Generate a LIKE clause with other as the righthand side.

startswith(self, other)
Generate a clause (using LIKE) that implements the Python startswith() string
method.

The following are methods on mapped relations:

140 | Chapter 7: Querying and Updating at the ORM Level

any(self, criterion=None, **kwargs)
Generate a clause that will be true if any of the related objects satisfy the given
criterion. A filter_by()-style criterion (a conjunction of equality constraints) is
generated if kwargs is nonempty.

contains(self, other)
Generate a clause that will be true if the specified object is in the list of related
objects.

has(self, criterion=None, **kwargs)
For scalar-style relations, generate a clause that will be true if the related object
satisfies the given criterion. A filter_by()-style criterion (a conjunction of equality
constraints) is generated if kwargs is nonempty.

The filter() method, in fact, takes any valid SQL expression, allowing you to build
up complex queries fairly simply. Also note that the two filters were applied as a con-
junction: both criteria had to be satisfied in order to produce an object.

The filter_by() method allows more convenient filtering when the filter criteria are
all equality constraints. For instance, to retrieve the products with an MSRP of $11.22,
we could use the following query:

>>> query = session.query(Product)
>>> query = query.filter_by(msrp=11.22)
>>> print query.all()
[<Product 123>]

Note that we now specify the filter criteria as keyword arguments to filter_by(). The
query then searches for mapped properties with the given name and applies appropriate
filtering to the returned query.

The SQLAlchemy Query object also supports applying offsetting and limiting to a query
via the offset() and limit() methods, as well as the slicing operator:

>>> query = session.query(Product)
>>> print query.offset(2)
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT -1 OFFSET 2
>>> print query.limit(3)
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT 3 OFFSET 0
>>> print query[1:2]
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT 1 OFFSET 1

In many cases, we want to retrieve only one object from the database. The Query object
provides three different ways to do this:

Querying at the ORM Level | 141

get(ident)
Retrieve an object by its identity (the primary key of the mapped selectable). If
there is no object identified by that key, return None. get() is also available as a
method on the Session object.

first()
Retrieve the first result from the query. If there are no results, return None. This is
equivalent to query.all()[0].

one()
Retrieve the first result from the query, raising an exception unless the query returns
exactly one result. This is implemented by executing the query with a limit of 2. If
either 0 or 2 rows are returned, an exception is raised. Otherwise, the single object
is returned.

ORM Querying with Joins
The true power of the SQLAlchemy ORM query system is really only realized when
using it to join across the relations defined in the mapper() configuration. Joins can be
performed across mapped properties by using the join() method on the Query object.
Once a new class has been joined to the query, all its properties are available for use in
the filter() and filter_by() methods:

>>> query = session.query(Product)
>>> query = query.join('categories')
>>> query = query.filter_by(name='T-Shirts')
>>> print query.all()
[<Product 222>]
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id
WHERE category.name = ? ORDER BY product.oid

SQLAlchemy also allows you to join across multiple property “hops.” For instance, if
we wish to see all the products with some categorization under the “Class” level, we
could do the following:

>>> query = session.query(Product)
>>> query = query.join(['categories', 'level'])
>>> query = query.filter_by(name='Class')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id JOIN level ON level.id =
... category.level_id
WHERE level.name = ? ORDER BY product.oid

142 | Chapter 7: Querying and Updating at the ORM Level

>>> print query.all()
[<Product 222>]

Note that filter_by() used the Level’s name property, rather than the Category’s
name property, when performing the filter. SQLAlchemy keeps track of a “joinpoint,”
the last class referenced in an ORM join, and applies any filter_by() criteria to that
joinpoint until the joinpoint changes. In order to manually reset the joinpoint to the
“root” class, simply call the reset_joinpoint() method.

Any new join() calls will also reset the joinpoint to the root of the query. To disable
this behavior (and continue joining from the current joinpoint), simply specify
from_joinpoint=True in the call to join().

As you may have noticed, the join() method constructs inner joins. SQLAlchemy also
provides an outerjoin() method for constructing left outer joins. So, if we wanted to
get a list of all products that either have no “Class” categorization or have a “Class” of
“Pants,” we could execute the following query:

>>> query = session.query(Product)
>>> query = query.outerjoin('categories')
>>> query = query.filter(or_(Category.c.name=='Pants',
... Category.c.name==None))
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category ON
... category.id = product_category.category_id
WHERE category.name = ? OR category.name IS NULL ORDER BY
... product.oid
>>> print query.all()
[<Product 123>, <Product 456>]

When constructing complex queries using joins, it is often useful to join to the same
table twice. In this case, we can specify that the join() method use an alias for the table
being joined:

>>> query = session.query(Product)
>>> query = query.join('categories')
>>> query = query.filter_by(name='T-Shirts')
>>> query = query.join('categories', aliased=True)
>>> query = query.filter_by(name='Shirts')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id JOIN product_category AS
... product_category_1 ON product.sku =
... product_category_1.product_id JOIN category AS category_2 ON
... category_2.id = product_category_1.category_id
WHERE category.name = ? AND category_2.name = ? ORDER BY product.oid
>>> print query.all()
[<Product 222>]

Querying at the ORM Level | 143

One of the more powerful features of the SQLAlchemy ORM is that it allows properties
to be defined as either “lazily” loaded or “eagerly” loaded (via the lazy parameter to
the relation() function). It is often useful, however, to customize the load strategy of
various properties on a query-by-query basis. To facilitate this, SQLAlchemy provides
the options() method on the Query object and various functions, including
eagerload(name), lazyload(name), and eagerload_all(name) to customize the loading
strategy of relations on a query-by-query basis. eagerload() and lazyload() both
change the default loading strategy for the named property. eagerload_all() makes an
entire “property chain” eager-loaded.

For instance, suppose we are generating a table of all the products in the system, along
with their categorization and the level name. If we use the default lazy loading approach,
we will execute one query per object to read its categories and one query per category
to read its levels:

>>> session.bind.echo=True
>>> query = session.query(Product)
>>> session.clear()
>>> for prod in query:
... print prod.sku, prod.categories
...
2007-11-16 17:30:08,356 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 17:30:08,357 INFO sqlalchemy.engine.base.Engine.0x..90 []
1232007-11-16 17:30:08,360 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-11-16 17:30:08,361 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'123']
[]
4562007-11-16 17:30:08,364 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-11-16 17:30:08,365 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'456']
[]
2222007-11-16 17:30:08,367 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid

144 | Chapter 7: Querying and Updating at the ORM Level

2007-11-16 17:30:08,368 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'222']
2007-11-16 17:30:08,371 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,371 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
2007-11-16 17:30:08,373 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,374 INFO sqlalchemy.engine.base.Engine.0x..90
... [2]
2007-11-16 17:30:08,380 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,381 INFO sqlalchemy.engine.base.Engine.0x..90
... [3]
[<Category Department.Tops>, <Category Class.Shirts>, <Category
... SubClass.T-Shirts>]

If we eagerly load the categories property, however, we execute only a single query:

>>> session.clear()
>>> query = session.query(Product)
>>> query = query.options(eagerload_all('categories.level'))
>>> for prod in query:
... print prod.sku, prod.categories
...
2007-11-16 17:30:09,392 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category_1.id AS category_1_id, category_1.level_id AS
... category_1_level_id, category_1.parent_id AS
... category_1_parent_id, category_1.name AS category_1_name,
... level_2.id AS level_2_id, level_2.parent_id AS
... level_2_parent_id, level_2.name AS level_2_name, product.sku AS
... product_sku, product.msrp AS product_msrp
FROM product LEFT OUTER JOIN product_category AS product_category_3
... ON product.sku = product_category_3.product_id LEFT OUTER JOIN
... category AS category_1 ON category_1.id =
... product_category_3.category_id LEFT OUTER JOIN level AS level_2
... ON level_2.id = category_1.level_id ORDER BY product.oid,
... product_category_3.oid, level_2.oid
2007-11-16 17:30:09,393 INFO sqlalchemy.engine.base.Engine.0x..90 []
123 []
456 []
222 [<Category Department.Tops>, <Category Class.Shirts>, <Category
... SubClass.T-Shirts>]

The options() method can also be used with a variety of other options. Notice how
the eager/lazy loading can also be specified on the mapper itself. From SQLAlchemy’s

Querying at the ORM Level | 145

point of view, the options() method is changing the view of the mapper that the query
is based on. Thus other options can be specified that “morph” the mapper as well.
These options are summarized here:

extension(ext)
Add the MapperExtension ext into the beginning of the list of extensions that will
be called in the context of the query.

eagerload(name)
Set the load strategy on the named relation() property to be eager (equivalent to
specifying lazy=False in the mapper() call). For mapped column properties, use
undefer() instead.

eagerload_all(name)
name is a string containing a list of dot-separated names that represent a chain of
relation() properties to be eager loaded. For mapped column properties, use
undefer() instead.

lazyload(name)
Set the load strategy on the named relation() property to be lazy (equivalent to
specifying lazy=True in the mapper() call). For mapped column properties, use
defer() instead.

noload(name)
Set the load strategy on the named property to be nonloading (equivalent to spec-
ifying lazy=None in the mapper() calls).

contains_alias(alias)
Indicates to the query that the main table in the underlying select statement has
been aliased to the given alias (which is a string or Alias object).

contains_eager(key, alias=None, decorator=None)
Indicates that an attribute (the key parameter) will be eagerly loaded. This is used
in conjunction with feeding SQL result sets directly into the instances() method
on queries (covered next in “Customizing the Select Statement in ORM Queries”).
The alias parameter is the alias (either a string or an Alias object) representing
aliased columns in the query. The decorator parameter, mutually exclusive of
alias, is a function used to preprocess rows before passing them to the eager-
loading handler. This can be used to do arbitrary processing on the row before it
passes to the eager loader.

defer(name)
Convert the named column property into a deferred column (lazily loaded). For
relation()s, use lazyload() instead.

undefer(name)
Convert the named column property into a deferred column (eagerly loaded). For
relation()s, use eagerload() or eagerload_all() instead.

undefer_group(name)
Convert the named deferred group of column properties into an undeferred group.

146 | Chapter 7: Querying and Updating at the ORM Level

Note that the addition of the eagerload_all() option (and all other options) is com-
pletely transparent; the only difference in the code that uses the results of such a query
is in its performance.

Customizing the Select Statement in ORM Queries
Although SQLAlchemy is quite flexible in the types of queries it can generate at the
ORM level, it is sometimes necessary to either modify the generated query or to even
replace it entirely, while still generating SQLAlchemy ORM objects. One of the simplest
query modifications is replacing the underlying selectable using the select_from()
method. For instance, if we wish to manually perform some joins and then select from
the joined table, we can do so as follows:

>>> joined_product = product_table.join(product_category_table)
>>> joined_product = joined_product.join(category_table)
>>> query = session.query(Product).select_from(joined_product)
>>> query = query.filter(category_table.c.name=='T-Shirts')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id
WHERE category.name = ? ORDER BY product.oid
>>> print query.all()
[<Product 222>]

If we wish to completely replace the SQL underlying the query object, we can do so
with the from_statement() method. When using from_statement(), it’s important to
make certain that all the necessary columns are returned by the underlying query. If a
mapped column is omitted, then the mapped property will be set to None:

>>> session.clear()
>>> stmt = select([product_table.c.sku])
>>> query = session.query(Product).from_statement(stmt)
>>> for prod in query:
... print prod, prod.msrp
...
<Product 123> None
<Product 456> None
<Product 222> None

Using from_statement() also interferes with SQLAlchemy’s eager-loading mechanism
because SQLAlchemy has no way of tacking on its LEFT OUTER JOINs to retrieve the
eagerly loaded objects. To support this condition, SQLAlchemy provides the
contains_eager() mapper option, which allows you to make SQLAlchemy aware of
the LEFT OUTER JOINs that have already been added to the underlying SQL:

>>> session.clear()
>>> joined_product = product_table.outerjoin(product_category_table)

Querying at the ORM Level | 147

>>> joined_product = joined_product.outerjoin(category_table)
>>> stmt = select([product_table, category_table],
... from_obj=[joined_product])
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_eager('categories'))
>>> session.bind.echo = True
>>> for prod in query:
... print prod, [c.name for c in prod.categories]
...
2007-11-17 09:52:13,730 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category ON
... category.id = product_category.category_id LEFT OUTER JOIN level
... ON level.id = category.level_id
2007-11-17 09:52:13,731 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123> []
<Product 456> []
<Product 222> [u'Tops', u'Shirts', u'T-Shirts']

It is also possible to eagerly load where the LEFT OUTER JOIN is with an alias. In this
case, simply supply the alias (either as a string or as an Alias object) to the
contains_eager() alias parameter:

>>> session.clear()
>>> alias = category_table.alias('cat1')
>>> joined_product = product_table.outerjoin(product_category_table)
>>> joined_product = joined_product.outerjoin(alias)
>>> stmt = select([product_table, alias],
... from_obj=[joined_product])
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_eager('categories',
... alias='cat1'))
>>> session.bind.echo = True
>>> for prod in query:
... print prod, [c.name for c in prod.categories]
...
2008-01-27 19:51:55,567 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... cat1.id AS cat1_id, cat1.level_id AS cat1_level_id,
... cat1.parent_id AS cat1_parent_id, cat1.name AS cat1_name
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category AS cat1 ON
... cat1.id = product_category.category_id
2008-01-27 19:51:55,567 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123> []
<Product 456> []
<Product 222> [u'Tops', u'Shirts', u'T-Shirts']

148 | Chapter 7: Querying and Updating at the ORM Level

SQLAlchemy also supports creating objects from SQL where the main table is aliased
to another name. In this case, you must use the contains_alias() mapper option.
Again, you can pass either a string name of the alias or the Alias object itself:

>>> alias = product_table.alias()
>>> stmt = alias.select()
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_alias(alias))
>>> print query.all()
[<Product 123>, <Product 456>, <Product 222>]

We can also use the from_statement() method with string-based queries. In this case,
it is a good idea to use bind parameters for performance and to avoid SQL injection
attacks. Bind parameters for SQLAlchemy are always specified using the :name notation,
and they are bound to particular values using the params() method of the Query object:

>>> query = session.query(Product)
>>> query = query.from_statement('SELECT * FROM product WHERE
... sku=:sku')
>>> query = query.params(sku='123')
>>> print query.all()
[<Product 123>]

Up until now, we have been using the Query object to generate a sequence of mapped
objects. In some cases, we may want a query to retrieve several objects per “row,” where
the objects retrieved may either be fully mapped ORM objects or simple SQL columns.
SQLAlchemy supports this via the add_entity() and add_column() Query methods:

>>> query = session.query(Product)
>>> query = query.add_entity(Category)
>>> query =
... query.filter(Product.sku==product_category_table.c.product_id)
>>> query =
... query.filter(Category.id==product_category_table.c.category_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>)
(<Product 222>, <Category Class.Shirts>)
(<Product 222>, <Category SubClass.T-Shirts>)
>>> query = query.add_column(category_table.c.level_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>, 1)
(<Product 222>, <Category Class.Shirts>, 2)
(<Product 222>, <Category SubClass.T-Shirts>, 3)

If you know a priori what objects you wish to construct, you can create the query
initially with this knowledge, rather than using the add_entity() method:

Querying at the ORM Level | 149

>>> query = session.query(Product, Category)
>>> query =
... query.filter(Product.sku==product_category_table.c.product_id)
>>> query =
... query.filter(Category.id==product_category_table.c.category_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>)
(<Product 222>, <Category Class.Shirts>)
(<Product 222>, <Category SubClass.T-Shirts>)

Other Query Methods
The Query object has a number of other methods that allow great flexibility. Some useful
Query methods are summarized here:

add_column(self, column, id=None)
Add the named column to the query, making the query return a tuple including
the named column. id, if supplied, specifies that the column will be correlated with
the id parameter given to a matching join() or outerjoin() method.

add_entity(self, entity, alias=None, id=None)
Add a class or mapper to the query, making the query return a tuple including the
given entity. If alias is supplied, the entity will be aliased using the given alias. If
id is supplied, the entity will be selected from the join() or outerjoin() in the
query with a matching id parameter.

all(self)
Retrieve a list of results from the query (simply returns list(self)).

autoflush(self, setting)
Sets the autoflushing behavior of the query (True or False). If the query is auto-
flushing, the session will be flushed before the query is executed, guaranteeing that
in-memory objects are consistent with query results. The default autoflush behav-
ior of the query is inherited from the session.

apply_avg(self, col)
Apply the SQL AVG() function to the given column and return the resulting query.

apply_max(self, col)
Apply the SQL MAX() function to the given column and return the resulting query.

apply_min(self, col)
Apply the SQL MIN() function to the given column and return the resulting query.

apply_sum(self, col)
Apply the SQL SUM() function to the given column and return the resulting query.

avg(self, col)
Execute the SQL AVG() function against the given column and return the result.

150 | Chapter 7: Querying and Updating at the ORM Level

count(self)
Execute the SQL COUNT() function against this query and return the result.
(count() takes other parameters, but they are deprecated in SQLAlchemy 0.4.)

distinct(self)
Apply a SQL DISTINCT modifier to the query and return the resulting query.

filter(self, criterion)
Apply the given SQL filtering criterion to the query and return the resulting query.
All filters are conjoined (combined using the SQL AND operator).

filter_by(self, **kwargs)
Apply equality filtering criteria to the query and return the result. The criteria are
constructed based on the name,value pairs supplied to the kwargs parameter.

first(self)
Execute the query and return the first result, or None if the query has no results.

from_statement(self, statement)
Replace the underlying statement used by the query with the given statement,
which may be either a string of SQL or a query constructed using the SQL expres-
sion language.

get(self, ident, reload=False, lockmode=None)
Retrieve an object based on the given identity from the session. If the object is not
currently loaded in the session, it will be loaded. If reload is True, the object will
be refreshed, regardless of whether it is in the session. If lockmode is specified, the
object will be loaded with the given lockmode. The locking mode is based around
the idea of SELECT ... FOR UPDATE and related constructs. The lockmode value
is inserted after the FOR keyword.

group_by(self, criterion)
Apply a SQL GROUP BY clause to the query and return the resulting query. This
is generally useful in ORM queries only when you are grouping by the main class
and aggregating over some related class. For instance, if a Product had many Rec
ommendations, you might group by the product’s sku and add a having() clause to
return products with 3 or more recommendations.

having(self, criterion)
Apply a SQL HAVING clause to the query and return the resulting query.

instances(self, cursor)
Return a list of mapped instances corresponding to rows in the given cursor (gen-
erally a ResultProxy). instances() takes other parameters, but they are deprecated
in SQLAlchemy 0.4.

join(self, prop, id=None, aliased=False, from_joinpoint=False)
Create a join of this query based on a mapped property prop and return the resulting
query. prop can be either a string property name or a list of string property names
specifying a join path. If id is specified, it should be a string for use in matching
add_column() or add_entity() id parameters. If aliased is True, the joined entity

Querying at the ORM Level | 151

will be aliased in the underlying query. If from_joinpoint is True, the join will be
from the last-joined entity. Otherwise, it will be from the “root” entity of the query.
This method is typically used to add a filter based on some related class.

limit(self, limit)
Apply a LIMIT modifier to the query and return the resulting query. Note that
SQLAlchemy generates appropriate SQL to make the LIMIT apply to the objects
generated, not the rows. This is done in order to return the specified number of
objects even in the presence of JOINs.

load(self, ident, raiseerr=True, lockmode=None)
Return an instance of the object based on the given ident, refreshing the object
from the database. This is similar to get() with reload=True, but will raise an error
if the object is not found in the database.

max(self, col)
Execute the SQL MAX() function against the given column and return the result.

min(self, col,)
Execute the SQL MIN() function against the given column and return the result.

offset(self, offset)
Apply an OFFSET modifier to the query and return the resulting query. Note that
SQLAlchemy generates appropriate SQL to make the OFFSET apply to the ob-
jects generated, not the rows, in order to skip the specified number of objects even
in the presence of JOINs.

one(self)
Return the first result of the query, raising an exception if the query does not return
exactly one result.

options(self, *args)
Return a new query with the mapper options (such as eagerload(), etc.) listed in
args applied.

order_by(self, criterion)
Apply a SQL ORDER BY modifier to the query and return the resulting query.

outerjoin(self, prop, id=None, aliased=False, from_joinpoint=False)
Create a LEFT OUTER JOIN of this query based on a mapped property prop and
return the resulting query. prop can be either a string property name or a list of
string property names specifying a join path. If id is specified, it should be a string
for use in matching add_column() or add_entity() id parameters. If aliased is
True, the joined entity will be aliased in the underlying query. If from_joinpoint is
True, the join will be from the last-joined entity. Otherwise, it will be from the
“root” entity of the query. This method is typically used to add a filter based on
some related class.

152 | Chapter 7: Querying and Updating at the ORM Level

params(self, *args, **kwargs)
Add values for bind parameters that exist in the underlying query. The binding
dictionary may be passed either as keyword arguments or as a dict in the first
positional argument.

populate_existing(self)
Return a query that will refresh all objects loaded. Normally, when a query exe-
cutes, it will not modify any objects already in memory. This option changes that
behavior.

query_from_parent(cls, instance, property, **kwargs) (classmethod)
Create a new Query object that returns objects with a relationship to a given object
instance through the named property. The kwargs are passed along unmodified to
the Query constructor. This is mainly used internally to SQLAlchemy, to construct
queries for lazily loaded properties.

reset_joinpoint(self)
Reset the joinpoint of the query to the “root” mapper. This affects subsequent calls
to filter_by() and possibly to join() and outerjoin().

sum(self, col)
Execute the SQL SUM() function against the given column and return the result.

with_lockmode(self, mode)
Return a new Query object using the specified locking mode.

with_parent(self, instance, property=None)
Add a join criterion based on a relationship to a mapped instance via the named
property. If property is not supplied, SQLAlchemy attempts to infer an appropriate
property.

__getitem__(self, item) (indexing)
If item is a slice object, apply appropriate OFFSET and LIMIT modifers to the query
to emulate the Python slicing operation. If item is an integer, apply an appropriate
OFFSET with a LIMIT of 1, execute the query, and return the result.

__iter__(self) (iteration)
Returns an iterator that will build mapped objects from the query.

Contextual or Thread-Local Sessions
Although the SQLAlchemy ORM is extremely flexible and powerful, it can be some-
what repetitive in some cases. One of these cases is constructing the Session object.
Fortunately, SQLAlchemy provides the ability to manage sessions for you in such a way
that a Session object can be shared among various parts of your application without
explicitly passing it around as a parameter. This is useful in web frameworks in par-
ticular, where you generally want all the code servicing a given web request to use the
same Session object. SQLAlchemy achieves implicit Session object sharing via “con-
textual” sessions.

Contextual or Thread-Local Sessions | 153

The idea of a contextual session is that there is one session that is available in a given
“context,” where the default context is the thread. When you need a session, rather
than constructing one yourself, you simply ask SQLAlchemy for the session that is
appropriate to the current context. You can generate a contextual Session object by
using the scoped_session() function:

>>> Session = scoped_session(sessionmaker(
... bind=engine, autoflush=True, transactional=True))
>>>
>>> session = Session()
>>> session2 = Session()
>>> session is session2

As mentioned earlier, the default context is the current thread. To override this and
supply a different context, simply pass a scopefunc parameter to the
scoped_session() function. scopefunc should be a callable that returns a key that
uniquely identifies the context. By default, the scopefunc is the get_ident() function
from the thread module.

The contextual Session class also supplies class methods for all the Session instance
methods. These class methods simply proxy to the contextual Session object. This
means that we can use scoped_session() to declare the contextual Session class glob-
ally and use it anywhere we would normally need a Session object, without explicitly
constructing the Session object. So, if we want to save a new Product to the contextual
Session object, we can simply save it to the (globally declared) contextual Session class:

>>> prod = Product(sku='333', msrp=44.55)
>>> Session.save(prod)
>>> Session.flush()

In order to use contextual sessions effectively, they must be periodically “cleared out”
of the objects they manage, or else they will grow beyond all reasonable bounds. In the
context of a web framework, for instance, the contextual session should be cleared
between requests. This can be accomplished by using either the close() method, which
frees all resources maintained by the contextual session, or the remove() method, which
actually removes the session from the current context altogether. close() should be
used when the current context is “permanent,” as in web servers that use a never-
shrinking pool of threads to handle requests. remove() should be used if the context
may “go away,” since the session object will be “leaked” if the context is not reused.
This is the appropriate choice in web frameworks, which may stop threads that previ-
ously handled requests.

Using Contextual Sessions with Mappers and Classes
The contextual session allows us to dispense with explicit references to sessions in many
cases by instrumenting our mapped classes with a query() and modifying the mapped
class’s constructor to automatically save() it to the session when it is created. This very

154 | Chapter 7: Querying and Updating at the ORM Level

nice feature is accomplished by using the contextual Session’s mapper() method rather
than the mapper() function when defining our object mappers. So, where previously
our mappers were declared as follows:

mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
 backref='products')))

mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))

we can now declare them like this (assuming that Session has already been declared
globally as a contextual Session):

Session.mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
 backref='products')))

Session.mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

Session.mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))

Once we have mapped the classes as shown, we can use the mapped classes themselves
to perform session-like functions:

>>> Product.query().all()
[<Product 123>, <Product 456>, <Product 222>, <Product 333>]
>>> prod = Product('444', msrp=55.66)
>>> Product.query().all()
[<Product 123>, <Product 456>, <Product 222>, <Product 333>,
... <Product 444>]

Using the contextual session mapper() method also gives us one other benefit: a rea-
sonably usable default constructor. This constructor allows us to provide values for
any of the properties defined in the mapped class via keyword arguments. So, if we
omitted the Product constructor and used Session.mapper() to map it, we could initi-
alize products as follows:

>>> p = Product(sku='555', msrp=22.11)

Contextual or Thread-Local Sessions | 155

CHAPTER 8

Inheritance Mapping

In this chapter, you will learn the different methods of mapping object-oriented inher-
itance to relational database tables. You will learn how to use different methods of
inheritance mapping with SQLAlchemy, as well as how to use inheritance in the pres-
ence of mapped relations between classes.

Overview of Inheritance Mapping
No object-relational mapper would be complete without some method of mapping
object-oriented inheritance hierarchies to SQL tables, and so SQLAlchemy provides
rich support for modeling inheritance. Inheritance is typically modeled in SQL in one
of three ways: single table inheritance, concrete table inheritance, or joined table inher-
itance.

For the purposes of illustrating SQLAlchemy’s support for the various types of inher-
itance modeling, we will use a simple inheritance hierarchy that models products,
including clothing products and accessories. This hierarchy is illustrated in Fig-
ure 8-1 and is implemented by the following Python code:

class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 def __repr__(self):
 return '<%s %s>' % (
 self.__class__.__name__, self.sku)

class Clothing(Product):
 def __init__(self, sku, msrp, clothing_info):
 Product.__init__(self, sku, msrp)
 self.clothing_info = clothing_info

class Accessory(Product):
 def __init__(self, sku, msrp, accessory_info):
 Product.__init__(self, sku, msrp)
 self.accessory_info = accessory_info

157

Single Table Inheritance Mapping
In single table inheritance, a single table is used to represent all the different types in
the class hierarchy, as shown in Figure 8-2.

In our preceding example, this table might be defined as follows:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('clothing_info', String),
 Column('accessory_info', String),
 Column('product_type', String(1), nullable=False))

Notice that we have constructed a table that contains columns for all of the attributes
across the entire hierarchy we wish to model. This means that we incur some overhead

Figure 8-1. Sample inheritance hierarchy

Figure 8-2. Single table inheritance mapping (unmapped columns masked)

158 | Chapter 8: Inheritance Mapping

for all of the classes in the hierarchy in each row. Although this doesn’t cause too many
problems with the simple hierarchy we are using in this example, the space overhead
can become significant with larger and more attribute-rich hierarchies.

Also note that we have introduced a new column, the 'product_type' column. This
column holds the “polymorphic identity” of each row, so named because it allows
SQLAlchemy to return the appropriate class from a query on the parent object. The
polymorphic identity is used by SQLAlchemy to determine what type of object is con-
tained in the row. SQLAlchemy supports using any data type desired to hold this
information; here we use a single character. ‘P’ will represent a Product (the parent
class), 'C' will represent a Clothing product, and 'A' will represent an Accessory prod-
uct.

In order to map this table onto our inheritance hierarchy, we will use some new keyword
arguments to the mapper() function, namely polymorphic_on, inherits, and polymor-
phic_identity:

mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P')

mapper(Clothing, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, inherits=Product,
 polymorphic_identity='A')

The polymorphic_on parameter identifies which column contains the polymorphic
identity of each row. The polymorphic_identity parameter identifies the value that
should be present in that column to tell SQLAlchemy to use this particular mapper,
and the inherits parameter tells SQLAlchemy to retrieve all other parameters and
properties from the named mapper.

Once we have defined the mappers, we can insert some data and perform some queries:

>>> # Create some products
... products = [
... # Some parent class products
... Product('123', 11.22),
... Product('456', 33.44),
... # Some clothing
... Clothing('789', 123.45, "Nice Pants"),
... Clothing('111', 125.45, "Nicer Pants"),
... # Some accessories
... Accessory('222', 24.99, "Wallet"),
... Accessory('333', 14.99, "Belt")]
>>>
>>> Session = sessionmaker()
>>> session = Session()
>>> for p in products: session.save(p)
...

Single Table Inheritance Mapping | 159

>>> session.flush()
>>> session.clear()
>>>
>>> metadata.bind.echo = True
>>>
>>> print session.query(Product).all()
2007-11-19 14:35:55,244 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 14:35:55,245 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]
>>> print session.query(Clothing).all()
2007-11-19 14:35:55,259 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product
WHERE product.product_type IN (?) ORDER BY product.oid
2007-11-19 14:35:55,259 INFO sqlalchemy.engine.base.Engine.0x..90
... ['C']
[<Clothing 789>, <Clothing 111>]
>>> print session.query(Accessory).all()
2007-11-19 14:35:55,274 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product
WHERE product.product_type IN (?) ORDER BY product.oid
2007-11-19 14:35:55,274 INFO sqlalchemy.engine.base.Engine.0x..90
... ['A']
[<Accessory 222>, <Accessory 333>]

Note in particular that SQLAlchemy generated appropriate queries (through filtering
based on product_type) based on whether we were selecting from a parent class or a
child class.

Also note how SQLAlchemy was able to create appropriate objects based on the pol-
ymorphic identity column (which SQLAlchemy generated itself when flushing the
instances). If we inspect the table at the SQL level, we will see the 'type_' column
populated just as we expect:

>>> metadata.bind.echo = False
>>> for row in product_table.select().execute():
... print row
...
(u'123', Decimal("11.22"), None, None, u'P')
(u'456', Decimal("33.44"), None, None, u'P')
(u'789', Decimal("123.45"), u'Nice Pants', None, u'C')

160 | Chapter 8: Inheritance Mapping

(u'111', Decimal("125.45"), u'Nicer Pants', None, u'C')
(u'222', Decimal("24.99"), None, u'Wallet', u'A')
(u'333', Decimal("14.99"), None, u'Belt', u'A')

Aside from the space overhead, there is one problem in using single table inheritance
mapping: the mapper will try to map all the columns of the single table unless you
manually specify columns to map at each level of the inheritance hierarchy via the
include_columns or exclude_columns arguments to the mapper. For instance, if we try
to get the clothing_info for a non-clothing product, SQLAlchemy will not complain:

>>> print session.query(Accessory)[0].clothing_info
None

This problem is alleviated in the concrete table and joined table inheritance mappings,
which each use a different table for each class in the hierarchy.

Concrete Table Inheritance Mapping
In concrete table inheritance mapping, we use a separate table for each class in the
inheritance hierarchy, with each table containing all the columns necessary to represent
the object in its entirety, as shown in Figure 8-3.

So, for the product hierarchy in our example, we would define the following tables in
this way:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))

clothing_table = Table(
 'clothing', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('clothing_info', String))

accessory_table = Table(

Figure 8-3. Concrete table inheritance mapping

Concrete Table Inheritance Mapping | 161

 'accessory', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('accessory_info', String))

Note that in concrete table inheritance, each table contains exactly the amount of data
that is required to implement its class; there is no wasted space, unlike single table
inheritance. Also note that there is no longer a need for the “polymorphic identity”
column, as SQLAlchemy knows that Clothing objects are created from the cloth
ing_table, Accessory objects from the accessory_table, etc.

The mapper configuration is likewise straightforward:

mapper(Product, product_table)
mapper(Clothing, clothing_table)
mapper(Accessory, accessory_table)

In fact, as far as SQLAlchemy is concerned, we aren’t modeling inheritance at all! We’ve
just persisted three classes which happen to have an inheritance relationship that is
completely ignored by SQLAlchemy. Unfortunately, in doing so, we have lost the ability
to query polymorphically. For instance, we may wish to retrieve the Product with sku
'222'. Without some extra work, we’d have to query each of the classes in the inheri-
tance hierarchy. Luckily, SQLAlchemy provides support for polymorphic loading if we
do a little extra work in the mapper configuration.

The first thing we need to do is get a selectable that yields something like what the
single table select yielded. SQLAlchemy provides a utility function
polymorphic_union() which provides just such a selectable. To use it, we simply supply
a dict object whose keys are the old polymorphic identities and whose values are the
tables in the inheritance hierarchy:

>>> punion = polymorphic_union(
... dict(P=product_table,
... C=clothing_table,
... A=accessory_table),
... 'type_')
>>>
>>> print punion
SELECT accessory.sku, CAST(NULL AS TEXT) AS clothing_info,
... accessory.msrp, accessory.accessory_info, 'A' AS type_
FROM accessory UNION ALL SELECT product.sku, CAST(NULL AS TEXT) AS
... clothing_info, product.msrp, CAST(NULL AS TEXT) AS
... accessory_info, 'P' AS type_
FROM product UNION ALL SELECT clothing.sku, clothing.clothing_info,
... clothing.msrp, CAST(NULL AS TEXT) AS accessory_info, 'C' AS
... type_
FROM clothing
>>>

Now we have a nicely labeled selectable that can be selected from, just as in the single
table inheritance. To complete the mapping, we need to let the mappers know about
the union and the inheritance relationship:

162 | Chapter 8: Inheritance Mapping

mapper(
 Product, product_table, select_table=punion,
 polymorphic_on=punion.c.type_,
 polymorphic_identity='P')
mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C',
 concrete=True)
mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A',
 concrete=True)

Here, we have specified a different table for selects (the polymorphic_union() result)
and let SQLAlchemy know to use concrete table inheritance in the child classes. Oth-
erwise, the mapper configuration is identical to the single table inheritance. Now,
assuming we have created the objects in the database as we did previously, we can
perform polymorphic loads as follows:

>>> session.query(Product).get('222')
2007-11-19 15:13:55,727 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT p_union.accessory_info AS p_union_accessory_info,
... p_union.type_ AS p_union_type_, p_union.sku AS p_union_sku,
... p_union.clothing_info AS p_union_clothing_info, p_union.msrp AS
... p_union_msrp
FROM (SELECT accessory.sku AS sku, CAST(NULL AS TEXT) AS
... clothing_info, accessory.msrp AS msrp, accessory.accessory_info
... AS accessory_info, 'A' AS type_
FROM accessory UNION ALL SELECT product.sku AS sku, CAST(NULL AS
... TEXT) AS clothing_info, product.msrp AS msrp, CAST(NULL AS TEXT)
... AS accessory_info, 'P' AS type_
FROM product UNION ALL SELECT clothing.sku AS sku,
... clothing.clothing_info AS clothing_info, clothing.msrp AS msrp,
... CAST(NULL AS TEXT) AS accessory_info, 'C' AS type_
FROM clothing) AS p_union
WHERE p_union.sku = ? ORDER BY p_union.oid
2007-11-19 15:13:55,737 INFO sqlalchemy.engine.base.Engine.0x..50
... ['222']
<Accessory 222>

Joined Table Inheritance Mapping
Joined table inheritance is perhaps the closest to directly mapping the inheritance hi-
erarchy to the database. In joined table inheritance mapping, as in concrete table
inheritance mapping, a distinct table is used to map each class. Unlike concrete inher-
itance mapping, however, each table contains only the columns the attributes added,
allowing the row in the “parent” table to take care of inherited attributes, as shown in
Figure 8-4.

The total set of attributes required to represent an instance are then retrieved by joining
along the inheritance hierarchy. In our product database, this would have the following
declaration:

Joined Table Inheritance Mapping | 163

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('product_type', String(1), nullable=False))

clothing_table = Table(
 'clothing', metadata,
 Column('sku', None, ForeignKey('product.sku'),
 primary_key=True),
 Column('clothing_info', String))

accessory_table = Table(
 'accessory', metadata,
 Column('sku', None, ForeignKey('product.sku'),
 primary_key=True),
 Column('accessory_info', String))

Notice that we have reintroduced the 'product_type' polymorphic identity column
from single table inheritance mapping. In joined table inheritance, this column is only
required on the “root” table of the inheritance hierarchy, again to let SQLAlchemy
know what type of object to create in a polymorphic load.

The mappers we build are almost identical to the ones we used in the single table
inheritance mapping, except that each mapper references a distinct table, whereas all
the mappers shared a table in the single-table inheritance case:

mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')

We can now perform polymorphic selects just as before:

Figure 8-4. Joined table inheritance mapping

164 | Chapter 8: Inheritance Mapping

>>> metadata.bind.echo = True
>>> session.query(Product).all()
2007-11-19 19:51:11,985 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 19:51:11,985 INFO sqlalchemy.engine.base.Engine.0x..d0 []
2007-11-19 19:51:11,989 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT accessory.sku AS accessory_sku, accessory.accessory_info
... AS accessory_accessory_info
FROM accessory
WHERE ? = accessory.sku
2007-11-19 19:51:11,990 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'222']
2007-11-19 19:51:11,991 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT accessory.sku AS accessory_sku, accessory.accessory_info
... AS accessory_accessory_info
FROM accessory
WHERE ? = accessory.sku
2007-11-19 19:51:11,991 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'333']
2007-11-19 19:51:11,993 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 19:51:11,993 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'789']
2007-11-19 19:51:11,994 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 19:51:11,995 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'111']
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]

As you can see, the various types of products are selected from their tables appropri-
ately. Note, however, that the single query() call yielded not one, but five SELECT
statements. This is due to the fact that SQLAlchemy must perform an auxiliary query
for each row that represents a child object. The next section shows how we can improve
performance in this situation.

Optimizing Performance with Joined Table Inheritance Mapping
As shown previously, the default query strategy for joined table inheritance mapping
requires one query to the database to retrieve the “parent” row, and one additional
query to retrieve each “child” row. Although this is bandwidth-efficient for small fetch-
es (since only the columns that are actually required are returned from the database),

Joined Table Inheritance Mapping | 165

the latency of additional queries can incur significant performance overheads, espe-
cially when retrieving large result sets.

There are two main strategies for addressing these performance concerns: deferring the
child table loads and using a join with the select_table parameter to the mapper()
function.

Using deferred loading

If the child attributes will not be accessed, or will not be accessed frequently, then the
child table’s select statements can be deferred until a mapped attribute is accessed. In
the previous example, for instance, if we were displaying a table with only the sku and
msrp columns, we could eliminate the extra selects by using the polymorphic_fetch
parameter to the mapper() function:

mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P',
 polymorphic_fetch='deferred')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')

Now, when we iterate over all the Products, we see that the auxiliary queries have been
eliminated:

>>> session.clear()
>>> session.query(Product).all()
2007-11-19 21:25:44,320 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 21:25:44,321 INFO sqlalchemy.engine.base.Engine.0x..d0 []
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]

If we access one of the child attributes, then the secondary select executes to retrieve
that value:

>>> prod=session.get(Product, '789')
>>> print prod.clothing_info
2007-11-19 21:27:11,856 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 21:27:11,856 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'789']
Nice Pants

166 | Chapter 8: Inheritance Mapping

Using select_table

Although using deferred polymorphic fetching alleviates some of the performance
problems with joined table inheritance, it still does not help in the case where you need
attributes from the child table. In this case, you can simply use the select_table pa-
rameter with the mapper(), similar to the way we used it with concrete table inheritance
and the polymorphic_union() function. In this case, however, because of the foreign
key relationships between parent and child tables, we can simply use an outerjoin():

pjoin = product_table
pjoin = pjoin.outerjoin(clothing_table)
pjoin = pjoin.outerjoin(accessory_table)

mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P',
 select_table=pjoin)

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')

Now, when we iterate over all Products, we have access to all attributes of all child
classes in a single query:

>>> session.clear()
>>> for prod in session.query(Product):
... if hasattr(prod, 'clothing_info'):
... print '%s : %s' % (prod, prod.clothing_info)
... elif hasattr(prod, 'accessory_info'):
... print '%s : %s' % (prod, prod.accessory_info)
... else:
... print prod
...
2007-11-19 21:35:11,193 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, clothing.sku AS clothing_sku,
... accessory.sku AS accessory_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type,
... clothing.clothing_info AS clothing_clothing_info,
... accessory.accessory_info AS accessory_accessory_info
FROM product LEFT OUTER JOIN clothing ON product.sku = clothing.sku
... LEFT OUTER JOIN accessory ON product.sku = accessory.sku ORDER
... BY product.oid
2007-11-19 21:35:11,194 INFO sqlalchemy.engine.base.Engine.0x..d0 []
<Product 123>
<Product 456>
<Clothing 789> : Nice Pants
<Clothing 111> : Nicer Pants
<Accessory 222> : Wallet
<Accessory 333> : Belt

Joined Table Inheritance Mapping | 167

Relations and Inheritance
In the cases of single table and joined table inheritance mapping, relations “just work”
in SQLAlchemy. In particular, it is possible for a mapped class to declare a relation to
a class that is part of an inheritance hierarchy (a “polymorphic class”), and have that
relation comprise instances of various child classes. This setup is shown in the following
listing, where inventory information is added to our schema:

store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String))

inventory_table = Table(
 'inventory', metadata,
 Column('store_id', None, ForeignKey('store.id')),
 Column('product_id', None, ForeignKey('product.sku')),
 Column('quantity', Integer, default=0)

class Store(object): pass

class Inventory(object): pass

mapper(Store, store_table, properties=dict(
 inventory=relation(Inventory, backref='store')))

mapper(Inventory, inventory_table, properties=dict(
 product=relation(Product, backref='inventory')))

It is also possible to declare relations on a polymorphic class at any level of the inher-
itance hierarchy, and those relations will be inherited by the child classes. In the
previous example, for instance, the Clothing and Accessory classes inherit the back-
ref to their Inventory records.

In concrete table inheritance, mapping relations to a “parent class” is more difficult
because there is no unique table to join to. For instance, it is possible to implement
one-to-many and one-to-one joins where the polymorphic class has a foreign key into
another table. As an example, if we introduced a “vendor” table identifying the man-
ufacturer of all products, we could relate it to the Product hierarchy as follows:

vendor_table = Table(
 'vendor', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String))

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'))

clothing_table = Table(
 'clothing', metadata,

168 | Chapter 8: Inheritance Mapping

 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'),
 Column('clothing_info', String))

accessory_table = Table(
 'accessory', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'),
 Column('accessory_info', String))

punion = polymorphic_union(
 dict(P=product_table,
 C=clothing_table,
 A=accessory_table),
 'type_')

mapper(
 Product, product_table, select_table=punion,
 polymorphic_on=punion.c.type_,
 polymorphic_identity='P')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C',
 concrete=True)

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A',
 concrete=True)

class Vendor(object): pass

mapper(Vendor, vendor_table, properties=dict(
 products=relation(Product)))

The main limitation with relations and concrete table inheritance mapping is that re-
lations from the polymorphic classes (rather than to them, as shown previously) are not
inherited and must therefore be configured individually for each mapper. This includes
all many-to-many relations, since the secondary join condition (and probably the sec-
ondary table as well) is different depending on which child class is being related to.

Nonpolymorphic Inheritance
All of the inheritance relationships shown so far were implemented using SQLAl-
chemy’s polymorphic loading. If polymorphic loading is not desired, either because of
its overhead or because you always know what types of classes you will be fetching, it
is possible to use nonpolymorphic loading by omitting all of the polymorphic_* param-
eters from the mappers.

Nonpolymorphic loading will always return the type of object being selected in the case
of a query (never the child class, as polymorphic loading does). Relations to nonpoly-
morphic classes also apply only to the actual class being mapped, not to its descendants.

Relations and Inheritance | 169

Polymorphic loading is much more flexible than nonpolymorphic loading, and there-
fore should probably be selected unless the performance overhead is prohibitive.

170 | Chapter 8: Inheritance Mapping

CHAPTER 9

Elixir: A Declarative Extension to
SQLAlchemy

This chapter describes Elixir, a module developed to automate some of the more com-
mon tasks in SQLAlchemy by providing a declarative layer atop “base” or “raw”
SQLAlchemy. This chapter also describes the various extensions to Elixir that provide
features such as encryption and versioning.

Introduction to Elixir
The Elixir module was developed as a declarative layer on top of SQLAlchemy, imple-
menting the “active record” pattern described in Chapter 6. Elixir goes out of its way
to make all of the power of SQLAlchemy available, while providing sensible default
behavior with significantly less code than “raw” SQLAlchemy. This chapter describes
versions 0.4 and 0.5 of Elixir, corresponding to the 0.4 version of SQLAlchemy. Dif-
ferences between versions 0.4 and 0.5 are discussed in ““Differences Between Elixir 0.4
and 0.5.”

So what exactly does Elixir do? Well, consider a simple product database. In SQLAl-
chemy, we might set up the products, stores, and prices with the following code:

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

171

class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

class Store(object):
 def __init__(self, name):
 self.name = name
 def __repr__(self):
 return '<Store %s>' % self.name

class Price(object):
 def __init__(self, product, store, price):
 self.product = product
 self.store = store
 self.price = price
 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)

mapper(Product, product_table, properties=dict(
 prices=relation(Price, backref='product')))
mapper(Store, store_table, properties=dict(
 prices=relation(Price, backref='store')))
mapper(Price, product_price_table)

In Elixir, the corresponding setup is much simpler:

class Product(Entity):
 sku=Field(String(20), primary_key=True)
 msrp=Field(Numeric)
 prices=OneToMany('Price')

 def __repr__(self):
 return '<Product %s>' % self.sku

class Store(Entity):
 name=Field(Unicode(255))
 prices=OneToMany('Price')

 def __repr__(self):
 return '<Store %s>' % self.name

class Price(Entity):
 price=Field(Numeric, default=0)
 product=ManyToOne('Product')
 store=ManyToOne('Store')

 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)

172 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

Differences Between Elixir 0.4 and 0.5
The main difference between Elixir versions 0.4 and 0.5 is in the way your entities get
transformed into SQLAlchemy tables and mappers. In version 0.4, Elixir introduced
the idea of “autosetup,” where entities were “set up” when they were first accessed.
Under 0.4, you could delay the setup of an entity by specifying autosetup=False in the
using_options() DSL statement. In this case, you would need to manually set up the
entity at some point before using it by calling either setup_all(), which will set up all
entities defined, or setup_entities(entities), which will set up all the entities in the
entities list.

In version 0.5, entities do not use autosetup by default, so you are responsible for man-
ually applying either setup_all() or setup_entities() once all your entities have been
defined. If you would still like to use autosetup, you can either specify auto-
setup=True for each entity in its using_options() statement or specify that all entities
should use autosetup via:

elixir.options_defaults['autosetup'] = True

In version 0.5, autosetup is not only not the default, but also “is not recommended”
according to the official Elixir documentation. So, using setup_all() is probably the
most “future-proof” way of defining your model.

There are several interesting things to notice in the Elixir listing. First, note that the
declaration of the tables has been moved inside the class definitions, and that the classes
are derived from Elixir’s Entity class. This is in keeping with Elixir’s “active record”
model, where the mapped classes are responsible for “remembering” the necessary data
for persisting themselves. Second, notice that we didn’t declare any primary keys for
the store or the price tables. If no primary key is declared, then Elixir will autogenerate
an integer primary key with a sequence providing default values. Third, notice that the
relationships were declared according to their behavior in the ORM (OneToMany, Many
ToOne), and that no foreign key information was included in the model. Elixir will, based
on the types of relationships declared, automatically generate foreign key columns as
well as any auxiliary tables required for ManyToMany joins.

Because of the various types of assumptions Elixir makes about table
layout, it is suited mainly for “blue sky” development, where there is no
need to maintain an existing legacy database, and where the primary
schema definition exists in Python, not in SQL. It is possible to use Elixir
where Elixir does not provide the primary schema definition, but it’s
easy to shoot yourself in the foot if you’re not aware of the assumptions
Elixir makes about the schema, particularly when dealing with auto-
generated tables and columns.

Introduction to Elixir | 173

Installing Elixir
Elixir, like SQLAlchemy, is best installed using SetupTools and easy_install. Assuming
you have already installed SetupTools and SQLAlchemy as described in Chapter 2, you
can install Elixir on Unix-like systems—including Linux, BSD, and OS X—as follows:

$ sudo easy_install -UZ Elixir

On Windows, the command is similar:

c:\>easy_install -UZ Elixir

To verify that Elixir is installed properly, open up an interactive Python interpreter,
import the module, and verify its version:

>>> import elixir
>>> elixir.__version__
'0.4.0'

And that’s all there is to it. Elixir is installed!

Using Elixir
Elixir has two syntaxes for defining your classes: an attribute-based syntax (shown
previously) and a “domain specific language” (DSL) syntax. Both have similar power;
which one you use is mostly a matter of personal style. The DSL-based syntax may be
phased out in the future, as it is no longer the “default” syntax, but it is not currently
deprecated, so it is covered in this chapter. If we were to define the product database
using the DSL syntax, for instance, we would write the following (with the methods
for each class omitted for clarity):

from elixir import *

metadata.bind = 'sqlite://'

class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)
 has_many('prices', of_kind='Price')

class Store(Entity):
 has_field('name', Unicode(255))
 has_many('prices', of_kind='Price')

class Price(Entity):
 has_field('price', Numeric, default=0)
 belongs_to('product', of_kind='Product')
 belongs_to('store', of_kind='Store')

There is a rough correspondence between the functionality of the attribute-based syn-
tax for defining entities and the DSL syntax. The attribute-based classes are listed in

174 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

Table 9-1 along with their corresponding DSL function. Note that the mapping from
attribute-based syntax to DSL syntax is not perfect; consult the rest of this chapter for
the specific differences.

Table 9-1. Correspondence between attribute-based syntax and DSL syntax

Attribute class DSL function

Field has_field

ColumnProperty, GenericProperty has_property

ManyToOne belongs_to

OneToMany has_many

OneToOne has_one

ManyToMany has_and_belongs_to_many

Unlike SQLAlchemy, Elixir currently requires that your entities be de-
fined in a module (or in several modules) and imported; they cannot be
defined at the interactive Python prompt. This is due partly to the fact
that Elixir uses the module name in determining how to “autoname”
the tables it creates.

In all of the following examples, we will show the attribute-based syntax first, followed
by the DSL syntax.

Fields and Properties
In Elixir, most columns are defined via the Field() class (attribute syntax) and/or the
has_field() statement (DSL syntax). The Field constructor has only one required ar-
gument, its type. There are also some optional arguments parsed by Elixir. Any
remaining arguments are passed along to the SQLAlchemy Column constructor. The
Elixir-parsed optional keyword arguments are described here:

required
Specifies whether the field can be set to None (corresponds to the inverse of the
nullable option in the Column constructor). Defaults to False unless this is a primary
key column, in which case it defaults to True.

colname
The name of the column to be used for this field. By default it will be the same as
the name used for the attribute.

deferred
If True, use deferred loading on the underlying Column object. If set to a string value,
add the underlying Column to the named deferred loading column group.

Using Elixir | 175

synonym
Specifies a synonym value for the field. This is equivalent to using the synonym()
function in SQLAlchemy.

Like the Field constructor, the has_field() statement passes along unrecognized key-
word arguments to the Column constructor. has_field() takes two required arguments:
the name of the field being defined and its type. Elixir also supports the following
optional arguments:

through
The name of a relation to go through to get the field. This uses the association
proxy SQLAlchemy extension, which is described in Chapter 11. This allows
proxying fields from a related class onto the class being mapped. The relation must
be with only one object, of course, via ManyToOne / belongs_to() or OneToOne /
has_one().

attribute
The name of the attribute on the related object used in conjunction with the
through parameter. If this is omitted, the name of the current field will be used.

With the through and attribute arguments to has_field(), we can proxy a related
class’s attribute as follows:

class Price(Entity):
 has_field('price', Numeric, default=0)
 belongs_to('product', of_kind='Product')
 belongs_to('store', of_kind='Store')
 has_field('store_name', through='store', attribute='name')
 has_field('sku', through='product')

Using this definition of the Price entity and the definitions of Product and Store used
previously (all saved in a module named model.py), let’s import the model, create the
database, and see what Elixir does in the background:

>>> from elixir import *
>>> from model import *
>>>
>>> create_all()
>>>
>>> stores = [Store('Main Store'),
... Store('Secondary Store')]
>>> products = [
... Product('123', 11.22),
... Product('456', 33.44),
... Product('789', 123.45)]
>>> prices = [Price(product=product, store=store, price=10.00)
... for product in products
... for store in stores]
>>>
>>> session.flush()

This will create all the tables used to implement the entities defined up to this point.

176 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

Elixir provides a thread-local contextual session where all the entities are defined.

Now, to access the store_name attribute on a price, we can do the following:

>>> metadata.bind.echo = True
>>> price = Price.get(1)
2007-11-20 17:44:46,141 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT model_price.id AS model_price_id, model_price.price AS
... model_price_price, model_price.product_sku AS
... model_price_product_sku, model_price.store_id AS
... model_price_store_id
FROM model_price
WHERE model_price.id = ? ORDER BY model_price.oid
2007-11-20 17:44:46,141 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> price.store_name
2007-11-20 17:44:49,229 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT model_store.id AS model_store_id, model_store.name AS
... model_store_name
FROM model_store
WHERE model_store.id = ? ORDER BY model_store.oid
2007-11-20 17:44:49,230 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
u'Main Store'

Two things are important to note here. The first is that our has_field() statement did
indeed create a “proxy” statement to the Store entity’s name field. The second is Elixir’s
naming convention. By default, tables created to implement entities have names gen-
erated by combining the module name with the entity name.

Elixir deferred properties

In some cases, you may need to have access to the underlying table in order to define
an Entity’s properties, particularly when creating properties that correspond to calcu-
lated SQL values that were handled by SQLAlchemy’s column_property() function.
This presents a problem in Elixir, as the underlying Table objects have not been created
when the Fields are being defined. Elixir solves this problem by allowing fields to be
created in a “deferred” manner. Elixir supports this in the attribute-based syntax via
the GenericProperty and ColumnProperty classes, and in the DSL syntax via the
has_property() statement.

Each of these methods of defining deferred properties takes a callable, which will be
passed the underlying Table object’s c attribute and should return a property to be
added to the Entity’s mapper. In the case of ColumnProperty, rather than returning a
property object, you simply return a ClauseElement, which will be wrapped in a SQLAl-
chemy column_property().

class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)

 # Using has_property DSL

Using Elixir | 177

 has_property(
 'sale_price1',
 lambda c: column_property(c.msrp * 0.9))

 # Using GenericProperty attribute
 sale_price2 = GenericProperty(
 lambda c: column_property(c.msrp * 0.8))

 # Using ColumnProperty attribute
 sale_price2 = ColumnProperty(
 lambda c: c.msrp * 0.8)

Relations
Relations with Elixir are extremely similar to relations using “bare” SQLAlchemy, ex-
cept that in Elixir, relations are defined by their cardinality (one to many, one to one,
etc.) rather than inferred by foreign key relationships. In fact, Elixir will automatically
create the foreign key columns necessary to implement the relations as defined.

Related Entity Names
In all of the relations supported by Elixir, you must “name” the Entity to which you
are relating the mapped Entity. If the related Entity is in the same module as the
Entity being mapped, you can simply use the name of the Entity. Otherwise, you need
to give a module path to the other entity. So, if you defined Entity1 in package/mod
el1.py and Entity2 in package/model2.py, and Entity2 needs a ManyToOne relationship
to Entity1, you would define Entity2 as follows:

class Entity2(Entity):
 entity1=ManyToOne('package.model1.Entity')

Attribute-based syntax

In the attribute-based syntax, relationships are declared via the ManyToOne, OneToMany,
OneToOne, and ManyToMany classes. Each of these class constructors takes one required
argument, a string specifying the name of the class being related to. Each also supports
some arguments unique to Elixir and pass any unrecognized arguments along to the
underlying SQLAlchemy relation() function. Note that the OneToMany and OneToOne
relationships require a corresponding ManyToOne relationship in order to set up the for-
eign key column used to relate the classes.

Elixir automatically generates a few arguments of its own to pass to the
relation() function, so they should not be provided to the relation-
creating classes unless you are trying to override the value provided by
Elixir. These arguments are uselist, remote_side, secondary, primary-
join, and secondaryjoin.

The ManyToOne optional parameters are listed here:

178 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

inverse
Specifies the inverse property on the related class corresponding to this property.
Generally this is not required unless there are multiple relationships between this
class and the related class. Note that this does not set up the inverse relationship;
the inverse relationship must be defined in the related class.

colname
The name of the foreign key column to be created. The default is entity_key, where
entity is the related Entity and key is the name of the related entity’s primary key.

required
If True, specifies that the generated foreign key column has a nonnull constraint.
Defaults to False.

primary_key
If True, specifies that the generated foreign key column participates in the primary
key of this Entity. Defaults to False.

column_kwargs
A dict containing additional keyword arguments to be passed to the foreign key’s
Column constructor.

use_alter
If True, add the ForeignKeyConstraint after the table has been created using an
ALTER TABLE constraint. This is useful, for instance, when creating entities with
circular foreign key dependencies.

ondelete
Value for the ForeignKeyConstraint’s ondelete parameter.

onupdate
Value for the ForeignKeyConstraint’s onupdate parameter.

constraint_kwargs
A dict containing additional keyword arguments to be passed to the ForeignKey
Constraint’s constructor.

The following list contains the OneToMany constructor’s optional parameters:

inverse
Specifies the inverse property on the related class corresponding to this property.
Generally this is not required unless there are multiple relationships between this
class and the related class. Note that this does not set up the inverse relationship;
the inverse relationship must be defined in the related class.

order_by
Either a string or a list of strings specifying the field names used to sort the contents
of the generated list of related items. If a field is prefixed by a minus ('-'), the list
will be sorted in descending order on that field.

The following is the OneToOne constructor’s optional parameter:

Using Elixir | 179

inverse
Specifies the inverse property on the related class corresponding to this property.
Generally this is not required unless there are multiple relationships between this
class and the related class. Note that this does not set up the inverse relationship;
the inverse relationship must be defined in the related class.

The ManyToMany constructor takes the following optional parameters:

inverse
Specifies the inverse property on the related class corresponding to this property.
Generally this is not required unless there are multiple relationships between this
class and the related class. Note that this does not set up the inverse relationship;
the inverse relationship must be defined in the related class.

tablename
Specifies a custom name for the intermediate “join table” used in the relationship.
By default, the join table is named based on the entity names being joined.

remote_side
A list of columns or column names specifying which columns in the join table are
used to key the remote side of a self-referential relationship.

local_side
A list of columns or column names specifying which columns in the join table are
used to key the local side of a self-referential relationship.

order_by
Either a string or a list of strings specifying field names used to sort the contents
of the generated list of related items. If a field is prefixed by a minus ('-'), the list
will be sorted in descending order on that field.

Note that no feature in Elixir corresponds to the SQLAlchemy backref parameter on
relation()s. This means that if you want the back reference, you must explicitly declare
it in the class to which it is related.

DSL syntax

In the DSL syntax, relationships are declared via the belongs_to(), has_many(),
has_one(), and has_and_belongs_to_many() statements. Each of these functions takes
two required arguments. The first is the name of the relation being defined. (This will
be the name of the attribute in the mapped class.) The second argument, which must
be declared using the of_kind keyword argument, is the name of the Entity being related
to.

Like the has_field() statement, all the DSL relation statements take the optional pa-
rameters through and via in order to proxy attributes of the related class(es) to the
mapped class. See the earlier section “Fields and Properties” for more information on
these parameters.

180 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

All of the keyword arguments supported in the attribute-based syntax are also sup-
ported in the DSL syntax. Refer to Table 9-1 for the correspondence between attribute-
based classes and DSL statements.

Inheritance
Inheritance in Elixir is handled via either the single table inheritance mapping or the
joined table inheritance mapping supported by SQLAlchemy (and described in detail
in Chapter 8). Elixir also supports specifying whether polymorphic or nonpolymorphic
loading should be used with the mapped classes. Both the inheritance method (joined
table or single table) and whether the loader should be polymorphic are specified via
the DSL statement using_options(). There is currently no corresponding attribute-
based syntax for specifying options on entities. So, to create the Product, Clothing, and
Accessory hierarchy described in Chapter 8 in Elixir as a joined table (“multiple”) and
polymorphic hierarchy, we would write the following (with methods omitted for clari-
ty):

class Product(Entity):
 using_options(inheritance='multi', polymorphic=True)
 sku=Field(String(20), primary_key=True)
 msrp=Field(Numeric)

class Clothing(Product):
 using_options(inheritance='multi', polymorphic=True)
 clothing_info=Field(String)

class Accessory(Product):
 using_options(inheritance='multi', polymorphic=True)
 accessory_info=Field(String)

The with_options() statement takes a number of other options, described here:

inheritance
Specifies the type of inheritance used: either 'single' for single table inheritance
mapping or 'multi' for joined (“multiple”) table inheritance mapping. Concrete
table inheritance mapping is not supported in Elixir. Defaults to 'single'.

polymorphic
Specifies whether the polymorphic loader should be used in an inheritance hier-
archy. Defaults to False.

metadata
Specifies a custom MetaData to be used for this Entity. Defaults to the global
elixir.metadata. You can also specify a custom MetaData on a per-module basis by
defining the module-global variable __metadata__.

autoload
Automatically loads field definitions from an existing database table. The default
is False.

Using Elixir | 181

tablename
Use the specified table name. This can be either a string or a callable that takes one
parameter (the entity being defined) and returns a string. The default name is au-
togenerated by Elixir.

shortnames
If True, rather than naming the underlying Table based on the full module path to
the entity, use the lowercased Entity name without any module path information.
Defaults to False.

auto_primarykey
If this is a string, it will be used as the name of the primary key column automatically
generated by Elixir (which will be an Integer column with a corresponding se-
quence). If this is True, allows Elixir to autocreate a primary key (with an auto-
generated name) if none is defined in the Entity. If False, this disallows
autocreation of the primary key column.

version_id_col
If this is a string, it will be used as the name of a version ID column (see Chap-
ter 6 for the corresponding mapper() option version_id in SQLAlchemy). If this is
True, it uses an autogenerated name for a version_id_col. The default is False.

order_by
The default ordering on this Entity, given as a string or list of strings representing
the field names to sort by. If a field is prefixed by a minus ('-'), the list will be
sorted in descending order on that field.

session
Use the specified contextual session for this Entity. The default is to use the glob-
ally-defined elixir.session, a contextual thread-local Session. You can also spec-
ify a custom Session on a per-module basis by defining the module-global variable
__session__.

autosetup
If set to True, the underlying Table and mapper() will be set up for the Entity when
they are first required (via access to the Entity’s c, table, mapper, or query attributes)
or when the MetaData’s create_all() method is called. If set to False, you must
explicitly set up the Entity either via the setup_all() or the setup_entities(enti-
ties) Elixir functions. This defaults to True in version 0.4 of Elixir, and to False in
version 0.5.

allowcoloverride
If True, allows a relation to be defined with the same name as a mapped column
(the column will not be mapped in this case). If False, the name conflict will gen-
erate an exception. Corresponds to the SQLAlchemy mapper() option allow_col-
umn_override. Defaults to False.

182 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

Querying Using Elixir
One of the nice things about Elixir is that the Entity base class contains a rich set of
methods that can be used instead of the normal SQLAlchemy Session and Query meth-
ods. In fact, each Entity contains a class-level attribute named query that returns a
query on the mapped class. It is also unnecessary to explicitly save() entities to the
Session, as they are automatically save()d when they are created.

To retrieve a mapped object from its identity (primary key), simply use the get()
method. (In “base” SQLAlchemy, this would be accomplished by Session.get(class_,
id).)

>>> Product.get('123')
<Product 123>

Elixir also adds the get_by() method for retrieving a single instance based on nonpri-
mary key columns. (The corresponding query in SQLAlchemy is a filter_by() fol-
lowed by one().)

>>> Product.get_by(msrp=33.44)
<Product 456>

Of course, you can always access the underlying Session query via the query attribute:

>>> Product.query.all()
[<Product 123>, <Product 456>, <Product 789>]

The complete set of (nondeprecated) methods on the Entity class is described in the
following list. Each of these methods is a proxy for the corresponding Session methods,
covered in Chapter 7, and any arguments provided to these methods are passed along
unmodified to the underlying Session methods:

flush(self, *args, **kwargs)
Flush the changes to this instance to the database.

delete(self, *args, **kwargs)
Mark this instance for deletion from the database.

expire(self, *args, **kwargs)
Expire this instance from the Session.

refresh(self, *args, **kwargs)
Reload this instance from the database, overwriting any in-memory changes.

expunge(self, *args, **kwargs)
Expunge this instance from the Session.

merge(self, *args, **kwargs)
Merge the instance with the instance in the Session.

Using Elixir | 183

save(self, *args, **kwargs)
Save this instance to the Session.

update(self, *args, **kwargs)
Bring this (detached) instance into the Session.

save_or_update(self, *args, **kwargs)
Save or update this instance, based on whether it is in the session already.

get_by(self, *args, **kwargs) (classmethod)
Retrieve an instance from the database based on the given keyword arguments.
Equivalent to instance.query.filter_by(*args, **kwargs).one().

get(self, *args, **kwargs) (classmethod)
Retrieve an object from the database or the Session’s identity map based on its
primary key.

Elixir Extensions
In addition to its base functionality, Elixir provides a number of extensions that allow
for more advanced uses.

Associable Extension
In many database schemas, there may be one table that relates to many others via a
many-to-many or a many-to-one join. The elixir.ext.associable extension provides a
convenient way to specify this pattern and to generate the appropriate association ta-
bles. This is accomplished by the associable() function, which returns a DSL state-
ment that can be used in the definition of the related entities.

For instance, suppose we have a schema that represents brands and retailers, each of
which may have multiple addresses stored in the database. This can be accomplished
as follows:

class Address(Entity):
 has_field('street', Unicode(255))
 has_field('city', Unicode(255))
 has_field('postal_code', Unicode(10))

Create the DSL statement.
is_addressable = associable(Address, 'addresses')

class Brand(Entity):
 has_field('name', Unicode(255)),
 has_field('description', Unicode)
 is_addressable()

class Retailer(Entity):
 has_field('name', Unicode(255)),
 has_field('description', Unicode)
 is_addressable()

184 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

To implement this pattern, the associable extension actually implements something
like joined table inheritance mapping, where the entity being associated joins to an
intermediate association table, which is in turn joined to a “virtual base class” for each
associable class. The tables created for the previous schema show this more clearly in
Figure 9-1.

The associable() function takes one required argument, the Entity to be associated,
as well as some optional arguments:

plural_name=None
The default name to be used for the property generated by the returned DSL state-
ment. By default, this is the lowercased name of the associable Entity. (This can
be overridden when using the generated statement.)

lazy=True
Indicates whether the property generated by the returned DSL statement should
be lazy-loaded by default. (This can be overridden when using the generated state-
ment.)

The generated DSL statement also takes some optional arguments:

name=None
The name to be used for the property generated. This will use the value of the
plural_name parameter from associable() if not specified here.

uselist=True
Whether to use a list in the generated property (representing a ManyToMany relation)
or a scalar attribute (representing a ManyToOne relation).

lazy=True
Whether the property generated should be lazy-loaded by default.

The generated DSL statement, in addition to adding the named property, also adds the
helper methods select_by_property and select_property, which are simply proxies for

Figure 9-1. Associable table relationships

Elixir Extensions | 185

filtering the Entity by values in the associated Entity. For instance, we can return a list
of all Brands in Albuquerque with the following query:

>>> Brand.select_by_addresses(city='Albuquerque')

Encrypted Extension
The elixir.ext.encrypted extension provides encrypted field support for Elixir using the
Blowfish algorithm from the PyCrypto library, which must be installed separately. (Py-
Crypto is available from the Python Package Index via “easy_install pycrypto”.) The
encrypted extension provides the DSL statement acts_as_encrypted(), which takes the
following parameters:

for_fields=[]
List of field names for which encryption will be enabled

with_secret='abcdef'
A secret key used to perform encryption on the listed fields

The encrypted extension is particularly useful when data must be stored on an untrus-
ted database or as part of a defense-in-depth approach to security. For instance, you
might encrypt passwords that are stored in the database. Keep in mind, however, that
the source code of your application must be kept in a trusted location since it specifies
the encryption key used to store the encrypted columns.

Versioned Extension
The elixir.ext.versioned extension provides a history and versioning for the fields in an
entity. These services are provided by the acts_as_versioned() DSL statement. Mark-
ing an entity as versioned will apply the following operations:

• A timestamp column and a version column will be added to the versioned entity
table.

• A history table will be created with the same columns as the primary entity table,
including the added timestamp and version columns.

• A versions attribute will be added to the versioned entity that represents a OneTo
Many join to the history table.

• The instance methods revert(), revert_to(), compare_with(), and get_as_of()
will be added to the versioned entity.

Whenever changes are made to a versioned entity, the version column is incremented
and the previous values for all the columns are saved to the history table. Note that at
the current time, relationships are not handled automatically by the versioning process
(relationship changes are not tracked in the history table) and must be handled man-
ually. The size of the history table can be managed by specifying fields not to include
via the ignore option to acts_as_versioned().

186 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

Using the acts_as_versioned() statement enables us to keep a reasonable audit trail of
changes to an entity. If we set up our model as follows:

class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)
 acts_as_versioned()

 def __repr__(self):
 return '<Product %s, mrsp %s>' % (self.sku, self.msrp)

 @after_revert
 def price_rollback(self):
 print "Rolling back prices to %s" % self.msrp

we can then use the audit trail as follows:

>>> prod = Product(sku='123', msrp=11.22)
>>> session.flush()
>>> print prod
<Product 123, mrsp 11.22>
>>> print prod.version
1
>>> print len(prod.versions)
1
>>> prod.msrp *= 1.2
>>> session.flush()
>>> print prod
<Product 123, mrsp 13.464>
>>> print prod.version
2
>>> prod.msrp *= 1.3
>>> session.flush()
>>> print prod
<Product 123, mrsp 17.5032>
>>> print prod.version
3
>>> print prod.compare_with(prod.versions[0])
{'timestamp': (datetime.datetime(2007, 11, 21, 15, 50, 43, 951977),
... datetime.datetime(2007, 11, 21, 15, 50, 43, 893200)), 'msrp':
... (17.5032, Decimal("11.22"))}
>>> for ver in prod.versions:
... print ver.version, ver.timestamp, ver.msrp
...
1 2007-11-21 15:50:43.893200 11.22
2 2007-11-21 15:50:43.939225 13.464
3 2007-11-21 15:50:43.951977 17.5032
>>> prod.revert()
Rolling back prices to 17.5032
>>> prod = Product.get('123')
>>> print prod
<Product 123, mrsp 17.5032>

The behaviors of the new methods added by acts_as_versioned() are listed here:

Elixir Extensions | 187

revert(self)
Revert the entity to the last version saved in the history table. After reverting, the
instance in memory will be expired and must be refreshed to retrieve the reverted
fields.

revert_to(self, to_version)
Revert the entity to a particular version number saved in the history table. After
reverting, the instance in memory will be expired and must be refreshed to retrieve
the reverted fields.

compare_with(self, version)
Compare the current field values of the entity with the values in a particular version
instance. The return value from this method is a dict keyed by the field name with
values of pairs (named_version_value, current_value). Note that instances in the
entity’s versions attribute also have a compare_with() method, allowing historical
versions to be compared with other versions.

get_as_of(self, dt)
Retrieves the most recent version of the entity that was saved before the datetime
dt. If the current version is the most recent before dt, then it is returned.

The versioned extension also provides a decorator, @after_revert, which can be used
to decorate methods in the versioned entity that should be called after the entity is
reverted.

188 | Chapter 9: Elixir: A Declarative Extension to SQLAlchemy

CHAPTER 10

SqlSoup: An Automatic Mapper for
SQLAlchemy

This chapter describes SqlSoup, an extension to SQLAlchemy that provides automatic
mapping of introspected tables. You will learn how to use SQLSoup to map to an
existing database and how to perform queries and updates. Finally, the chapter will
describe the pros and cons of using SQLSoup, Elixir, or “bare” SQLAlchemy in your
application.

Introduction to SqlSoup
If Elixir is ideally suited for blue sky, legacy-free development, SqlSoup is ideally suited
for connecting to legacy databases. In fact, SqlSoup provides no method of defining a
database schema through tables, classes, and mappers; it uses extensive autoloading
to build the SQLAlchemy constructs (Tables, classes, and mapper()s) automatically
from an existing database.

To illustrate the uses of SQLAlchemy in this chapter, we will use the following SQLAl-
chemy-created schema. Note that, unlike in previous chapters, we will be saving the
test database in an on-disk SQLite database rather than using an in-memory database,
to illustrate the fact that SqlSoup relies entirely on auto loading.

from sqlalchemy import *

engine = create_engine('sqlite:///chapter10.db')

metadata = MetaData(engine)

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),

189

 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

metadata.create_all()

stmt = product_table.insert()
stmt.execute([dict(sku="123", msrp=12.34),
 dict(sku="456", msrp=22.12),
 dict(sku="789", msrp=41.44)])
stmt = store_table.insert()
stmt.execute([dict(name="Main Store"),
 dict(name="Secondary Store")])
stmt = product_price_table.insert()
stmt.execute([dict(store_id=1, sku="123"),
 dict(store_id=1, sku="456"),
 dict(store_id=1, sku="789"),
 dict(store_id=2, sku="123"),
 dict(store_id=2, sku="456"),
 dict(store_id=2, sku="789")])

In order to use SqlSoup, we must first create an instance of the SqlSoup class. This
instance must be created either with an existing MetaData instance as its first argument,
or with the same arguments as SQLAlchemy’s MetaData class. In our case, we will pass
in a database URI to use in autoloading the tables:

>>> from sqlalchemy.ext.sqlsoup import SqlSoup
>>> db = SqlSoup('sqlite:///chapter10.db')

If we wish to restrict the set of tables loaded to a particular schema (in databases that
support this), we can specify it by setting the as db.schema attribute. Since we’re using
SQLite, there is no need to specify a schema.

In order to access the tables we’ve defined in the database, simply use attribute access
from the SqlSoup instance we’ve created:

>>> print db.product.all()
[MappedProduct(sku='123',msrp=Decimal("12.34")),
... MappedProduct(sku='456',msrp=Decimal("22.12")),
... MappedProduct(sku='789',msrp=Decimal("41.44"))]

>>> print db.product.get('123')
MappedProduct(sku='123',msrp=Decimal("12.34"))

Note that there was no mapper or table setup required to retrieve the objects (other
than when we first created the database!). The following sections describe in more detail
how you can use SqlSoup.

190 | Chapter 10: SqlSoup: An Automatic Mapper for SQLAlchemy

Using SqlSoup for ORM-Style Queries and Updates
You may have noticed in the previous section that when we queried the db.product
table, rather than being served with RowProxy objects as in regular SQLAlchemy, we
were served with MappedProduct instances. This is because technically we’re not select-
ing from the product table; we’re selecting from the automatically created and mapped
MappedProduct class, created from the product table.

The MappedProduct class provides a basic mapping of the columns of the table to the
properties of the class. It also provides a query property, similar to the Elixir query
property, which provides access to a session query for the MappedProduct. It also pro-
vides insert(), delete(), and update() methods for modifying the underlying data. To
create a new product, for instance, we can do the following:

>>> newprod = db.product.insert(sku='111', msrp=22.44)
>>> db.flush()
>>> db.clear()
>>> db.product.all()
[MappedProduct(sku='123',msrp=Decimal("12.34")),
... MappedProduct(sku='456',msrp=Decimal("22.12")),
... MappedProduct(sku='789',msrp=Decimal("41.44")),
... MappedProduct(sku='111',msrp=Decimal("22.44"))]

You may have noticed in the previous example that we accessed the session-like meth-
ods flush() and clear() on the SqlSoup instance. SqlSoup strives to provide a rich set
of functionality with a limited set of interfaces, namely the SqlSoup instance and auto
mapped classes. As such, the SqlSoup instance provides several session-like functions
as well as providing access to the auto mapped classes:

bind(attribute)
The underlying Engine or Connectable for this SqlSoup instance.

schema(attribute)
Use the specified schema name for auto loading and auto mapping tables.

clear(self)
Call the underlying contextual session’s clear() method.

delete(self, *args, **kwargs)
Call the underlying contextual session’s delete() method with the specified argu-
ments.

flush(self)
Call the underlying contextual session’s flush() method.

join(self, *args, *kwargs)
Call SQLAlchemy’s join() function with the specified arguments and return an
auto mapped object corresponding to rows of the generated join.

map(self, selectable, *kwargs)
Auto map an arbitrary selectable, returning the generated mapped class.

Using SqlSoup for ORM-Style Queries and Updates | 191

with_labels(self, item)
Add labels to the columns of item (generally a join) based on the name of their table
of origin. This is useful when mapping joins between two tables with the same
column names.

You may have also noticed that the MappedProduct class provides some query-like
methods. In fact, the MappedProduct class (and other auto mapped classes) uses some
__getattr__() magic to forward all unrecognized attribute and method access to its
query attribute. Auto mapped classes also provide some data manipulation functions
for use in updating the underlying table:

c (attribute)
The c attribute of the underlying table.

query (attribute)
An ORM-based query object on the auto-mapped class.

_table (attribute)
The underlying selectable to this automapped object. Useful when dropping to the
SQL layer in SqlSoup queries.

column_name (attribute)
The SQLAlchemy property object of the auto mapped column.

delete(cls, *args, **kwargs) (classmethod)
Execute a delete() on the underlying table with the given arguments.

insert(cls, **kwargs) (classmethod)
Execute an insert() on the underlying table with the given arguments, and return
a newly constructed instance of the automapped class.

update(cls, whereclause=None, values=None, **kwargs) (classmethod)
Execute an update() on the underlying table with the given arguments.

SqlSoup and Relations
The short story on SqlSoup and SQLAlchemy relation()s is that they are not suppor-
ted. Although SqlSoup can make reasonable assumptions about how to auto-map
columns to classes, inferring the correct relations, relation names, and relation options
is currently beyond its capabilities. SqlSoup does, however, fully support manually
creating joins between tables and mapping the resulting selectable object. This feature
is covered next in “Joins with SqlSoup.”

Joins with SqlSoup
The SqlSoup object provides a join() method, described briefly in the list under the
section “Using SqlSoup for ORM-Style Queries and Updates,” earlier in this chapter.
This method is actually just a thin wrapper on the SQLAlchemy join() function that
creates an auto-mapped class for the resulting selectable. To join between the prod

192 | Chapter 10: SqlSoup: An Automatic Mapper for SQLAlchemy

uct and product_price tables, for example, we could use the following code, taking care
to use the isouter=True to ensure we get a LEFT OUTER JOIN:

>>> join1 = db.join(db.product, db.product_price, isouter=True)
>>> join1.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='111',msrp=Decimal("22.44"),store_id=None,price=None)]

In order to chain the join object to other tables, just use the join() method again:

>>> join2 = db.join(join1, db.store, isouter=True)
>>> join2.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='111',msrp=Decimal("22.44"),store_id=None,price=None,
... id=None,name=None)]

In some cases, it’s nice to label the columns according to their table of origin. To ac-
complish this, use the with_labels() SqlSoup method:

>>> join3 = db.with_labels(join1)
>>> join3.first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),
... product_price_sku='123',product_price_store_id=1,
... product_price_price=Decimal("0"))
>>> db.with_labels(join2).first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),
... product_price_sku='123',product_price_store_id=1,
... product_price_price=Decimal("0"),store_id=1,store_name='Main
... Store')

It is also possible to label a mapped table and then use the labeled table in joins:

>>> labelled_product = db.with_labels(db.product)
>>> join4 = db.join(labelled_product, db.product_price,

Using SqlSoup for ORM-Style Queries and Updates | 193

... isouter=True)
>>> join4.first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),sku='123',
... store_id=1,price=Decimal("0"))

Note that the columns from db.product are labeled, whereas the columns from db.prod
uct_price are not.

Mapping Arbitrary Selectables
Simple tables and joins are supported in SqlSoup, but what about mapping more com-
plex selectables? The auto mapping machinery of SqlSoup is actually exposed via the
SqlSoup map() method. For instance, if we wished to add a column for the average price
of a product over all the stores in which it is sold, we might write the following SQL-
layer SQLAlchemy query:

>>> db.clear()
>>>
>>> from sqlalchemy import *
>>>
>>> join5 = db.join(db.product, db.product_price)
>>>
>>> s = select([db.product._table,
... func.avg(join5.c.price).label('avg_price')],
... from_obj=[join5._table],
... group_by=[join5.c.sku])
>>> s = s.alias('products_with_avg_price')
>>> products_with_avg_price = db.map(s, primary_key=[join5.c.sku])
>>> products_with_avg_price.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),avg_price=0.0),
... MappedJoin(sku='456',msrp=Decimal("22.12"),avg_price=0.0),
... MappedJoin(sku='789',msrp=Decimal("41.44"),avg_price=0.0)]
>>>
>>> db.product_price.first().price = 50.00
>>> db.flush()
>>> db.clear()
>>> products_with_avg_price.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),avg_price=25.0),
... MappedJoin(sku='456',msrp=Decimal("22.12"),avg_price=0.0),
... MappedJoin(sku='789',msrp=Decimal("41.44"),avg_price=0.0)]

A common usage pattern is to add such mapped selectables to the SqlSoup instance for
access in other parts of the application:

>>> db.products_with_avg_price = products_with_avg_price

There’s no magic here; this is just Python’s ability to declare new, ad-hoc attributes on
existing objects. Do note that if you happen to add an attribute with the same name as
a table in your database, SqlSoup will not be able to access that table until you remove
the new attribute.

194 | Chapter 10: SqlSoup: An Automatic Mapper for SQLAlchemy

Directly Accessing the Session
Although SqlSoup provides access to most session-oriented functionality through the
SqlSoup object, it is possible to access the underlying SQLAlchemy contextual session
through the global SqlSoup object objectstore:

>>> from sqlalchemy.ext.sqlsoup import objectstore
>>> session = objectstore.current
>>> print session
<sqlalchemy.orm.session.Session object at 0x2ae69954f210>

Using SqlSoup for SQL-Level Inserts, Updates, and Deletes
As mentioned in the list of automapped class attributes and methods, mapped classes
contain insert(), update(), and delete() methods. These are just thin wrappers around
the corresponding methods on the underlying table. If we wanted to set the price for
all products in all stores to their MSRP, for instance, we could do the following:

>>> msrp=select([db.product.c.msrp],
... db.product.sku==db.product_price.sku)
>>> db.product_price.update(
... values=dict(price=msrp))
>>> db.product_price.all()
[MappedProduct_price(sku='123',store_id=1,price=Decimal("12.34")),
... MappedProduct_price(sku='456',store_id=1,price=Decimal("22.12")),
... MappedProduct_price(sku='789',store_id=1,price=Decimal("41.44")),
... MappedProduct_price(sku='123',store_id=2,price=Decimal("12.34")),
... MappedProduct_price(sku='456',store_id=2,price=Decimal("22.12")),
... MappedProduct_price(sku='789',store_id=2,price=Decimal("41.44"))]

We can similarly use the insert() and delete() method to perform SQL-level inserts
and deletes.

When to Use SqlSoup Versus Elixir Versus “Bare” SQLAlchemy
As we’ve discussed before, SqlSoup is useful when it’s necessary to use an existing
database, whereas Elixir is most useful when Elixir is the primary definition of the
schema. This section compares SqlSoup and Elixir with “Bare” SQLAlchemy and gives
the advantages and disadvantages of each.

SqlSoup Pros and Cons
Generally speaking, SqlSoup has the following pros and cons in comparison to “base”
SQLAlchemy:

Succinct usage
SqlSoup requires very little code to get started: just a database URI, and you’re
ready to go. Raw SQLAlchemy is much more verbose, requiring setup for tables,

Using SqlSoup for SQL-Level Inserts, Updates, and Deletes | 195

mappers, and mapped classes. Even if you’re using autoloading with SQLAlchemy,
it still requires you to set up your mappers and mapped classes if you wish to use
the ORM.

Ad-hoc queries and mappers
Due to the ease of setting up SqlSoup, it is much more convenient to create queries
and mappings from joins and other selectable objects.

Rich relation support
Because SqlSoup’s method of inference does not support SQLAlchemy relation(
)s, it is not well-suited to schemas where it is more convenient to use mapped
properties to implement relations between tables.

Adding behavior to mapped objects
Because SqlSoup creates its own automapped classes, it is inconvenient to have
domain logic from your application attached as methods. In this regard, SqlSoup
mapped objects are little more than “smart rows” allowing convenient access to
the database, with little ability to model domain objects.

Flexibility
The convenience of SqlSoup generally comes at the cost of flexibility. Various
SQLAlchemy ORM-level features, such as synonyms and relations, are either un-
supported or not well supported.

Elixir Pros and Cons
Generally speaking, Elixir has the following pros and cons in comparison to “base”
SQLAlchemy:

Succinct usage
Although not as terse as SqlSoup, Elixir generally requires less code than raw
SQLAlchemy to implement similar functionality. This is particularly true when
using the associable and versioned extensions, for instance.

Rapid model development
Since Elixir generally sees itself as the keeper of the schema, it can be more aggres-
sive in what types of schema it supports. When using the associable extension, for
instance, it is possible to create auxiliary tables with a single DSL line of code. This
allows complex schema to be developed rapidly when your application is first being
written.

Clear separation of concerns
Due to the data mapper pattern used in SQLAlchemy (rather than the active record
pattern used in Elixir), it is clear where the database schema resides (in the Table(
) classes), where the application logic resides (in the mapped classes), and where
the mapping occurs (in the mapper() configuration). Elixir puts all this information
into the Entity classes, making it a bit more difficult to separate these concerns.

196 | Chapter 10: SqlSoup: An Automatic Mapper for SQLAlchemy

Ability to use or migrate existing schemas
Elixir’s aggressiveness in defining new tables and columns implicitly based on DSL
statements in the Entity classes can make it challenging to use with an existing
database. In such a situation, it’s important to be aware of what schema changes
are implied by each change to the Entity classes and/or to have access to a schema
migration tool that can assist in migrating existing databases.

Flexibility
Raw SQLAlchemy’s win over Elixir is much more limited than its win over SqlSoup,
mainly because Elixir provides convenient ways to “drop into” the underlying
SQLAlchemy tables, mappers, and classes. SQLAlchemy still wins on flexibility
over Elixir, however, since it is, in fact, necessary to drop into regular SQLAlchemy
to model some things when using Elixir.

When to Use SqlSoup Versus Elixir Versus “Bare” SQLAlchemy | 197

CHAPTER 11

Other SQLAlchemy Extensions

SQLAlchemy provides an extremely powerful method of defining schemas, performing
queries, and manipulating data, both at the ORM level and at the SQL level. SQLAl-
chemy also provides several extensions to this core behavior. We have already seen one
of these extensions, SqlSoup, discussed in Chapter 10. One of the nice things about the
SQLAlchemy extensions package is that it provides a “proving ground” for function-
ality that may eventually make it into the core SQLAlchemy packages. When this occurs
(the functionality of an extension is absorbed into the core feature set of SQLAlchemy),
the extension is deprecated and eventually removed.

This chapter discusses the two remaining non-deprecated extensions available in
SQLAlchemy 0.4, sqlalchemy.ext.associationproxy and sqlalchemy.ext.orderinglist. We
will also describe the deprecated extensions, focusing on how to achieve the same
functionality using “core” SQLAlchemy.

Association Proxy
The association proxy extension allows our mapped classes to have attributes that are
proxied from related objects. One place where this is useful is when we have two tables
related via an association table that contains extra information in addition to linking
the two tables. For instance, suppose we have a database containing the following
schema:

user_table = Table(
 'user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', String(255), unique=True),
 Column('password', String(255)))

brand_table = Table(
 'brand', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(255)))

sales_rep_table = Table(

199

 'sales_rep', metadata,
Column('brand_id', None, ForeignKey('brand.id'), primary_key=True),
Column('user_id', None, ForeignKey('user.id'), primary_key=True),
 Column('commission_pct', Integer, default=0))

In this case, we might want to create User, Brand, and SalesRep classes to represent our
domain objects. The basic mapper setup would then be the following:

class User(object): pass
class Brand(object): pass
class SalesRep(object): pass

mapper(User, user_table, properties=dict(
 sales_rep=relation(SalesRep, backref='user', uselist=False)))
mapper(Brand, brand_table, properties=dict(
 sales_reps=relation(SalesRep, backref='brand')))
mapper(SalesRep, sales_rep_table)

In such a case, we have completely mapped the data in our schema to the object model.
But what if we want to have a property on the Brand object that lists all of the Users
who are SalesReps for that Brand? One way we could do this in “base” SQLAlchemy is
by using a property in the Brand class:

class Brand(object):
 @property
 def users(self):
 return [sr.user for sr in self.sales_reps]

This is not very convenient, however. It doesn’t allow us to append to or remove from
the list of users, for instance. The association proxy provides a convenient solution to
this problem. Using the association_proxy() function, we can add the users property
much more simply:

from sqlalchemy.ext.associationproxy import association_proxy

class Brand(object):
 users=association_proxy('sales_reps', 'user')

If we want to keep our domain object definition code ignorant of SQLAlchemy, we can
even move the association_proxy() call outside our class into the mapper configura-
tion:

mapper(Brand, brand_table, properties=dict(
 sales_reps=relation(SalesRep, backref='brand')))
Brand.users=association_proxy('sales_reps', 'user')

We can even append onto the users attribute to add new SalesReps. To enable this
functionality, however, we need to create some sensible constructors for our mapped
objects:

class User(object):
 def __init__(self, user_name=None, password=None):
 self.user_name=user_name
 self.password=password

200 | Chapter 11: Other SQLAlchemy Extensions

class Brand(object):
 def __init__(self, name=None):
 self.name = name

class SalesRep(object):
 def __init__(self, user=None, brand=None, commission_pct=0):
 self.user = user
 self.brand = brand
 self.commission_pct=commission_pct

Now, we can populate the database and add a user as a sales rep to a brand:

>>> Session = sessionmaker(bind=engine)
>>> engine.echo = True
>>> session = Session()
>>>
>>> b = Brand('Cool Clothing')
>>> session.save(b)
>>>
>>> u = User('rick', 'foo')
>>> session.save(u)
>>>
>>> metadata.bind.echo = True
>>> session.flush()
2007-11-23 12:48:28,304 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-11-23 12:48:28,305 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO user (user_name, password) VALUES (?, ?)
2007-11-23 12:48:28,306 INFO sqlalchemy.engine.base.Engine.0x..90
... ['rick', 'foo']
2007-11-23 12:48:28,308 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO brand (name) VALUES (?)
2007-11-23 12:48:28,308 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Cool Clothing']
>>> b.users
2007-11-23 12:48:31,317 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT sales_rep.brand_id AS sales_rep_brand_id,
... sales_rep.user_id AS sales_rep_user_id, sales_rep.commission_pct
... AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.brand_id ORDER BY sales_rep.oid
2007-11-23 12:48:31,318 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
[]
>>> b.users.append(u)
2007-11-23 12:48:33,668 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT sales_rep.brand_id AS sales_rep_brand_id,
... sales_rep.user_id AS sales_rep_user_id, sales_rep.commission_pct
... AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.user_id ORDER BY sales_rep.oid
2007-11-23 12:48:33,669 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> b.users
[<__main__.User object at 0xbdc710>]

Association Proxy | 201

>>> b.sales_reps
[<__main__.SalesRep object at 0xbe4610>]
>>> b.sales_reps[0].commission_pct
0
>>> session.flush()
2008-01-27 21:12:35,991 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO sales_rep (brand_id, user_id, commission_pct) VALUES
... (?, ?, ?)
2008-01-27 21:12:35,994 INFO sqlalchemy.engine.base.Engine.0x..50
... [1, 1, 0]

This works because the association proxy extension will automatically create the in-
termediary SalesRep object by calling its constructor with a single positional argument,
the User. To override this creation behavior, you can supply a creation function in the
creator parameter. For instance, if we wanted to give sales reps added in this manner
a commission percentage of 10%, we could define the proxy as follows:

Brand.users=association_proxy(
 'sales_reps', 'user',
 creator=lambda u:SalesRep(user=u, commission_pct=10))

Although accessing the underlying user attribute of the sales_reps property is useful,
what if we prefer dictionary-style access? associationproxy supports this as well. For
instance, suppose we want a property on Brand that is a dictionary keyed by User con-
taining the commission_pct values. We can implement this as follows. (Note that
dictionary-style association proxy creation functions take two positional parameters:
the key and value being set.)

from sqlalchemy.orm.collections import attribute_mapped_collection

reps_by_user_class=attribute_mapped_collection('user')

mapper(Brand, brand_table, properties=dict(
 sales_reps_by_user=relation(
 SalesRep, backref='brand',
 collection_class=reps_by_user_class)))
Brand.commissions=association_proxy(
 'sales_reps_by_user', 'commission_pct',
creator=lambda key,value: SalesRep(user=key, commission_pct=value))

Now, we can conveniently access the commission values by user:

>>> session.clear()
>>> session.bind.echo = False
>>>
>>> b = session.get(Brand, 1)
>>> u = session.get(User, 1)
>>> b.commissions[u] = 20
>>> session.flush()
>>> session.clear()
>>>
>>> b = session.get(Brand, 1)
>>> u = session.get(User, 1)
>>> print u.user_name

202 | Chapter 11: Other SQLAlchemy Extensions

rick
>>> print b.commissions[u]
20

Note that the proxy and the original relation are automatically kept synchronized by
SQLAlchemy:

>>> print b.sales_reps_by_user[u]
<__main__.SalesRep object at 0xbf2750>
>>> print b.sales_reps_by_user[u].commission_pct
20

Ordering List
A common pattern in many applications is the use of ordered collections. For instance,
consider a simple to-do list application with multiple lists, each containing an (ordered)
set of items. We might start with the following schema:

todo_list_table = Table(
 'todo_list', metadata,
 Column('name', Unicode(255), primary_key=True))

todo_item_table = Table(
 'todo_item', metadata,
 Column('id', Integer, primary_key=True),
 Column('list_name', None, ForeignKey('todo_list.name')),
 Column('list_position', Integer),
 Column('value', Unicode))

SQLAlchemy provides nice support for mapping the list items to a property and sorting
them via the order_by parameter:

class TodoList(object):
 def __init__(self, name):
 self.name = name
 def __repr__(self):
 return '<TodoList %s>' % self.name

class TodoItem(object):
 def __init__(self, value, position=None):
 self.value = value
 self.list_position = position
 def __repr__(self):
 return '<%s: %s>' % (self.list_position, self.value)

mapper(TodoList, todo_list, properties=dict(
 items=relation(TodoItem,
 backref='list',
 order_by=[todo_item_table.c.list_position])))
mapper(TodoItem, todo_item)

We can now create a list with some items:

Ordering List | 203

>>> lst = TodoList('list1')
>>> session.save(lst)
>>> lst.items = [TodoItem('Buy groceries', 0),
... TodoItem('Do laundry', 1)]
>>> session.flush()
>>> session.clear()
>>>
>>> lst = session.get(TodoList, 'list1')
>>> print lst.items
[<0: Buy groceries>, <1: Do laundry>]

This approach is certainly workable, but it requires you to manually keep track of the
positions of all the list items. For instance, suppose we wanted to mow the lawn be-
tween buying groceries and doing laundry. To do this using base SQLAlchemy, we
would need to do something like the following:

>>> lst.items.insert(1, TodoItem('Mow lawn'))
>>> for pos, it in enumerate(lst.items):
... it.list_position = pos

Rather than “fixing up” the list after each insert or remove operation, we can instead
use orderinglist to keep track of the list_position attribute automatically:

>>> from sqlalchemy.ext.orderinglist import ordering_list
>>>
>>> mapper(TodoList, todo_list_table, properties=dict(
... items=relation(TodoItem,
... backref='list',
... order_by=[todo_item_table.c.list_position],
... collection_class
... =ordering_list('list_position'))))
<sqlalchemy.orm.mapper.Mapper object at 0xbcb850>
>>> mapper(TodoItem, todo_item_table)
<sqlalchemy.orm.mapper.Mapper object at 0xbcb710>
>>>
>>> session.clear()
>>> lst = session.get(TodoList, 'list1')
>>> print lst.items
[<0: Buy groceries>, <1: Mow lawn>, <2: Do laundry>]
>>> del lst.items[1]
>>> print lst.items
[<0: Buy groceries>, <1: Do laundry>]
>>> session.flush()

We can also customize the ordering_list() call either by providing a count_from ar-
gument (to use nonzero-based lists) or by providing an ordering_func argument that
maps a position in a list to a value to store in the ordering attribute.

In some cases, you may also want to rearrange the entire list (rather than applying
individual insertions and deletions). For such situations, ordering_list() provides the
_reorder() method, which will generate new position values for every element in the
list.

204 | Chapter 11: Other SQLAlchemy Extensions

Deprecated Extensions
As mentioned previously, SQLAlchemy extensions function as a sort of “proving
ground” for new functionality that may someday “graduate” into SQLAlchemy proper.
There are several such extensions that have graduated in the transition from the SQLAl-
chemy 0.3.x release series to the 0.4.x release series. These extensions are briefly
described here.

sqlalchemy.ext.selectresults
The sqlalchemy.ext.selectresults extension provided generative query support for
ORM queries. Since version 0.3.6, this support has been built in to the native
Query class. sqlalchemy.ext.selectresults also provides a MapperExtension that adds
generative query behavior on a per-mapper basis.

sqlalchemy.ext.sessioncontext
The sqlalchemy.ext.sessioncontext extension provided contextual session support.
This has been deprecated in favor of the scoped_session() support in core SQLAl-
chemy.

sqlalchemy.ext.assignmapper
The sqlalchemy.ext.assignmapper extension provided the ability to automatically
save mapped objects and additional instrumentation on mapped classes above
what the mapper() function normally does. This has been deprecated in favor of
the Session.mapper() function available with contextual sessions created by
scoped_session() in core SQLAlchemy.

sqlalchemy.ext.activemapper
The sqlalchemy.ext.activemapper extension provided a declarative layer imple-
menting the active record pattern on SQLAlchemy. This has been deprecated in
favor of the external package Elixir (Chapter 9), a more comprehensive declarative
layer.

Deprecated Extensions | 205

Index

Symbols
!= comparison operator, 76
& bitwise logical operator, 77
1:1 relationships, 108, 110
1:N relationships, 108
< comparison operator, 76
<= comparison operator, 76
== comparison operator, 76
> comparison operator, 76
>= comparison operator, 76
? (question mark) as a name value, 15
| bitwise logical operator, 77
~ bitwise logical operator, 77

A
active defaults, 48
"active record" patterns, 93
acts_as_versioned() statement, 186
adds() decorator, 119
add_column() method, 149, 150
add_entity() method, 149, 150
after_commit() (SessionExtension class), 138
after_delete() hook (MapperExtension), 121
after_flush() (SessionExtension class), 139
after_flush_postexec() (SessionExtension

class), 139
after_insert() hook (MapperExtension), 121
@after_revert decorator, 188
after_update() hook (MapperExtension), 121
alias() method, 89
aliases, 89
all parameter, 114
all() method, 139, 150

allow_column_override parameter (mapper()
function), 106

allow_null_pks parameter (mapper()
function), 106

ALTER TABLE command, 45
always_refresh parameter (mapper() function),

106
AND boolean operator, 77
any() method, 141
append() function, 134
appender() decorator, 119
append_result() hook (MapperExtension),

121
application-specific custom types, 63
apply_avg() method, 150
apply_labels() method, 85
apply_max() method, 150
apply_min() method, 150
apply_sum() method, 150
arbitrary selectables, mapping, 105
architecture (SQLAlchemy), 10–19
*args argument

Column constructor, 43
Table constructor, 41

arithmetic operators, 76
asc() method, 140
AssertionPool pool type (sqlalchemy.pool), 38
associable() function, 184
association proxys, 199
as_scalar() method, 86
attribute Elixir keyword argument, 176
attribute-based syntax (Elixir), 178
attribute_mapped_collection() method, 120
autoflush argument (sessionmaker() method),

128

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

207

autoflush feature, flushing sessions, 94
autoflush() method, 150
autoincrement argument (Column

constructor), 44
autoload parameter, 13

Table object, 41
autoload_with argument (Table), 41
AVG() function, 150
avg() method, 150

B
backref parameter, 115
backref() function, 113, 114

parameters, 115
backrefs, 111
batch parameter (mapper() function), 106
before_commit() (SessionExtension class),

138
before_delete() hook (MapperExtension), 121
before_flush() (SessionExtension class), 138
before_insert() hook (MapperExtension), 121
before_update() hook (MapperExtension),

121
begin() method, 136
belongs_to() statement, 180
between() method, 140
between() method (ClauseElement), 78
bind argument

sessionmaker() method, 128
bind argument (MetaData.reflect() method),

43
bind parameters, 40, 76

custom, using, 78
MetaData methods and, 56
select(), 73

bind() method, 191
bind=None parameter (text() function), 80
bindparam() method, 79, 80
binds argument (sessionmaker() method),

128
boolean operators, 77
bound MetaData, 55
bounded constructors, 39
built-in type TypeEngine objects, 59
Byer, Mike, 1

C
c attribute (mapped class), 9

.c objects, 15
cascade parameter, 115
CheckConstraint, 47
checkfirst parameter (MetaData), 56
CheeseShop, 21
ClauseElement objects, 76
clear() method, 191
clear_mappers() function, 98
close() method, 75, 138

ResultProxy object, 37
collection_class parameter, 115, 117
colname Elixir keyword argument, 175
colname parameter (ManyToOne), 179
Column class, 40

definitions, 43
column parameter (ForeignKey constructor),

45
column() method, 85
columns parameter (ForeignKeyConstraint

class), 46
columns=None parameter (select()), 73
column_kwargs parameter (ManyToOne),

179
column_mapped_collections() method, 120
column_prefix keyword, 100
column_prefix parameter (mapper() function),

106
column_property() function, 101, 177
commit() method, 136
compare_with() method, 188
comparison operators, 76
__composite_values__() method, 102
concat() method, 140
concrete parameter (mapper() function), 106
concrete table inheritance, 157
concrete table inheritance mapping, 161–163
configure() method (Session), 127
connect() method, 11, 36, 38
Connection object, 36
connection pools, 11, 33, 37–39

Engine class and, 33
connect_args parameter (create_engine()

function), 34
Constraint class, 44–48
constraint parameter (ForeignKey constructor),

45
constraint_kwargs parameter (ManyToOne),

179
contains() method, 141

208 | Index

contains_alias() method, 146
contains_eager() method, 146, 147
contextual sessions, 153
convert_bind_param() method, 63
convert_result_value(), 63
convert_unicode parameter (create_engine()

function), 34
correlate() method, 86, 90
correlate=True parameter (select()), 74
COUNT() function, 151
count() method, 85, 151
CREATE TABLE statement, 45
create() method, 41, 59

MetaData/schema objects and, 56
create_all() method, 56, 59
create_engine() function, 10, 33

configuring logging and, 35
create_instance() hook (MapperExtension),

121
creator parameter (create_engine() function),

34

D
data manipulation language (DML), 67
data mapper pattern, 93
database drivers, installing, 23
datetime.now method, 49
DB-API interface, 1
DB2 database, 1
decorators, 119
default argument (Column constructor), 44

insert defaults and, 49
defaults, 48–52
defer() function, 105
defer() method, 146
deferred Elixir keyword argument, 175
deferred() function, 104
delete parameter, 114
DELETE statements, 71
delete() function, 28

SqlSoup, using, 191
delete() method, 71, 136, 183, 191

sessions, deleting objects from, 135
delete-orphan, 115
desc() method, 140
Detached state (Session), 130
dialect management (SQL), 12
dialect-specific types, 61
distinct() method, 81, 85, 140, 151

ClauseElement object, 78
distinct=False parameter (select()), 73
DML (data manipulation language), 67
domain specific language (DSL) syntax, 174,

180
drivers, installing, 23
drop_all() method, 56
DSL (domain specific language) syntax, 174,

180
dynamic_loader() method, 134

E
eagerload() method, 146
eagerload_all() method, 144, 146
Easyinstall, 21
easy_install tools, 21
echo argument

configuring logging and, 35
echo argument (create_engine() function), 34
echo_pool argument

configuring logging and, 35
echo_pool argument (create_engine()

function), 34
echo_uow argument (sessionmaker() method),

128
echo_uow flag (create_engine() function), 35
EGG files, 21
Elixir, 171–188

extensions, 184–188
inheritance, 181
installing/using, 174
querying using, 183
relations, 178

elixir.ext.encrypted extension, 186
elixir.ext.versioned extension, 186
__emulates__ class attribute, 118
encoding parameter (create_engine()

function), 34
endswitch() method, 140
endswith() method (ClauseElement), 78
Engine class, 10–12, 16, 33–57

connection pools, 11
managing connections, 33–39

Engine pools
connection pools, 37

entities, 4
entity_name parameter (mapper() function),

106
__eq__() method, 102

Index | 209

EXCEPT clause, 88
except_() function, 88
except_() method, 86
except_all() function, 88
except_all() method, 86
exclude_properties, 99
exclude_properties parameter (mapper()

function), 107
execute() method, 37, 68, 138
executemany() method, 69
expire() method, 137, 183
explicit execution, 40
explicit sequences, creating, 54
expression language (SQL), 14–16
expression-builders (Pythonic), 2
expunge parameter, 115
expunge() method, 137, 183
extending session, 138
extension argument (sessionmaker() method),

129
extension parameter (mapper() function), 106,

121
extension() method, 146
ex_setup.py file, 22

F
fetchall() method, 74
fetchall() method (ResultProxy), 37
fetchmany() method, 74
fetchone() method, 74
fetchone() method (ResultProxy), 37
Field() class, 175
filter() method, 29, 139, 151

querying with joins, 142
filter_by() method, 18, 29, 139, 151, 183

querying with joins, 142
Firebird database, 24
first() (Query object), 142
first() method, 151
flush() function, 28

saving objects to sessions and, 129
flush() method, 136, 183, 191
for+update=False parameter (select()), 74
foreign keys, 4
ForeignKey constructor, 45
ForeignKeyConstraint class, 46
foreign_keys parameter, 115
for_fields parameter, 186

for_update parameter (Sequence constructor),
55

from_obj=[] parameter (select()), 73, 90
from_statement() method, 147, 151

G
"generative" interface, 82
get() (Query object), 142
get() hook (MapperExtension), 121
get() method, 29, 137, 151, 184

Elixir, querying using and, 183
__getattr__() method, 192
__get attr__() method (ResultProxy), 37
__getitem__() method, 153
get_as_of() method, 188
get_by() method, 183, 184
get_indent() function, 154
get_session() hook (MapperExtension), 121
GROUP BY clause, 80
group_by() method, 85, 151
group_by=Name parameter (select()), 73

H
hand-generated SQL vs. SQLAlchemy

generation layers, 15
has() method, 141
has_and_belongs_to_many() statement, 180
has_field() method, 175
has_field() statement, 180
has_many() statement, 180
has_one() statement, 180
HAVING clause, 80, 151
having() method, 85, 151
having=None parameter (select()), 73
horizontal partitioning, 124

I
identity_map attribute, 138
idiomatically Python (Pythonic), 1
IF EXISTS clause, 56
IF NOT EXISTS clause, 56
"impedance mismatch" (object/relational), 4
implicit execution, 40
IN clause, 91
include_columns argument (Table), 42
include_properties, 99
include_properties parameter (mapper()

function), 107

210 | Index

increment parameter (Sequence constructor),
55

index argument (Column constructor), 44
Index object, 53
indexes, 52
Informix database, 24
ingerits parameter (mapper() function), 106
inheritance mapping, 157–169

concrete table, 161–163
joined table, 163–168

inherit_foreign_keys parameter (mapper()
function), 106

inhert_condition parameter (mapper()
function), 106

init_failed() hook (MapperExtension), 122
init_instance() hook (MapperExtension), 122
injection attacks (SQL), 2
insert defaults, 48
INSERT statements, 26, 68
insert() function, 68

SqlSoup, using, 191
installation (SQLAlchemy), 21–24
instances() method, 151
instrument_class() hook (MapperExtension),

122
internally_instrumented() decorator, 119
INTERSECT clause, 88
intersect() function, 88
intersect() method, 85
intersect_all() method, 86
inverse parameter, 179, 180
inverse parameter (OneToMany), 179
in_() method, 140
in_() method (ClauseElement), 78, 90
items() method (ResultProxy), 37
iterator() decorator, 119
__iter__() method, 74, 153
__iter__() method (ResultProxy), 37

J
join() function, 19
join() method, 86, 151, 191

SqlSoup and, 192
joined table inheritance, 157
joined table inheritance mapping, 163–168
join_depth parameter, 116

K
key argument (Column constructor), 43
key method (ResultProxy), 37
keys() method (ResultProxy), 37

L
label() method, 86
label() method (ClauseElement), 78
lazy parameter, 116, 185
lazyload() method, 146
LEFT OUTER JOIN, 147
library logging, 35
like() method, 140
like() method (ClauseElement), 78
LIMIT clause, 82
LIMIT modifier, 152
limit() method, 85, 152
limit=None parameter (select()), 74
literal text in queries, 79
load() hook (MapperExtension), 121
load() method, 137, 152
local_side parameter (ManyToMany), 180

M
M:N relationships, 108–110

backrefs and, 112
many-to-many (M:N) relationships, 109

backrefs, 112
ManyToMany object, 180
ManyToOne object, 178
map() method, 191
mapped classes, 9
MappedProduct class, 191
mapped_collection() method, 120
mapper patterns, 93
mapper() function, 98, 142

extending mappers and, 121
inheritance hierarchy and, 159
parameters, 105

MapperExtension class, 120, 138
MAX() function, 150
max() method, 152
max_overflow parameter (create_engine()

function), 35
merge parameter, 115
merge() method, 137, 183
metadata argument

Table constructor, 41

Index | 211

MetaData class, 10, 12, 33, 39–57
connecting to databases/tables, 25
object mappers, declaring, 95
tables, defining, 40–43
TypeEngine objects and, 59

Metadata class
ORM and, 16

metadata.bind.echo property, 26
MIN() function, 150
min() method, 152
module parameter (create_engine() function),

34
mustexist argument (Table), 42
MySQL, 1

drivers, installing, 24

N
name argument

Column constructor, 43
Table constructor, 41

name parameter
ForeignKey constructor, 46
Sequence constructor, 54

name parameter (Constraint class), 44
"named colon" format, 80
nested loops, 6
__ne__() method, 102
noload() method, 146
nonpolymorphic inheritance, 169
non_primary parameter (mapper() function),

107
NOT boolean operator, 77
nullable argument (Column constructor), 44
NullPool pool type (sqlalchemy.pool), 38

O
object-relational mapper (see ORM)
object/relational "impedance mismatch", 4–7
objects

tables, mapping to, 28
OFFSET clause, 82
offset() method, 85, 152
offset=None parameter (select()), 74
"oid" (object ID), 35
ON clause, 87
ON DELETE CASCADE statement, 114
ON UPDATE clause, 46
ondelete parameter, 114

ForeignKey constructor, 46
ondelete parameter (ManyToOne), 179
one() (Query object), 142
one() method, 152
OneToMany object, 179
OneToOne object, 179
only argument (MetaData.reflect() method),

43
onupdate argument

Column constructor, 44
onupdate parameter

ForeignKey constructor, 46
onupdate parameter (ManyToOne), 179
on_link() decorator, 119
op() method (ClauseElement), 78
option() method, 121
optional parameter (Sequence constructor), 55
options() method, 144, 145, 152
OR boolean operator, 77
Oracle, 1

drivers, installing, 24
ORDER BY clause, 80
ordered collections, 203
ordering_list() method, 204
order_by parameter, 116

mapper() function, 107
order_by parameter (ManyToMany), 180
order_by parameter (OneToMany), 179
order_by() method, 84, 152
order_by=None parameter (select()), 73
ORM (object-relation mapper)

extending mappers, 120–122
ORM (object-relational mapper), 1, 3, 16–19

(see also mapper)
declaring, 95–108
design concepts in, 93
MetaData object and, 55
partitioning strategies, 122
property mapping, customizing, 99
querying, 139–153
querying and updating, 127–155
relationships, declaring, 108–120
self-referential mappers, using, 113

ORM object-relational mapper, 93–126
outerjoin() method, 86, 152
owner argument (Table), 42

P
params() method, 153

212 | Index

passive defaults, 50
PassiveDefault instances, 50
passive_deletes parameter, 116
Pending objects, 134
Pending state (Session), 130
Persistent object, 134
Persistent state (Session), 130
PIL (Python Imaging Library), 14
"plain old Python objects" (see POPOs)
plural_name argument (associable() function),

185
polymorphic

class, 168
polymorphic identity of rows, 159
polymorphic_fetch parameter (mapper()

function), 107
polymorphic_identity argument, 159
polymorphic_identity parameter (mapper()

function), 107
polymorphic_on argument, 159
polymorphic_on parameter (mapper()

function), 107
polymorphic_union() function, 162
pool parameter (create_engine() function), 35
pool.manage() function, 38
pool.manage() method, 38
poolclass parameter (create_engine()

function), 35
pools (connections), 11

(see also connection pools)
pool_recycle parameter (create_engine()

function), 35
pool_size parameter (create_engine()

function), 35
pool_timeout parameter (create_engine()

function), 35
POPOs (plain old Python objects), 1, 3
populate_existing() method, 153
populate_instance() hook (MapperExtension),

122
PostgreSQL, 1

drivers, installing, 24
passive defaults, support for, 52

post_update parameter, 116
prefixes=None parameter (select()), 74
prefix_with() method, 85
PrimaryDeyConstraint object, 45
primaryjoin parameter, 117

primary_key argument (Column constructor),
43

primary_key parameter (mapper() function),
107

properties parameter (mapper() function),
107

property mapping, 99
PyPI (Python package index), 21
pysqlite binary module, 23
pysqlite driver, 24
Python Imaging Library (PIL), 14
Pythonic (idiomatically Python), 1

Q
queries, 26, 67

constructing, 72–86
query() method, 137, 139
query_from_parent() method, 153
question mark (?), as a name value, 15
QueuePool pool type (sqlalchemy.pool), 39
quote argument

Column constructor, 44
Table constructor, 42

quote parameter
Sequence constructor, 55

quote_schema argument (Table), 42

R
refcolumns parameter (ForeignKeyConstraint

class), 46
reflect() method (MetaData), 43
reflection, defining tables, 42
refresh() method, 137, 183
refresh-expire parameter, 115
relation() function, 108, 114, 134, 144

custom collections, using, 117
Elixir attribute-based syntax and, 178
parameters, 115
self-referential mappers and, 113

relational model, 4, 168
relationships, 4
relationships (SQLAlchemy), 108
remote_side parameter (ManyToMany), 180
remote_site parameter, 117
remove() function, 134
remover() decorator, 119
removes() decorator, 119
removes_return() decorator, 120

Index | 213

_reorder() method, 204
replaces() decorator, 119
replace_selectable() method, 85
required Elixir keyword argument, 175
required parameter (ManyToOne), 179
reset_joinpoint() method, 153
ResultProxy class, 74
ResultProxy object, 36
revert() method, 188
revert_to() method, 188
rollback() method, 136
rowcount () method, 75
rowcount method (ResultProxy), 37

S
save() method, 129, 136, 184

Elixir, quering using and, 183
save-update parameter, 115
save_or_update() method, 184
scalar() method, 75
scalar() method (ResultProxy), 37
schema argument (MetaData.reflect()

method), 43
schema argument (Table), 41
schema definitions (database), 2, 12
schema() method, 191
scoped_session() function, 154
secondary parameter, 117
secondaryjoin parameter, 117
SELECT statements, 28, 72

customizing in queries, 147
WHERE clauses and, 75

select() function, 72–74
"generative" interface, 84

select() method, 27, 72–74, 86
select_from() method, 85, 147
select_table parameter (mapper() function),

107
self-referential mappers, 113
Sequence object, 54
Session object, 3, 18, 127–139

creating, 127
saving objects to, 129

session.commit() method, 30
Session.configure() method, 127
sessionmaker() function, 29, 127
set operations, 88
SetupTools package, 21
setup_all() method, 173

setup_entities() method, 173
"sharding" (horizontal partitioning), 124
single table inheritance, 157
SingletonThreadPool pool type

(sqlalchemy.pool), 39
single_query() method, 165
SQL dialect management, 12
SQL expression language, 14
SQL Expression Language, 67
SQL injection attacks, 2
sqlalchemy package, 24
sqlalchemy.engine, 36
sqlalchemy.engine.Connection class, 36
sqlalchemy.engine.ResultProxy, 36
sqlalchemy.ext.activemapper extension, 205
sqlalchemy.ext.assignmapper extension, 205
sqlalchemy.ext.selectresults extension, 205
sqlalchemy.ext.sessioncontext extension, 205
sqlalchemy.orm, 36
sqlalchemy.orm.attributes, 36
sqlalchemy.orm.collections module, 120
sqlalchemy.orm.mapper, 36
sqlalchemy.orm.strategies, 36
sqlalchemy.orm.sync, 36
sqlalchemy.orm.unitofwork, 36
sqlalchemy.pool, 36
sqlalchemy.types package, 60
SQLite, 1

drivers, installing, 24
sqlite3 driver, 24
SqlSoup, 189
start parameter (Sequence constructor), 55
startswith() method, 140
startswith() method (ClauseElement), 78
_state attribute (mapped class), 9
statements (SQL), 67
StaticPool pool type (sqlalchemy.pool), 39
strategy parameter (create_engine() function),

35
subqueries, 90
SUM() function, 150
sum() method, 153
synonym Elixir keyword argument, 176
synonym() function, 100

T
Table object, 13
table.c object, 15
Table.insert() method, 68

214 | Index

Table.select() method, 72
tablename parameter (ManyToMany), 180
Tables object, 40–43
table_iterator() method, 57
Text construct, 72

WHERE clause and, 75
text parameter

text() function, 80
text() function, 79
thread-local sessions, 153
threaded parameter (create_engine() function),

35
through Elixir keyword argument, 176
transactional argument (sessionmaker()

method), 128
Transient state (Session), 130
translate_row() hook (MapperExtension),

122
tutorial.sqlite file, 25
twophase argument (sessionmaker() method),

128
TypeDecorator object, 63
TypeEngine class, 14, 16
TypeEngine objects, 59–65
typemap=None parameter (text() function),

80
type_ argument (Column constructor), 43

U
unbound metadata, 11
unbounded constructors, 39
undefer() function, 105
undefer() method, 146
undefer_group() method, 146
UNION clause, 88
union() function, 88
union() method, 85
union_all() function, 88
union_all() method, 85
unique argument (Column constructor), 44
UNIQUE clause, 80
UNIQUE constraint, 52
UNIQUE constraints, 47
unit of work pattern, 93
update defaults, 48
UPDATE statements, 69–71
update() function, 28

SqlSoup, using, 191
update() method, 69, 137, 184

updates, 26
useexisting argument (Table), 42
uselist parameter, 117
use_alter parameter (ForeignKey constructor),

45
use_alter parameter (ManyToOne), 179
use_ansi parameter (create_engine() function),

35
use_labels=False parameter (select()), 74
use_oids parameter (create_engine() function),

35
using_options() method, 173

V
values() method (ResultProxy), 37
version_id_col parameter (mapper() function),

107
vertical partitioning, 122
viewonly parameter, 117

W
weak_identity_map argument (sessionmaker()

method), 129
WHERE clause, 72

operators and functions, 75–78
where() method, 84
whereclause=None parameter (select()), 73
with_labels() method, 192
with_lockmode() method, 153
with_options() statement, 181
with_parent() method, 153
with_secret parameter, 186

Index | 215

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of this Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to SQLAlchemy
	What Is SQLAlch
	The Object/Relational “Impedance Mismatch”
	SQLAlchemy Philosophy
	SQLAlchemy Architecture
	Engine
	Connection Pooling
	SQL dialect management

	MetaData Management
	Types System
	SQL Expression Language
	Object Relational Mapper (ORM)

	Chapter 2. Getting Started
	Installing SQLAlchemy
	Installing the SQLAlchemy Package
	Installing setup tools
	Installing SQLAlchemy with easy_install
	Testing the install

	Installing Some Database Drivers
	Installing the SQLite driver on Python versions before 2.5
	Other supported drivers

	SQLAlchemy Tutorial
	Connecting to the Database and Creating Some Tables
	Performing Queries and Updates
	Mapping Objects to Tables

	Chapter 3. Engines and MetaData
	Engines and Connectables
	Configuring SQLAlchemy Logging
	Database Connections and ResultProxys
	Connection Pooling

	MetaData
	Getting Started with MetaData
	Defining Tables
	Table reflection

	Column Definitions
	Constraints
	Primary keys
	Foreign keys
	UNIQUE constraints
	CHECK constraints

	Defaults
	Active defaults
	Passive defaults

	Defining Indexes
	The Index object

	Creating Explicit Sequences
	MetaData Operations
	Binding MetaData
	Create/drop MetaData and schema objects
	Adapt Tables from one MetaData to another

	Chapter 4. SQLAlchemy Type Engines
	Type System Overview
	Built-in Types
	Generic Types
	Dialect-Specific Types

	Application-Specific Custom Types
	Implementing a TypeDecorator
	Creating a New TypeEngine

	Chapter 5. Running Queries and Updates
	Inserts, Updates, and Deletes
	Insert Statements
	Update Statements
	Delete Statements

	Queries
	Basic Query Construction
	The select() function versus the select() method
	Result set objects
	Operators and functions in WHERE clauses
	Using custom bind parameters
	Using literal text in queries
	Ordering and grouping results, returning distinct values
	Limiting results returned
	Using the “generative” query interface

	Joins and Set Operations
	Joining selectables
	Set operations (UNION, INTERSECT, EXCEPT)
	Using aliases

	Subqueries
	Embedding subqueries in the column list
	Correlated versus uncorrelated subqueries
	Embedding subqueries in an IN clause
	Embedding subqueries in the FROM clause

	Chapter 6. Building an Object Mapper
	Introduction to ORMs
	Design Concepts in the ORM
	The data mapper pattern
	The unit of work pattern

	Declaring Object Mappers
	Basic Object Mapping
	Customizing Property Mapping
	Using include_properties and exclude_properties
	Customizing the name of the mapped column
	Using synonyms
	Mapping subqueries
	Mapping composite values
	Eager versus deferred loading

	Mapping Arbitrary Selectables
	Other mapper() Parameters

	Declaring Relationships Between Mappers
	Basic Relationships
	1:N relations
	M:N relations
	1:1 relations

	Using BackRefs
	Using a Self-Referential Mapper
	Cascading Changes to Related Objects
	Other relation() and backref() Parameters
	Using custom collections in relations

	Extending Mappers
	ORM Partitioning Strategies
	Vertical Partitioning
	Horizontal Partitioning

	Chapter 7. Querying and Updating at the ORM Level
	The SQLAlchemy ORM Session Object
	Creating a Session
	Saving Objects to the Session
	Updating Objects in the Session
	Embedding SQL expressions in a flush

	Deleting Objects from the Session
	Flushing, Committing, and Rolling Back Session Changes
	Other Session Methods
	Extending Sessions

	Querying at the ORM Level
	ORM Querying with Joins
	Customizing the Select Statement in ORM Queries
	Other Query Methods

	Contextual or Thread-Local Sessions
	Using Contextual Sessions with Mappers and Classes

	Chapter 8. Inheritance Mapping
	Overview of Inheritance Mapping
	Single Table Inheritance Mapping
	Concrete Table Inheritance Mapping
	Joined Table Inheritance Mapping
	Optimizing Performance with Joined Table Inheritance Mapping
	Using deferred loading
	Using select_table

	Relations and Inheritance

	Chapter 9. Elixir: A Declarative Extension to SQLAlchemy
	Introduction to Elixir
	Installing Elixir
	Using Elixir
	Fields and Properties
	Elixir deferred properties

	Relations
	Attribute-based syntax
	DSL syntax

	Inheritance
	Querying Using Elixir

	Elixir Extensions
	Associable Extension
	Encrypted Extension
	Versioned Extension

	Chapter 10. SqlSoup: An Automatic Mapper for SQLAlchemy
	Introduction to SqlSoup
	Using SqlSoup for ORM-Style Queries and Updates
	Joins with SqlSoup
	Mapping Arbitrary Selectables
	Directly Accessing the Session

	Using SqlSoup for SQL-Level Inserts, Updates, and Deletes
	When to Use SqlSoup Versus Elixir Versus “Bare” SQLAlchemy
	SqlSoup Pros and Cons
	Elixir Pros and Cons

	Chapter 11. Other SQLAlchemy Extensions
	Association Proxy
	Ordering List
	Deprecated Extensions

	Index

