
Heterogeneous Database Systems Assignment

Let’s make a heterogeneous database system using Neo4j and Dynamo for academic journal papers.

Dynamo would make a strong choice to store the actual abstracts of the papers because you would get:

• High Performance at Scale: consistent single-digit millisecond latency for read and write operations, regardless

of the dataset size. This ensures rapid access to paper metadata, even as your collection grows.

• Seamless Scalability: automatic scaling to accommodate varying workloads, eliminating the need for manual

provisioning or capacity planning.

• Flexible Data Modeling: flexibility to store diverse metadata attributes without predefined schemas,

accommodating various fields like authors, publication dates, and keywords.

• Global Availability: with support for multi-region replication, low-latency access to data for users worldwide,

enhancing the user experience for global research communities.

But Neo4j would also offer some strong advantages, including:

• Natural Representation of Complex Relationships as

scientific literature is inherently interconnected: papers

cite other papers, authors collaborate across institutions,

and topics evolve over time. Neo4j’s graph model allows

you to represent these relationships directly as nodes

and edges, making it intuitive to model and query such

data structures.

• Efficient Traversal of Deeply Nested Data as traditional

relational databases can struggle with queries that

require multiple joins, such as finding all papers that cite

a given paper, then finding all papers that cite those

papers, and so on. Neo4j excels at traversing such deep

relationships efficiently, enabling complex queries like:

o Identifying influential papers within a specific field.

o Tracing the evolution of research topics over time.

o Discovering collaboration networks among researchers.

• Advanced Graph Algorithms for Insight Extraction that can be applied to analyze the research network to

determine the most influential papers based on citation networks, to identify clusters of related research topics

or author groups, or to find papers or authors with similar profiles or research.

• Visualization and Explorations to enable interactive exploration of the research graph.

Structure of databases

Neo4j – all nodes should look like this:

{
 "identity": 120,
 "labels": [
 "Paper"
],
 "properties": {
"name": "SNOW Revisited",
"title": "SNOW Revisited: Understanding When Ideal READ Transactions Are Possible",
"createdBy": "myersjac",
"year": "2021",
"doi": "myersjac-10.1109/IPDPS49936.2021.00101"
 }
}

--

{
 "identity": 119,
 "labels": [
 "Author"
],
 "properties": {
"name": "Nancy Lynch",
"createdBy": "myersjac"
 }
}

--

Relationships

 Primary Author

{
 "identity": 19,
 "start": 159,
 "end": 120,
 "type": "AUTHORED",
 "properties": {
"primary": true
 }
}

Secondary Authors

{
 "identity": 22,
 "start": 119,
 "end": 120,
 "type": "AUTHORED",
 "properties": {

 }
}

Citations

{
 "identity": 16,
 "start": 152,
 "end": 141,
 "type": "CITES",
 "properties": {

 }
}

Dynamo

Dynamo stores the primary key as the doi number (preceded by your username), the abstract of a paper, and the

primary author only.

Neo4J stores all authors, an abbreviated title for the name (as well as the full title), and no abstracts.

Look at the sample code and finish any unfinished coding!

