
59

 Data Modeling Using the Entity–
Relationship (ER) Model

Conceptual modeling is a very important phase in
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the
bank customers or bank tellers in this example. In addition, it is now common to
provide interfaces to these programs to BANK customers via mobile devices using
mobile apps. Hence, a major part of the database application will require the
design, implementation, and testing of these application programs. Traditionally,
the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.
In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present
the modeling concepts of the entity–relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

3chapter 3

60 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams1—is similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 3.1.
We present some of the UML notation and concepts for class diagrams that are
particularly relevant to database design in Section 3.8, and we briefly compare these
to ER notation and concepts. Additional UML notation and concepts are presented
in Section 4.6.
This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER
model. This sample database is used throughout the text. In Section 3.3 we present
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5
introduces weak entity types. Section 3.6 shows how a schema design is refined to
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses
how to choose the names for database schema constructs such as entity types and
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec -
tion 3.10 summarizes the chapter.
The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 4, where we describe extensions to
the ER model that lead to the enhanced–ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories).

3.1 Using High-Level Conceptual Data Models
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

1A class is similar to an entity type in many ways.

 3.1 Using High-Level Conceptual Data Models for Database Design 61

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.
Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This

Functional Requirements

REQUIREMENTS
COLLECTION AND

ANALYSIS

Miniworld

Data Requirements

CONCEPTUAL DESIGN

Conceptual Schema
(In a high-level data model)

LOGICAL DESIGN
(DATA MODEL MAPPING)

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

PHYSICAL DESIGN

Internal Schema

Application Programs

TRANSACTION
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

DBMS-specific

DBMS-independent

High-Level Transaction
Specification

FUNCTIONAL ANALYSIS

Figure 3.1
A simplified diagram to illustrate the main phases of database design.

62 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.
During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during
functional analysis. This also serves to confirm that the conceptual schema meets
all the identified functional requirements. Modifications to the conceptual schema
can be introduced if some functional requirements cannot be specified using the
initial schema.
The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational (SQL) model—so the conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called logical design or data model mapping; its result is a database
schema in the implementation data model of the DBMS. Data model mapping is
often automated or semiautomated within the database design tools.
The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the
high-level transaction specifications.
We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application
In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and
projects. Suppose that after the requirements collection and analysis phase, the
database designers provide the following description of the miniworld—the part of
the company that will be represented in the database.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 63

■ The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing
the department. A department may have several locations.

■ A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

■ The database will store each employee’s name, Social Security number,2
address, salary, sex (gender), and birth date. An employee is assigned to one
department, but may work on several projects, which are not necessarily
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as
well as the direct supervisor of each employee (who is another employee).

■ The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes
Entities and Their Attributes. The basic concept that the ER model represents is
an entity, which is a thing or object in the real world with an independent existence.
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for
instance, a company, a job, or a university course). Each entity has attributes—the
particular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity

2The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.

64 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.
Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e1 has four attributes: Name, Address, Age, and Home_phone; their values
are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’,
respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION1 N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 65

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the
values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.
Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its

Name = John Smith Name = Sunco Oil

Headquarters = Houston

President = John Smith

Address = 2311 Kirby
Houston, Texas 77001

Age = 55

e1 c1

Home_phone = 713-749-2630

Figure 3.3
Two entities,
EMPLOYEE e1, and
COMPANY c1, and
their attributes.

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Address

CityStreet_address

Number Street Apartment_number

State Zip

Figure 3.4
A hierarchy of
composite attributes.

66 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have any
college degrees, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for the
College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values allowed
for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from related
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity
can be derived by counting the number of employees related to (working for) that
department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have
NULL for College_degrees. NULL can also be used if we do not know the value of an
attribute for a particular entity—for example, if we do not know the home phone
number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is
not applicable, whereas the meaning of the latter is unknown. The unknown category
of NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping

 3.3 Entity Types, Entity Sets, Attributes, and Keys 67

components of a composite attribute between parentheses () and separating
the components with commas, and by displaying multivalued attributes between
braces { }. Such attributes are called complex attributes. For example, if a person
can have more than one residence and each residence can have a single address and
multiple phones, an attribute Address_phone for a person can be specified as shown
in Figure 3.5.4 Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets
Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 3.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the
values of their attributes. The collection of all entities of a particular entity type in the

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 13).

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

Figure 3.5
A complex attribute:
Address_phone.

Entity Type Name:

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary

(John Smith, 55, 80k)

(Fred Brown, 40, 30K)

(Judy Clark, 25, 20K)

e1 c1

c2e2

e3

(Sunco Oil, Houston, John Smith)

(Fast Computer, Dallas, Bob King)

Figure 3.6
Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.

68 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

database at any point in time is called an entity set or entity collection; the entity set
is usually referred to using the same name as the entity type, even though they are
two separate concepts. For example, EMPLOYEE refers to both a type of entity as
well as the current collection of all employee entities in the database. It is now more
common to give separate names to the entity type and entity collection; for example
in object and object-relational data models (see Chapter 12).
An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.
An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually
has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 3.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute
of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 3.7(a).
Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.
Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in

5We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams, and some additional diagrammatic notations are given in Appendix A.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 69

its own right. The Registration attribute is an example of a composite key formed
from two simple component attributes, State and Number, neither of which is a key
on its own. An entity type may also have no key, in which case it is called a weak
entity type (see Section 3.5).
In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not typically displayed in basic ER diagrams and are similar to the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. However, data types of attributes can

Model

Make

Vehicle_id

Year

Color

Registration

State(a)

(b)

Number

CAR

CAR1
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

Figure 3.7
The CAR entity type
with two key attributes,
Registration and
Vehicle_id. (a) ER
diagram notation.
(b) Entity set with
three entities.

70 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

be specified in UML class diagrams (see Section 3.8) and in other diagrammatic
notations used in database design tools. Additional data types to represent common
database types, such as date, time, and other concepts, are also employed.
Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set6 P(V) of V:

A : E → P(V)
We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value
is represented by the empty set. For single-valued attributes, A(e) is restricted to
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.7 For a composite attribute A, the value set V is the power set of
the Cartesian product of P(V1), P(V2), . . . , P(Vn), where V1, V2, . . . , Vn are the
value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))
The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld and correspond to the data as it actually exists in
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and
 Controlling_department. Both Name and Number are (separate) key attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

6The power set P(V) of a set V is the set of all subsets of V.
7A singleton set is a set with only one element (value).

 3.3 Entity Types, Entity Sets, Attributes, and Keys 71

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the
database has to store the number of hours per week an employee works on each
project. This requirement is listed as part of the third requirement in Section 3.2,
and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it
can be represented as a multivalued composite attribute of PROJECT called
Workers with the simple components (Employee, Hours). We choose the first

Address

Sex

Birth_date

Project Hours

Works_on

Fname Minit Lname

Department

Salary

Supervisor

Name

EMPLOYEE

Ssn

Sex

Relationship

Employee

Dependent_name
DEPENDENT

Birth_date

Location
Number

Controlling_department

Name

PROJECT

Manager_start_date

Number

ManagerDEPARTMENT

Name

Locations

Figure 3.8
Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.

72 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 alternative in Figure 3.8; we shall see in the next section that this will be refined into
a many-to-many relationship, once we introduce the concepts of relationships.

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to
an employee who manages the department; the attribute Controlling_department
of PROJECT refers to the department that controls the project; the attribute
Supervisor of EMPLOYEE refers to another employee (the one who supervises this
employee); the attribute Department of EMPLOYEE refers to the department for
which the employee works; and so on. In the ER model, these references should not
be represented as attributes but as relationships. The initial COMPANY database
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.
This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances ri, where each ri associates n
individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej,
1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . , En;
 alternatively, it can be defined as a subset of the Cartesian product of the entity sets
E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the
relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to
participate in the relationship instance ri = (e1, e2, . . . , en).
Informally, each relationship instance ri in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance ri represents the fact that the entities participating in ri
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 73

EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT
entity. Figure 3.9 illustrates this example, where each relationship instance ri is
shown connected to the EMPLOYEE and DEPARTMENT entities that participate
in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work
for department d1; the employees e2 and e4 work for department d2; and the employ-
ees e5 and e7 work for department d3.
In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box
(see Figure 3.2).

3.4.2 Relationship Degree, Role Names, and Recursive
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree
two. A relationship type of degree two is called binary, and one of degree three is
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance ri associates three entities—a supplier s, a
part p, and a project j—whenever s supplies part p to project j. Relationships can

EMPLOYEE WORKS_FOR DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

Figure 3.9
Some instances in
the WORKS_FOR
relationship set,
which represents a
relationship type
WORKS_FOR
between EMPLOYEE
and DEPARTMENT.

74 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships;
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type, where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attribute,
we always have two options or two points of view. In this example, the alternative point
of view is to think of a multivalued attribute Employees of the entity type
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power
set of the EMPLOYEE entity set. Either of these two attributes—Department of
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.8

SUPPLIER

PART

SUPPLY PROJECT

p1

p2

p3

r1

r2

r3

r4

r5

r6

r7

j1

j2

j3

s1

s2

Figure 3.10
Some relationship
instances in the
 SUPPLY ternary
 relationship set.

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 12), relationships can be represented by
 reference attributes, either in one direction or in both directions as inverses. In relational databases
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 75

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker
and DEPARTMENT plays the role of department or employer.
Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used
as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes
essential for distinguishing the meaning of the role that each participating entity
plays. Such relationship types are called recursive relationships or self-referencing
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type
participates twice in SUPERVISION: once in the role of supervisor (or boss), and
once in the role of supervisee (or subordinate). Each relationship instance ri in
SUPERVISION associates two different employee entities ej and ek, one of which
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the
lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the
supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 super-
vises e1 and e4. In this example, each relationship instance must be connected with
two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

EMPLOYEE

2

2

2

SUPERVISION

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

2

2

2

1

1

1

1

1

1

Figure 3.11
A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (2).

76 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.4.3 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees (N),9 but an employee
can be related to (work for) at most one department (1). This means that for
this particular relationship type WORKS_FOR, a particular department entity can
be related to any number of employees (N indicates there is no maximum number).
On the other hand, an employee can be related to a maximum of one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,
and M:N.
An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage at

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is
used instead of N.

EMPLOYEE MANAGES DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

d1

d2

d3

r1

r2

r3

Figure 3.12
A 1:1 relationship,
MANAGES.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 77

most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the
miniworld rule is that an employee can work on several projects and a project can
have several employees.
Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every
employee to manage a department, so the participation of EMPLOYEE in the

EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

p4

Figure 3.13
An M:N relationship,
WORKS_ON.

78 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

MANAGES relationship type is partial, meaning that some or part of the set of
employee entities are related to some department entity via MANAGES, but not
 necessarily all. We will refer to the cardinality ratio and participation constraints,
taken together, as the structural constraints of a relationship type.
In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,
we can either specify no minimum (partial participation) or a minimum of one (total
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.
We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that a particular employee works
on a particular project, we can include an attribute Hours for the WORKS_ON
relationship type in Figure 3.13. Another example is to include the date on which
a manager started managing a department via an attribute Start_date for the
MANAGES relationship type in Figure 3.12.
Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT,
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1
relationship, so every department or employee entity participates in at most one
relationship instance. Hence, the value of the Start_date attribute can be determined
separately, either by the participating department entity or by the participating
employee (manager) entity.
For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for at most one
department, and hence participates in at most one relationship instance in
WORKS_FOR, but a department can have many employees, each with a different start date.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.
For M:N (many-to-many) relationship types, some attributes may be determined
by the combination of participating entities in a relationship instance, not by any
single entity. Such attributes must be specified as relationship attributes. An example
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number
of hours per week an employee currently works on a project is determined by an
employee-project combination and not separately by either entity.

 3.5 Weak Entity Types 79

3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying
or owner entity type,10 and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type.11 A weak entity type
always has a total participation constraint (existence dependency) with respect to its
identifying relationship because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,
even though it has its own key (License_number) and hence is not a weak entity.
Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related to it.
A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.12 In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.
In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.
Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a multivalued composite attribute with the
component attributes Name, Birth_date, Sex, and Relationship. The choice of which
representation to use is made by the database designer. One criterion that may be
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.
In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

10The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11The weak entity type is also sometimes called the child entity type or the subordinate entity type.
12The partial key is sometimes called the discriminator.

80 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.6 Refining the ER Design for
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.
In our example, we specify the following relationship types:

■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.13 The attribute Start_date is assigned to this relationship type.

■ WORKS_FOR, a 1:N (one-to-many) relationship type between
DEPARTMENT and EMPLOYEE. Both participations are total.

■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some
departments may control no projects.

■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

■ WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
employees working on it. Both participations are determined to be total.

■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from
DEPENDENT. It is important to have the least possible redundancy when we design the
conceptual schema of a database. If some redundancy is desired at the storage level or at
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.

 3.7 ER Diagrams, Naming Conventions, and Design Issues 81

3.7 ER Diagrams, Naming Conventions,
and Design Issues

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in
relationship types by displaying their entity sets and relationship sets (or
 extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity
sets may change frequently. In addition, the schema is obviously easier to display,
because it is much smaller.
Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Regular (strong) entity types such as
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are
shown in diamond-shaped boxes attached to the participating entity types with
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.
Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.
The partial key of the weak entity type is underlined with a dotted line.
In Figure 3.2 the cardinality ratio of each binary relationship type is specified
by attaching a 1, M, or N on each participating edge. The cardinality ratio
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double
lines for total participation (existence dependency).
In Figure 3.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because
each employee in the role of supervisee has at most one direct supervisor, whereas
an employee in the role of supervisor can supervise zero or more employees.
Figure 3.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 3.7.4 and
Appendix A).

82 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to
the different constructs in the schema. We choose to use singular names for entity
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters,
attribute names have their initial letter capitalized, and role names are in lowercase
letters. We have used this convention in Figure 3.2.
As a general practice, given a narrative description of the database requirements,
the nouns appearing in the narrative tend to give rise to entity type names, and the
verbs tend to indicate names of relationship types. Attribute names generally arise
from additional nouns that describe the nouns corresponding to entity types.
Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To
change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
 section, we give some brief guidelines as to which construct should be chosen in
particular situations.
In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

■ A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses of
one another are refined into a binary relationship. We discussed this type of
refinement in detail in Section 3.6. It is important to note that in our notation,

 3.7 ER Diagrams, Naming Conventions, and Design Issues 83

MeaningSymbol

Entity

Weak Entity

Indentifying Relationship

Relationship

Composite Attribute
. . .

Key Attribute

Attribute

Derived Attribute

Multivalued Attribute

Total Participation of E2 in RRE1 E2

Cardinality Ratio 1: N for E1 : E2 in RRE1 E2
N1

Structural Constraint (min, max)
on Participation of E in RR E

(min, max)

Figure 3.14
Summary of the
notation for ER
diagrams.

84 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

once an attribute is replaced by a relationship, the attribute itself should be
removed from the entity type to avoid duplication and redundancy.

■ Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that each
of several entity types in a UNIVERSITY database, such as STUDENT,
INSTRUCTOR, and COURSE, has an attribute Department in the
initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute Dept_name and relate it to the three
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

■ An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In
this case, DEPARTMENT may be reduced or demoted to an attribute of
STUDENT.

■ Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams
There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.
In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double-line notation for participation constraints. This notation
involves associating a pair of integer numbers (min, max) with each participation
of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1. The
numbers mean that for each entity e in E, e must participate in at least min and at
most max relationship instances in R at any point in time. In this method,
min = 0 implies partial participation, whereas min > 0 implies total participation.
Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.14 Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we
can use it to specify some structural constraints for relationship types of higher
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.
Figure 3.15 also displays all the role names for the COMPANY database schema.

14In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

 3.8 Example of Other Notation: UML Class Diagrams 85

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here and compare them with ER diagrams. In some

EMPLOYEE

Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor
(0,N) (0,1)

(1,1)
Employee

(1,1)

(1,N)

(1,1)

(0,N)Department
Managed

(4,N)

Department

(0,1)
Manager

Supervisee

SUPERVISION

Hours

WORKS_ON

CONTROLS

DEPENDENTS_OF

Name
Location

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR

DEPENDENT

Sex Birth_date RelationshipName

Controlling
Department

Controlled
Project

Project

(1,N)
Worker

(0,N)
Employee

(1,1) Dependent

Fname

Figure 3.15
ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

86 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16
shows how the COMPANY ER database schema in Figure 3.15 can be displayed
using UML class diagram notation. The entity types in Figure 3.15 are modeled as
classes in Figure 3.16. An entity in ER corresponds to an object in UML.
In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or
data type) of an attribute if desired, by placing a colon (:) followed by the domain
name or description, as illustrated by the Name, Sex, and Bdate attributes
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the
LOCATION class in Figure 3.16.

supervisee

Name: Name_dom
Fname
Minit
Lname

Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

4..*

1..*

1..* *

*

1..1

1..1

1..1

1..1

1..*

0..1

0..*

0..*

age
change_department
change_projects
. . .

Sex: {M,F}
Birth_date: Date
Relationship

DEPENDENT

. . .

0..1
supervisor

Dependent_name

EMPLOYEE
Name
Number

add_employee
number_of_employees
change_manager
. . .

DEPARTMENT

Name
Number

add_employee
add_project
change_manager
. . .

PROJECT

Start_date

MANAGES

CONTROLS

Hours

WORKS_ON Name

LOCATION

1..1
0..*
0..1

Multiplicity
Notation in OMT:

Aggregation
Notation in UML:

Whole Part

WORKS_FOR

Figure 3.16
The COMPANY conceptual schema in UML class diagram notation.

 3.8 Example of Other Notation: UML Class Diagrams 87

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig -
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)
is called a reflexive association in UML, and the role names—like the multiplicities—
are placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.
In UML, there are two types of relationships: association and aggregation.
 Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled
the locations of a department and the single location of a project as aggregations.
However, aggregation and association do not have different structural properties, and
the choice as to which type of relationship to use—aggregation or association—is
somewhat subjective. In the ER model, both are represented as relationships.
UML also distinguishes between unidirectional and bidirectional associations
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to
EMPLOYEE. In addition, relationship instances may be specified to be ordered.
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by
their Start_date attribute value. Association (relationship) names are optional in
UML, and relationship attributes are displayed in a box attached with a dashed
line to the line representing the association/aggregation (see Start_date and Hours
in Figure 3.16).
The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion.

88 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Weak entities can be modeled using the UML construct called qualified association
(or qualified aggregation); this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called
the discriminator, because its value distinguishes the objects associated with
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to
modeling weak entities, and they can be used to model other situations in UML.
This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

3.9 Relationship Types of Degree
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree
relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at the
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently
supplying a PART p to a PROJECT j. In general, a relationship type R of degree n will
have n edges in an ER diagram, one connecting R to each participating entity type.
Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY,
USES, and SUPPLIES. In general, a ternary relationship type represents different
information than do three binary relationship types. Consider the three binary
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p),
(j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY,
because the meaning is different. It is often tricky to decide whether a particular
relationship should be represented as a relationship type of degree n or should be

 3.9 Relationship Types of Degree Higher than Two 89

broken down into several relationship types of smaller degrees. The designer must
base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are
needed by the application.

(a) SUPPLY

Sname

Part_no

SUPPLIER

Quantity

PROJECT

PART

Proj_name

(b)

(c)

Part_no

PART

N

Sname

SUPPLIER

Proj_name

PROJECT

N

Quantity

SUPPLY
N1

Part_no

M N

CAN_SUPPLY

N

M

Sname

SUPPLIER

Proj_name

PROJECT

USES

PART

M

N

SUPPLIES

SP

SPJSS
1

1

Figure 3.17
Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

90 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its
three owner entities from SUPPLIER, PART, and PROJECT.
It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to each of the three participating
entity types.
Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers
COURSE c during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors
who taught some course during that semester, and OFFERED_DURING relates a
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance
(i, c) exists in CAN_TEACH. However, the reverse is not always true;
we may have instances (i, s), (s, c), and (i, c) in the three binary relationship types
with no corresponding instance (i, s, c) in OFFERS. Note that in this example,
based on the meanings of the relationships, we can infer the instances of
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but

Cnumber
CAN_TEACH

Lname

INSTRUCTOR

Sem_year

YearSemester

SEMESTER

OFFERED_DURING

COURSE

OFFERS

TAUGHT_DURING

Figure 3.18
Another example of
ternary versus binary
relationship types.

 3.9 Relationship Types of Degree Higher than Two 91

we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and
OFFERED_DURING are redundant and can be left out.
Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a
course can be taught by only one instructor), then the ternary relationship OFFERS
can be left out because it can be inferred from the three binary relationships
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer
must analyze the meaning of each specific situation to decide which of the binary
and ternary relationship types are needed.
Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19. This example shows part of a
database that keeps track of candidates interviewing for jobs at various companies,
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on
one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

Dept_date

DateDepartment

RESULTS_IN

Name

CANDIDATE

Cname

COMPANY

INTERVIEW JOB_OFFER

CCI

Figure 3.19
A weak entity type
INTERVIEW with a
 ternary identifying
 relationship type.

92 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 participation arc (both M and N symbols stand for many or any number).15 Let us
 illustrate this constraint using the SUPPLY relationship in Figure 3.17.
Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.16 If all three cardinalities are M or N, then the key will
be the combination of all three participants.
The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,17 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database
We now present another example, a UNIVERSITY database, to illustrate the ER
modeling concepts. Suppose that a database is needed to keep track of student
enrollments in classes and students’ final grades. After analyzing the miniworld
rules and the users’ needs, the requirements for this database were determined to be
as follows (for brevity, we show the chosen entity type names and attribute names
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

■ The university is organized into colleges (COLLEGE), and each college has a
unique name (CName), a main office (COffice) and phone (CPhone), and a
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a
unique name (DName), a unique code number (DCode), a main office
(DOffice) and phone (DPhone), and a particular faculty member who chairs
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.
17The (min, max) constraints can determine the keys for binary relationships.

 3.10 Another Example: A UNIVERSITY Database 93

■ A department offers a number of courses (COURSE), each of which has a
unique course name (CoName), a unique code number (CCode), a course
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit
hours (Credits), and a course description (CDesc). The database also keeps
track of instructors (INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank);
in addition, each instructor works for one primary academic department.

■ The database will keep student data (STUDENT) and stores each student’s
name (SName, composed of first name (FName), middle name (MName),
last name (LName)), student id (Sid, unique for every student), address
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep
track of the student’s grades in each section the student has completed.

■ Courses are offered as sections (SECTION). Each section is related to a single
course and a single instructor and has a unique section identifier (SecId). A
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year
(Year), classroom (CRoom: this is coded as a combination of building code
(Bldg) and room number (RoomNo) within the building), and days/times
(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep
track of all the sections offered for the past several years, in addition to the
current offerings. The SecId is unique for all sections, not just the sections for
a particular semester.) The database keeps track of the students in each section,
and the grade is recorded when available (this is a many-to-many relationship
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER
diagrammatic notation. Notice that for the SECTION entity type, we only showed
SecID as an underlined key, but because of the miniworld constraints, several other
combinations of values have to be unique for each section entity. For example, each of
the following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This
specifies that the section numbers of a particular course must be different
during each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester
and year, a classroom cannot be used by two different sections at the same
days/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):
This specifies that in a particular semester and year, an instructor cannot
teach two sections at the same days/time. Note that this rule will not apply if
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?

94 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

COLLEGE

DEPT

COURSE SECTION SecNoSECS

Grade

TAKES

Sem
Year

INSTRUCTOR

COffice

TEACHES

ADMINS

DEAN

MName

SName
Addr

Phone

Major

DOB

FName

STUDENT

LName

CHAIR

CStartDate

EMPLOYS

HAS

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,1)

(0,1)

(0,1)

(5,N)

CName

DName

CCode SecId

IOffice

IName

Rank

CPhone

DCode

DOffice

CoName

Credits

CDesc

Level

DPhone

IPhoneId

SId

OFFERS

CRoom

Bldg RoomNo

DaysTime

Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary
In this chapter we presented the modeling concepts of a high-level conceptual data
model, the entity–relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the

 3.11 Summary 95

examples that is used throughout this text. We defined the basic ER model concepts
of entities and their attributes. Then we discussed NULL values and presented the
various types of attributes, which can be nested arbitrarily to produce complex
attributes:

■ Simple or atomic
■ Composite
■ Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the
ER model concepts at the schema or “intension” level:

■ Entity types and their corresponding entity sets
■ Key attributes of entity types
■ Value sets (domains) of attributes
■ Relationship types and their corresponding relationship sets
■ Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

■ Cardinality ratios (1:1, 1:N, M:N for binary relationships)
■ Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types and partial key
attributes.
Entity–relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they
relate to ER modeling concepts. We also described ternary and higher-degree
relationship types in more detail, and we discussed the circumstances under which
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the
ER schema design.
The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.

96 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Review Questions
 3.1. Discuss the role of a high-level data model in the database design process.
 3.2. List the various cases where use of a NULL value would be appropriate.
 3.3. Define the following terms: entity, attribute, attribute value, relationship

instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.
 3.6. What is a relationship type? Explain the differences among a relationship

instance, a relationship type, and a relationship set.
 3.7. What is a participation role? When is it necessary to use role names in the

description of relationship types?
 3.8. Describe the two alternatives for specifying structural constraints on rela-

tionship types. What are the advantages and disadvantages of each?
 3.9. Under what conditions can an attribute of a binary relationship type be

migrated to become an attribute of one of the participating entity types?
 3.10. When we think of relationships as attributes, what are the value sets of these

attributes? What class of data models is based on this concept?
 3.11. What is meant by a recursive relationship type? Give some examples of

recursive relationship types.
 3.12. When is the concept of a weak entity used in data modeling? Define the

terms owner entity type, weak entity type, identifying relationship type, and
partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.
 3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
 3.16. Which combinations of attributes have to be unique for each individual

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce
each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.

 Exercises 97

 b. During a particular semester and year, an instructor can teach only one
section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sections
offered for the same course must all be different.

 Can you think of any other similar constraints?
 3.17. Composite and multivalued attributes can be nested to any number of lev-

els. Suppose we want to design an attribute for a STUDENT entity type to
keep track of previous college education. Such an attribute will have one
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and
year the degree was awarded, and each transcript entry contains a course
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that
uses only entity types (including weak entity types, if needed) and relation-
ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as
possible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE’s Name
(e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state
(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}).
Each CONGRESS_PERSON in the House of Representatives is described by
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,
‘Other’}). The database keeps track of each BILL (i.e., proposed law),
including the Bill_name, the Date_of_vote on the bill, whether the bill
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain

98 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Restrictions

M

N

N

1

N

N

1

1N

AIRPORT

City State

AIRPLANE_
TYPE

Dep_time

Arr_time

Name

Scheduled_dep_time

INSTANCE_OF

Weekdays

Airline

Instances

N

1

1 N

Airport_code

Number

Scheduled_arr_time

CAN_
LAND

TYPE

N

1

DEPARTS

N

1

ARRIVES

N1 ASSIGNED

ARRIVAL_
AIRPORT

DEPARTURE_
AIRPORT N1

SEAT

Max_seatsType_name

Code

AIRPLANE

Airplane_id Total_no_of_seats

LEGS

FLIGHT

FLIGHT_LEG

Leg_no

FARES

FARE

Amount

CphoneCustomer_name

Date

No_of_avail_seats

RESERVATION
Seat_no

Company

LEG_INSTANCE

Notes:
A LEG (segment) is a nonstop portion of a flight.
A LEG_INSTANCE is a particular occurrence
 of a LEG on a particular date.

1

Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema
diagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of

 Exercises 99

the game. Design an ER schema diagram for this application, stating any
assumptions you make. Choose your favorite sport (e.g., soccer, baseball,
football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.
Each bank can have multiple branches, and each branch can have multiple
accounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.
 b. Is there a weak entity type? If so, give its name, partial key, and identify-

ing relationship.
 c. What constraints do the partial key and the identifying relationship of the

weak entity type specify in this diagram?
 d. List the names of all relationship types, and specify the (min, max)

 constraint on each participation of an entity type in a relationship type.
Justify your choices.

BANK

LOAN

Balance

Type

AmountLoan_no

1

N

1

N

N
N

M M

NameCode

1 N BANK_BRANCH

L_CA_C

ACCTS LOANS

BRANCHES

ACCOUNT

CUSTOMER

Acct_no

Name

AddrPhone

Type

Addr Branch_noAddr

Ssn

Figure 3.22
An ER diagram for a BANK database schema.

100 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. List concisely the user requirements that led to this ER schema design.
 f. Suppose that every customer must have at least one account but is

restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may
work in up to two departments or may not be assigned to any department.
Assume that each department must have one and may have up to three
phone numbers. Supply (min, max) constraints on this diagram. State clearly
any additional assumptions you make. Under what conditions would the
relationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from
two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

EMPLOYEE DEPARTMENT

CONTAINSHAS_PHONE

WORKS_IN

PHONE

Figure 3.23
Part of an ER diagram
for a COMPANY
 database.

INSTRUCTOR COURSE

USES

TEACHES

TEXT

Figure 3.24
Part of an ER diagram
for a COURSES
 database.

 Exercises 101

 3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes
the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible
time periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50
a.m.’, . . . , ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during
a particular semester, its section offerings are numbered 1, 2, 3, and so
on). There are several composite keys for section, and some attributes
are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2

1. STUDENT ______________ SOCIAL_SECURITY_CARD

2. STUDENT ______________ TEACHER

3. CLASSROOM ______________ WALL

4. COUNTRY ______________ CURRENT_PRESIDENT

5. COURSE ______________ TEXTBOOK

6. ITEM (that can be found
in an order)

______________ ORDER

7. STUDENT ______________ CLASS

8. CLASS ______________ INSTRUCTOR

9. INSTRUCTOR ______________ OFFICE

10. EBAY_AUCTION_ITEM ______________ EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.
 Assume that MOVIES is a populated database. ACTOR is used as a generic term

and includes actresses. Given the constraints shown in the ER schema, respond
to the following statements with True, False, or Maybe. Assign a response of
Maybe to statements that, although not explicitly shown to be True, cannot be
proven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.
 b. There are some actors who have acted in more than ten movies.
 c. Some actors have done a lead role in multiple movies.
 d. A movie can have only a maximum of two lead actors.

102 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. Every director has been an actor in some movie.
 f. No producer has ever been an actor.
 g. A producer cannot be an actor in some other movie.
 h. There are movies with more than a dozen actors.
 i. Some producers have been a director as well.
 j. Most movies have one director and one producer.
 k. Some movies have one director but several producers.
 l. There are some actors who have done a lead role, directed a movie, and

produced a movie.
 m. No movie has a director who also acted in that movie.
 3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an

instance diagram using three movies that have been released recently.
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,
DIRECTORS involved; make up instances of the relationships as they exist in
reality for those movies.

ACTOR
MOVIE

LEAD_ROLE

PERFORMS_IN

DIRECTSDIRECTOR

ALSO_A_
DIRECTOR

PRODUCESPRODUCER

ACTOR_
PRODUCER

1

1

1

1
1

M

M

2 N

N

N

N

Figure 3.25
An ER diagram for a MOVIES database schema.

 Laboratory Exercises 103

 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should
observe the following requirements:

 a. A student should have the ability to compute his/her GPA and add or
drop majors and minors.

 b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

 c. Each instructor should be able to assign or change a student’s grade for a
course.

 Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises
 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER

schema for this database using a data modeling tool such as ERwin or
Rational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:
■ The mail order company has employees, each identified by a unique em-

ployee number, first and last name, and Zip Code.
■ Each customer of the company is identified by a unique customer number,

first and last name, and Zip Code.
■ Each part sold by the company is identified by a unique part number, a

part name, price, and quantity in stock.
■ Each order placed by a customer is taken by an employee and is given a

unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

 Design an entity–relationship diagram for the mail order database and build
the design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie
industry. The data requirements are summarized as follows:
■ Each movie is identified by title and year of release. Each movie has a

length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in it.
Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

■ Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.

104 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

■ Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

■ Production companies are identified by name and each has an address. A
production company produces one or more movies.

 Design an entity–relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject
the paper. The data requirements are summarized as follows:
■ Authors of papers are uniquely identified by e-mail id. First and last names

are also recorded.
■ Each paper is assigned a unique identifier by the system and is described

by a title, abstract, and the name of the electronic file containing the paper.
■ A paper may have multiple authors, but one of the authors is designated as

the contact author.
■ Reviewers of papers are uniquely identified by e-mail address. Each re-

viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

■ Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

■ Each review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

 Design an entity–relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21.
Build this design using a data modeling tool such as ERwin or Rational Rose.

Selected Bibliography
The entity–relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and
Senko (1975). Since then, numerous modifications to the ER model have been
 suggested. We have incorporated some of these in our presentation. Structural

 Selected Bibliography 105

 constraints on relationships are discussed in Abrial (1974), Elmasri and Wieder-
hold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attri-
butes are incorporated in the ER model in Elmasri et al. (1985). Although we did
not discuss languages for the ER model and its extensions, there have been several
proposals for such languages. Elmasri and Wiederhold (1981) proposed the
GORDAS query language for the ER model. Another ER query language was pro-
posed by Markowitz and Raz (1983). Senko (1980) presented a query language for
Senko’s DIAM model. A formal set of operations called the ER algebra was
 presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-
sented another formal language for the ER model. Campbell et al. (1985) presented
a set of ER operations and showed that they are relationally complete. A conference
for the dissemination of research results related to the ER model has been held reg-
ularly since 1979. The conference, now known as the International Conference on
Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997),
Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New
York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland
(ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992),
Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia
(ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER
1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Fin-
land (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagen-
furt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER
2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009).
The 2010 conference was held in Vancouver, British Columbia, Canada (ER2010),
2011 in Brussels, Belgium (ER2011), 2012 in Florence, Italy (ER2012) , 2013 in
Hong Kong, China (ER2013), and the 2014 conference was held in Atlanta, Georgia
(ER 2014). The 2015 conference is to be held in Stockholm, Sweden.

290 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

9.1 Relational Database Design Using
ER-to-Relational Mapping

9.1.1 ER-to-Relational Mapping Algorithm
In this section we describe the steps of an algorithm for ER-to-relational mapping.
We use the COMPANY database example to illustrate the mapping procedure.
The COMPANY ER schema is shown again in Figure 9.1, and the corresponding
COMPANY relational database schema is shown in Figure 9.2 to illustrate the

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION
1

N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

9.1 Relational Database Design Using ER-to-Relational Mapping 291

mapping steps. We assume that the mapping will create tables with simple single-
valued attributes. The relational model constraints defined in Chapter 5, which
include primary keys, unique keys (if any), and referential integrity constraints on
the relations, will also be specified in the mapping results.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type
E in the ER schema, create a relation R that includes all the simple attributes of E.
Include only the simple component attributes of a composite attribute. Choose one
of the key attributes of E as the primary key for R. If the chosen key of E is a com-
posite, then the set of simple attributes that form it will together form the primary
key of R.
If multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify
additional (unique) keys of relation R. Knowledge about keys is also kept for index-
ing purposes and other types of analyses.
In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in
Figure 9.2 to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and
PROJECT from Figure 9.1. The foreign key and relationship attributes, if any,
are not included yet; they will be added during subsequent steps. These include

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure 9.2
Result of mapping the
COMPANY ER schema
into a relational database
schema.

292 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and Mgr_start_date of
DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn, Dnumber, and
Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT,
respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are
unique keys is kept for possible use later in the design.
The relations that are created from the mapping of entity types are sometimes called
entity relations because each tuple represents an entity instance. The result after
this mapping step is shown in Figure 9.3(a).

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the
ER schema with owner entity type E, create a relation R and include all simple
attributes (or simple components of composite attributes) of W as attributes of
R. In addition, include as foreign key attributes of R, the primary key attribute(s)
of the relation(s) that correspond to the owner entity type(s); this takes care of
mapping the identifying relationship type of W. The primary key of R is the
combination of the primary key(s) of the owner(s) and the partial key of the
weak entity type W, if any. If there is a weak entity type E2 whose owner is also
a weak entity type E1, then E1 should be mapped before E2 to determine its
primary key first.
In our example, we create the relation DEPENDENT in this step to correspond to
the weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key
Ssn of the EMPLOYEE relation—which corresponds to the owner entity type—
as a foreign key attribute of DEPENDENT; we rename it Essn, although this is not

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary

EMPLOYEE

WORKS_ON

Essn Pno Hours

Dname Dnumber

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation

DEPENDENT

(a)

(c)

(d)

(b)

Essn Dependent_name Sex Bdate Relationship

Figure 9.3
Illustration of some
mapping steps.
(a) Entity relations
after step 1.
(b) Additional weak entity
relation after step 2.
(c) Relationship relations
after step 5.
(d) Relation representing
multivalued attribute
after step 6.

9.1 Relational Database Design Using ER-to-Relational Mapping 293

necessary. The primary key of the DEPENDENT relation is the combination {Essn,
Dependent_name}, because Dependent_name (also renamed from Name in Figure 9.1)
is the partial key of DEPENDENT.
It is common to choose the propagate (CASCADE) option for the referential trig-
gered action (see Section 6.2) on the foreign key in the relation corresponding to
the weak entity type, since a weak entity has an existence dependency on its owner
entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-
tionship type R in the ER schema, identify the relations S and T that correspond
to the entity types participating in R. There are three possible approaches: (1) the
foreign key approach, (2) the merged relationship approach, and (3) the cross-
reference or relationship relation approach. The first approach is the most useful
and should be followed unless special conditions exist, as we discuss below.

 1. Foreign key approach: Choose one of the relations—S, say—and include as
a foreign key in S the primary key of T. It is better to choose an entity type
with total participation in R in the role of S. Include all the simple attributes
(or simple components of composite attributes) of the 1:1 relationship type
R as attributes of S.
In our example, we map the 1:1 relationship type MANAGES from Figure 9.1
by choosing the participating entity type DEPARTMENT to serve in the role
of S because its participation in the MANAGES relationship type is total
(every department has a manager). We include the primary key of the
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename
it to Mgr_ssn. We also include the simple attribute Start_date of the MANAGES
relationship type in the DEPARTMENT relation and rename it Mgr_start_date
(see Figure 9.2).
Note that it is possible to include the primary key of S as a foreign key in T
instead. In our example, this amounts to having a foreign key attribute, say
Department_managed in the EMPLOYEE relation, but it will have a NULL value
for employee tuples who do not manage a department. This would be a bad
choice, because if only 2% of employees manage a department, then 98% of
the foreign keys would be NULL in this case. Another possibility is to have
foreign keys in both relations S and T redundantly, but this creates redun-
dancy and incurs a penalty for consistency maintenance.

 2. Merged relation approach: An alternative mapping of a 1:1 relationship
type is to merge the two entity types and the relationship into a single rela-
tion. This is possible when both participations are total, as this would indi-
cate that the two tables will have the exact same number of tuples at all times.

 3. Cross-reference or relationship relation approach: The third option is to
set up a third relation R for the purpose of cross-referencing the primary
keys of the two relations S and T representing the entity types. As we will see,
this approach is required for binary M:N relationships. The relation R is
called a relationship relation (or sometimes a lookup table), because each

294 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

tuple in R represents a relationship instance that relates one tuple from S
with one tuple from T. The relation R will include the primary key attributes
of S and T as foreign keys to S and T. The primary key of R will be one of the
two foreign keys, and the other foreign key will be a unique key of R. The
drawback is having an extra relation, and requiring extra join operations
when combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types. There are two possible
approaches: (1) the foreign key approach and (2) the cross-reference or relationship
relation approach. The first approach is generally preferred as it reduces the num-
ber of tables.

 1. The foreign key approach: For each regular binary 1:N relationship type R,
identify the relation S that represents the participating entity type at the
N-side of the relationship type. Include as foreign key in S the primary key of
the relation T that represents the other entity type participating in R; we do
this because each entity instance on the N-side is related to at most one
entity instance on the 1-side of the relationship type. Include any simple
attributes (or simple components of composite attributes) of the 1:N rela-
tionship type as attributes of S.
To apply this approach to our example, we map the 1:N relationship types
WORKS_FOR, CONTROLS, and SUPERVISION from Figure 9.1. For
WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relation
as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION we
include the primary key of the EMPLOYEE relation as foreign key in the
EMPLOYEE relation itself—because the relationship is recursive—and call it
Super_ssn. The CONTROLS relationship is mapped to the foreign key attri-
bute Dnum of PROJECT, which references the primary key Dnumber of the
DEPARTMENT relation. These foreign keys are shown in Figure 9.2.

 2. The relationship relation approach: An alternative approach is to use the
relationship relation (cross-reference) option as in the third option for
binary 1:1 relationships. We create a separate relation R whose attributes are
the primary keys of S and T, which will also be foreign keys to S and T. The
primary key of R is the same as the primary key of S. This option can be used
if few tuples in S participate in the relationship to avoid excessive NULL val-
ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. In the traditional rela-
tional model with no multivalued attributes, the only option for M:N relationships
is the relationship relation (cross-reference) option. For each binary M:N rela-
tionship type R, create a new relation S to represent R. Include as foreign key attri-
butes in S the primary keys of the relations that represent the participating entity
types; their combination will form the primary key of S. Also include any simple
attributes of the M:N relationship type (or simple components of composite attri-
butes) as attributes of S. Notice that we cannot represent an M:N relationship type
by a single foreign key attribute in one of the participating relations (as we did for

9.1 Relational Database Design Using ER-to-Relational Mapping 295

1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must create a
separate relationship relation S.
In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 by
creating the relation WORKS_ON in Figure 9.2. We include the primary keys of the
PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename
them Pno and Essn, respectively (renaming is not required; it is a design choice).
We also include an attribute Hours in WORKS_ON to represent the Hours attribute
of the relationship type. The primary key of the WORKS_ON relation is the combi-
nation of the foreign key attributes {Essn, Pno}. This relationship relation is
shown in Figure 9.3(c).
The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 4.2) should be specified on the foreign keys in the relation corresponding to the
relationship R, since each relationship instance has an existence dependency on
each of the entities it relates. This can be used for both ON UPDATE and ON DELETE.
Although we can map 1:1 or 1:N relationships in a manner similar to M:N relation-
ships by using the cross-reference (relationship relation) approach, as we discussed
earlier, this is only recommended when few relationship instances exist, in order to
avoid NULL values in foreign keys. In this case, the primary key of the relationship
relation will be only one of the foreign keys that reference the participating entity
relations. For a 1:N relationship, the primary key of the relationship relation will be
the foreign key that references the entity relation on the N-side. For a 1:1 relation-
ship, either foreign key can be used as the primary key of the relationship relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A,
create a new relation R. This relation R will include an attribute corresponding to A,
plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The
primary key of R is the combination of A and K. If the multivalued attribute is com-
posite, we include its simple components.
In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)).
The attribute Dlocation represents the multivalued attribute LOCATIONS of
DEPARTMENT, whereas Dnumber—as foreign key—represents the primary key of the
DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of
{Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each loca-
tion that a department has. It is important to note that in more recent versions of
the relational model that allow array data types, the multivalued attribute can be
mapped to an array attribute rather than requiring a separate table.
The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 6.2) should be specified on the foreign key in the relation R corresponding to the
multivalued attribute for both ON UPDATE and ON DELETE. We should also note
that the key of R when mapping a composite, multivalued attribute requires some
analysis of the meaning of the component attributes. In some cases, when a multi-
valued attribute is composite, only some of the component attributes are required

296 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

to be part of the key of R; these attributes are similar to a partial key of a weak entity
type that corresponds to the multivalued attribute (see Section 3.5).
Figure 9.2 shows the COMPANY relational database schema obtained with steps 1
through 6, and Figure 5.6 shows a sample database state. Notice that we did not yet
discuss the mapping of n-ary relationship types (n > 2) because none exist in Fig-
ure 9.1 ; these are mapped in a similar way to M:N relationship types by including
the following additional step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. We use the relationship
relation option. For each n-ary relationship type R, where n > 2, create a new relation-
ship relation S to represent R. Include as foreign key attributes in S the primary keys
of the relations that represent the participating entity types. Also include any simple
attributes of the n-ary relationship type (or simple components of composite attri-
butes) as attributes of S. The primary key of S is usually a combination of all the
foreign keys that reference the relations representing the participating entity types.
However, if the cardinality constraints on any of the entity types E participating in
R is 1, then the primary key of S should not include the foreign key attribute that
references the relation E′ corresponding to E (see the discussion in Section 3.9.2
concerning constraints on n-ary relationships).
Consider the ternary relationship type SUPPLY in Figure 3.17, which relates a
SUPPLIER s, PART p, and PROJECT j whenever s is currently supplying p to j; this
can be mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is the
combination of the three foreign keys {Sname, Part_no, Proj_name}.

9.1.2 Discussion and Summary of Mapping
for ER Model Constructs

Table 9.1 summarizes the correspondences between ER and relational model con-
structs and constraints.

SUPPLIER

Sname

PROJECT

Proj_name

SUPPLY

Sname Proj_name Part_no Quantity

PART

Part_no

. . .

. . .

. . .

Figure 9.4
Mapping the n-ary
relationship type
SUPPLY from
Figure 3.17(a).

9.1 Relational Database Design Using ER-to-Relational Mapping 297

Table 9.1 Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation
1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute
Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key
Value set Domain
Key attribute Primary (or secondary) key

One of the main points to note in a relational schema, in contrast to an ER
schema, is that relationship types are not represented explicitly; instead, they
are represented by having two attributes A and B, one a primary key and the
other a foreign key (over the same domain) included in two relations S and T.
Two tuples in S and T are related when they have the same value for A and B. By
using the EQUIJOIN operation (or NATURAL JOIN if the two join attributes have
the same name) over S.A and T.B, we can combine all pairs of related tuples
from S and T and materialize the relationship. When a binary 1:1 or 1:N rela-
tionship type is involved and the foreign key mapping is used, a single join
operation is usually needed. When the relationship relation approach is used,
such as for a binary M:N relationship type, two join operations are needed,
whereas for n-ary relationship types, n joins are needed to fully materialize the
relationship instances.
For example, to form a relation that includes the employee name, project name,
and hours that the employee works on each project, we need to connect
each EMPLOYEE tuple to the related PROJECT tuples via the WORKS_ON
relation in Figure 9.2. Hence, we must apply the EQUIJOIN operation to
the EMPLOYEE and WORKS_ON relations with the join condition
EMPLOYEE.Ssn = WORKS_ON.Essn, and then apply another EQUIJOIN opera-
tion to the resulting relation and the PROJECT relation with join condition
WORKS_ON.Pno = PROJECT.Pnumber. In general, when multiple relationships
need to be traversed, numerous join operations must be specified. The user
must always be aware of the foreign key attributes in order to use them cor-
rectly in combining related tuples from two or more relations. This is some-
times considered to be a drawback of the relational data model, because the
foreign key/primary key correspondences are not always obvious upon inspec-
tion of relational schemas. If an EQUIJOIN is performed among attributes of two
relations that do not represent a foreign key/primary key relationship, the result
can often be meaningless and may lead to spurious data. For example, the
reader can try joining the PROJECT and DEPT_LOCATIONS relations on the con-
dition Dlocation = Plocation and examine the result.

298 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

In the relational schema we create a separate relation for each multivalued attribute.
For a particular entity with a set of values for the multivalued attribute, the key
attribute value of the entity is repeated once for each value of the multivalued attri-
bute in a separate tuple because the basic relational model does not allow multiple
values (a list, or a set of values) for an attribute in a single tuple. For example,
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS
relation in Figure 3.6; each tuple specifies one of the locations. In our example, we
apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute to
get the values of all locations along with other DEPARTMENT attributes. In the result-
ing relation, the values of the other DEPARTMENT attributes are repeated in separate
tuples for every location that a department has.
The basic relational algebra does not have a NEST or COMPRESS operation that
would produce a set of tuples of the form {<‘1’, ‘Houston’>, <‘4’, ‘Stafford’>, <‘5’,
{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6.
This is a serious drawback of the basic normalized or flat version of the relational
model. The object data model and object-relational systems (see Chapter 12) do
allow multivalued attributes by using the array type for the attribute.

9.2 Mapping EER Model Constructs
to Relations

In this section, we discuss the mapping of EER model constructs to relations by
extending the ER-to-relational mapping algorithm that was presented in Sec-
tion 9.1.1.

9.2.1 Mapping of Specialization or Generalization
There are several options for mapping a number of subclasses that together form a
specialization (or alternatively, that are generalized into a superclass), such as the
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. The
two main options are to map the whole specialization into a single table, or to map
it into multiple tables. Within each option are variations that depend on the con-
straints on the specialization/generalization.
We can add a further step to our ER-to-relational mapping algorithm from Sec-
tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8,
which follows, gives the most common options; other mappings are also possible.
We discuss the conditions under which each option should be used. We use Attrs(R)
to denote the attributes of a relation R, and PK(R) to denote the primary key of R.
First we describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert
each specialization with m subclasses {S1, S2, … , Sm} and (generalized) super-
class C, where the attributes of C are {k, a1, … , an} and k is the (primary) key, into
relation schemas using one of the following options:

myersd
Rectangle

	DB Systems - Chapter 3
	DB Systems - Chapter 9.1

