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4
The Enhanced Entity–Relationship 

(EER) Model

The ER modeling concepts discussed in Chapter 3 
are sufficient for representing many database sche-

mas for traditional database applications, which include many data-processing 
applications in business and industry. Since the late 1970s, however, designers of 
database applications have tried to design more accurate database schemas that 
reflect the data properties and constraints more precisely. This was particularly 
important for newer applications of database technology, such as databases for 
engineering design and manufacturing (CAD/CAM),1 telecommunications, com-
plex software systems, and geographic information systems (GISs), among many 
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual 
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently 
in related areas of computer science, such as the knowledge representation area of 
artificial intelligence and the object modeling area in software engineering.
In this chapter, we describe features that have been proposed for semantic data 
models and show how the ER model can be enhanced to include these concepts, 
which leads to the enhanced ER (EER) model.2 We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER 
model. Then, in Section 4.2, we add the concepts of specialization and generalization. 
Section 4.3 discusses the various types of constraints on specialization/generalization, 
and Section 4.4 shows how the UNION construct can be modeled by including the 

chapter 4

1CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2EER has also been used to stand for extended ER model.
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concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY 
database schema in the EER model and summarizes the EER model concepts by 
giving formal definitions. We will use the terms object and entity interchangeably 
in this chapter, because many of these concepts are commonly used in object-
oriented models.
We present the UML class diagram notation for representing specialization and 
generalization in Section 4.6, and we briefly compare these with EER notation and 
concepts. This serves as an example of alternative notation, and is a continuation 
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8 
summarizes the chapter.
For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose 
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance
The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass 
and the related concepts of specialization and generalization (see Sections 4.2  
and 4.3). Another concept included in the EER model is that of a category or union 
type (see Section 4.4), which is used to represent a collection of objects (entities) 
that is the union of objects of different entity types. Associated with these concepts 
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a 
diagrammatic technique for displaying these concepts when they arise in an EER 
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.
The first enhanced ER (EER) model concept we take up is that of a subtype or  
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is 
used to represent both a type of entity and the entity set or collection of entities of that 
type that exist in the database. For example, the entity type EMPLOYEE describes the 
type (that is, the attributes and relationships) of each employee entity, and also refers 
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an 
entity type has numerous subgroupings or subtypes of its entities that are meaningful 
and need to be represented explicitly because of their significance to the database 
application. For example, the entities that are members of the EMPLOYEE entity 
type may be distinguished further into SECRETARY, ENGINEER, MANAGER, 
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or 
collection of entities in each of the latter groupings is a subset of the entities that 
belong to the EMPLOYEE entity set, meaning that every entity that is a member of 
one of these subgroupings is also an employee. We call each of these subgroupings a 
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subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is 
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how 
to represent these concepts diagramatically in EER diagrams. (The circle notation in 
Figure 4.1 will be explained in Section 4.2.)
We call the relationship between a superclass and any one of its subclasses a  
superclass/subclass or supertype/subtype or simply class/subclass relationship.3 

In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN 
are two class/subclass relationships. Notice that a member entity of the subclass 
represents the same real-world entity as some member of the superclass; for 
example, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’ 
Hence, the subclass member is the same as the entity in the superclass, but in a 
distinct specific role. When we implement a superclass/subclass relationship in 
the database system, however, we may represent a member of the subclass as a 
distinct database object—say, a distinct record that is related via the key attribute 
to its superclass entity. In Section 9.2, we discuss various options for representing 
superclass/subclass relationships in relational databases.
An entity cannot exist in the database merely by being a member of a subclass; it 
must also be a member of the superclass. Such an entity can be included optionally 

3A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we 
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and 
so on.

MANAGES
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Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1 
EER diagram  
notation to represent 
subclasses and  
specialization.
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as a member of any number of subclasses. For example, a salaried employee who is 
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE 
of the EMPLOYEE entity type. However, it is not necessary that every entity in a 
superclass is a member of some subclass.
An important concept associated with subclasses (subtypes) is that of type  
inheritance. Recall that the type of an entity is defined by the attributes it possesses 
and the relationship types in which it participates. Because an entity in the subclass 
represents the same real-world entity from the superclass, it should possess values 
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of 
the entity as a member of the superclass. The entity also inherits all the relationships 
in which the superclass participates. Notice that a subclass, with its own specific (or 
local) attributes and relationships together with all the attributes and relationships it 
inherits from the superclass, can be considered an entity type in its own right.4

4.2 Specialization and Generalization

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type; this 
entity type is called the superclass of the specialization. The set of subclasses that 
forms a specialization is defined on the basis of some distinguishing characteristic 
of the entities in the superclass. For example, the set of subclasses {SECRETARY, 
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.  
We may have several specializations of the same entity type based on different 
distinguishing characteristics. For example, another specialization of the 
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,  
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on 
the method of pay.
Figure 4.1 shows how we represent a specialization diagrammatically in an EER 
diagram. The subclasses that define a specialization are attached by lines to a circle 
that represents the specialization, which is connected in turn to the superclass. The 
subset symbol on each line connecting a subclass to the circle indicates the direction 
of the superclass/subclass relationship.5 Attributes that apply only to entities of a 
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of 
the subclass. Similarly, a subclass can participate in specific relationship types, 
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO 

4In some object-oriented programming languages, a common restriction is that an entity (or object) has 
only one type. This is generally too restrictive for conceptual database modeling.
5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and 
other proposed notations in Appendix A.
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relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1 
and additional EER diagram notation shortly.
Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY, 
ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to 
a subclass represents the same real-world entity as the entity connected to it in the 
EMPLOYEE superclass, even though the same entity is shown twice; for example, e1 
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests, 
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat 
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as 
the entity in the superclass but is playing a specialized role—for example, an 
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in 
the role of TECHNICIAN.
There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of 
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Figure 4.2 
Instances of a specialization.
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the superclass entity type. A subclass is defined in order to group the entities to 
which these attributes apply. The members of the subclass may still share the 
majority of their attributes with the other members of the superclass. For example, 
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed, 
whereas the ENGINEER subclass has the specific attribute Eng_type, but  
SECRETARY and ENGINEER share their other inherited attributes from the 
EMPLOYEE entity type.
The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only 
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by 
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass 
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization
We can think of a reverse process of abstraction in which we suppress the differences 
among several entity types, identify their common features, and generalize them 
into a single superclass of which the original entity types are special subclasses. For 
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because 
they have several common attributes, they can be generalized into the entity type 
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the 

(a)

(b)

Max_speed

Vehicle_id

No_of_passengers

License_plate_no

CAR Price Price

License_plate_no

No_of_axles
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Tonnage

TRUCK

Vehicle_id Price License_plate_no

VEHICLE

No_of_passengers

Max_speed

CAR TRUCK

No_of_axles

Tonnage

d

Figure 4.3 
Generalization. (a) Two entity types, CAR and TRUCK.  
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.
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generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.
Notice that the generalization process can be viewed as being functionally the 
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization 
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A 
diagrammatic notation to distinguish between generalization and specialization is 
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation 
because the decision as to which process was followed in a particular situation is 
often subjective.
So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a 
superclass or subclass represents a collection of entities of the same type and hence 
also describes an entity type; that is why superclasses and subclasses are all shown in 
rectangles in EER diagrams, like entity types.

4.3  Constraints and Characteristics  
of Specialization and Generalization 
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it 
applies to both specialization and generalization. Then, we discuss differences 
between specialization/generalization lattices (multiple inheritance) and hierarchies 
(single inheritance), and we elaborate on the differences between the specialization 
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization
In general, we may have several specializations defined on the same entity type (or 
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses 
in each of the specializations. A specialization may also consist of a single subclass 
only, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do not 
use the circle notation.
In some specializations we can determine exactly the entities that will become 
members of each subclass by placing a condition on the value of some attribute of 
the superclass. Such subclasses are called predicate-defined (or condition-defined) 
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as 
shown in Figure 4.4, we can specify the condition of membership in the  
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the 
defining predicate of the subclass. This condition is a constraint specifying that 
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type 
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is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by 
writing the predicate condition next to the line that connects the subclass to the 
specialization circle.
If all subclasses in a specialization have their membership condition on the same 
attribute of the superclass, the specialization itself is called an attribute-defined 
specialization, and the attribute is called the defining attribute of the special-
ization.6 In this case, all the entities with the same value for the attribute belong to 
the same subclass. We display an attribute-defined specialization by placing the 
defining attribute name next to the arc from the circle to the superclass, as shown 
in Figure 4.4.
When we do not have a condition for determining membership in a subclass, the 
subclass is called user-defined. Membership in such a subclass is determined by the 
database users when they apply the operation to add an entity to the subclass; hence, 
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.
Two other constraints may apply to a specialization. The first is the disjointness 
constraint, which specifies that the subclasses of the specialization must be disjoint 
sets. This means that an entity can be a member of at most one of the subclasses of 
the specialization. A specialization that is attribute-defined implies the disjointness 
constraint (if the attribute used to define the membership predicate is single- 
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The 
d notation also applies to user-defined subclasses of a specialization that must be 
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} 
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities 

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.
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EER diagram notation 
for an attribute-defined 
specialization on  
Job_type.
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may be overlapping; that is, the same (real-world) entity may be a member of more 
than one subclass of the specialization. This case, which is the default, is displayed 
by placing an o in the circle, as shown in Figure 4.5.
The second constraint on specialization is called the completeness (or totalness) 
constraint, which may be total or partial. A total specialization constraint specifies 
that every entity in the superclass must be a member of at least one subclass  
in the specialization. For example, if every EMPLOYEE must be either an  
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization  
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization 
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect 
the superclass to the circle. A single line is used to display a partial specialization, 
which allows an entity not to belong to any of the subclasses. For example, if some 
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER, 
TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.7

Notice that the disjointness and completeness constraints are independent. Hence, 
we have the following four possible constraints on a specialization:

 ■ Disjoint, total
 ■ Disjoint, partial
 ■ Overlapping, total
 ■ Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that 
applies to each specialization. In general, a superclass that was identified through 
the generalization process usually is total, because the superclass is derived from the 
subclasses and hence contains only the entities that are in the subclasses.
Certain insertion and deletion rules apply to specialization (and generalization) as a 
consequence of the constraints specified earlier. Some of these rules are as follows:

 ■ Deleting an entity from a superclass implies that it is automatically deleted 
from all the subclasses to which it belongs.

7The notation of using single or double lines is similar to that for partial or total participation of an entity 
type in a relationship type, as described in Chapter 3.

Part_no Description

PARTManufacture_date

Drawing_no

PURCHASED_PART

Supplier_name
Batch_no
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o

MANUFACTURED_PART

Figure 4.5 
EER diagram notation 
for an overlapping  
(nondisjoint)  
specialization.
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 ■ Inserting an entity in a superclass implies that the entity is mandatorily 
inserted in all predicate-defined (or attribute-defined) subclasses for which 
the entity satisfies the defining predicate.

 ■ Inserting an entity in a superclass of a total specialization implies that 
the entity is mandatorily inserted in at least one of the subclasses of the 
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2  Specialization and Generalization Hierarchies  
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or 
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of 
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the 
real-world constraint that every engineering manager is required to be an engineer. 
A specialization hierarchy has the constraint that every subclass participates as a 
subclass in only one class/subclass relationship; that is, each subclass has only one 
parent, which results in a tree structure or strict hierarchy. In contrast, for a  
specialization lattice, a subclass can be a subclass in more than one class/subclass 
relationship. Hence, Figure 4.6 is a lattice.
Figure 4.7 shows another specialization lattice of more than one level. This may 
be part of a conceptual schema for a UNIVERSITY database. Notice that this 
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT 
subclass, which is a subclass in two distinct class/subclass relationships.

d

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

ENGINEERING_MANAGER

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

d

Figure 4.6 
A specialization lattice with shared subclass 
ENGINEERING_MANAGER.
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The requirements for the part of the UNIVERSITY database shown in Figure 4.7 
are the following:

  1. The database keeps track of three types of persons: employees, alumni, and 
students. A person can belong to one, two, or all three of these types. Each 
person has a name, SSN, sex, address, and birth date.

  2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one 
of these types. For each alumnus, a record of the degree or degrees that 
he or she earned at the university is kept, including the name of the 
degree, the year granted, and the major department. Each student has a 
major department.

  3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching 
assistants, and the percent of time that they work is recorded in the database. 
Research assistants have their research project stored, whereas teaching 
assistants have the current course they work on.

STAFF

Percent_time

FACULTY

Name Sex Address

PERSON

Salary

EMPLOYEE

Major_dept

Birth_date

ALUMNUS

d

o

STUDENT_
ASSISTANT

STUDENT

Degrees

DegreeYear Major

GRADUATE_
STUDENT

d

UNDERGRADUATE_
STUDENT

RESEARCH_ASSISTANT

d

TEACHING_ASSISTANT

Position Rank Degree_program Class

CourseProject

Ssn

Figure 4.7 
A specialization lattice  
with multiple inheritance  
for a UNIVERSITY  
database.
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  4. Students are further classified as either graduate or undergraduate, with 
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on) 
for graduate students and class (freshman, sophomore, and so on) for 
undergraduates.

In Figure 4.7, all person entities represented in the database are members of 
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE, 
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The 
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT, 
UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the 
specialization {STUDENT_ASSISTANT, FACULTY, STAFF} .  Notice that  
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT 
is the superclass for the specialization into {RESEARCH_ASSISTANT,  
TEACHING_ASSISTANT}.
In such a specialization lattice or hierarchy, a subclass inherits the attributes not 
only of its direct superclass, but also of all its predecessor superclasses all the way to 
the root of the hierarchy or lattice if necessary. For example, an entity in  
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a 
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy, 
where a leaf node is a class that has no subclasses of its own. For example, a member 
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.
A subclass with more than one superclass is called a shared subclass, such as 
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as 
multiple inheritance, where the shared subclass ENGINEERING_MANAGER 
directly inherits attributes and relationships from multiple superclasses. Notice 
that the existence of at least one shared subclass leads to a lattice (and hence to 
multiple inheritance); if no shared subclasses existed, we would have a hierarchy 
rather than a lattice and only single inheritance would exist. An important rule 
related to multiple inheritance can be illustrated by the example of the shared 
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from 
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the 
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once 
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be 
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the 
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.
It is important to note here that some models and languages are limited to single 
inheritance and do not allow multiple inheritance (shared subclasses). It is also 
important to note that some models do not allow an entity to have multiple 
types, and hence an entity can be a member of only one leaf class.8 In such a 
model, it is necessary to create additional subclasses as leaf nodes to cover all 

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.
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possible combinations of classes that may have some entity that belongs to all 
these classes simultaneously. For example, in the overlapping specialization of 
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would 
be necessary to create seven subclasses of PERSON in order to cover all possible 
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to 
extra complexity.
Although we have used specialization to illustrate our discussion, similar concepts 
apply equally to generalization, as we mentioned at the beginning of this section. 
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3  Utilizing Specialization and Generalization in  
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization 
processes and how they are used to refine conceptual schemas during conceptual 
database design. In the specialization process, the database designers typically start 
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity 
type. For example, when designing the specialization lattice in Figure 4.7, we may 
first specify an entity type PERSON for a university database. Then we discover 
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS, 
STUDENT}. The overlapping constraint is chosen because a person may belong  
to more than one of the subclasses. We specialize EMPLOYEE further into  
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into  
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize 
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}. 
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is 
also a subclass of STUDENT, leading to the lattice.
It is possible to arrive at the same hierarchy or lattice from the other direction. In 
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS, 
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT, 
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT, 
UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT, 
TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,  
STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT} 
into PERSON.
The final design of hierarchies or lattices resulting from either process may be 
identical; the only difference relates to the manner or order in which the schema 
superclasses and subclasses were created during the design process. In practice, it 
is likely that a combination of the two processes is employed. Notice that the 
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notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques. 
For example, frame-based knowledge representation schemes closely resemble 
class hierarchies. Specialization is also common in software engineering design 
methodologies that are based on the object-oriented paradigm.

4.4  Modeling of UNION Types  
Using Categories

It is sometimes necessary to represent a collection of entities from different entity 
types. In this case, a subclass will represent a collection of entities that is a subset of 
the UNION of entities from distinct entity types; we call such a subclass a union type 
or a category.9

For example, suppose that we have three entity types: PERSON, BANK, and  
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can 
be a person, a bank (holding a lien on a vehicle), or a company. We need to create 
a class (collection of entities) that includes entities of all three types to play the 
role of vehicle owner. A category (union type) OWNER that is a subclass of the 
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created 
for this purpose. We display categories in an EER diagram as shown in Figure 4.8. 
The superclasses COMPANY, BANK, and PERSON are connected to the circle with 
the ∪ symbol, which stands for the set union operation. An arc with the subset 
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we 
have two categories: OWNER, which is a subclass (subset) of the union of PERSON, 
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of 
the union of CAR and TRUCK.
A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships 
always have a single superclass. To better understand the difference,  
we can compare a category, such as OWNER in Figure 4.8, with the  
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of 
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE, 
so an entity that is a member of ENGINEERING_MANAGER must exist in all 
three collections. This represents the constraint that an engineering manager must 
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the  
ENGINEERING_MANAGER entity set is a subset of the intersection of the three 
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the 
superclasses. This represents the constraint that an OWNER may be a COMPANY, 
a BANK, or a PERSON in Figure 4.8.

9Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al., 
1985).



 4.4 Modeling of UNION Types Using Categories  121

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a 
PERSON, or a BANK, depending on the superclass to which the entity belongs. On 
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6) 
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER, 
and MANAGER.
It is interesting to note the difference between the category REGISTERED_VEHICLE 
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig- 
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the  
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily 
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all of them (for example, some cars or trucks may not be registered). In general, 
a specialization or generalization such as that in Figure 4.3(b), if it were partial, 
would not preclude VEHICLE from containing other types of entities, such as 
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8 
implies that only cars and trucks, but not other types of entities, can be members 
of REGISTERED_VEHICLE.
A category can be total or partial. A total category holds the union of all entities in 
its superclasses, whereas a partial category can hold a subset of the union. A total 
category is represented diagrammatically by a double line connecting the category 
and the circle, whereas a partial category is indicated by a single line.
The superclasses of a category may have different key attributes, as demonstrated 
by the OWNER category in Figure 4.8, or they may have the same key attribute, as 
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is 
total (not partial), it may be represented alternatively as a total specialization (or a 
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous 
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.
It is important to note that some modeling methodologies do not have union 
types. In these models, a union type must be represented in a roundabout way 
(see Section 9.2).

4.5  A Sample UNIVERSITY EER Schema,  
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to 
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we 
discuss design choices for conceptual schemas, and finally we summarize the EER 
model concepts and define them formally in the same manner in which we formally 
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example
Consider a UNIVERSITY database that has different requirements from the UNIVERSITY 
database presented in Section 3.10. This database keeps track of students and their 
majors, transcripts, and registration as well as of the university’s course offerings. 
The database also keeps track of the sponsored research projects of faculty and 
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.
For each person, the database maintains information on the person’s Name [Name], 
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate]. 
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT. 
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research, 
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visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated 
[BELONGS] (a faculty member can be associated with several departments, so the 
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to his 
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course 
sections he or she is currently attending [REGISTERED], and to the courses completed 
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received 
[Grade] in a section of a course.
GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR 
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty 
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.
An academic department has the attributes name [Dname], telephone [Dphone], and 
office number [Office] and is related to the faculty member who is its chairperson 
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cname], office number [Coffice], and the name of its dean [Dean].
A course has attributes course number [C#], course name [Cname], and course 
description [Cdesc]. Several sections of each course are offered, with each section 
having the attributes section number [Sec#] and the year and quarter in which the 
section was offered ([Year] and [Qtr]).10 Section numbers uniquely identify each  
section. The sections being offered during the current quarter are in a subclass  
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_qtr and 
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.
The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and 
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research 
grants and contracts awarded to the university. Each grant has attributes grant title 
[Title], grant number [No], the awarding agency [Agency], and the starting date 
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it 
supports [SUPPORT]. Each instance of support has as attributes the starting date of 
support [Start], the ending date of the support (if known) [End], and the percentage of 
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization
It is not always easy to choose the most appropriate conceptual design for a 
database application. In Section 3.7.3, we presented some of the typical issues 
that confront a database designer when choosing among the concepts of entity 

10We assume that the quarter system rather than the semester system is used in this university.
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types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and 
choices for the EER concepts of specialization/generalization and categories 
(union types).
As we mentioned in Section 3.7.3, conceptual database design should be considered 
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

 ■ In general, many specializations and subclasses can be defined to make 
the conceptual model accurate. However, the drawback is that the 
design becomes quite cluttered. It is important to represent only those 
subclasses that are deemed necessary to avoid extreme cluttering of the 
conceptual schema.

 ■ If a subclass has few specific (local) attributes and no specific relationships, 
it can be merged into the superclass. The specific attributes would hold NULL 
values for entities that are not members of the subclass. A type attribute 
could specify whether an entity is a member of the subclass.

 ■ Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the 
superclass and replaced with one or more type attributes that specify the 
subclass or subclasses that each entity belongs to (see Section 9.2 for how 
this criterion applies to relational databases).

 ■ Union types and categories should generally be avoided unless the situation 
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

 ■ The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the 
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific 
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE 
entity type and add the following attributes to EMPLOYEE:

 ■ An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’} 
would indicate which subclass in the first specialization each employee 
belongs to.

 ■ An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would 
indicate which subclass in the second specialization each employee 
belongs to.
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 ■ An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate 
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts
We now summarize the EER model concepts and give formal definitions. A class11 

defines a type of entity and represents a set or collection of entities of that type; this 
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a 
class whose entities must always be a subset of the entities in another class, called 
the superclass C of the superclass/subclass (or IS-A) relationship. We denote 
such a relationship by C/S. For such a superclass/subclass relationship, we must 
always have

S ⊆ C

A specialization Z = {S1, S2, … , Sn} is a set of subclasses that have the same super-
class G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, … , n. G is called 
a generalized entity type (or the superclass of the specialization, or a generalization 
of the subclasses {S1, S2, … , Sn} ). Z is said to be total if we always (at any point in 
time) have

∪
n

i=1
 Si = G

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have
Si ∩ Sj = ∅ (empty set) for i ≠ j

Otherwise, Z is said to be overlapping.
A subclass S of C is said to be predicate-defined if a predicate p on the attributes of 
C is used to specify which entities in C are members of S; that is, S = C[p], where 
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a 
predicate is called user-defined.
A specialization Z (or generalization G) is said to be attribute-defined if a 
predicate (A = ci), where A is an attribute of G and ci is a constant value from 
the domain of A, is used to specify membership in each subclass Si in Z. Notice 
that if ci ≠ cj for i ≠ j, and A is a single-valued attribute, then the specialization 
will be disjoint.
A category T is a class that is a subset of the union of n defining superclasses D1, D2, 
… , Dn, n > 1 and is formally specified as follows:

T ⊆ (D1 ∪ D2 ...  ∪ Dn)

11The use of the word class here refers to a collection (set) of entities, which differs from its more  
common use in object-oriented programming languages such as C++. In C++, a class is a structured 
type definition along with its applicable functions (operations).
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A predicate pi on the attributes of Di can be used to specify the members of each Di 
that are members of T. If a predicate is specified on every Di, we get

T = (D1[p1] ∪ D2[p2] ... ∪ Dn[pn])

We should now extend the definition of relationship type given in Chapter 3 by 
allowing any class—not only any entity type—to participate in a relationship. 
Hence, we should replace the words entity type with class in that definition. The 
graphical notation of EER is consistent with ER because all classes are represented 
by rectangles.

4.6  Example of Other Notation: Representing 
Specialization and Generalization in UML 
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology 
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding 
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal 
line, which has a triangle connecting the horizontal line through another vertical 
line to the superclass. A blank triangle indicates a specialization/generalization 
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes) 
are called leaf classes.
The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology. 
We focused on the concepts that are relevant to ER and EER database modeling 
rather than on those concepts that are more relevant to software engineering. In 
UML, there are many details that we have not discussed because they are outside 
the scope of this text and are mainly relevant to software engineering. For example, 
classes can be of various types:

 ■ Abstract classes define attributes and operations but do not have objects 
corresponding to those classes. These are mainly used to specify a set of 
attributes and operations that can be inherited.

 ■ Concrete classes can have objects (entities) instantiated to belong to the 
class.

 ■ Template classes specify a template that can be further used to define 
other classes.

In database design, we are mainly concerned with specifying concrete classes whose 
collections of objects are permanently (or persistently) stored in the database. The 
bibliographic notes at the end of this chapter give some references to books that 
describe complete details of UML.
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A UML class diagram corresponding to the EER diagram in Figure 4.7,  
illustrating UML notation for specialization/generalization.

4.7  Data Abstraction, Knowledge 
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we 
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual 
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data modeling but also in artificial intelligence literature when discussing  
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces 
some of the alternative terminology and a few additional concepts.
The goal of KR techniques is to develop concepts for accurately modeling some domain 
of knowledge by creating an ontology12 that describes the concepts of the domain 
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions. 
The goals of KR are similar to those of semantic data models, but there are some 
important similarities and differences between the two disciplines:

 ■ Both disciplines use an abstraction process to identify common properties and 
important aspects of objects in the miniworld (also known as domain of discourse 
in KR) while suppressing insignificant differences and unimportant details.

 ■ Both disciplines provide concepts, relationships, constraints, operations, 
and languages for defining data and representing knowledge.

 ■ KR is generally broader in scope than semantic data models. Different forms 
of knowledge, such as rules (used in inference, deduction, and search), 
incomplete and default knowledge, and temporal and spatial knowledge, are 
represented in KR schemes. Database models are being expanded to include 
some of these concepts (see Chapter 26).

 ■ KR schemes include reasoning mechanisms that deduce additional facts 
from the facts stored in a database. Hence, whereas most current database 
systems are limited to answering direct queries, knowledge-based systems 
using KR schemes can answer queries that involve inferences over the 
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

 ■ Whereas most data models concentrate on the representation of database 
schemas, or meta-knowledge, KR schemes often mix up the schemas with 
the instances themselves in order to provide flexibility in representing 
exceptions. This often results in inefficiencies when these KR schemes are 
implemented, especially when compared with databases and when a large 
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models, 
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation 
and association. The paired concepts of classification and instantiation are inverses 
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their 
relation to the concrete representations used in the EER model to clarify the data 
abstraction process and to improve our understanding of the related process of 
conceptual schema design. We close the section with a brief discussion of ontology, 
which is being used widely in recent knowledge representation research.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.
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4.7.1 Classification and Instantiation
The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in 
KR) the classes rather than the individual objects. Collections of objects that share 
the same types of attributes, relationships, and constraints are classified into classes 
in order to simplify the process of discovering their properties. Instantiation is the 
inverse of classification and refers to the generation and specific examination of 
distinct objects of a class. An object instance is related to its object class by the  
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by 
permitting the display of individual objects. We did not describe this feature in our 
introduction to UML class diagrams.
In general, the objects of a class should have a similar type structure. However, 
some objects may display properties that differ in some respects from the other 
objects of the class; these exception objects also need to be modeled, and KR 
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR 
schemes allow such class properties. UML diagrams also allow specification of 
class properties.
In the EER model, entities are classified into entity types according to their basic 
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them. 
Relationship instances are classified into relationship types. Hence, entity types, 
subclasses, categories, and relationship types are the different concepts that are 
used for classification in the EER model. The EER model does not provide 
explicitly for class properties, but it may be extended to do so. In UML, objects 
are classified into classes, and it is possible to display both class properties and 
individual objects.
Knowledge representation models allow multiple classification schemes in 
which one class is an instance of another class (called a meta-class). Notice that 
this cannot be represented directly in the EER model, because we have only two 
levels—classes and instances. The only relationship among classes in the EER 
model is a superclass/subclass relationship, whereas in some KR schemes an 
additional class/instance relationship can be represented directly in a class 
hierarchy. An instance may itself be another class, allowing multiple-level 
classification schemes.

4.7.2 Identification
Identification is the abstraction process whereby classes and objects are made 
uniquely identifiable by means of some identifier. For example, a class name uniquely 
identifies a whole class within a schema. An additional mechanism is necessary for 
telling distinct object instances apart by means of object identifiers. Moreover, it is 
necessary to identify multiple manifestations in the database of the same real-world 
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object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> in 
a PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify 
the fact that these two database objects (tuples) represent the same real-world 
entity unless we make a provision at design time for appropriate cross-referencing to 
supply this identification. Hence, identification is needed at two levels:

 ■ To distinguish among database objects and classes
 ■ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of 
unique names for the constructs in a schema. For example, every class in an EER 
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be 
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.
At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a 
combination of their own partial key values and the entities they are related to in 
the owner entity type(s). Relationship instances are identified by some combination 
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization
Specialization is the process of classifying a class of objects into more specialized 
subclasses. Generalization is the inverse process of generalizing several classes into 
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization. 
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF 
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association
Aggregation is an abstraction concept for building composite objects from their 
component objects. There are three cases where this concept can be related to the 
EER model. The first case is the situation in which we aggregate attribute values of 
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER 
model does not provide for explicitly, involves the possibility of combining objects 
that are related by a particular relationship instance into a higher-level aggregate 
object. This is sometimes useful when the higher-level aggregate object is itself to be 
related to another object. We call the relationship between the primitive objects and 
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF. 
UML provides for all three types of aggregation.
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The abstraction of association is used to associate objects from several independent 
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This 
abstract relationship is called IS-ASSOCIATED-WITH.
In order to understand the different uses of aggregation better, consider the ER 
schema shown in Figure 4.11(a), which stores information about interviews by 
job applicants to various companies. The class COMPANY is an aggregation of 
the attributes (or component objects) Cname (company name) and Caddress 
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name, 
Address, and Phone. The relationship attributes Contact_name and Contact_phone 
represent the name and phone number of the person in the company who is 
responsible for the interview. Suppose that some interviews result in job offers, 
whereas others do not. We would like to treat INTERVIEW as a class to associate it 
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it 
requires each interview relationship instance to have a job offer. The schema 
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.
One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to 
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in 
this book does not have this facility, some semantic data models do allow it and call 
the resulting object a composite or molecular object. Other models treat entity 
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).
To represent this situation correctly in the ER model as described here, we need to 
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to 
JOB_OFFER. Hence, we can always represent these situations correctly in the ER 
model by creating additional entity types, although it may be conceptually more 
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to 
allow relationships among relationships, as in Figure 4.11(c).
The main structural distinction between aggregation and association is that when 
an association instance is deleted, the participating objects may continue to exist. 
However, if we support the notion of an aggregate object—for example, a CAR that 
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate 
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web
In recent years, the amount of computerized data and information available on 
the Web has spiraled out of control. Many different models and formats are used. 
In addition to the database models that we present in this text, much information 
is stored in the form of documents, which have considerably less structure than 
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Figure 4.11 
Aggregation. (a) The  
relationship type INTERVIEW. 
(b) Including JOB_OFFER in a 
ternary relationship type 
(incorrect). (c) Having the 
RESULTS_IN relationship  
participate in other relationships 
(not allowed in ER). (d) Using 
aggregation and a composite 
(molecular) object (generally 
not allowed in ER but allowed 
by some modeling tools).  
(e) Correct representation  
in ER.
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database information does. One ongoing project that is attempting to allow 
information exchange among computers on the Web is called the Semantic 
Web, which attempts to create knowledge representation models that are quite 
general in order to allow meaningful information exchange and search among 
machines. The concept of ontology is considered to be the most promising basis 
for achieving the goals of the Semantic Web and is closely related to knowledge 
representation. In this section, we give a brief introduction to what ontology is 
and how it can be used as a basis to automate information understanding, search, 
and exchange.
The study of ontologies attempts to describe the concepts and relationships that are 
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality. 
Ontology originated in the fields of philosophy and metaphysics. One commonly 
used definition of ontology is a specification of a conceptualization.13

In this definition, a conceptualization is the set of concepts and relationships that 
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are 
used to specify the conceptualization. The ontology includes both specification and 
conceptualization. For example, the same conceptualization may be specified in two 
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to 
describe ontologies are as follows:

 ■ A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

 ■ A taxonomy describes how concepts of a particular area of knowledge 
are related using structures similar to those used in a specialization or 
generalization.

 ■ A detailed database schema is considered by some to be an ontology that 
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

 ■ A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database 
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a 
domain of interest (for example, medical terms, electronic-commerce applications, 
sports, and so on) as completely as possible.

13This definition is given in Gruber (1995).
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4.8 Summary
In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER 
model. We presented the concept of a subclass and its superclass and the related 
mechanism of attribute/relationship inheritance. We saw how it is sometimes 
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main 
processes for defining superclass/subclass hierarchies and lattices: specialization 
and generalization.
Next, we showed how to display these new constructs in an EER diagram. We also 
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We 
discussed the concept of a category or union type, which is a subset of the union of 
two or more classes, and we gave formal definitions of all the concepts presented.
We introduced some of the notation and terminology of UML for representing 
specialization and generalization. In Section 4.7, we briefly discussed the discipline 
of knowledge representation and how it is related to semantic data modeling. We 
also gave an overview and summary of the types of abstract data representation 
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts 
are related to each of these.

Review Questions
 4.1. What is a subclass? When is a subclass needed in data modeling?
 4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-

tionship, IS-A relationship, specialization, generalization, category, specific 
(local) attributes, and specific relationships.

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the 
differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.
 4.7. What is the difference between a specialization hierarchy and a specializa-

tion lattice?
 4.8. What is the difference between specialization and generalization? Why do 

we not display this difference in schema diagrams?
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 4.9. How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the 
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

 4.11. Discuss the main differences between the notation for EER schema dia-
grams and UML class diagrams by comparing how common concepts are 
represented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling 
concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER 
model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database 
modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database 
schema.

Exercises
 4.16. Design an EER schema for a database application that you are interested in. 

Specify all constraints that should hold on the database. Make sure that the 
schema has at least five entity types, four relationship types, a weak entity 
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that it  
is necessary to keep track of different types of ACCOUNTS  
(SAVINGS_ACCTS, CHECKING_ACCTS, … ) and LOANS (CAR_LOANS, 
HOME_LOANS, … ). Suppose that it is also desirable to keep track of 
each ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, … ) 
and each LOAN’s PAYMENTS; both of these include the amount, date, 
and time. Modify the BANK schema, using ER and EER concepts of 
specialization and generalization. State any assumptions you make 
about the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of 
Olympic facilities planned for the summer Olympics. Draw an EER diagram 
that shows the entity types, attributes, relationships, and specializations for 
this application. State any assumptions you make. The Olympic facilities are 
divided into sports complexes. Sports complexes are divided into one-sport 
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so 
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on). A complex has a location, chief organizing individual, total occupied 
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date, 
duration, number of participants, number of officials, and so on. A roster of 
all officials will be maintained together with the list of events each official 
will be involved in. Different equipment is needed for the events (e.g., goal 
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For 
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

 4.19. Identify all the important concepts represented in the library database case 
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and 
specialization/generalization. Specify (min, max) cardinality constraints 
whenever possible. List details that will affect the eventual design but that 
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.
Case Study: The Georgia Tech Library (GTL) has approximately 16,000 
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per 
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when 
the members want to borrow them. Also, the librarians must know how 
many copies of each book are in the library or out on loan at any given time. 
A catalog of books is available online that lists books by author, title, and 
subject area. For each title in the library, a book description is kept in the 
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members 
request information about a book. Library staff includes chief librarian, 
departmental associate librarians, reference librarians, check-out staff, and 
library assistants.
Books can be checked out for 21 days. Members are allowed to have only 
five books out at a time. Members usually return books within three to four 
weeks. Most members know that they have one week of grace before a 
notice is sent to them, so they try to return books before the grace period 
ends. About 5% of the members have to be sent reminders to return books. 
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most 
active members of the library are defined as those who borrow books at 
least ten times during the year. The top 1% of membership does 15% of the 
borrowing, and the top 10% of the membership does 40% of the borrowing. 
About 20% of the members are totally inactive in that they are members 
who never borrow.
To become a member of the library, applicants fill out a form including their 
SSN, campus and home mailing addresses, and phone numbers. The librari-
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ans issue a numbered, machine-readable card with the member’s photo on it. 
This card is good for four years. A month before a card expires, a notice is 
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her 
information is pulled from the employee records and a library card is mailed 
to his or her campus address. Professors are allowed to check out books for 
three-month intervals and have a two-week grace period. Renewal notices to 
professors are sent to their campus address.
The library does not lend some books, such as reference books, rare books, 
and maps. The librarians must differentiate between books that can be lent 
and those that cannot be lent. In addition, the librarians have a list of some 
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been 
replaced. The librarians must have a system that keeps track of books that 
cannot be lent as well as books that they are interested in acquiring. Some 
books may have the same title; therefore, the title cannot be used as a means 
of identification. Every book is identified by its International Standard Book 
Number (ISBN), a unique international code assigned to all books. Two 
books with the same title can have different ISBNs if they are in different 
languages or have different bindings (hardcover or softcover). Editions of 
the same book have different ISBNs.
The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

 4.20.  Design a database to keep track of information for an art museum. Assume 
that the following requirements were collected:

 ■ The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a 
unique Id_no, an Artist (if known), a Year (when it was created, if known), 
a Title, and a Description. The art objects are categorized in several ways, as 
discussed below.

 ■ ART_OBJECTS are categorized based on their type. There are three main 
types—PAINTING, SCULPTURE, and STATUE—plus another type called 
OTHER to accommodate objects that do not fall into one of the three main 
types.

 ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on which 
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern, 
abstract, etc.).

 ■ A SCULPTURE or a statue has a Material from which it was created (wood, 
stone, etc.), Height, Weight, and Style.

 ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style.
 ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION 

(objects that are owned by the museum) and BORROWED. Information 
captured about objects in the PERMANENT_COLLECTION includes  
Date_acquired, Status (on display, on loan, or stored), and Cost. Information 
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captured about BORROWED objects includes the Collection from which it 
was borrowed, Date_borrowed, and Date_returned.

 ■ Information describing the country or culture of Origin (Italian, Egyptian, 
American, Indian, and so forth) and Epoch (Renaissance, Modern, 
Ancient, and so forth) is captured for each ART_OBJECT.

 ■ The museum keeps track of ARTIST information, if known: Name,  
DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch, 
Main_style, and Description. The Name is assumed to be unique.

 ■ Different EXHIBITIONS occur, each having a Name, Start_date, and End_date. 
EXHIBITIONS are related to all the art objects that were on display during 
the exhibition.

 ■ Information is kept on other COLLECTIONS with which the museum 
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions 
you make, and then justify your EER design choices.

 4.21.  Figure 4.12 shows an example of an EER diagram for a small-private-airport 
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number 
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular 
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a 
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number  
[Number], a capacity [Capacity], and a location [Location]. The database also 
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who 
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS 
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate]. 
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service 
record [SERVICE]. Each plane undergoes service many times; hence, it is 
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE 
record includes as attributes the date of maintenance [Date], the number of 
hours spent on the work [Hours], and the type of work done [Work_code]. We 
use a weak entity type [SERVICE] to represent airplane service, because the 
airplane registration number is used to identify a service record. An OWNER 
is either a person or a corporation. Hence, we use a union type (category) 
[OWNER] that is a subset of the union of corporation [CORPORATION] and 
person [PERSON] entity types. Both pilots [PILOT] and employees 
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes 
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in 
the database have data kept on their Social Security number [Ssn], name 
[Name], address [Address], and telephone number [Phone]. For CORPORATION 
entities, the data kept includes name [Name], address [Address], and  
telephone number [Phone]. The database also keeps track of the types of 
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planes each pilot is authorized to fly [FLIES] and the types of planes each 
employee can do maintenance work on [WORKS_ON]. Show how the 
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML 
notation. (Note: We have not discussed how to represent categories (union 
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

 4.22.  Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in 
UML notation.
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Figure 4.12 
EER schema for a SMALL_AIRPORT database.
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 4.23.  Consider the entity sets and attributes shown in the following table. Place a 
checkmark in one column in each row to indicate the relationship between 
the far left and far right columns.
a. The left side has a relationship with the right side.
b. The right side is an attribute of the left side.
c. The left side is a specialization of the right side.
d. The left side is a generalization of the right side.

Entity Set

(a) Has a
Relationship

with

(b) Has an
Attribute 

that is

(c) Is a
Specialization

of

(d) Is a
Generalization

of
Entity Set 

or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age

10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database. 
You may look at http://www.chessgames.com for an application similar to 
what you are designing. State clearly any assumptions you make in your 
UML diagram. A sample of assumptions you can make about the scope is 
as follows:
1. The game of chess is played between two players.
2. The game is played on an 8 × 8 board like the one shown below:
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3. The players are assigned a color of black or white at the start of the game.
4. Each player starts with the following pieces (traditionally called 

chessmen):
a. king
b. queen
c. 2 rooks
d. 2 bishops
e. 2 knights
f. 8 pawns

5. Every piece has its own initial position.
6. Every piece has its own set of legal moves based on the state of the game. 

You do not need to worry about which moves are or are not legal except 
for the following issues:
a. A piece may move to an empty square or capture an opposing piece.
b. If a piece is captured, it is removed from the board.
c. If a pawn moves to the last row, it is “promoted” by converting it to 

another piece (queen, rook, bishop, or knight).
Note: Some of these functions may be spread over multiple classes.

 4.25.  Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus 
on persistent storage aspects of the system. For example, the system would 
need to retrieve all the moves of every game played in sequential order.

 4.26.  Which of the following EER diagrams is/are incorrect and why? State clearly 
any assumptions you make.
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b.
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 4.27.  Consider the following EER diagram that describes the computer systems at 
a company. Provide your own attributes and key for each entity type. Supply 
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

c.

E1

R

E3

N

o

M

MEMORY VIDEO_CARD

d

LAPTOP DESKTOP

INSTALLED

d

COMPUTER

SOFTWARE

OPERATING_
SYSTEM

INSTALLED_OS

SUPPORTS

COMPONENT
OPTIONS

SOUND_CARD

MEM_OPTIONS

KEYBOARD MOUSE

d

ACCESSORY

MONITOR

SOLD_WITH

Laboratory Exercises
 4.28.  Consider a GRADE_BOOK database in which instructors within an academic 

department record points earned by individual students in their classes. The 
data requirements are summarized as follows:

 ■ Each student is identified by a unique identifier, first and last name, and 
an e-mail address.

 ■ Each instructor teaches certain courses each term. Each course is identified 
by a course number, a section number, and the term in which it is taught. For 



144 Chapter 4 The Enhanced Entity–Relationship (EER) Model

each course he or she teaches, the instructor specifies the minimum number 
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

 ■ Students are enrolled in each course taught by the instructor.
 ■ Each course has a number of grading components (such as midterm 

exam, final exam, project, and so forth). Each grading component has a 
maximum number of points (such as 100 or 50) and a weight (such as 
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

 ■ Finally, the instructor records the points earned by each student in each of 
the grading components in each of the courses. For example, student 1234 
earns 84 points for the midterm exam grading component of the section 2 
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a 
weight of 20% of the course grade.

  Design an enhanced entity–relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.29.  Consider an ONLINE_AUCTION database system in which members (buyers 
and sellers) participate in the sale of items. The data requirements for this 
system are summarized as follows:

 ■ The online site has members, each of whom is identified by a unique 
member number and is described by an e-mail address, name, password, 
home address, and phone number.

 ■ A member may be a buyer or a seller. A buyer has a shipping address 
recorded in the database. A seller has a bank account number and routing 
number recorded in the database.

 ■ Items are placed by a seller for sale and are identified by a unique item 
number assigned by the system. Items are also described by an item title, 
a description, starting bid price, bidding increment, the start date of the 
auction, and the end date of the auction.

 ■ Items are also categorized based on a fixed classification hierarchy (for 
example, a modem may be classified as COMPUTER → HARDWARE → 
MODEM).

 ■ Buyers make bids for items they are interested in. Bid price and time of 
bid are recorded. The bidder at the end of the auction with the highest bid 
price is declared the winner, and a transaction between buyer and seller 
may then proceed.

 ■ The buyer and seller may record feedback regarding their completed 
transactions. Feedback contains a rating of the other party participating 
in the transaction (1–10) and a comment.
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  Design an enhanced entity–relationship diagram for the ONLINE_AUCTION 
database and build the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.30.  Consider a database system for a baseball organization such as the major 
leagues. The data requirements are summarized as follows:

 ■ The personnel involved in the league include players, coaches, managers, 
and umpires. Each is identified by a unique personnel id. They are also 
described by their first and last names along with the date and place of 
birth.

 ■ Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

 ■ Within the players group is a subset of players called pitchers. Pitchers 
have a lifetime ERA (earned run average) associated with them.

 ■ Teams are uniquely identified by their names. Teams are also described by 
the city in which they are located and the division and league in which 
they play (such as Central division of the American League).

 ■ Teams have one manager, a number of coaches, and a number of players.
 ■ Games are played between two teams, with one designated as the home 

team and the other the visiting team on a particular date. The score (runs, 
hits, and errors) is recorded for each team. The team with the most runs is 
declared the winner of the game.

 ■ With each finished game, a winning pitcher and a losing pitcher are 
recorded. In case there is a save awarded, the save pitcher is also recorded.

 ■ With each finished game, the number of hits (singles, doubles, triples, and 
home runs) obtained by each player is also recorded.

  Design an enhanced entity–relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or 
Rational Rose.

 4.31.  Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9. 
Enter this design using a data modeling tool such as ERwin or Rational Rose. 
Make a list of the differences in notation between the diagram in the text 
and the corresponding equivalent diagrammatic notation you end up using 
with the tool.

 4.32.  Consider the EER diagram for the small AIRPORT database shown in Fig- 
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational 
Rose. Be careful how you model the category OWNER in this diagram. (Hint: 
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as 
two distinct relationship types.)

 4.33.  Consider the UNIVERSITY database described in Exercise 3.16. You already 
developed an ER schema for this database using a data modeling tool such as 
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ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES 
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS. 
Include appropriate attributes for these new entity types. Then establish 
relationships indicating that junior instructors teach undergraduate courses 
whereas senior instructors teach graduate courses.
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ing concepts.
A survey of semantic data modeling appears in Hull and King (1987). Eick (1991) 
discusses design and transformations of conceptual schemas. Analysis of con-
straints for n-ary relationships is given in Soutou (1998). UML is described in detail 
in Booch, Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevens 
and Pooley (2000) give concise introductions to UML concepts.
Fensel (2000, 2003) discusses the Semantic Web and application of ontologies. 
Uschold and Gruninger (1996) and Gruber (1995) discuss ontologies. The June 
2002 issue of Communications of the ACM is devoted to ontology concepts and 
applications. Fensel (2003) discusses ontologies and e-commerce.
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In the relational schema we create a separate relation for each multivalued attribute. 
For a particular entity with a set of values for the multivalued attribute, the key 
attribute value of the entity is repeated once for each value of the multivalued attri-
bute in a separate tuple because the basic relational model does not allow multiple 
values (a list, or a set of values) for an attribute in a single tuple. For example, 
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS 
relation in Figure 3.6; each tuple specifies one of the locations. In our example, we 
apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute to 
get the values of all locations along with other DEPARTMENT attributes. In the result-
ing relation, the values of the other DEPARTMENT attributes are repeated in separate 
tuples for every location that a department has.
The basic relational algebra does not have a NEST or COMPRESS operation that 
would produce a set of tuples of the form {<‘1’, ‘Houston’>, <‘4’, ‘Stafford’>, <‘5’, 
{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6. 
This is a serious drawback of the basic normalized or flat version of the relational 
model. The object data model and object-relational systems (see Chapter 12) do 
allow multivalued attributes by using the array type for the attribute.

9.2  Mapping EER Model Constructs  
to Relations

In this section, we discuss the mapping of EER model constructs to relations by 
extending the ER-to-relational mapping algorithm that was presented in Sec-
tion 9.1.1.

9.2.1 Mapping of Specialization or Generalization
There are several options for mapping a number of subclasses that together form a 
specialization (or alternatively, that are generalized into a superclass), such as the 
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. The 
two main options are to map the whole specialization into a single table, or to map 
it into multiple tables. Within each option are variations that depend on the con-
straints on the specialization/generalization.
We can add a further step to our ER-to-relational mapping algorithm from Sec- 
tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8, 
which follows, gives the most common options; other mappings are also possible. 
We discuss the conditions under which each option should be used. We use Attrs(R) 
to denote the attributes of a relation R, and PK(R) to denote the primary key of R. 
First we describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert 
each specialization with m subclasses {S1, S2, … , Sm} and (generalized) super- 
class C, where the attributes of C are {k, a1, … , an} and k is the (primary) key, into 
relation schemas using one of the following options:
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 ■ Option 8A: Multiple relations—superclass and subclasses. Create a
relation L for C with attributes Attrs(L) = {k, a1, … , an} and PK(L) = k.
Create a relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes
Attrs(Li) = {k} ∪ {attributes of Si} and PK(Li) = k. This option works for any
specialization (total or partial, disjoint or overlapping).

 ■ Option 8B: Multiple relations—subclass relations only. Create a
relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes
Attrs(Li) = {attributes of Si} ∪ {k, a1, … , an} and PK(Li) = k. This option only
works for a specialization whose subclasses are total (every entity in the
superclass must belong to (at least) one of the subclasses). Additionally, it is
only recommended if the specialization has the disjointedness constraint (see
Section 4.3.1). If the specialization is overlapping, the same entity may be
duplicated in several relations.

 ■ Option 8C: Single relation with one type attribute. Create a single relation
L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪ {attri-
butes of Sm} ∪ {t} and PK(L) = k. The attribute t is called a type (or
discriminating) attribute whose value indicates the subclass to which each
tuple belongs, if any. This option works only for a specialization whose sub-
classes are disjoint, and has the potential for generating many NULL values if
many specific (local) attributes exist in the subclasses.

 ■ Option 8D: Single relation with multiple type attributes. Create a single
relation schema L with attributes Attrs(L) = {k, a1, …, an} ∪ {attributes
of S1} ∪ … ∪ {attributes of Sm} ∪ {t1, t2, …, tm} and PK(L) = k. Each ti,
1 ≤ i ≤ m, is a Boolean type attribute indicating whether or not a tuple
belongs to subclass Si. This option is used for a specialization whose sub-
classes are overlapping (but will also work for a disjoint specialization).

Options 8A and 8B are the multiple-relation options, whereas options 8C and 8D are 
the single-relation options. Option 8A creates a relation L for the superclass C and its 
attributes, plus a relation Li for each subclass Si; each Li includes the specific (local) 
attributes of Si, plus the primary key of the superclass C, which is propagated to Li and 
becomes its primary key. It also becomes a foreign key to the superclass relation. An 
EQUIJOIN operation on the primary key between any Li and L produces all the specific 
and inherited attributes of the entities in Si. This option is illustrated in Figure 9.5(a) 
for the EER schema in Figure 4.4. Option 8A works for any constraints on the special-
ization: disjoint or overlapping, total or partial. Notice that the constraint

π<k>(Li) ⊆ π<k>(L)

must hold for each Li. This specifies a foreign key from each Li to L.
In option 8B, the EQUIJOIN operation between each subclass and the superclass is 
built into the schema and the superclass relation L is done away with, as illustrated 
in Figure 9.5(b) for the EER specialization in Figure 4.3(b). This option works well 
only when both the disjoint and total constraints hold. If the specialization is not 
total, an entity that does not belong to any of the subclasses Si is lost. If the special-
ization is not disjoint, an entity belonging to more than one subclass will have its 



300 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

inherited attributes from the superclass C stored redundantly in more than one table Li. 
With option 8B, no relation holds all the entities in the superclass C; consequently, we 
must apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to the Li 
relations to retrieve all the entities in C. The result of the outer union will be similar to 
the relations under options 8C and 8D except that the type fields will be missing. When-
ever we search for an arbitrary entity in C, we must search all the m relations Li.
Options 8C and 8D create a single relation to represent the superclass C and all its 
subclasses. An entity that does not belong to some of the subclasses will have NULL 
values for the specific (local) attributes of these subclasses. These options are not 
recommended if many specific attributes are defined for the subclasses. If few local 
subclass attributes exist, however, these mappings are preferable to options 8A  
and 8B because they do away with the need to specify JOIN operations; therefore, 
they can yield a more efficient implementation for queries.
Option 8C is used to handle disjoint subclasses by including a single type (or image 
or discriminating) attribute t to indicate to which of the m subclasses each tuple 
belongs; hence, the domain of t could be {1, 2, … , m}. If the specialization is partial, t 
can have NULL values in tuples that do not belong to any subclass. If the specialization 
is attribute-defined, that attribute itself serves the purpose of t and t is not needed; this 
option is illustrated in Figure 9.5(c) for the EER specialization in Figure 4.4.
Option 8D is designed to handle overlapping subclasses by including m Boolean 
type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses. 

SECRETARY

Typing_speed

TECHNICIAN

Tgrade

ENGINEER

Eng_type

CAR

License_plate_no Price Max_speed No_of_passengers

TRUCK

License_plate_no Price No_of_axles Tonnage
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Ssn Fname Minit Lname Birth_date Address Typing_speed Tgrade Eng_typeJob_type

PART
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(b)
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Figure 9.5 
Options for mapping specialization or generalization. (a) Mapping the EER schema in Figure 4.4 using option 8A.  
(b) Mapping the EER schema in Figure 4.3(b) using option 8B. (c) Mapping the EER schema in Figure 4.4 using
option 8C. (d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.
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Each type field ti can have a domain {yes, no}, where a value of yes indicates that the 
tuple is a member of subclass Si. If we use this option for the EER specialization in 
Figure 4.4, we would include three type attributes—Is_a_secretary, Is_a_engineer, and 
Is_a_technician—instead of the Job_type attribute in Figure 9.5(c). Figure 9.5(d) 
shows the mapping of the specialization from Figure 4.5 using option 8D.
For a multilevel specialization (or generalization) hierarchy or lattice, we do not have 
to follow the same mapping option for all the specializations. Instead, we can use one 
mapping option for part of the hierarchy or lattice and other options for other parts. 
Figure 9.6 shows one possible mapping into relations for the EER lattice in Figure 4.6. 
Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS, STUDENT}, and option 
8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT} by including the  
type attribute Employee_type. We then used the single-table option 8D for  
STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT} by including 
the type attributes Ta_flag and Ra_flag in EMPLOYEE. We also used option 8D for  
STUDENT/STUDENT_ASSISTANT by including the type attributes Student_assist_flag 
in STUDENT, and for STUDENT/{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT} 
by including the type attributes Grad_flag and Undergrad_flag in STUDENT. In Figure 9.6, 
all attributes whose names end with type or flag are type fields.

9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)
A shared subclass, such as ENGINEERING_MANAGER in Figure 4.6, is a subclass of 
several superclasses, indicating multiple inheritance. These classes must all have the 
same key attribute; otherwise, the shared subclass would be modeled as a category 
(union type) as we discussed in Section 4.4. We can apply any of the options dis-
cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 of 
the mapping algorithm. In Figure 9.6, options 8C and 8D are used for the shared 
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation 
(Employee_type attribute) and option 8D is used in the STUDENT relation  
(Student_assist_flag attribute).

EMPLOYEE

Salary Employee_type Position Rank Percent_time Ra_flag Ta_flag Project Course

STUDENT

Major_dept Grad_flag Undergrad_flag Degree_program Class Student_assist_flag

Name Birth_date Sex Address

PERSON

Ssn

ALUMNUS ALUMNUS_DEGREES

Year MajorSsn

Ssn

Ssn

Ssn Degree

Figure 9.6 
Mapping the EER specialization 
lattice in Figure 4.8 using  
multiple options.
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9.2.3 Mapping of Categories (Union Types)
We add another step to the mapping procedure—step 9—to handle categories. A 
category (or union type) is a subclass of the union of two or more superclasses 
that can have different keys because they can be of different entity types (see Sec-
tion 4.4). An example is the OWNER category shown in Figure 4.8, which is a 
subset of the union of three entity types PERSON, BANK, and COMPANY. The 
other category in that figure, REGISTERED_VEHICLE, has two superclasses that 
have the same key attribute.

Step 9: Mapping of Union Types (Categories). For mapping a category whose 
defining superclasses have different keys, it is customary to specify a new key attri-
bute, called a surrogate key, when creating a relation to correspond to the union 
type. The keys of the defining classes are different, so we cannot use any one of 
them exclusively to identify all entities in the relation. In our example in Figure 4.8, 
we create a relation OWNER to correspond to the OWNER category, as illustrated in 
Figure 9.7, and include any attributes of the category in this relation. The primary 
key of the OWNER relation is the surrogate key, which we called Owner_id. We also 

Driver_license_no Name Address Owner_id
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Figure 9.7 
Mapping the EER categories 
(union types) in Figure 4.8 to 
relations.
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include the surrogate key attribute Owner_id as foreign key in each relation corre-
sponding to a superclass of the category, to specify the correspondence in values 
between the surrogate key and the original key of each superclass. Notice that if a 
particular PERSON (or BANK or COMPANY) entity is not a member of OWNER, it 
would have a NULL value for its Owner_id attribute in its corresponding tuple in the 
PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the 
OWNER relation. It is also recommended to add a type attribute (not shown in Fig-
ure 9.7) to the OWNER relation to indicate the particular entity type to which each 
tuple belongs (PERSON or BANK or COMPANY).
For a category whose superclasses have the same key, such as VEHICLE in Figure 4.8, 
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE 
category, which illustrates this case, is also shown in Figure 9.7.

9.3 Summary
In Section 9.1, we showed how a conceptual schema design in the ER model can 
be mapped to a relational database schema. An algorithm for ER-to-relational 
mapping was given and illustrated by examples from the COMPANY database. 
Table 9.1 summarized the correspondences between the ER and relational 
model constructs and constraints. Next, we added additional steps to the algo-
rithm in Section 9.2 for mapping the constructs from the EER model into the 
relational model. Similar algorithms are incorporated into graphical database 
design tools to create a relational schema from a conceptual schema design 
automatically.

Review Questions
9.1. (a) Discuss the correspondences between the ER model constructs and the 

relational model constructs. Show how each ER model construct can be 
mapped to the relational model and discuss any alternative mappings.  
(b) Discuss the options for mapping EER model constructs to relations, and
the conditions under which each option could be used.

Exercises
9.2. Map the UNIVERSITY database schema shown in Figure 3.20 into a rela-

tional database schema.
9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is 

part of a process known as reverse engineering, where a conceptual schema 
is created for an existing implemented database. State any assumptions 
you make.
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