

59

 Data Modeling Using the Entity–
Relationship (ER) Model

Conceptual modeling is a very important phase in
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the
bank customers or bank tellers in this example. In addition, it is now common to
provide interfaces to these programs to BANK customers via mobile devices using
mobile apps. Hence, a major part of the database application will require the
design, implementation, and testing of these application programs. Traditionally,
the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.
In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present
the modeling concepts of the entity–relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.

3chapter 3

60 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams1—is similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 3.1.
We present some of the UML notation and concepts for class diagrams that are
particularly relevant to database design in Section 3.8, and we briefly compare these
to ER notation and concepts. Additional UML notation and concepts are presented
in Section 4.6.
This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER
model. This sample database is used throughout the text. In Section 3.3 we present
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5
introduces weak entity types. Section 3.6 shows how a schema design is refined to
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses
how to choose the names for database schema constructs such as entity types and
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec -
tion 3.10 summarizes the chapter.
The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 4, where we describe extensions to
the ER model that lead to the enhanced–ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories).

3.1 Using High-Level Conceptual Data Models
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

1A class is similar to an entity type in many ways.

 3.1 Using High-Level Conceptual Data Models for Database Design 61

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.
Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This

Functional Requirements

REQUIREMENTS
COLLECTION AND

ANALYSIS

Miniworld

Data Requirements

CONCEPTUAL DESIGN

Conceptual Schema
(In a high-level data model)

LOGICAL DESIGN
(DATA MODEL MAPPING)

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

PHYSICAL DESIGN

Internal Schema

Application Programs

TRANSACTION
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

DBMS-specific

DBMS-independent

High-Level Transaction
Specification

FUNCTIONAL ANALYSIS

Figure 3.1
A simplified diagram to illustrate the main phases of database design.

62 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.
During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during
functional analysis. This also serves to confirm that the conceptual schema meets
all the identified functional requirements. Modifications to the conceptual schema
can be introduced if some functional requirements cannot be specified using the
initial schema.
The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational (SQL) model—so the conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called logical design or data model mapping; its result is a database
schema in the implementation data model of the DBMS. Data model mapping is
often automated or semiautomated within the database design tools.
The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the
high-level transaction specifications.
We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application
In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and
projects. Suppose that after the requirements collection and analysis phase, the
database designers provide the following description of the miniworld—the part of
the company that will be represented in the database.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 63

■ The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing
the department. A department may have several locations.

■ A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

■ The database will store each employee’s name, Social Security number,2
address, salary, sex (gender), and birth date. An employee is assigned to one
department, but may work on several projects, which are not necessarily
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as
well as the direct supervisor of each employee (who is another employee).

■ The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes
Entities and Their Attributes. The basic concept that the ER model represents is
an entity, which is a thing or object in the real world with an independent existence.
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for
instance, a company, a job, or a university course). Each entity has attributes—the
particular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity

2The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.

64 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.
Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e1 has four attributes: Name, Address, Age, and Home_phone; their values
are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’,
respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

EMPLOYEE

Fname Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor Supervisee

SUPERVISION1 N

Hours

WORKS_ON

CONTROLS

M N

1

DEPENDENTS_OF

Name

Location

N

1
1 1

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR
1N

N

DEPENDENT

Sex Birth_date RelationshipName

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 65

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the
values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.
Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its

Name = John Smith Name = Sunco Oil

Headquarters = Houston

President = John Smith

Address = 2311 Kirby
Houston, Texas 77001

Age = 55

e1 c1

Home_phone = 713-749-2630

Figure 3.3
Two entities,
EMPLOYEE e1, and
COMPANY c1, and
their attributes.

3Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Address

CityStreet_address

Number Street Apartment_number

State Zip

Figure 3.4
A hierarchy of
composite attributes.

66 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have any
college degrees, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for the
College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values allowed
for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from related
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity
can be derived by counting the number of employees related to (working for) that
department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have
NULL for College_degrees. NULL can also be used if we do not know the value of an
attribute for a particular entity—for example, if we do not know the home phone
number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is
not applicable, whereas the meaning of the latter is unknown. The unknown category
of NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping

 3.3 Entity Types, Entity Sets, Attributes, and Keys 67

components of a composite attribute between parentheses () and separating
the components with commas, and by displaying multivalued attributes between
braces { }. Such attributes are called complex attributes. For example, if a person
can have more than one residence and each residence can have a single address and
multiple phones, an attribute Address_phone for a person can be specified as shown
in Figure 3.5.4 Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets
Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 3.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the
values of their attributes. The collection of all entities of a particular entity type in the

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 13).

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

Figure 3.5
A complex attribute:
Address_phone.

Entity Type Name:

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

EMPLOYEE

Name, Age, Salary

(John Smith, 55, 80k)

(Fred Brown, 40, 30K)

(Judy Clark, 25, 20K)

e1 c1

c2e2

e3

(Sunco Oil, Houston, John Smith)

(Fast Computer, Dallas, Bob King)

Figure 3.6
Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.

68 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

database at any point in time is called an entity set or entity collection; the entity set
is usually referred to using the same name as the entity type, even though they are
two separate concepts. For example, EMPLOYEE refers to both a type of entity as
well as the current collection of all employee entities in the database. It is now more
common to give separate names to the entity type and entity collection; for example
in object and object-relational data models (see Chapter 12).
An entity type is represented in ER diagrams5 (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.
An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually
has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 3.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute
of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 3.7(a).
Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.
Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in

5We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams, and some additional diagrammatic notations are given in Appendix A.

 3.3 Entity Types, Entity Sets, Attributes, and Keys 69

its own right. The Registration attribute is an example of a composite key formed
from two simple component attributes, State and Number, neither of which is a key
on its own. An entity type may also have no key, in which case it is called a weak
entity type (see Section 3.5).
In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not typically displayed in basic ER diagrams and are similar to the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. However, data types of attributes can

Model

Make

Vehicle_id

Year

Color

Registration

State(a)

(b)

Number

CAR

CAR1
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

Figure 3.7
The CAR entity type
with two key attributes,
Registration and
Vehicle_id. (a) ER
diagram notation.
(b) Entity set with
three entities.

70 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

be specified in UML class diagrams (see Section 3.8) and in other diagrammatic
notations used in database design tools. Additional data types to represent common
database types, such as date, time, and other concepts, are also employed.
Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set6 P(V) of V:

A : E → P(V)
We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value
is represented by the empty set. For single-valued attributes, A(e) is restricted to
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.7 For a composite attribute A, the value set V is the power set of
the Cartesian product of P(V1), P(V2), . . . , P(Vn), where V1, V2, . . . , Vn are the
value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))
The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld and correspond to the data as it actually exists in
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and
 Controlling_department. Both Name and Number are (separate) key attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

6The power set P(V) of a set V is the set of all subsets of V.
7A singleton set is a set with only one element (value).

 3.3 Entity Types, Entity Sets, Attributes, and Keys 71

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the
database has to store the number of hours per week an employee works on each
project. This requirement is listed as part of the third requirement in Section 3.2,
and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it
can be represented as a multivalued composite attribute of PROJECT called
Workers with the simple components (Employee, Hours). We choose the first

Address

Sex

Birth_date

Project Hours

Works_on

Fname Minit Lname

Department

Salary

Supervisor

Name

EMPLOYEE

Ssn

Sex

Relationship

Employee

Dependent_name
DEPENDENT

Birth_date

Location
Number

Controlling_department

Name

PROJECT

Manager_start_date

Number

ManagerDEPARTMENT

Name

Locations

Figure 3.8
Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.

72 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 alternative in Figure 3.8; we shall see in the next section that this will be refined into
a many-to-many relationship, once we introduce the concepts of relationships.

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to
an employee who manages the department; the attribute Controlling_department
of PROJECT refers to the department that controls the project; the attribute
Supervisor of EMPLOYEE refers to another employee (the one who supervises this
employee); the attribute Department of EMPLOYEE refers to the department for
which the employee works; and so on. In the ER model, these references should not
be represented as attributes but as relationships. The initial COMPANY database
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.
This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances ri, where each ri associates n
individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej,
1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . , En;
 alternatively, it can be defined as a subset of the Cartesian product of the entity sets
E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the
relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to
participate in the relationship instance ri = (e1, e2, . . . , en).
Informally, each relationship instance ri in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance ri represents the fact that the entities participating in ri
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 73

EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT
entity. Figure 3.9 illustrates this example, where each relationship instance ri is
shown connected to the EMPLOYEE and DEPARTMENT entities that participate
in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work
for department d1; the employees e2 and e4 work for department d2; and the employ-
ees e5 and e7 work for department d3.
In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box
(see Figure 3.2).

3.4.2 Relationship Degree, Role Names, and Recursive
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree
two. A relationship type of degree two is called binary, and one of degree three is
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance ri associates three entities—a supplier s, a
part p, and a project j—whenever s supplies part p to project j. Relationships can

EMPLOYEE WORKS_FOR DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

d1

d2

d3

Figure 3.9
Some instances in
the WORKS_FOR
relationship set,
which represents a
relationship type
WORKS_FOR
between EMPLOYEE
and DEPARTMENT.

74 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships;
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type, where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attribute,
we always have two options or two points of view. In this example, the alternative point
of view is to think of a multivalued attribute Employees of the entity type
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power
set of the EMPLOYEE entity set. Either of these two attributes—Department of
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.8

SUPPLIER

PART

SUPPLY PROJECT

p1

p2

p3

r1

r2

r3

r4

r5

r6

r7

j1

j2

j3

s1

s2

Figure 3.10
Some relationship
instances in the
 SUPPLY ternary
 relationship set.

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 12), relationships can be represented by
 reference attributes, either in one direction or in both directions as inverses. In relational databases
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 75

Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker
and DEPARTMENT plays the role of department or employer.
Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used
as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes
essential for distinguishing the meaning of the role that each participating entity
plays. Such relationship types are called recursive relationships or self-referencing
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type
participates twice in SUPERVISION: once in the role of supervisor (or boss), and
once in the role of supervisee (or subordinate). Each relationship instance ri in
SUPERVISION associates two different employee entities ej and ek, one of which
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the
lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the
supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 super-
vises e1 and e4. In this example, each relationship instance must be connected with
two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

EMPLOYEE

2

2

2

SUPERVISION

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

2

2

2

1

1

1

1

1

1

Figure 3.11
A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (2).

76 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.4.3 Constraints on Binary Relationship Types
Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees (N),9 but an employee
can be related to (work for) at most one department (1). This means that for
this particular relationship type WORKS_FOR, a particular department entity can
be related to any number of employees (N indicates there is no maximum number).
On the other hand, an employee can be related to a maximum of one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,
and M:N.
An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage at

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is
used instead of N.

EMPLOYEE MANAGES DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

d1

d2

d3

r1

r2

r3

Figure 3.12
A 1:1 relationship,
MANAGES.

 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 77

most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the
miniworld rule is that an employee can work on several projects and a project can
have several employees.
Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every
employee to manage a department, so the participation of EMPLOYEE in the

EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

p4

Figure 3.13
An M:N relationship,
WORKS_ON.

78 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

MANAGES relationship type is partial, meaning that some or part of the set of
employee entities are related to some department entity via MANAGES, but not
 necessarily all. We will refer to the cardinality ratio and participation constraints,
taken together, as the structural constraints of a relationship type.
In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,
we can either specify no minimum (partial participation) or a minimum of one (total
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.
We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that a particular employee works
on a particular project, we can include an attribute Hours for the WORKS_ON
relationship type in Figure 3.13. Another example is to include the date on which
a manager started managing a department via an attribute Start_date for the
MANAGES relationship type in Figure 3.12.
Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT,
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1
relationship, so every department or employee entity participates in at most one
relationship instance. Hence, the value of the Start_date attribute can be determined
separately, either by the participating department entity or by the participating
employee (manager) entity.
For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for at most one
department, and hence participates in at most one relationship instance in
WORKS_FOR, but a department can have many employees, each with a different start date.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.
For M:N (many-to-many) relationship types, some attributes may be determined
by the combination of participating entities in a relationship instance, not by any
single entity. Such attributes must be specified as relationship attributes. An example
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number
of hours per week an employee currently works on a project is determined by an
employee-project combination and not separately by either entity.

 3.5 Weak Entity Types 79

3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying
or owner entity type,10 and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type.11 A weak entity type
always has a total participation constraint (existence dependency) with respect to its
identifying relationship because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,
even though it has its own key (License_number) and hence is not a weak entity.
Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related to it.
A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.12 In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.
In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.
Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a multivalued composite attribute with the
component attributes Name, Birth_date, Sex, and Relationship. The choice of which
representation to use is made by the database designer. One criterion that may be
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.
In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

10The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11The weak entity type is also sometimes called the child entity type or the subordinate entity type.
12The partial key is sometimes called the discriminator.

80 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.6 Refining the ER Design for
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.
In our example, we specify the following relationship types:

■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.13 The attribute Start_date is assigned to this relationship type.

■ WORKS_FOR, a 1:N (one-to-many) relationship type between
DEPARTMENT and EMPLOYEE. Both participations are total.

■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some
departments may control no projects.

■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

■ WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
employees working on it. Both participations are determined to be total.

■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from
DEPENDENT. It is important to have the least possible redundancy when we design the
conceptual schema of a database. If some redundancy is desired at the storage level or at
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.

 3.7 ER Diagrams, Naming Conventions, and Design Issues 81

3.7 ER Diagrams, Naming Conventions,
and Design Issues

3.7.1 Summary of Notation for ER Diagrams
Figures 3.9 through 3.13 illustrate examples of the participation of entity types in
relationship types by displaying their entity sets and relationship sets (or
 extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity
sets may change frequently. In addition, the schema is obviously easier to display,
because it is much smaller.
Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Regular (strong) entity types such as
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are
shown in diamond-shaped boxes attached to the participating entity types with
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.
Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.
The partial key of the weak entity type is underlined with a dotted line.
In Figure 3.2 the cardinality ratio of each binary relationship type is specified
by attaching a 1, M, or N on each participating edge. The cardinality ratio
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double
lines for total participation (existence dependency).
In Figure 3.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because
each employee in the role of supervisee has at most one direct supervisor, whereas
an employee in the role of supervisor can supervise zero or more employees.
Figure 3.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 3.7.4 and
Appendix A).

82 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

3.7.2 Proper Naming of Schema Constructs
When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to
the different constructs in the schema. We choose to use singular names for entity
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters,
attribute names have their initial letter capitalized, and role names are in lowercase
letters. We have used this convention in Figure 3.2.
As a general practice, given a narrative description of the database requirements,
the nouns appearing in the narrative tend to give rise to entity type names, and the
verbs tend to indicate names of relationship types. Attribute names generally arise
from additional nouns that describe the nouns corresponding to entity types.
Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To
change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
 section, we give some brief guidelines as to which construct should be chosen in
particular situations.
In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

■ A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses of
one another are refined into a binary relationship. We discussed this type of
refinement in detail in Section 3.6. It is important to note that in our notation,

 3.7 ER Diagrams, Naming Conventions, and Design Issues 83

MeaningSymbol

Entity

Weak Entity

Indentifying Relationship

Relationship

Composite Attribute
. . .

Key Attribute

Attribute

Derived Attribute

Multivalued Attribute

Total Participation of E2 in RRE1 E2

Cardinality Ratio 1: N for E1 : E2 in RRE1 E2
N1

Structural Constraint (min, max)
on Participation of E in RR E

(min, max)

Figure 3.14
Summary of the
notation for ER
diagrams.

84 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

once an attribute is replaced by a relationship, the attribute itself should be
removed from the entity type to avoid duplication and redundancy.

■ Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that each
of several entity types in a UNIVERSITY database, such as STUDENT,
INSTRUCTOR, and COURSE, has an attribute Department in the
initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute Dept_name and relate it to the three
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

■ An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In
this case, DEPARTMENT may be reduced or demoted to an attribute of
STUDENT.

■ Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams
There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.
In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double-line notation for participation constraints. This notation
involves associating a pair of integer numbers (min, max) with each participation
of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1. The
numbers mean that for each entity e in E, e must participate in at least min and at
most max relationship instances in R at any point in time. In this method,
min = 0 implies partial participation, whereas min > 0 implies total participation.
Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.14 Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we
can use it to specify some structural constraints for relationship types of higher
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.
Figure 3.15 also displays all the role names for the COMPANY database schema.

14In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

 3.8 Example of Other Notation: UML Class Diagrams 85

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here and compare them with ER diagrams. In some

EMPLOYEE

Minit Lname

Name Address

Sex

Salary

Ssn

Bdate

Supervisor
(0,N) (0,1)

(1,1)
Employee

(1,1)

(1,N)

(1,1)

(0,N)Department
Managed

(4,N)

Department

(0,1)
Manager

Supervisee

SUPERVISION

Hours

WORKS_ON

CONTROLS

DEPENDENTS_OF

Name
Location

PROJECT

DEPARTMENT

Locations

Name Number

Number

Number_of_employees

MANAGES

Start_date

WORKS_FOR

DEPENDENT

Sex Birth_date RelationshipName

Controlling
Department

Controlled
Project

Project

(1,N)
Worker

(0,N)
Employee

(1,1) Dependent

Fname

Figure 3.15
ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

86 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16
shows how the COMPANY ER database schema in Figure 3.15 can be displayed
using UML class diagram notation. The entity types in Figure 3.15 are modeled as
classes in Figure 3.16. An entity in ER corresponds to an object in UML.
In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or
data type) of an attribute if desired, by placing a colon (:) followed by the domain
name or description, as illustrated by the Name, Sex, and Bdate attributes
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the
LOCATION class in Figure 3.16.

supervisee

Name: Name_dom
Fname
Minit
Lname

Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

4..*

1..*

1..* *

*

1..1

1..1

1..1

1..1

1..*

0..1

0..*

0..*

age
change_department
change_projects
. . .

Sex: {M,F}
Birth_date: Date
Relationship

DEPENDENT

. . .

0..1
supervisor

Dependent_name

EMPLOYEE
Name
Number

add_employee
number_of_employees
change_manager
. . .

DEPARTMENT

Name
Number

add_employee
add_project
change_manager
. . .

PROJECT

Start_date

MANAGES

CONTROLS

Hours

WORKS_ON Name

LOCATION

1..1
0..*
0..1

Multiplicity
Notation in OMT:

Aggregation
Notation in UML:

Whole Part

WORKS_FOR

Figure 3.16
The COMPANY conceptual schema in UML class diagram notation.

 3.8 Example of Other Notation: UML Class Diagrams 87

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig -
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)
is called a reflexive association in UML, and the role names—like the multiplicities—
are placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.
In UML, there are two types of relationships: association and aggregation.
 Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled
the locations of a department and the single location of a project as aggregations.
However, aggregation and association do not have different structural properties, and
the choice as to which type of relationship to use—aggregation or association—is
somewhat subjective. In the ER model, both are represented as relationships.
UML also distinguishes between unidirectional and bidirectional associations
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to
EMPLOYEE. In addition, relationship instances may be specified to be ordered.
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by
their Start_date attribute value. Association (relationship) names are optional in
UML, and relationship attributes are displayed in a box attached with a dashed
line to the line representing the association/aggregation (see Start_date and Hours
in Figure 3.16).
The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion.

88 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Weak entities can be modeled using the UML construct called qualified association
(or qualified aggregation); this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called
the discriminator, because its value distinguishes the objects associated with
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to
modeling weak entities, and they can be used to model other situations in UML.
This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

3.9 Relationship Types of Degree
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree
relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at the
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently
supplying a PART p to a PROJECT j. In general, a relationship type R of degree n will
have n edges in an ER diagram, one connecting R to each participating entity type.
Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY,
USES, and SUPPLIES. In general, a ternary relationship type represents different
information than do three binary relationship types. Consider the three binary
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p),
(j, p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY,
because the meaning is different. It is often tricky to decide whether a particular
relationship should be represented as a relationship type of degree n or should be

 3.9 Relationship Types of Degree Higher than Two 89

broken down into several relationship types of smaller degrees. The designer must
base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are
needed by the application.

(a) SUPPLY

Sname

Part_no

SUPPLIER

Quantity

PROJECT

PART

Proj_name

(b)

(c)

Part_no

PART

N

Sname

SUPPLIER

Proj_name

PROJECT

N

Quantity

SUPPLY
N1

Part_no

M N

CAN_SUPPLY

N

M

Sname

SUPPLIER

Proj_name

PROJECT

USES

PART

M

N

SUPPLIES

SP

SPJSS
1

1

Figure 3.17
Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

90 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its
three owner entities from SUPPLIER, PART, and PROJECT.
It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to each of the three participating
entity types.
Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers
COURSE c during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors
who taught some course during that semester, and OFFERED_DURING relates a
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, c) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance
(i, c) exists in CAN_TEACH. However, the reverse is not always true;
we may have instances (i, s), (s, c), and (i, c) in the three binary relationship types
with no corresponding instance (i, s, c) in OFFERS. Note that in this example,
based on the meanings of the relationships, we can infer the instances of
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but

Cnumber
CAN_TEACH

Lname

INSTRUCTOR

Sem_year

YearSemester

SEMESTER

OFFERED_DURING

COURSE

OFFERS

TAUGHT_DURING

Figure 3.18
Another example of
ternary versus binary
relationship types.

 3.9 Relationship Types of Degree Higher than Two 91

we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and
OFFERED_DURING are redundant and can be left out.
Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a
course can be taught by only one instructor), then the ternary relationship OFFERS
can be left out because it can be inferred from the three binary relationships
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer
must analyze the meaning of each specific situation to decide which of the binary
and ternary relationship types are needed.
Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19. This example shows part of a
database that keeps track of candidates interviewing for jobs at various companies,
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on
one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

Dept_date

DateDepartment

RESULTS_IN

Name

CANDIDATE

Cname

COMPANY

INTERVIEW JOB_OFFER

CCI

Figure 3.19
A weak entity type
INTERVIEW with a
 ternary identifying
 relationship type.

92 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 participation arc (both M and N symbols stand for many or any number).15 Let us
 illustrate this constraint using the SUPPLY relationship in Figure 3.17.
Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.16 If all three cardinalities are M or N, then the key will
be the combination of all three participants.
The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,17 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database
We now present another example, a UNIVERSITY database, to illustrate the ER
modeling concepts. Suppose that a database is needed to keep track of student
enrollments in classes and students’ final grades. After analyzing the miniworld
rules and the users’ needs, the requirements for this database were determined to be
as follows (for brevity, we show the chosen entity type names and attribute names
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

■ The university is organized into colleges (COLLEGE), and each college has a
unique name (CName), a main office (COffice) and phone (CPhone), and a
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a
unique name (DName), a unique code number (DCode), a main office
(DOffice) and phone (DPhone), and a particular faculty member who chairs
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

15This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
16This is also true for cardinality ratios of binary relationships.
17The (min, max) constraints can determine the keys for binary relationships.

 3.10 Another Example: A UNIVERSITY Database 93

■ A department offers a number of courses (COURSE), each of which has a
unique course name (CoName), a unique code number (CCode), a course
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit
hours (Credits), and a course description (CDesc). The database also keeps
track of instructors (INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank);
in addition, each instructor works for one primary academic department.

■ The database will keep student data (STUDENT) and stores each student’s
name (SName, composed of first name (FName), middle name (MName),
last name (LName)), student id (Sid, unique for every student), address
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep
track of the student’s grades in each section the student has completed.

■ Courses are offered as sections (SECTION). Each section is related to a single
course and a single instructor and has a unique section identifier (SecId). A
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year
(Year), classroom (CRoom: this is coded as a combination of building code
(Bldg) and room number (RoomNo) within the building), and days/times
(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep
track of all the sections offered for the past several years, in addition to the
current offerings. The SecId is unique for all sections, not just the sections for
a particular semester.) The database keeps track of the students in each section,
and the grade is recorded when available (this is a many-to-many relationship
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER
diagrammatic notation. Notice that for the SECTION entity type, we only showed
SecID as an underlined key, but because of the miniworld constraints, several other
combinations of values have to be unique for each section entity. For example, each of
the following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This
specifies that the section numbers of a particular course must be different
during each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester
and year, a classroom cannot be used by two different sections at the same
days/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):
This specifies that in a particular semester and year, an instructor cannot
teach two sections at the same days/time. Note that this rule will not apply if
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?

94 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

COLLEGE

DEPT

COURSE SECTION SecNoSECS

Grade

TAKES

Sem
Year

INSTRUCTOR

COffice

TEACHES

ADMINS

DEAN

MName

SName
Addr

Phone

Major

DOB

FName

STUDENT

LName

CHAIR

CStartDate

EMPLOYS

HAS

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,N)

(0,1)

(0,1)

(0,1)

(5,N)

CName

DName

CCode SecId

IOffice

IName

Rank

CPhone

DCode

DOffice

CoName

Credits

CDesc

Level

DPhone

IPhoneId

SId

OFFERS

CRoom

Bldg RoomNo

DaysTime

Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary
In this chapter we presented the modeling concepts of a high-level conceptual data
model, the entity–relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the

 3.11 Summary 95

examples that is used throughout this text. We defined the basic ER model concepts
of entities and their attributes. Then we discussed NULL values and presented the
various types of attributes, which can be nested arbitrarily to produce complex
attributes:

■ Simple or atomic
■ Composite
■ Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the
ER model concepts at the schema or “intension” level:

■ Entity types and their corresponding entity sets
■ Key attributes of entity types
■ Value sets (domains) of attributes
■ Relationship types and their corresponding relationship sets
■ Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

■ Cardinality ratios (1:1, 1:N, M:N for binary relationships)
■ Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types and partial key
attributes.
Entity–relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they
relate to ER modeling concepts. We also described ternary and higher-degree
relationship types in more detail, and we discussed the circumstances under which
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the
ER schema design.
The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.

96 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Review Questions
 3.1. Discuss the role of a high-level data model in the database design process.
 3.2. List the various cases where use of a NULL value would be appropriate.
 3.3. Define the following terms: entity, attribute, attribute value, relationship

instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.
 3.6. What is a relationship type? Explain the differences among a relationship

instance, a relationship type, and a relationship set.
 3.7. What is a participation role? When is it necessary to use role names in the

description of relationship types?
 3.8. Describe the two alternatives for specifying structural constraints on rela-

tionship types. What are the advantages and disadvantages of each?
 3.9. Under what conditions can an attribute of a binary relationship type be

migrated to become an attribute of one of the participating entity types?
 3.10. When we think of relationships as attributes, what are the value sets of these

attributes? What class of data models is based on this concept?
 3.11. What is meant by a recursive relationship type? Give some examples of

recursive relationship types.
 3.12. When is the concept of a weak entity used in data modeling? Define the

terms owner entity type, weak entity type, identifying relationship type, and
partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.
 3.15. Discuss the naming conventions used for ER schema diagrams.

Exercises
 3.16. Which combinations of attributes have to be unique for each individual

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce
each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.

 Exercises 97

 b. During a particular semester and year, an instructor can teach only one
section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sections
offered for the same course must all be different.

 Can you think of any other similar constraints?
 3.17. Composite and multivalued attributes can be nested to any number of lev-

els. Suppose we want to design an attribute for a STUDENT entity type to
keep track of previous college education. Such an attribute will have one
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and
year the degree was awarded, and each transcript entry contains a course
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that
uses only entity types (including weak entity types, if needed) and relation-
ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as
possible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE’s Name
(e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state
(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}).
Each CONGRESS_PERSON in the House of Representatives is described by
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,
‘Other’}). The database keeps track of each BILL (i.e., proposed law),
including the Bill_name, the Date_of_vote on the bill, whether the bill
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain

98 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

Restrictions

M

N

N

1

N

N

1

1N

AIRPORT

City State

AIRPLANE_
TYPE

Dep_time

Arr_time

Name

Scheduled_dep_time

INSTANCE_OF

Weekdays

Airline

Instances

N

1

1 N

Airport_code

Number

Scheduled_arr_time

CAN_
LAND

TYPE

N

1

DEPARTS

N

1

ARRIVES

N1 ASSIGNED

ARRIVAL_
AIRPORT

DEPARTURE_
AIRPORT N1

SEAT

Max_seatsType_name

Code

AIRPLANE

Airplane_id Total_no_of_seats

LEGS

FLIGHT

FLIGHT_LEG

Leg_no

FARES

FARE

Amount

CphoneCustomer_name

Date

No_of_avail_seats

RESERVATION
Seat_no

Company

LEG_INSTANCE

Notes:
A LEG (segment) is a nonstop portion of a flight.
A LEG_INSTANCE is a particular occurrence
 of a LEG on a particular date.

1

Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema
diagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of

 Exercises 99

the game. Design an ER schema diagram for this application, stating any
assumptions you make. Choose your favorite sport (e.g., soccer, baseball,
football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.
Each bank can have multiple branches, and each branch can have multiple
accounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.
 b. Is there a weak entity type? If so, give its name, partial key, and identify-

ing relationship.
 c. What constraints do the partial key and the identifying relationship of the

weak entity type specify in this diagram?
 d. List the names of all relationship types, and specify the (min, max)

 constraint on each participation of an entity type in a relationship type.
Justify your choices.

BANK

LOAN

Balance

Type

AmountLoan_no

1

N

1

N

N
N

M M

NameCode

1 N BANK_BRANCH

L_CA_C

ACCTS LOANS

BRANCHES

ACCOUNT

CUSTOMER

Acct_no

Name

AddrPhone

Type

Addr Branch_noAddr

Ssn

Figure 3.22
An ER diagram for a BANK database schema.

100 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. List concisely the user requirements that led to this ER schema design.
 f. Suppose that every customer must have at least one account but is

restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may
work in up to two departments or may not be assigned to any department.
Assume that each department must have one and may have up to three
phone numbers. Supply (min, max) constraints on this diagram. State clearly
any additional assumptions you make. Under what conditions would the
relationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from
two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

EMPLOYEE DEPARTMENT

CONTAINSHAS_PHONE

WORKS_IN

PHONE

Figure 3.23
Part of an ER diagram
for a COMPANY
 database.

INSTRUCTOR COURSE

USES

TEACHES

TEXT

Figure 3.24
Part of an ER diagram
for a COURSES
 database.

 Exercises 101

 3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes
the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible
time periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50
a.m.’, . . . , ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during
a particular semester, its section offerings are numbered 1, 2, 3, and so
on). There are several composite keys for section, and some attributes
are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2

1. STUDENT ______________ SOCIAL_SECURITY_CARD

2. STUDENT ______________ TEACHER

3. CLASSROOM ______________ WALL

4. COUNTRY ______________ CURRENT_PRESIDENT

5. COURSE ______________ TEXTBOOK

6. ITEM (that can be found
in an order)

______________ ORDER

7. STUDENT ______________ CLASS

8. CLASS ______________ INSTRUCTOR

9. INSTRUCTOR ______________ OFFICE

10. EBAY_AUCTION_ITEM ______________ EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.
 Assume that MOVIES is a populated database. ACTOR is used as a generic term

and includes actresses. Given the constraints shown in the ER schema, respond
to the following statements with True, False, or Maybe. Assign a response of
Maybe to statements that, although not explicitly shown to be True, cannot be
proven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.
 b. There are some actors who have acted in more than ten movies.
 c. Some actors have done a lead role in multiple movies.
 d. A movie can have only a maximum of two lead actors.

102 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 e. Every director has been an actor in some movie.
 f. No producer has ever been an actor.
 g. A producer cannot be an actor in some other movie.
 h. There are movies with more than a dozen actors.
 i. Some producers have been a director as well.
 j. Most movies have one director and one producer.
 k. Some movies have one director but several producers.
 l. There are some actors who have done a lead role, directed a movie, and

produced a movie.
 m. No movie has a director who also acted in that movie.
 3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an

instance diagram using three movies that have been released recently.
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,
DIRECTORS involved; make up instances of the relationships as they exist in
reality for those movies.

ACTOR
MOVIE

LEAD_ROLE

PERFORMS_IN

DIRECTSDIRECTOR

ALSO_A_
DIRECTOR

PRODUCESPRODUCER

ACTOR_
PRODUCER

1

1

1

1
1

M

M

2 N

N

N

N

Figure 3.25
An ER diagram for a MOVIES database schema.

 Laboratory Exercises 103

 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should
observe the following requirements:

 a. A student should have the ability to compute his/her GPA and add or
drop majors and minors.

 b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

 c. Each instructor should be able to assign or change a student’s grade for a
course.

 Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises
 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER

schema for this database using a data modeling tool such as ERwin or
Rational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:
■ The mail order company has employees, each identified by a unique em-

ployee number, first and last name, and Zip Code.
■ Each customer of the company is identified by a unique customer number,

first and last name, and Zip Code.
■ Each part sold by the company is identified by a unique part number, a

part name, price, and quantity in stock.
■ Each order placed by a customer is taken by an employee and is given a

unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

 Design an entity–relationship diagram for the mail order database and build
the design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie
industry. The data requirements are summarized as follows:
■ Each movie is identified by title and year of release. Each movie has a

length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in it.
Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

■ Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.

104 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

■ Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

■ Production companies are identified by name and each has an address. A
production company produces one or more movies.

 Design an entity–relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject
the paper. The data requirements are summarized as follows:
■ Authors of papers are uniquely identified by e-mail id. First and last names

are also recorded.
■ Each paper is assigned a unique identifier by the system and is described

by a title, abstract, and the name of the electronic file containing the paper.
■ A paper may have multiple authors, but one of the authors is designated as

the contact author.
■ Reviewers of papers are uniquely identified by e-mail address. Each re-

viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

■ Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

■ Each review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

 Design an entity–relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21.
Build this design using a data modeling tool such as ERwin or Rational Rose.

Selected Bibliography
The entity–relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and
Senko (1975). Since then, numerous modifications to the ER model have been
 suggested. We have incorporated some of these in our presentation. Structural

 Selected Bibliography 105

 constraints on relationships are discussed in Abrial (1974), Elmasri and Wieder-
hold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attri-
butes are incorporated in the ER model in Elmasri et al. (1985). Although we did
not discuss languages for the ER model and its extensions, there have been several
proposals for such languages. Elmasri and Wiederhold (1981) proposed the
GORDAS query language for the ER model. Another ER query language was pro-
posed by Markowitz and Raz (1983). Senko (1980) presented a query language for
Senko’s DIAM model. A formal set of operations called the ER algebra was
 presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-
sented another formal language for the ER model. Campbell et al. (1985) presented
a set of ER operations and showed that they are relationally complete. A conference
for the dissemination of research results related to the ER model has been held reg-
ularly since 1979. The conference, now known as the International Conference on
Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997),
Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New
York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland
(ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992),
Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia
(ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER
1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Fin-
land (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagen-
furt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER
2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009).
The 2010 conference was held in Vancouver, British Columbia, Canada (ER2010),
2011 in Brussels, Belgium (ER2011), 2012 in Florence, Italy (ER2012) , 2013 in
Hong Kong, China (ER2013), and the 2014 conference was held in Atlanta, Georgia
(ER 2014). The 2015 conference is to be held in Stockholm, Sweden.

This page intentionally left blank

107

4
The Enhanced Entity–Relationship

(EER) Model

The ER modeling concepts discussed in Chapter 3
are sufficient for representing many database sche-

mas for traditional database applications, which include many data-processing
applications in business and industry. Since the late 1970s, however, designers of
database applications have tried to design more accurate database schemas that
reflect the data properties and constraints more precisely. This was particularly
important for newer applications of database technology, such as databases for
engineering design and manufacturing (CAD/CAM),1 telecommunications, com-
plex software systems, and geographic information systems (GISs), among many
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently
in related areas of computer science, such as the knowledge representation area of
artificial intelligence and the object modeling area in software engineering.
In this chapter, we describe features that have been proposed for semantic data
models and show how the ER model can be enhanced to include these concepts,
which leads to the enhanced ER (EER) model.2 We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER
model. Then, in Section 4.2, we add the concepts of specialization and generalization.
Section 4.3 discusses the various types of constraints on specialization/generalization,
and Section 4.4 shows how the UNION construct can be modeled by including the

chapter 4

1CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2EER has also been used to stand for extended ER model.

108 Chapter 4 The Enhanced Entity–Relationship (EER) Model

concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY
database schema in the EER model and summarizes the EER model concepts by
giving formal definitions. We will use the terms object and entity interchangeably
in this chapter, because many of these concepts are commonly used in object-
oriented models.
We present the UML class diagram notation for representing specialization and
generalization in Section 4.6, and we briefly compare these with EER notation and
concepts. This serves as an example of alternative notation, and is a continuation
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8
summarizes the chapter.
For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance
The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass
and the related concepts of specialization and generalization (see Sections 4.2
and 4.3). Another concept included in the EER model is that of a category or union
type (see Section 4.4), which is used to represent a collection of objects (entities)
that is the union of objects of different entity types. Associated with these concepts
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a
diagrammatic technique for displaying these concepts when they arise in an EER
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.
The first enhanced ER (EER) model concept we take up is that of a subtype or
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is
used to represent both a type of entity and the entity set or collection of entities of that
type that exist in the database. For example, the entity type EMPLOYEE describes the
type (that is, the attributes and relationships) of each employee entity, and also refers
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an
entity type has numerous subgroupings or subtypes of its entities that are meaningful
and need to be represented explicitly because of their significance to the database
application. For example, the entities that are members of the EMPLOYEE entity
type may be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or
collection of entities in each of the latter groupings is a subset of the entities that
belong to the EMPLOYEE entity set, meaning that every entity that is a member of
one of these subgroupings is also an employee. We call each of these subgroupings a

 4.1 Subclasses, Superclasses, and Inheritance 109

subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how
to represent these concepts diagramatically in EER diagrams. (The circle notation in
Figure 4.1 will be explained in Section 4.2.)
We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or supertype/subtype or simply class/subclass relationship.3

In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN
are two class/subclass relationships. Notice that a member entity of the subclass
represents the same real-world entity as some member of the superclass; for
example, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’
Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in
the database system, however, we may represent a member of the subclass as a
distinct database object—say, a distinct record that is related via the key attribute
to its superclass entity. In Section 9.2, we discuss various options for representing
superclass/subclass relationships in relational databases.
An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally

3A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we
refer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, and
so on.

MANAGES

d

Minit Lname

Name Birth_date AddressSsn

Fname

Eng_typeTgradeTyping_speed Pay_scale

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

Salary

PROJECT

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

TRADE_UNION

BELONGS_TO

d

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1
EER diagram
notation to represent
subclasses and
specialization.

110 Chapter 4 The Enhanced Entity–Relationship (EER) Model

as a member of any number of subclasses. For example, a salaried employee who is
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE
of the EMPLOYEE entity type. However, it is not necessary that every entity in a
superclass is a member of some subclass.
An important concept associated with subclasses (subtypes) is that of type
inheritance. Recall that the type of an entity is defined by the attributes it possesses
and the relationship types in which it participates. Because an entity in the subclass
represents the same real-world entity from the superclass, it should possess values
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of
the entity as a member of the superclass. The entity also inherits all the relationships
in which the superclass participates. Notice that a subclass, with its own specific (or
local) attributes and relationships together with all the attributes and relationships it
inherits from the superclass, can be considered an entity type in its own right.4

4.2 Specialization and Generalization

4.2.1 Specialization
Specialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.
We may have several specializations of the same entity type based on different
distinguishing characteristics. For example, another specialization of the
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,
HOURLY_EMPLOYEE}; this specialization distinguishes among employees based on
the method of pay.
Figure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle
that represents the specialization, which is connected in turn to the superclass. The
subset symbol on each line connecting a subclass to the circle indicates the direction
of the superclass/subclass relationship.5 Attributes that apply only to entities of a
particular subclass—such as TypingSpeed of SECRETARY—are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of
the subclass. Similarly, a subclass can participate in specific relationship types,
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

4In some object-oriented programming languages, a common restriction is that an entity (or object) has
only one type. This is generally too restrictive for conceptual database modeling.
5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and
other proposed notations in Appendix A.

 4.2 Specialization and Generalization 111

relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1
and additional EER diagram notation shortly.
Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY,
ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to
a subclass represents the same real-world entity as the entity connected to it in the
EMPLOYEE superclass, even though the same entity is shown twice; for example, e1
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as
the entity in the superclass but is playing a specialized role—for example, an
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in
the role of TECHNICIAN.
There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of

EMPLOYEE

SECRETARY

ENGINEER

TECHNICIAN

e1

e2

e3

e4

e5

e6

e7

e8

e1

e2

e3

e4

e5

e7

e8

Figure 4.2
Instances of a specialization.

112 Chapter 4 The Enhanced Entity–Relationship (EER) Model

the superclass entity type. A subclass is defined in order to group the entities to
which these attributes apply. The members of the subclass may still share the
majority of their attributes with the other members of the superclass. For example,
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed,
whereas the ENGINEER subclass has the specific attribute Eng_type, but
SECRETARY and ENGINEER share their other inherited attributes from the
EMPLOYEE entity type.
The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization
We can think of a reverse process of abstraction in which we suppress the differences
among several entity types, identify their common features, and generalize them
into a single superclass of which the original entity types are special subclasses. For
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because
they have several common attributes, they can be generalized into the entity type
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the

(a)

(b)

Max_speed

Vehicle_id

No_of_passengers

License_plate_no

CAR Price Price

License_plate_no

No_of_axles

Vehicle_id

Tonnage

TRUCK

Vehicle_id Price License_plate_no

VEHICLE

No_of_passengers

Max_speed

CAR TRUCK

No_of_axles

Tonnage

d

Figure 4.3
Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 113

generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.
Notice that the generalization process can be viewed as being functionally the
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A
diagrammatic notation to distinguish between generalization and specialization is
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation
because the decision as to which process was followed in a particular situation is
often subjective.
So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a
superclass or subclass represents a collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are all shown in
rectangles in EER diagrams, like entity types.

4.3 Constraints and Characteristics
of Specialization and Generalization
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it
applies to both specialization and generalization. Then, we discuss differences
between specialization/generalization lattices (multiple inheritance) and hierarchies
(single inheritance), and we elaborate on the differences between the specialization
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization
In general, we may have several specializations defined on the same entity type (or
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses
in each of the specializations. A specialization may also consist of a single subclass
only, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do not
use the circle notation.
In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of
the superclass. Such subclasses are called predicate-defined (or condition-defined)
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 4.4, we can specify the condition of membership in the
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the
defining predicate of the subclass. This condition is a constraint specifying that
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type

114 Chapter 4 The Enhanced Entity–Relationship (EER) Model

is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by
writing the predicate condition next to the line that connects the subclass to the
specialization circle.
If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the special-
ization.6 In this case, all the entities with the same value for the attribute belong to
the same subclass. We display an attribute-defined specialization by placing the
defining attribute name next to the arc from the circle to the superclass, as shown
in Figure 4.4.
When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.
Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint
sets. This means that an entity can be a member of at most one of the subclasses of
the specialization. A specialization that is attribute-defined implies the disjointness
constraint (if the attribute used to define the membership predicate is single-
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The
d notation also applies to user-defined subclasses of a specialization that must be
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.

d

Minit Lname

Name Birth_date Address Job_typeSsn

Fname

Eng_typeTgrade ‘Technician’

Job_type

‘Secretary’ ‘Engineer’

Typing_speed

SECRETARY TECHNICIAN ENGINEER

EMPLOYEE

Figure 4.4
EER diagram notation
for an attribute-defined
specialization on
Job_type.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 115

may be overlapping; that is, the same (real-world) entity may be a member of more
than one subclass of the specialization. This case, which is the default, is displayed
by placing an o in the circle, as shown in Figure 4.5.
The second constraint on specialization is called the completeness (or totalness)
constraint, which may be total or partial. A total specialization constraint specifies
that every entity in the superclass must be a member of at least one subclass
in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect
the superclass to the circle. A single line is used to display a partial specialization,
which allows an entity not to belong to any of the subclasses. For example, if some
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER,
TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.7

Notice that the disjointness and completeness constraints are independent. Hence,
we have the following four possible constraints on a specialization:

 ■ Disjoint, total
 ■ Disjoint, partial
 ■ Overlapping, total
 ■ Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that
applies to each specialization. In general, a superclass that was identified through
the generalization process usually is total, because the superclass is derived from the
subclasses and hence contains only the entities that are in the subclasses.
Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

 ■ Deleting an entity from a superclass implies that it is automatically deleted
from all the subclasses to which it belongs.

7The notation of using single or double lines is similar to that for partial or total participation of an entity
type in a relationship type, as described in Chapter 3.

Part_no Description

PARTManufacture_date

Drawing_no

PURCHASED_PART

Supplier_name
Batch_no

List_price

o

MANUFACTURED_PART

Figure 4.5
EER diagram notation
for an overlapping
(nondisjoint)
specialization.

116 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ Inserting an entity in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclasses for which
the entity satisfies the defining predicate.

 ■ Inserting an entity in a superclass of a total specialization implies that
the entity is mandatorily inserted in at least one of the subclasses of the
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2 Specialization and Generalization Hierarchies
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the
real-world constraint that every engineering manager is required to be an engineer.
A specialization hierarchy has the constraint that every subclass participates as a
subclass in only one class/subclass relationship; that is, each subclass has only one
parent, which results in a tree structure or strict hierarchy. In contrast, for a
specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 4.6 is a lattice.
Figure 4.7 shows another specialization lattice of more than one level. This may
be part of a conceptual schema for a UNIVERSITY database. Notice that this
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT
subclass, which is a subclass in two distinct class/subclass relationships.

d

HOURLY_EMPLOYEE

SALARIED_EMPLOYEE

ENGINEERING_MANAGER

SECRETARY TECHNICIAN ENGINEER MANAGER

EMPLOYEE

d

Figure 4.6
A specialization lattice with shared subclass
ENGINEERING_MANAGER.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 117

The requirements for the part of the UNIVERSITY database shown in Figure 4.7
are the following:

 1. The database keeps track of three types of persons: employees, alumni, and
students. A person can belong to one, two, or all three of these types. Each
person has a name, SSN, sex, address, and birth date.

 2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one
of these types. For each alumnus, a record of the degree or degrees that
he or she earned at the university is kept, including the name of the
degree, the year granted, and the major department. Each student has a
major department.

 3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching
assistants, and the percent of time that they work is recorded in the database.
Research assistants have their research project stored, whereas teaching
assistants have the current course they work on.

STAFF

Percent_time

FACULTY

Name Sex Address

PERSON

Salary

EMPLOYEE

Major_dept

Birth_date

ALUMNUS

d

o

STUDENT_
ASSISTANT

STUDENT

Degrees

DegreeYear Major

GRADUATE_
STUDENT

d

UNDERGRADUATE_
STUDENT

RESEARCH_ASSISTANT

d

TEACHING_ASSISTANT

Position Rank Degree_program Class

CourseProject

Ssn

Figure 4.7
A specialization lattice
with multiple inheritance
for a UNIVERSITY
database.

118 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4. Students are further classified as either graduate or undergraduate, with
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on)
for graduate students and class (freshman, sophomore, and so on) for
undergraduates.

In Figure 4.7, all person entities represented in the database are members of
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE,
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the
specialization {STUDENT_ASSISTANT, FACULTY, STAFF} . Notice that
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT
is the superclass for the specialization into {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT}.
In such a specialization lattice or hierarchy, a subclass inherits the attributes not
only of its direct superclass, but also of all its predecessor superclasses all the way to
the root of the hierarchy or lattice if necessary. For example, an entity in
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy,
where a leaf node is a class that has no subclasses of its own. For example, a member
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.
A subclass with more than one superclass is called a shared subclass, such as
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as
multiple inheritance, where the shared subclass ENGINEERING_MANAGER
directly inherits attributes and relationships from multiple superclasses. Notice
that the existence of at least one shared subclass leads to a lattice (and hence to
multiple inheritance); if no shared subclasses existed, we would have a hierarchy
rather than a lattice and only single inheritance would exist. An important rule
related to multiple inheritance can be illustrated by the example of the shared
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.
It is important to note here that some models and languages are limited to single
inheritance and do not allow multiple inheritance (shared subclasses). It is also
important to note that some models do not allow an entity to have multiple
types, and hence an entity can be a member of only one leaf class.8 In such a
model, it is necessary to create additional subclasses as leaf nodes to cover all

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 119

possible combinations of classes that may have some entity that belongs to all
these classes simultaneously. For example, in the overlapping specialization of
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would
be necessary to create seven subclasses of PERSON in order to cover all possible
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to
extra complexity.
Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section.
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization in
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization
processes and how they are used to refine conceptual schemas during conceptual
database design. In the specialization process, the database designers typically start
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity
type. For example, when designing the specialization lattice in Figure 4.7, we may
first specify an entity type PERSON for a university database. Then we discover
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS,
STUDENT}. The overlapping constraint is chosen because a person may belong
to more than one of the subclasses. We specialize EMPLOYEE further into
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is
also a subclass of STUDENT, leading to the lattice.
It is possible to arrive at the same hierarchy or lattice from the other direction. In
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS,
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,
STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT}
into PERSON.
The final design of hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were created during the design process. In practice, it
is likely that a combination of the two processes is employed. Notice that the

120 Chapter 4 The Enhanced Entity–Relationship (EER) Model

notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques.
For example, frame-based knowledge representation schemes closely resemble
class hierarchies. Specialization is also common in software engineering design
methodologies that are based on the object-oriented paradigm.

4.4 Modeling of UNION Types
Using Categories

It is sometimes necessary to represent a collection of entities from different entity
types. In this case, a subclass will represent a collection of entities that is a subset of
the UNION of entities from distinct entity types; we call such a subclass a union type
or a category.9

For example, suppose that we have three entity types: PERSON, BANK, and
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can
be a person, a bank (holding a lien on a vehicle), or a company. We need to create
a class (collection of entities) that includes entities of all three types to play the
role of vehicle owner. A category (union type) OWNER that is a subclass of the
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created
for this purpose. We display categories in an EER diagram as shown in Figure 4.8.
The superclasses COMPANY, BANK, and PERSON are connected to the circle with
the ∪ symbol, which stands for the set union operation. An arc with the subset
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we
have two categories: OWNER, which is a subclass (subset) of the union of PERSON,
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of
the union of CAR and TRUCK.
A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships
always have a single superclass. To better understand the difference,
we can compare a category, such as OWNER in Figure 4.8, with the
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE,
so an entity that is a member of ENGINEERING_MANAGER must exist in all
three collections. This represents the constraint that an engineering manager must
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the
ENGINEERING_MANAGER entity set is a subset of the intersection of the three
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the
superclasses. This represents the constraint that an OWNER may be a COMPANY,
a BANK, or a PERSON in Figure 4.8.

9Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al.,
1985).

 4.4 Modeling of UNION Types Using Categories 121

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a
PERSON, or a BANK, depending on the superclass to which the entity belongs. On
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6)
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER,
and MANAGER.
It is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig-
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily

Name Address

Driver_license_no

Ssn

License_plate_no

Lien_or_regular

Purchase_date

Bname Baddress

Cname Caddress

BANK

PERSON

OWNER

OWNS

M

N

U

REGISTERED_VEHICLE

COMPANY

U

Cstyle

Cyear

Vehicle_id

Cmake

Cmodel

CAR

Tonnage

Tyear

Vehicle_id

Tmake

Tmodel

TRUCK

Figure 4.8
Two categories (union
types): OWNER and
REGISTERED_VEHICLE.

122 Chapter 4 The Enhanced Entity–Relationship (EER) Model

all of them (for example, some cars or trucks may not be registered). In general,
a specialization or generalization such as that in Figure 4.3(b), if it were partial,
would not preclude VEHICLE from containing other types of entities, such as
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8
implies that only cars and trucks, but not other types of entities, can be members
of REGISTERED_VEHICLE.
A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total
category is represented diagrammatically by a double line connecting the category
and the circle, whereas a partial category is indicated by a single line.
The superclasses of a category may have different key attributes, as demonstrated
by the OWNER category in Figure 4.8, or they may have the same key attribute, as
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is
total (not partial), it may be represented alternatively as a total specialization (or a
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.
It is important to note that some modeling methodologies do not have union
types. In these models, a union type must be represented in a roundabout way
(see Section 9.2).

4.5 A Sample UNIVERSITY EER Schema,
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we
discuss design choices for conceptual schemas, and finally we summarize the EER
model concepts and define them formally in the same manner in which we formally
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example
Consider a UNIVERSITY database that has different requirements from the UNIVERSITY
database presented in Section 3.10. This database keeps track of students and their
majors, transcripts, and registration as well as of the university’s course offerings.
The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.
For each person, the database maintains information on the person’s Name [Name],
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate].
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT.
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research,

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 123

Foffice
Salary

Rank

Fphone

FACULTY

d

College Degree Year
1 N

M N

M

Degrees

Class

1

M

1

N

N

M

1

N

N

Qtr = Current_qtr and
Year = Current_year

N

N

1

M

N
N

1

Cname
CdescC#

1 N

1

Office
Dphone

Dname

N

1

1

N

Class=5

Fname LnameMinit

Name

BdateSsn Sex No Street Apt_no City State Zip

Address

U

ADVISOR

COMMITTEE

CHAIRS

BELONGS

MINOR

MAJOR

DCCD

Agency

St_date

NoTitle

Start

Time

End

CURRENT_SECTION

Grade

Sec# Year
Qtr

CofficeCname
Dean

PERSON

GRAD_STUDENT

STUDENT

GRANT

SUPPORT

REGISTERED

TRANSCRIPT

SECTION

TEACH

DEPARTMENT

COURSECOLLEGE

CS

INSTRUCTOR_RESEARCHER

PI

Figure 4.9
An EER conceptual schema
for a different UNIVERSITY
database.

124 Chapter 4 The Enhanced Entity–Relationship (EER) Model

visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated
[BELONGS] (a faculty member can be associated with several departments, so the
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to his
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course
sections he or she is currently attending [REGISTERED], and to the courses completed
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received
[Grade] in a section of a course.
GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.
An academic department has the attributes name [Dname], telephone [Dphone], and
office number [Office] and is related to the faculty member who is its chairperson
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cname], office number [Coffice], and the name of its dean [Dean].
A course has attributes course number [C#], course name [Cname], and course
description [Cdesc]. Several sections of each course are offered, with each section
having the attributes section number [Sec#] and the year and quarter in which the
section was offered ([Year] and [Qtr]).10 Section numbers uniquely identify each
section. The sections being offered during the current quarter are in a subclass
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_qtr and
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.
The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research
grants and contracts awarded to the university. Each grant has attributes grant title
[Title], grant number [No], the awarding agency [Agency], and the starting date
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it
supports [SUPPORT]. Each instance of support has as attributes the starting date of
support [Start], the ending date of the support (if known) [End], and the percentage of
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization
It is not always easy to choose the most appropriate conceptual design for a
database application. In Section 3.7.3, we presented some of the typical issues
that confront a database designer when choosing among the concepts of entity

10We assume that the quarter system rather than the semester system is used in this university.

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 125

types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and
choices for the EER concepts of specialization/generalization and categories
(union types).
As we mentioned in Section 3.7.3, conceptual database design should be considered
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

 ■ In general, many specializations and subclasses can be defined to make
the conceptual model accurate. However, the drawback is that the
design becomes quite cluttered. It is important to represent only those
subclasses that are deemed necessary to avoid extreme cluttering of the
conceptual schema.

 ■ If a subclass has few specific (local) attributes and no specific relationships,
it can be merged into the superclass. The specific attributes would hold NULL
values for entities that are not members of the subclass. A type attribute
could specify whether an entity is a member of the subclass.

 ■ Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the
superclass and replaced with one or more type attributes that specify the
subclass or subclasses that each entity belongs to (see Section 9.2 for how
this criterion applies to relational databases).

 ■ Union types and categories should generally be avoided unless the situation
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

 ■ The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE
entity type and add the following attributes to EMPLOYEE:

 ■ An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’}
would indicate which subclass in the first specialization each employee
belongs to.

 ■ An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would
indicate which subclass in the second specialization each employee
belongs to.

126 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■ An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts
We now summarize the EER model concepts and give formal definitions. A class11

defines a type of entity and represents a set or collection of entities of that type; this
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a
class whose entities must always be a subset of the entities in another class, called
the superclass C of the superclass/subclass (or IS-A) relationship. We denote
such a relationship by C/S. For such a superclass/subclass relationship, we must
always have

S ⊆ C

A specialization Z = {S1, S2, … , Sn} is a set of subclasses that have the same super-
class G; that is, G/Si is a superclass/subclass relationship for i = 1, 2, … , n. G is called
a generalized entity type (or the superclass of the specialization, or a generalization
of the subclasses {S1, S2, … , Sn}). Z is said to be total if we always (at any point in
time) have

∪
n

i=1
 Si = G

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have
Si ∩ Sj = ∅ (empty set) for i ≠ j

Otherwise, Z is said to be overlapping.
A subclass S of C is said to be predicate-defined if a predicate p on the attributes of
C is used to specify which entities in C are members of S; that is, S = C[p], where
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a
predicate is called user-defined.
A specialization Z (or generalization G) is said to be attribute-defined if a
predicate (A = ci), where A is an attribute of G and ci is a constant value from
the domain of A, is used to specify membership in each subclass Si in Z. Notice
that if ci ≠ cj for i ≠ j, and A is a single-valued attribute, then the specialization
will be disjoint.
A category T is a class that is a subset of the union of n defining superclasses D1, D2,
… , Dn, n > 1 and is formally specified as follows:

T ⊆ (D1 ∪ D2 ... ∪ Dn)

11The use of the word class here refers to a collection (set) of entities, which differs from its more
common use in object-oriented programming languages such as C++. In C++, a class is a structured
type definition along with its applicable functions (operations).

 4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams 127

A predicate pi on the attributes of Di can be used to specify the members of each Di
that are members of T. If a predicate is specified on every Di, we get

T = (D1[p1] ∪ D2[p2] ... ∪ Dn[pn])

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class—not only any entity type—to participate in a relationship.
Hence, we should replace the words entity type with class in that definition. The
graphical notation of EER is consistent with ER because all classes are represented
by rectangles.

4.6 Example of Other Notation: Representing
Specialization and Generalization in UML
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal
line, which has a triangle connecting the horizontal line through another vertical
line to the superclass. A blank triangle indicates a specialization/generalization
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes)
are called leaf classes.
The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology.
We focused on the concepts that are relevant to ER and EER database modeling
rather than on those concepts that are more relevant to software engineering. In
UML, there are many details that we have not discussed because they are outside
the scope of this text and are mainly relevant to software engineering. For example,
classes can be of various types:

 ■ Abstract classes define attributes and operations but do not have objects
corresponding to those classes. These are mainly used to specify a set of
attributes and operations that can be inherited.

 ■ Concrete classes can have objects (entities) instantiated to belong to the
class.

 ■ Template classes specify a template that can be further used to define
other classes.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that
describe complete details of UML.

128 Chapter 4 The Enhanced Entity–Relationship (EER) Model

Project

change_project
. . .

RESEARCH_
ASSISTANT

Course

assign_to_course
. . .

TEACHING_
ASSISTANT

Degree_program

change_degree_program
. . .

GRADUATE_
STUDENT

Class

change_classification
. . .

UNDERGRADUATE_
STUDENT

Position

hire_staff
. . .

STAFF

Rank

promote
. . .

FACULTY

Percent_time

hire_student
. . .

STUDENT_ASSISTANT

Year
Degree
Major

DEGREE

. . .

Salary

hire_emp
. . .

EMPLOYEE

new_alumnus
1 *

. . .

ALUMNUS

Major_dept

change_major
. . .

STUDENT

Name
Ssn
Birth_date
Sex
Address

age
. . .

PERSON

Figure 4.10
A UML class diagram corresponding to the EER diagram in Figure 4.7,
illustrating UML notation for specialization/generalization.

4.7 Data Abstraction, Knowledge
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 129

data modeling but also in artificial intelligence literature when discussing
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces
some of the alternative terminology and a few additional concepts.
The goal of KR techniques is to develop concepts for accurately modeling some domain
of knowledge by creating an ontology12 that describes the concepts of the domain
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions.
The goals of KR are similar to those of semantic data models, but there are some
important similarities and differences between the two disciplines:

 ■ Both disciplines use an abstraction process to identify common properties and
important aspects of objects in the miniworld (also known as domain of discourse
in KR) while suppressing insignificant differences and unimportant details.

 ■ Both disciplines provide concepts, relationships, constraints, operations,
and languages for defining data and representing knowledge.

 ■ KR is generally broader in scope than semantic data models. Different forms
of knowledge, such as rules (used in inference, deduction, and search),
incomplete and default knowledge, and temporal and spatial knowledge, are
represented in KR schemes. Database models are being expanded to include
some of these concepts (see Chapter 26).

 ■ KR schemes include reasoning mechanisms that deduce additional facts
from the facts stored in a database. Hence, whereas most current database
systems are limited to answering direct queries, knowledge-based systems
using KR schemes can answer queries that involve inferences over the
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

 ■ Whereas most data models concentrate on the representation of database
schemas, or meta-knowledge, KR schemes often mix up the schemas with
the instances themselves in order to provide flexibility in representing
exceptions. This often results in inefficiencies when these KR schemes are
implemented, especially when compared with databases and when a large
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models,
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation
and association. The paired concepts of classification and instantiation are inverses
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their
relation to the concrete representations used in the EER model to clarify the data
abstraction process and to improve our understanding of the related process of
conceptual schema design. We close the section with a brief discussion of ontology,
which is being used widely in recent knowledge representation research.

12An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.

130 Chapter 4 The Enhanced Entity–Relationship (EER) Model

4.7.1 Classification and Instantiation
The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in
KR) the classes rather than the individual objects. Collections of objects that share
the same types of attributes, relationships, and constraints are classified into classes
in order to simplify the process of discovering their properties. Instantiation is the
inverse of classification and refers to the generation and specific examination of
distinct objects of a class. An object instance is related to its object class by the
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by
permitting the display of individual objects. We did not describe this feature in our
introduction to UML class diagrams.
In general, the objects of a class should have a similar type structure. However,
some objects may display properties that differ in some respects from the other
objects of the class; these exception objects also need to be modeled, and KR
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR
schemes allow such class properties. UML diagrams also allow specification of
class properties.
In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them.
Relationship instances are classified into relationship types. Hence, entity types,
subclasses, categories, and relationship types are the different concepts that are
used for classification in the EER model. The EER model does not provide
explicitly for class properties, but it may be extended to do so. In UML, objects
are classified into classes, and it is possible to display both class properties and
individual objects.
Knowledge representation models allow multiple classification schemes in
which one class is an instance of another class (called a meta-class). Notice that
this cannot be represented directly in the EER model, because we have only two
levels—classes and instances. The only relationship among classes in the EER
model is a superclass/subclass relationship, whereas in some KR schemes an
additional class/instance relationship can be represented directly in a class
hierarchy. An instance may itself be another class, allowing multiple-level
classification schemes.

4.7.2 Identification
Identification is the abstraction process whereby classes and objects are made
uniquely identifiable by means of some identifier. For example, a class name uniquely
identifies a whole class within a schema. An additional mechanism is necessary for
telling distinct object instances apart by means of object identifiers. Moreover, it is
necessary to identify multiple manifestations in the database of the same real-world

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 131

object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> in
a PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify
the fact that these two database objects (tuples) represent the same real-world
entity unless we make a provision at design time for appropriate cross-referencing to
supply this identification. Hence, identification is needed at two levels:

 ■ To distinguish among database objects and classes
 ■ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of
unique names for the constructs in a schema. For example, every class in an EER
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.
At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a
combination of their own partial key values and the entities they are related to in
the owner entity type(s). Relationship instances are identified by some combination
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization
Specialization is the process of classifying a class of objects into more specialized
subclasses. Generalization is the inverse process of generalizing several classes into
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization.
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association
Aggregation is an abstraction concept for building composite objects from their
component objects. There are three cases where this concept can be related to the
EER model. The first case is the situation in which we aggregate attribute values of
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER
model does not provide for explicitly, involves the possibility of combining objects
that are related by a particular relationship instance into a higher-level aggregate
object. This is sometimes useful when the higher-level aggregate object is itself to be
related to another object. We call the relationship between the primitive objects and
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF.
UML provides for all three types of aggregation.

132 Chapter 4 The Enhanced Entity–Relationship (EER) Model

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This
abstract relationship is called IS-ASSOCIATED-WITH.
In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 4.11(a), which stores information about interviews by
job applicants to various companies. The class COMPANY is an aggregation of
the attributes (or component objects) Cname (company name) and Caddress
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name,
Address, and Phone. The relationship attributes Contact_name and Contact_phone
represent the name and phone number of the person in the company who is
responsible for the interview. Suppose that some interviews result in job offers,
whereas others do not. We would like to treat INTERVIEW as a class to associate it
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it
requires each interview relationship instance to have a job offer. The schema
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.
One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in
this book does not have this facility, some semantic data models do allow it and call
the resulting object a composite or molecular object. Other models treat entity
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).
To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to
JOB_OFFER. Hence, we can always represent these situations correctly in the ER
model by creating additional entity types, although it may be conceptually more
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to
allow relationships among relationships, as in Figure 4.11(c).
The main structural distinction between aggregation and association is that when
an association instance is deleted, the participating objects may continue to exist.
However, if we support the notion of an aggregate object—for example, a CAR that
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web
In recent years, the amount of computerized data and information available on
the Web has spiraled out of control. Many different models and formats are used.
In addition to the database models that we present in this text, much information
is stored in the form of documents, which have considerably less structure than

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 133

(a)

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phoneContact_name

Date

INTERVIEW

(c)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(b)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

(d)

JOB_OFFER

COMPANY JOB_APPLICANTINTERVIEW

RESULTS_IN

(e)

JOB_OFFER

COMPANY JOB_APPLICANT

AddressName Ssn PhoneCaddressCname

Contact_phone

Contact_name

RESULTS_IN

CJI

INTERVIEWDate

Figure 4.11
Aggregation. (a) The
relationship type INTERVIEW.
(b) Including JOB_OFFER in a
ternary relationship type
(incorrect). (c) Having the
RESULTS_IN relationship
participate in other relationships
(not allowed in ER). (d) Using
aggregation and a composite
(molecular) object (generally
not allowed in ER but allowed
by some modeling tools).
(e) Correct representation
in ER.

134 Chapter 4 The Enhanced Entity–Relationship (EER) Model

database information does. One ongoing project that is attempting to allow
information exchange among computers on the Web is called the Semantic
Web, which attempts to create knowledge representation models that are quite
general in order to allow meaningful information exchange and search among
machines. The concept of ontology is considered to be the most promising basis
for achieving the goals of the Semantic Web and is closely related to knowledge
representation. In this section, we give a brief introduction to what ontology is
and how it can be used as a basis to automate information understanding, search,
and exchange.
The study of ontologies attempts to describe the concepts and relationships that are
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality.
Ontology originated in the fields of philosophy and metaphysics. One commonly
used definition of ontology is a specification of a conceptualization.13

In this definition, a conceptualization is the set of concepts and relationships that
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are
used to specify the conceptualization. The ontology includes both specification and
conceptualization. For example, the same conceptualization may be specified in two
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to
describe ontologies are as follows:

 ■ A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

 ■ A taxonomy describes how concepts of a particular area of knowledge
are related using structures similar to those used in a specialization or
generalization.

 ■ A detailed database schema is considered by some to be an ontology that
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

 ■ A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a
domain of interest (for example, medical terms, electronic-commerce applications,
sports, and so on) as completely as possible.

13This definition is given in Gruber (1995).

 Review Questions 135

4.8 Summary
In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER
model. We presented the concept of a subclass and its superclass and the related
mechanism of attribute/relationship inheritance. We saw how it is sometimes
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main
processes for defining superclass/subclass hierarchies and lattices: specialization
and generalization.
Next, we showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We
discussed the concept of a category or union type, which is a subset of the union of
two or more classes, and we gave formal definitions of all the concepts presented.
We introduced some of the notation and terminology of UML for representing
specialization and generalization. In Section 4.7, we briefly discussed the discipline
of knowledge representation and how it is related to semantic data modeling. We
also gave an overview and summary of the types of abstract data representation
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts
are related to each of these.

Review Questions
 4.1. What is a subclass? When is a subclass needed in data modeling?
 4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-

tionship, IS-A relationship, specialization, generalization, category, specific
(local) attributes, and specific relationships.

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the
differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.
 4.7. What is the difference between a specialization hierarchy and a specializa-

tion lattice?
 4.8. What is the difference between specialization and generalization? Why do

we not display this difference in schema diagrams?

136 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4.9. How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

 4.11. Discuss the main differences between the notation for EER schema dia-
grams and UML class diagrams by comparing how common concepts are
represented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling
concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER
model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database
modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database
schema.

Exercises
 4.16. Design an EER schema for a database application that you are interested in.

Specify all constraints that should hold on the database. Make sure that the
schema has at least five entity types, four relationship types, a weak entity
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that it
is necessary to keep track of different types of ACCOUNTS
(SAVINGS_ACCTS, CHECKING_ACCTS, …) and LOANS (CAR_LOANS,
HOME_LOANS, …). Suppose that it is also desirable to keep track of
each ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, …)
and each LOAN’s PAYMENTS; both of these include the amount, date,
and time. Modify the BANK schema, using ER and EER concepts of
specialization and generalization. State any assumptions you make
about the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram
that shows the entity types, attributes, relationships, and specializations for
this application. State any assumptions you make. The Olympic facilities are
divided into sports complexes. Sports complexes are divided into one-sport
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so

 Exercises 137

on). A complex has a location, chief organizing individual, total occupied
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date,
duration, number of participants, number of officials, and so on. A roster of
all officials will be maintained together with the list of events each official
will be involved in. Different equipment is needed for the events (e.g., goal
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

 4.19. Identify all the important concepts represented in the library database case
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and
specialization/generalization. Specify (min, max) cardinality constraints
whenever possible. List details that will affect the eventual design but that
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.
Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how
many copies of each book are in the library or out on loan at any given time.
A catalog of books is available online that lists books by author, title, and
subject area. For each title in the library, a book description is kept in the
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members
request information about a book. Library staff includes chief librarian,
departmental associate librarians, reference librarians, check-out staff, and
library assistants.
Books can be checked out for 21 days. Members are allowed to have only
five books out at a time. Members usually return books within three to four
weeks. Most members know that they have one week of grace before a
notice is sent to them, so they try to return books before the grace period
ends. About 5% of the members have to be sent reminders to return books.
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most
active members of the library are defined as those who borrow books at
least ten times during the year. The top 1% of membership does 15% of the
borrowing, and the top 10% of the membership does 40% of the borrowing.
About 20% of the members are totally inactive in that they are members
who never borrow.
To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librari-

138 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ans issue a numbered, machine-readable card with the member’s photo on it.
This card is good for four years. A month before a card expires, a notice is
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her
information is pulled from the employee records and a library card is mailed
to his or her campus address. Professors are allowed to check out books for
three-month intervals and have a two-week grace period. Renewal notices to
professors are sent to their campus address.
The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent
and those that cannot be lent. In addition, the librarians have a list of some
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been
replaced. The librarians must have a system that keeps track of books that
cannot be lent as well as books that they are interested in acquiring. Some
books may have the same title; therefore, the title cannot be used as a means
of identification. Every book is identified by its International Standard Book
Number (ISBN), a unique international code assigned to all books. Two
books with the same title can have different ISBNs if they are in different
languages or have different bindings (hardcover or softcover). Editions of
the same book have different ISBNs.
The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

 4.20. Design a database to keep track of information for an art museum. Assume
that the following requirements were collected:

 ■ The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a
unique Id_no, an Artist (if known), a Year (when it was created, if known),
a Title, and a Description. The art objects are categorized in several ways, as
discussed below.

 ■ ART_OBJECTS are categorized based on their type. There are three main
types—PAINTING, SCULPTURE, and STATUE—plus another type called
OTHER to accommodate objects that do not fall into one of the three main
types.

 ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on which
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern,
abstract, etc.).

 ■ A SCULPTURE or a statue has a Material from which it was created (wood,
stone, etc.), Height, Weight, and Style.

 ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style.
 ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION

(objects that are owned by the museum) and BORROWED. Information
captured about objects in the PERMANENT_COLLECTION includes
Date_acquired, Status (on display, on loan, or stored), and Cost. Information

 Exercises 139

captured about BORROWED objects includes the Collection from which it
was borrowed, Date_borrowed, and Date_returned.

 ■ Information describing the country or culture of Origin (Italian, Egyptian,
American, Indian, and so forth) and Epoch (Renaissance, Modern,
Ancient, and so forth) is captured for each ART_OBJECT.

 ■ The museum keeps track of ARTIST information, if known: Name,
DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch,
Main_style, and Description. The Name is assumed to be unique.

 ■ Different EXHIBITIONS occur, each having a Name, Start_date, and End_date.
EXHIBITIONS are related to all the art objects that were on display during
the exhibition.

 ■ Information is kept on other COLLECTIONS with which the museum
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions
you make, and then justify your EER design choices.

 4.21. Figure 4.12 shows an example of an EER diagram for a small-private-airport
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Model], a
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number
[Number], a capacity [Capacity], and a location [Location]. The database also
keeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs who
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate].
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service
record [SERVICE]. Each plane undergoes service many times; hence, it is
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE
record includes as attributes the date of maintenance [Date], the number of
hours spent on the work [Hours], and the type of work done [Work_code]. We
use a weak entity type [SERVICE] to represent airplane service, because the
airplane registration number is used to identify a service record. An OWNER
is either a person or a corporation. Hence, we use a union type (category)
[OWNER] that is a subset of the union of corporation [CORPORATION] and
person [PERSON] entity types. Both pilots [PILOT] and employees
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in
the database have data kept on their Social Security number [Ssn], name
[Name], address [Address], and telephone number [Phone]. For CORPORATION
entities, the data kept includes name [Name], address [Address], and
telephone number [Phone]. The database also keeps track of the types of

140 Chapter 4 The Enhanced Entity–Relationship (EER) Model

planes each pilot is authorized to fly [FLIES] and the types of planes each
employee can do maintenance work on [WORKS_ON]. Show how the
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML
notation. (Note: We have not discussed how to represent categories (union
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

 4.22. Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in
UML notation.

Number Location

Capacity

Name Phone

Address

Name

Ssn

Phone

Address

Lic_numRestr

Date/workcode

1

N

N

1

N

1

PLANE_TYPE

Model Capacity

Pdate

Weight

MAINTAIN

M
M

N

OF_TYPE

STORED_IN
NM

OWNS

FLIES

WORKS_ON
N

N

M

Reg#

Date

Hours

HANGAR

PILOT

EMPLOYEE

Salary

PLANE_SERVICE

SERVICE

Workcode

AIRPLANE

Shift

U

CORPORATION PERSON

OWNER

Figure 4.12
EER schema for a SMALL_AIRPORT database.

 Exercises 141

 4.23. Consider the entity sets and attributes shown in the following table. Place a
checkmark in one column in each row to indicate the relationship between
the far left and far right columns.
a. The left side has a relationship with the right side.
b. The right side is an attribute of the left side.
c. The left side is a specialization of the right side.
d. The left side is a generalization of the right side.

Entity Set

(a) Has a
Relationship

with

(b) Has an
Attribute

that is

(c) Is a
Specialization

of

(d) Is a
Generalization

of
Entity Set

or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age

10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database.
You may look at http://www.chessgames.com for an application similar to
what you are designing. State clearly any assumptions you make in your
UML diagram. A sample of assumptions you can make about the scope is
as follows:
1. The game of chess is played between two players.
2. The game is played on an 8 × 8 board like the one shown below:

http://www.chessgames.com

142 Chapter 4 The Enhanced Entity–Relationship (EER) Model

3. The players are assigned a color of black or white at the start of the game.
4. Each player starts with the following pieces (traditionally called

chessmen):
a. king
b. queen
c. 2 rooks
d. 2 bishops
e. 2 knights
f. 8 pawns

5. Every piece has its own initial position.
6. Every piece has its own set of legal moves based on the state of the game.

You do not need to worry about which moves are or are not legal except
for the following issues:
a. A piece may move to an empty square or capture an opposing piece.
b. If a piece is captured, it is removed from the board.
c. If a pawn moves to the last row, it is “promoted” by converting it to

another piece (queen, rook, bishop, or knight).
Note: Some of these functions may be spread over multiple classes.

 4.25. Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus
on persistent storage aspects of the system. For example, the system would
need to retrieve all the moves of every game played in sequential order.

 4.26. Which of the following EER diagrams is/are incorrect and why? State clearly
any assumptions you make.

a.

b.

E d

E1

E2

R

1

1

E

E1

E2

R

1

E3
No

 Laboratory Exercises 143

 4.27. Consider the following EER diagram that describes the computer systems at
a company. Provide your own attributes and key for each entity type. Supply
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

c.

E1

R

E3

N

o

M

MEMORY VIDEO_CARD

d

LAPTOP DESKTOP

INSTALLED

d

COMPUTER

SOFTWARE

OPERATING_
SYSTEM

INSTALLED_OS

SUPPORTS

COMPONENT
OPTIONS

SOUND_CARD

MEM_OPTIONS

KEYBOARD MOUSE

d

ACCESSORY

MONITOR

SOLD_WITH

Laboratory Exercises
 4.28. Consider a GRADE_BOOK database in which instructors within an academic

department record points earned by individual students in their classes. The
data requirements are summarized as follows:

 ■ Each student is identified by a unique identifier, first and last name, and
an e-mail address.

 ■ Each instructor teaches certain courses each term. Each course is identified
by a course number, a section number, and the term in which it is taught. For

144 Chapter 4 The Enhanced Entity–Relationship (EER) Model

each course he or she teaches, the instructor specifies the minimum number
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

 ■ Students are enrolled in each course taught by the instructor.
 ■ Each course has a number of grading components (such as midterm

exam, final exam, project, and so forth). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

 ■ Finally, the instructor records the points earned by each student in each of
the grading components in each of the courses. For example, student 1234
earns 84 points for the midterm exam grading component of the section 2
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a
weight of 20% of the course grade.

 Design an enhanced entity–relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.29. Consider an ONLINE_AUCTION database system in which members (buyers
and sellers) participate in the sale of items. The data requirements for this
system are summarized as follows:

 ■ The online site has members, each of whom is identified by a unique
member number and is described by an e-mail address, name, password,
home address, and phone number.

 ■ A member may be a buyer or a seller. A buyer has a shipping address
recorded in the database. A seller has a bank account number and routing
number recorded in the database.

 ■ Items are placed by a seller for sale and are identified by a unique item
number assigned by the system. Items are also described by an item title,
a description, starting bid price, bidding increment, the start date of the
auction, and the end date of the auction.

 ■ Items are also categorized based on a fixed classification hierarchy (for
example, a modem may be classified as COMPUTER → HARDWARE →
MODEM).

 ■ Buyers make bids for items they are interested in. Bid price and time of
bid are recorded. The bidder at the end of the auction with the highest bid
price is declared the winner, and a transaction between buyer and seller
may then proceed.

 ■ The buyer and seller may record feedback regarding their completed
transactions. Feedback contains a rating of the other party participating
in the transaction (1–10) and a comment.

 Laboratory Exercises 145

 Design an enhanced entity–relationship diagram for the ONLINE_AUCTION
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

 4.30. Consider a database system for a baseball organization such as the major
leagues. The data requirements are summarized as follows:

 ■ The personnel involved in the league include players, coaches, managers,
and umpires. Each is identified by a unique personnel id. They are also
described by their first and last names along with the date and place of
birth.

 ■ Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

 ■ Within the players group is a subset of players called pitchers. Pitchers
have a lifetime ERA (earned run average) associated with them.

 ■ Teams are uniquely identified by their names. Teams are also described by
the city in which they are located and the division and league in which
they play (such as Central division of the American League).

 ■ Teams have one manager, a number of coaches, and a number of players.
 ■ Games are played between two teams, with one designated as the home

team and the other the visiting team on a particular date. The score (runs,
hits, and errors) is recorded for each team. The team with the most runs is
declared the winner of the game.

 ■ With each finished game, a winning pitcher and a losing pitcher are
recorded. In case there is a save awarded, the save pitcher is also recorded.

 ■ With each finished game, the number of hits (singles, doubles, triples, and
home runs) obtained by each player is also recorded.

 Design an enhanced entity–relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or
Rational Rose.

 4.31. Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9.
Enter this design using a data modeling tool such as ERwin or Rational Rose.
Make a list of the differences in notation between the diagram in the text
and the corresponding equivalent diagrammatic notation you end up using
with the tool.

 4.32. Consider the EER diagram for the small AIRPORT database shown in Fig-
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational
Rose. Be careful how you model the category OWNER in this diagram. (Hint:
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as
two distinct relationship types.)

 4.33. Consider the UNIVERSITY database described in Exercise 3.16. You already
developed an ER schema for this database using a data modeling tool such as

146 Chapter 4 The Enhanced Entity–Relationship (EER) Model

ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS.
Include appropriate attributes for these new entity types. Then establish
relationships indicating that junior instructors teach undergraduate courses
whereas senior instructors teach graduate courses.

Selected Bibliography
Many papers have proposed conceptual or semantic data models. We give a repre-
sentative list here. One group of papers, including Abrial (1974), Senko’s DIAM
model (1975), the NIAM method (Verheijen and VanBekkum 1982), and Bracchi
et al. (1976), presents semantic models that are based on the concept of binary rela-
tionships. Another group of early papers discusses methods for extending the rela-
tional model to enhance its modeling capabilities. This includes the papers by
Schmid and Swenson (1975), Navathe and Schkolnick (1978), Codd’s RM/T model
(1979), Furtado (1978), and the structural model of Wiederhold and Elmasri (1979).
The ER model was proposed originally by Chen (1976) and is formalized in Ng
(1981). Since then, numerous extensions of its modeling capabilities have been pro-
posed, as in Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986),
Gogolla and Hohenstein (1991), and the entity–category–relationship (ECR) model
of Elmasri et al. (1985). Smith and Smith (1977) present the concepts of generaliza-
tion and aggregation. The semantic data model of Hammer and McLeod (1981)
introduces the concepts of class/subclass lattices, as well as other advanced model-
ing concepts.
A survey of semantic data modeling appears in Hull and King (1987). Eick (1991)
discusses design and transformations of conceptual schemas. Analysis of con-
straints for n-ary relationships is given in Soutou (1998). UML is described in detail
in Booch, Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevens
and Pooley (2000) give concise introductions to UML concepts.
Fensel (2000, 2003) discusses the Semantic Web and application of ontologies.
Uschold and Gruninger (1996) and Gruber (1995) discuss ontologies. The June
2002 issue of Communications of the ACM is devoted to ontology concepts and
applications. Fensel (2003) discusses ontologies and e-commerce.

	Cover
	Title Page
	Copyright Page
	Dedication
	Preface
	Acknowledgments
	Contents
	About the Authors
	part 1 Introduction to Databases
	chapter 1 Databases and Database Users
	1.1 Introduction
	1.2 An Example
	1.3 Characteristics of the Database Approach
	1.4 Actors on the Scene
	1.5 Workers behind the Scene
	1.6 Advantages of Using the DBMS Approach
	1.7 A Brief History of Database Applications
	1.8 When Not to Use a DBMS
	1.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 2 Database System Concepts and Architecture
	2.1 Data Models, Schemas, and Instances
	2.2 Three-Schema Architecture and Data Independence
	2.3 Database Languages and Interfaces
	2.4 The Database System Environment
	2.5 Centralized and Client/Server Architectures for DBMSs
	2.6 Classification of Database Management Systems
	2.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 2 Conceptual Data Modeling and Database Design
	chapter 3 Data Modeling Using the Entity–Relationship (ER) Model���
	3.1 Using High-Level Conceptual Data Models for Database Design
	3.2 A Sample Database Application
	3.3 Entity Types, Entity Sets, Attributes, and Keys
	3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints
	3.5 Weak Entity Types
	3.6 Refining the ER Design for the COMPANY Database
	3.7 ER Diagrams, Naming Conventions, and Design Issues
	3.8 Example of Other Notation: UML Class Diagrams
	3.9 Relationship Types of Degree Higher than Two
	3.10 Another Example: A UNIVERSITY Database
	3.11 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 4 The Enhanced Entity–Relationship (EER) Model���
	4.1 Subclasses, Superclasses, and Inheritance
	4.2 Specialization and Generalization
	4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies
	4.4 Modeling of UNION Types Using Categories
	4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
	4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams
	4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts
	4.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 3 The Relational Data Model and SQL
	chapter 5 The Relational Data Model and Relational Database Constraints
	5.1 Relational Model Concepts
	5.2 Relational Model Constraints and Relational Database Schemas
	5.3 Update Operations, Transactions, and Dealing with Constraint Violations
	5.4 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 6 Basic SQL
	6.1 SQL Data Definition and Data Types
	6.2 Specifying Constraints in SQL
	6.3 Basic Retrieval Queries in SQL
	6.4 INSERT, DELETE, and UPDATE Statements in SQL
	6.5 Additional Features of SQL
	6.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification
	7.1 More Complex SQL Retrieval Queries
	7.2 Specifying Constraints as Assertions and Actions as Triggers
	7.3 Views (Virtual Tables) in SQL
	7.4 Schema Change Statements in SQL
	7.5 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 8 The Relational Algebra and Relational Calculus
	8.1 Unary Relational Operations: SELECT and PROJECT
	8.2 Relational Algebra Operations from Set Theory
	8.3 Binary Relational Operations: JOIN and DIVISION
	8.4 Additional Relational Operations
	8.5 Examples of Queries in Relational Algebra
	8.6 The Tuple Relational Calculus
	8.7 The Domain Relational Calculus
	8.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping
	9.1 Relational Database Design Using ER-to-Relational Mapping
	9.2 Mapping EER Model Constructs to Relations
	9.3 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 4 Database Programming Techniques
	chapter 10 Introduction to SQL Programming Techniques
	10.1 Overview of Database Programming Techniques and Issues
	10.2 Embedded SQL, Dynamic SQL, and SQLJ
	10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC
	10.4 Database Stored Procedures and SQL/PSM
	10.5 Comparing the Three Approaches
	10.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 11 Web Database Programming Using PHP
	11.1 A Simple PHP Example
	11.2 Overview of Basic Features of PHP
	11.3 Overview of PHP Database Programming
	11.4 Brief Overview of Java Technologies for Database Web Programming
	11.5 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 5 Object, Object-Relational, and XML: Concepts, Models, Languages, and Standards
	chapter 12 Object and Object-Relational Databases
	12.1 Overview of Object Database Concepts
	12.2 Object Database Extensions to SQL
	12.3 The ODMG Object Model and the Object Definition Language ODL
	12.4 Object Database Conceptual Design
	12.5 The Object Query Language OQL
	12.6 Overview of the C++ Language Binding in the ODMG Standard
	12.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 13 XML: Extensible Markup Language
	13.1 Structured, Semistructured, and Unstructured Data
	13.2 XML Hierarchical (Tree) Data Model
	13.3 XML Documents, DTD, and XML Schema
	13.4 Storing and Extracting XML Documents from Databases
	13.5 XML Languages
	13.6 Extracting XML Documents from Relational Databases
	13.7 XML/SQL: SQL Functions for Creating XML Data
	13.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 6 Database Design Theory and Normalization
	chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases
	14.1 Informal Design Guidelines for Relation Schemas
	14.2 Functional Dependencies
	14.3 Normal Forms Based on Primary Keys
	14.4 General Definitions of Second and Third Normal Forms
	14.5 Boyce-Codd Normal Form
	14.6 Multivalued Dependency and Fourth Normal Form
	14.7 Join Dependencies and Fifth Normal Form
	14.8 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	chapter 15 Relational Database Design Algorithms and Further Dependencies
	15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover
	15.2 Properties of Relational Decompositions
	15.3 Algorithms for Relational Database Schema Design
	15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs
	15.5 Further Discussion of Multivalued Dependencies and 4NF
	15.6 Other Dependencies and Normal Forms
	15.7 Summary
	Review Questions
	Exercises
	Laboratory Exercises
	Selected Bibliography

	part 7 File Structures, Hashing, Indexing, and Physical Database Design
	chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures
	16.1 Introduction
	16.2 Secondary Storage Devices
	16.3 Buffering of Blocks
	16.4 Placing File Records on Disk
	16.5 Operations on Files
	16.6 Files of Unordered Records (Heap Files)
	16.7 Files of Ordered Records (Sorted Files)
	16.8 Hashing Techniques
	16.9 Other Primary File Organizations
	16.10 Parallelizing Disk Access Using RAID Technology
	16.11 Modern Storage Architectures
	16.12 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 17 Indexing Structures for Files and Physical Database Design
	17.1 Types of Single-Level Ordered Indexes
	17.2 Multilevel Indexes
	17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees
	17.4 Indexes on Multiple Keys
	17.5 Other Types of Indexes
	17.6 Some General Issues Concerning Indexing
	17.7 Physical Database Design in Relational Databases
	17.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 8 Query Processing and Optimization
	chapter 18 Strategies for Query Processing
	18.1 Translating SQL Queries into Relational Algebra and Other Operators
	18.2 Algorithms for External Sorting
	18.3 Algorithms for SELECT Operation
	18.4 Implementing the JOIN Operation
	18.5 Algorithms for PROJECT and Set Operations
	18.6 Implementing Aggregate Operations and Different Types of JOINs
	18.7 Combining Operations Using Pipelining
	18.8 Parallel Algorithms for Query Processing
	18.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 19 Query Optimization
	19.1 Query Trees and Heuristics for Query Optimization
	19.2 Choice of Query Execution Plans
	19.3 Use of Selectivities in Cost-Based Optimization
	19.4 Cost Functions for SELECT Operation
	19.5 Cost Functions for the JOIN Operation
	19.6 Example to Illustrate Cost-Based Query Optimization
	19.7 Additional Issues Related to Query Optimization
	19.8 An Example of Query Optimization in Data Warehouses
	19.9 Overview of Query Optimization in Oracle
	19.10 Semantic Query Optimization
	19.11 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 9 Transaction Processing, Concurrency Control, and Recovery
	chapter 20 Introduction to Transaction Processing Concepts and Theory
	20.1 Introduction to Transaction Processing
	20.2 Transaction and System Concepts
	20.3 Desirable Properties of Transactions
	20.4 Characterizing Schedules Based on Recoverability
	20.5 Characterizing Schedules Based on Serializability
	20.6 Transaction Support in SQL
	20.7 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 21 Concurrency Control Techniques
	21.1 Two-Phase Locking Techniques for Concurrency Control
	21.2 Concurrency Control Based on Timestamp Ordering
	21.3 Multiversion Concurrency Control Techniques
	21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control
	21.5 Granularity of Data Items and Multiple Granularity Locking
	21.6 Using Locks for Concurrency Control in Indexes
	21.7 Other Concurrency Control Issues
	21.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 22 Database Recovery Techniques
	22.1 Recovery Concepts
	22.2 NO-UNDO/REDO Recovery Based on Deferred Update
	22.3 Recovery Techniques Based on Immediate Update
	22.4 Shadow Paging
	22.5 The ARIES Recovery Algorithm
	22.6 Recovery in Multidatabase Systems
	22.7 Database Backup and Recovery from Catastrophic Failures
	22.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	part 10 Distributed Databases, NOSQL Systems, and Big Data
	chapter 23 Distributed Database Concepts
	23.1 Distributed Database Concepts
	23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design
	23.3 Overview of Concurrency Control and Recovery in Distributed Databases
	23.4 Overview of Transaction Management in Distributed Databases
	23.5 Query Processing and Optimization in Distributed Databases
	23.6 Types of Distributed Database Systems
	23.7 Distributed Database Architectures
	23.8 Distributed Catalog Management
	23.9 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 24 NOSQL Databases and Big Data Storage Systems
	24.1 Introduction to NOSQL Systems
	24.2 The CAP Theorem
	24.3 Document-Based NOSQL Systems and MongoDB
	24.4 NOSQL Key-Value Stores
	24.5 Column-Based or Wide Column NOSQL Systems
	24.6 NOSQL Graph Databases and Neo4j
	24.7 Summary
	Review Questions
	Selected Bibliography

	chapter 25 Big Data Technologies Based on MapReduce and Hadoop
	25.1 What Is Big Data?
	25.2 Introduction to MapReduce and Hadoop
	25.3 Hadoop Distributed File System (HDFS)
	25.4 MapReduce: Additional Details
	25.5 Hadoop v2 alias YARN
	25.6 General Discussion
	25.7 Summary
	Review Questions
	Selected Bibliography

	part 11 Advanced Database Models, Systems, and Applications
	chapter 26 Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases
	26.1 Active Database Concepts and Triggers
	26.2 Temporal Database Concepts
	26.3 Spatial Database Concepts
	26.4 Multimedia Database Concepts
	26.5 Introduction to Deductive Databases
	26.6 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 27 Introduction to Information Retrieval and Web Search
	27.1 Information Retrieval (IR) Concepts
	27.2 Retrieval Models
	27.3 Types of Queries in IR Systems
	27.4 Text Preprocessing
	27.5 Inverted Indexing
	27.6 Evaluation Measures of Search Relevance
	27.7 Web Search and Analysis
	27.8 Trends in Information Retrieval
	27.9 Summary
	Review Questions
	Selected Bibliography

	chapter 28 Data Mining Concepts
	28.1 Overview of Data Mining Technology
	28.2 Association Rules
	28.3 Classification
	28.4 Clustering
	28.5 Approaches to Other Data Mining Problems
	28.6 Applications of Data Mining
	28.7 Commercial Data Mining Tools
	28.8 Summary
	Review Questions
	Exercises
	Selected Bibliography

	chapter 29 Overview of Data Warehousing and OLAP
	29.1 Introduction, Definitions, and Terminology
	29.2 Characteristics of Data Warehouses
	29.3 Data Modeling for Data Warehouses
	29.4 Building a Data Warehouse
	29.5 Typical Functionality of a Data Warehouse
	29.6 Data Warehouse versus Views
	29.7 Difficulties of Implementing Data Warehouses
	29.8 Summary
	Review Questions
	Selected Bibliography

	part 12 Additional Database Topics: Security
	chapter 30 Database Security
	30.1 Introduction to Database Security Issues
	30.2 Discretionary Access Control Based on Granting and Revoking Privileges
	30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security
	30.4 SQL Injection
	30.5 Introduction to Statistical Database Security
	30.6 Introduction to Flow Control
	30.7 Encryption and Public Key Infrastructures
	30.8 Privacy Issues and Preservation
	30.9 Challenges to Maintaining Database Security
	30.10 Oracle Label-Based Security
	30.11 Summary
	Review Questions
	Exercises
	Selected Bibliography

	appendix A Alternative Diagrammatic Notations for ER Models
	appendix B Parameters of Disks
	appendix C Overview of the QBE Language
	C.1 Basic Retrievals in QBE
	C.2 Grouping, Aggregation, and Database Modification in QBE

	Selected Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

