
Working with Redis

1) PubSub (using node.js)

a) Using the examples in /home/ubuntu/redis/pubsub as a guide, create

two node.js programs that will publish and subscribe using Redis. The
publisher should be able to publish to any channel. The subscriber
should be able to listen to any channel.

b) Assume there is a live channel called “emergency.” A subscriber
listening to any channel other than “emergency” should examine the key or the value of any
messages it receives. If it detects the string “urgent” anywhere in the key or the value, it should
turn around and publish the message to the emergency channel.

c) In this way, subscribers listening to the emergency channel will receive both messages intended
for this channel as well as messages that probably should have been sent to this channel.

2) Storing values in Redis (using php)

a) We are all sharing the Redis database. Any permanent storage of keys, needs to use your

Rowan userid to function like a namespace, e.g., myersjac:genres

b) You are going to manipulate account data by building a PHP backend on the database server for
accountRegistration.php at: http://elvis.rowan.edu/~myersjac/db. By clicking Submit, you will see
the values of the fields POSTED from the form.

c) The PHP file you will build will be called processAccount.php and it will perform the following

functions:

i) Add any unique genres to a Redis set using a key based on your userid, e.g.,

myersjac:genres

ii) Add the account profile information (as JSON) to a Redis key, e.g., myersjac:10d2e5,

where the first part of the key is your userid and the second part of the key is the account
number (here 10d2e5).

You will keep track of the status of all Redis transactions by capturing and displaying Redis’s
response. Also, add-on commands from modules, such as JSON.SET, do not have a built-in Redis
object method like “set.” For these commands, you must use $redis->rawCommand() where the
command name and all command parameters are used as parameters of the rawCommand()
method.

 $status = $redis->set("tutorial-name", "Redis tutorial");

What you need to know/learn:

• Redis commands

• Basic JavaScript for node.js

• Yargs for node.js

• Basic PHP

• An understanding of how HTML

forms handle posts and gets

• phpredis

• JSON encoding in PHP

http://elvis.rowan.edu/~myersjac/db
https://yargs.js.org/docs/
https://www.tutorialspoint.com/redis/redis_php.htm

d) The database server is not a web server, so you will have to simulate execution by running PHP
on the server with the PHP compiler. Your PHP code must include the following:

 // if started from commandline, wrap parameters to $_POST

 if (!isset($_SERVER["HTTP_HOST"])) {
 parse_str($argv[1], $_POST);

 }

What this does is read PHP command line arguments and load them into the $_POST associative
array if the PHP is not running on a web server (i.e., no HTTP_HOST). If the same PHP was
invoked with a POST operation on a web server, the $_POST array would be automatically
populated.

Then, there are two ways to run the PHP on the server. Consider this example in
/home/ubuntu/php:

 $ php redisSetup.php "account=myersjac&action=delete"
 Processing account myersjac
 Action: delete

Or, the PHP arguments could be stored in a command file on one line as in accountInput.txt
 $ cat accountInput.txt
 account=myersjac&action=Delete

Then you can run PHP from the command line this way:
 $ cat accountInput.txt | xargs php redisSetup.php
 Processing account myersjac
 Action: Delete

3) Retrieving Redis values

a) Now that you have stored data in redis, write another PHP file called retrieveInfo.php that will

work with posted data. This time the posted querystring will be the key to the Redis account
information, e.g., myersjac:10d2e5 (but use YOUR userid, not myersjac).

b) Your PHP file should retrieve and display the name and the phone number for the account.

c) Your PHP file should also display all of the genres that the users have registered for.

4) Communicating using the RESP protocol

a) Copy the file /home/ubuntu/redis/resp/ RedisSocket.java to your directory

b) Modify the file so that the fourth option will do a Redis SET. It should set the name of your

favorite animal using a key with your userid, e.g. myersjac:faveanimal.

The fifth option should do a Redis GET and retrieve your favorite animal.

