
Fitness Application Project

Database Programming - MySQL

What you need to know for this assignment

• How to create stored procedures and

functions

• How to access a database using PHP

PDO

• How to write aggregate queries

• How to write subqueries

This was your EER diagram, from which you

built the physical data model:

Instructions:

1. Database Functions: One of the most common use of functions is to create a program to calculate derived

fields. Note these derived fields in the Fitness Data Model:

a. Create a function for last_workout_day. It should examine the workout records and return the most

recent workout day for a given user as an integer (e.g., 1 for Day One, 2 for Day Two, etc.). You will

want to pass the function the primary key of the user table. If a user has never worked out, return a 0.

b. Create a function for muscles_worked. This will be a bit more complicated. Take Day 2 for instance.

workout_day muscles_worked number_of
_activities

activities

Day Two back/biceps 9 Assisted Pull Ups, Concentration Curls, Dead Lifts,
Elliptical, EZ Bar Curls, Hammer Curls, Seated Cable
Row, Seated Shoulder Press, Treadmill

Split training days (which we are using for this application) are typically “back/biceps” or “legs/core” or

“chest/triceps”. Thus we want to ignore the primary muscle for the Seated Should Press (shoulders) as

well as the Treadmill that works out multiple muscles. So this function will have to examine the nine

records for Day Two (using the integer input for the primary key, i.e., 2) and return the string either

“back/biceps” or “biceps/back”. Use your SQL skills to retrieve that string. (No points awarded if you do

not use SQL aggregation to generate that string.)

c. Now that you’ve created a function for last_workout_day, create one last function for

next_workout_day. If a user has not worked out at all, that day should be Day 1. If a user’s last

workout day was Day 6, their next one should be Day 1 to repeat the cycle. Like the last_workout_day

function, it should take in the primary key of user, and return the integer corresponding to the next

workout day.

2. MySQL Procedures

a. Build Workout Records for a User. Write a MySQL procedure to generate a workout for a user.

Consider user “venkat” who might be user_id #3. The last day he worked out was August 9 th, 2024.

After a long absence, on October 3rd, he was able to resume workouts right where he left off. The

procedure should take advantage of your next_workout_day function and figure out which workout day

it is (in this case, Day Six).

Syntax of the Call Procedure command: CALL build_workout(3, next_workout_day(3));

where 3 is Venkat’s id.

Note that the Day Six fitness activities were added into the workout table – along with null values for the

properties Venkat will have to add when he does his workout, e.g., the number of minutes on the

treadmill, or the amount of weight used in the Seated Leg Curl.

name workout_day name date

Venkat Day Five Treadmill 8/9/2024

Venkat Day Five Elliptical 8/9/2024

Venkat Day Five Dead Lifts 8/9/2024

Venkat Day Five Assisted Pull Ups 8/9/2024

Venkat Day Five Seated Cable Row 8/9/2024

Venkat Day Five EZ Bar Curls 8/9/2024

Venkat Day Five EZ Preacher Curls 8/9/2024

Venkat Day Five Zottman Curls 8/9/2024

Venkat Day Six Treadmill 10/3/2024

Venkat Day Six Elliptical 10/3/2024

Venkat Day Six Standing Calf Raise 10/3/2024

Venkat Day Six Seated Leg Press 10/3/2024

Venkat Day Six Prone Lying Leg Curl 10/3/2024

Venkat Day Six Seated Leg Curl 10/3/2024

Venkat Day Six Torso Rotation 10/3/2024

Venkat Day Six Crunches 10/3/2024

Venkat Day Six Planks 10/3/2024

b. Fetch the current workout for a user. Now write a procedure that will fetch the current workout for a

user. It should at least the name of the fitness activity, the date of the workout, and all columns that will

hold statistics for the activity (e.g., maximum weight lifted, number of minutes, number of reps).

Often, the current workout will be on today’s date (assuming it was built today with procedure

build_workout) but you cannot assume that. A user might have built the current workout the night

before, and is trying to fetch it the next morning. How will you query the correct workout records?

Here is the way to call that procedure for user 3, Venkat: CALL fetch_current_workout(3);

Please submit:

1. The code for the functions and procedures

